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ABSTRACT

Power has become one of the primary design constraints in modern microprocessors.

This is all the more true in the embedded domain where designers are being pushed to

create faster processors that operate for long periods of time on a single battery. It is well

known that the memory sub-system is responsible for a significant percentage of the over-

all power dissipation. For example, in the StrongARM-110 and the Motorola MCORE,

the memory sub-system consumes more than 40% of the overall system power. Traditional

power savings techniques like voltage/frequency scaling tend to sacrifice performance for

power. But, current generation embedded processors perform computationally intensive

tasks like audio, video, or packet processing that require high performance. Hence, power

savings should not be at the price of performance.

On-chip memory structures, such as register files, caches, and scratch-pads, provide

fast and energy efficient access to program and data by reducing the slower and power

hungry off-chip accesses. Memory power, therefore, can be reduced by employing tech-

niques to effectively utilize these storage elements. In this dissertation, three different

compiler orchestrated, but hardware-assisted techniques, are proposed that target these

on-chip storage elements while being performance neutral: use of a windowed register

file to provide more physical registers without increasing code size, a software-managed

loop-cache to reduce instruction fetch energy, and a compiler-controlled partitioned data

cache architecture to eliminate redundant data and tag accesses of a traditional data cache.

The compiler utilizes whole program knowledge to better orchestrate the program, while

xiii



hardware support allows run-time adaptation and enhances execution efficiency. These

techniques are evaluated within the context of the WIMS microprocessor, which is used in

sensor-based systems and thus, has a very tight power budget.

Registers provide faster, low-power storage for program variables. By maximizing

register utilization, the burden on the memory system can be significantly reduced. A

windowed register file architecture that provides a large number of physical registers with-

out compromising on the instruction encoding is proposed. A novel graph partitioning

compiler algorithm that partitions virtual registers within a given procedure across mul-

tiple windows was designed and implemented. Allocating program values across multi-

ple windows help reduce spill loads/stores to memory, thus improving both power and

performance. On average, a 25% reduction in system energy and 11% improvement in

performance were recorded as an eight-register design is scaled from one window to four

windows.

Modern embedded microprocessors use low power on-chip SRAMs called scratch-

pad memories to store frequently executed instructions or data. Unlike traditional instruc-

tion or data caches, scratch-pads lack the complex tag checking and comparison logic,

thereby proving to be efficient in area and power. To effectively utilize the limited scratch-

pad space, a compiler-managed dynamic instruction placement algorithm was designed

wherein, multiple hot code sequences, or traces, are made to overlap each other in the

scratch-pad at different points in time during execution through specially provided copy

instructions. For a 64-byte scratch-pad, the compiler-managed dynamic scheme achieved

over 64% energy improvement over a static-based solution.

Data caches have been effective in dealing with more irregular data access patterns.

But, they employ hardware-based lookup and replacement schemes that are inflexible and

have high energy overheads. A hardware/software co-managed partitioned cache architec-

xiv



ture is proposed in which enhanced load/store instructions are used to control fine-grain

data placement within a set of cache partitions. In comparison to traditional partitioning

techniques, load and store instructions can individually specify the set of partitions for

lookup and replacement. This fine grain control can avoid conflicts, thus providing the

performance benefits of highly associative caches, while saving energy by eliminating re-

dundant tag- and data-array accesses. Using four direct-mapped partitions, 25% of the

tag/data-array checks were eliminated that resulted in an average 15% reduction in the

energy-delay product compared to a hardware-managed 4-way set-associative cache.
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CHAPTER I

Introduction

With the proliferation of cellular phones, digital cameras, PDAs, and other portable

computing systems, power consumption in microprocessors has become a dominant de-

sign concern. Power consumption directly affects both battery lifetime and the amount of

heat that must be dissipated and thus, it is critical to create power-efficient designs. How-

ever, many of these devices perform computationally demanding processing of images,

sound, video, or packet streams. Thus, simply scaling voltage and frequency to reduce

power is insufficient as the desired performance level cannot be achieved. Hardware and

software solutions that maintain performance while reducing power consumption are re-

quired.

In this dissertation, an important component of the overall system power, namely, the

memory sub-system power, is explored. Recent research has shown that the memory sub-

system, including the instruction and data cache, is the highest contributer to the overall

system power. Caches consume around 42% and 23% of the total processor power in the

StrongARM 110 and the Power PC [100] processors, respectively.

Current techniques to attack this growing memory power problem can be classified into

1
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hardware, software, or a hybrid hardware/software solutions. Common hardware solu-

tions include memory banking [32, 68], dynamic voltage/frequency scaling [49], dynamic

cache resizing [66], and reducing memory bus switching power [10, 17]. Software-based

solutions include the use of software-controlled scratch-pads [8, 43, 71, 86, 87, 103] and

data/code reorganization [69, 70]. Although these techniques have their own merit, their

use and effectiveness has been limited. Hardware-only techniques suffer from the dis-

advantage of adding complex structures that can complicate the design and verification

process. In addition, hardware techniques must often resort to local program state infor-

mation, like the program execution history. This localized view can result in sub-optimal

solutions.

On the contrary, software-only techniques tend to make conservative decisions to en-

sure correctness. Moreover, they are limited to analyzing programs with highly con-

strained code and memory access behavior. This includes limiting the analysis to array-

only code that are indexed through affine functions [44], ignoring pointer/heap based code

and recursive function calls [98], and restricting analysis to inner-most loops with no pro-

cedure calls or control-flow [44, 103].

In this dissertation, compiler-controlled hardware-assisted techniques to efficiently use

on-chip memory structures are proposed. Software-based management can help reduce

hardware inefficiencies using global knowledge of the program behavior. Hardware assis-

tance can help reduce software overheads while capturing dynamic program behavior, and

thus aid in making software techniques more aggressive and effective.

On-chip storage structures, such as register files, caches, and scratch-pad memories,
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supply instruction and data values to the processor. They form a hierarchy of storage

structures that are progressively smaller in size while being faster and more energy effi-

cient. Off-chip memories are slower as they are larger in size and are located farther away

from the processor. In addition, driving high capacitance off-chip buses requires a large

amount of energy. Thus, hardware and software techniques generally try to reduce off-chip

accesses as aggressively as possible to drive down the energy consumed.

Register files are positioned closest to the functional units. They are usually small,

typically consisting of 16 to 32 entries, and are directly accessed. Register files are the

fastest and the most energy efficient of all on-chip storage structures. Almost all instruc-

tions source their operands from the registers. Registers reduce memory demand and help

save energy. Compilers, thus try to allocate as many program values to the registers so as

to maximally utilize them. But, more number of physical registers can increase the num-

ber of bits required within the instruction encoding. This in turn increases the code size,

and thus the instruction memory power.

Instruction and data memories represent the next level of storage within a processor.

Instruction fetch is one of the most active portions of a processor as instructions are fetched

almost every cycle. Hence, retaining as many of the instruction fetches on-chip is desir-

able. Similarly, data memories store frequently accessed data values that cannot fit in the

registers. Although data accesses are less frequent than instruction accesses, they typically

have a much larger memory footprint and exhibit more irregular access patterns. Caches

and scratch-pad memories are commonly deployed solutions to retain frequently accessed

instructions and data within the chip. One of the primary objectives of hardware and soft-
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ware techniques is to effectively manage these memory hierarchies so as to reduce off-chip

accesses that are slower and energy inefficient.

The focus of this dissertation is to explore hardware/software techniques to effectively

utilize these on-chip storage structures to reduce the overall memory system power. The

proposed techniques attempt to intelligently utilize the higher levels of the memory hi-

erarchy so as to provide faster and energy efficient accesses to instructions and data. In

particular, three different compiler-managed hardware-assisted techniques targeting regis-

ters, caches, and scratch-pads are investigated. The following sections briefly summarize

them.

1.1 Compiler Controlled Windowed Register File Architecture

In order to reduce the code footprint and thus the instruction fetch power, modern

embedded processors use instruction sets with narrow encoding (eg., 8 or 16-bits per in-

struction). But, reduced encoding limits the bits available to specify source and desti-

nation operand specifiers, thus restricting the number of architected registers to a small

number (e.g., eight or less). Restricting the number of addressable registers often limits

performance by forcing a large fraction of program variables/temporaries to be stored in

memory. Spilling to memory is required when the number of simultaneously live pro-

gram variables and temporaries exceeds the register file size. This has a negative effect on

power consumption as more burden is placed on the memory system to supply operands

each cycle.

A windowed register file architecture provides a large number of physical registers

while retaining the instruction encoding. At any point in execution, only one of the win-
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dows is active. Special instructions are used to activate and move data between windows.

Traditionally, register windows have been used to reduce the register save and restore

overhead at procedure calls, such as in the SPARC [85] and the IA-64 architectures [41].

Embedded microprocessors use windowing techniques to reduce context switch overhead.

In this dissertation, a non-traditional approach to using register windows is proposed. A

graph partitioning technique is used to partition program variables inside a procedure to

multiple windows so as to aggressively reduce spill code while minimizing the overhead

of the window management instructions.

1.2 Compiler Managed Dynamic Instruction Placement in Scratch-
Pad Memories

The instruction fetching subsystem can contribute to a large fraction of the total power

dissipated by the processor. Hardware managed caches, referred to as filter, L0 caches [50],

or loop caches [56, 57], suffer from high miss rates, controller complexity, and the inabil-

ity to relocate loops with control flow or subroutine calls. Software managed scratch-pad

memories [71, 98] reduce hardware management overhead by relying on the compiler to

relocate code segments. By avoiding the complex tag checking and comparison logic and

through better placement, scratch-pad memories have proven to be more energy efficient

than traditional caches.

Software static schemes place frequently executed regions of the code prior to program

execution. The contents of the scratch-pad are never modified after initial placement.

Although this technique is effective for particular types of applications, it breaks down

when a program has multiple important loops that collectively cannot fit in the scratch-
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pad.

In this dissertation, a compiler-directed technique for dynamic management of scratch-

pads is designed and evaluated. An inter-procedural heuristic for identifying hot instruc-

tion traces to insert in the scratch-pad is proposed. Based on a profile-driven power esti-

mate, the selected traces are packed into the scratch-pad by the compiler, possibly sharing

the same space. Copy instructions are used to overlap multiple traces in the scratch-pad

at different points in time during execution such that the run-time cost due to copying the

traces is minimized.

Compiler-directed dynamic placement combines the benefits of the hardware-based

schemes with the low overhead of the software-based schemes. The dynamic scheme

packs more frequently executed code regions into the scratch-pad, and thus better utilizes

the available space as compared to the static schemes.

1.3 Compiler Managed Partitioned Data Cache Management

Data caches have proven to be effective as they help to dynamically capture both tem-

poral and spatial locality without software intervention. But, their use in embedded do-

mains have been limited due to their energy inefficient tag checking and comparison logic.

On the one hand, although set-associative caches achieve high hit-rates, they come at the

expense of high energy overhead. On the other hand, direct mapped caches consume much

less power per access, while incurring more misses.

A partitioned cache architecture is proposed that attempts to bridge the performance

and energy gap between direct and set-associative caches. By maintaining multiple smaller

direct mapped caches with the same size as a unified direct or set-associative cache, per-
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formance can be improved while reducing the energy consumed. Data placement within

these partitioned caches are controlled by the compiler through load/store instruction set

extensions. Each load/store instruction can independently specify the partitions that are to

be probed for data lookup and replacement. This provides a two-fold advantage. Firstly,

by restricting cache lookups, tag/data access energy can be reduced. Secondly, by care-

fully orchestrating data placement in different partitions, conflict misses are reduced that

can improve performance.

Further energy reduction is achieved by allowing each of the partition to be configured

as a software-controlled scratch-pad. The data-arrays are exposed as part of the physical

address space. By disabling the tag-arrays of selected partitions, a highly configurable

data memory that can be tuned to the application’s memory needs is provided.

1.4 Contributions

This dissertation proposal makes the following contributions:

• Use of a new graph partitioning based compiler technique to exploit a windowed

register file architecture to reduce spill code.

• A compiler managed dynamic code placement scheme to place multiple frequently

accessed code sequences within on-chip scratch-pad memories.

• Use of a compiler directed partitioned cache architecture to reduce the energy dissi-

pated, while maintaining or improving performance.
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1.5 Organization

The remainder of this dissertation report is organized as follows. Chapter II provides a

brief description of the WIMS microcontroller. The WIMS microcontroller is used for en-

vironmental sensing and in biomedical implants and hence has a very tight power budget.

This architecture forms the basic platform for our explorations and evaluations into hard-

ware/software techniques for low power. The windowed register file architecture and the

compiler algorithm used to exploit it is described in Chapter III. Chapter IV discusses and

evaluates compiler managed dynamic placement of code in the scratch-pad memory. In

Chapter V, techniques to reduce data memory power using partitioned data caches that are

managed by the compiler is investigated. Finally, conclusions and some future directions

of research are presented in Chapter VI.



CHAPTER II

WIMS Microcontroller Architecture

The WIMS Microcontroller was designed to control a variety of miniature, low-power

embedded sensor systems [60]. It was designed at the University of Michigan, and forms

a central part of a high performance low power microsystem used for remote environmen-

tal monitoring and in cochlear implants [14]. The microcontroller, fabricated in TSMC

0.18µm CMOS, is shown in Fig. 2.1 and consists of three major sub-blocks: the digital

core, the analog front-end (AFE), and the CMOS-MEMS clock reference. Power mini-

mization was a key design constraint for each sub-block.

A 16-bit load/store architecture with dual-operand register-to-register instructions was

chosen to satisfy the power and performance requirements of the microcontroller. The

16-bit datapath was selected to reduce the complexity and power consumption of the core

while providing adequate precision in calculations, given that the sensors controlled by this

chip require 12 bits of resolution. The datapath pipeline consists of three stages: fetch, de-

code, and execute. Typically in sensor applications, processing throughput requirements

are minimal and power dissipation is a key design constraint; therefore, clock frequen-

cies should be kept as low as possible. A three-pipeline-stage architecture was chosen

9
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Figure 2.1: The WIMS microcontroller in TSMC 0.18µ CMOS and the WIMS datapath.

to obtain adequate performance without incurring the hardware overhead of more deeply

pipelined machines. A unified 24-bit address space for data and instruction memory sat-

isfies the potentially large storage requirements of remote sensor systems. The 16MB of

supported memory is byte addressable and provides sufficient storage for program, data,

and memory-mapped peripheral components. The current implementation has four 16KB

banks of on-chip SRAM with a memory management unit that disables inactive banks of

memory. This memory topology permits simultaneous instruction fetch and data accesses

to different banks of memory without stalling the pipeline.

A 16-bit WIMS instruction set was custom designed and includes seventy-seven in-

structions and eight addressing modes. The 16-bit instruction encoding supports a diverse

assortment of instructions that would be unrealizable with just 8-bit encodings. In contrast,

32-bit instructions require twice as much power to fetch from memory and the additional

16-bits would not be efficiently utilized by the applications that typically run on low-power

embedded processors. The 16-bit encoding represents an intelligent compromise between

the power required to fetch an instruction from memory and the versatility of the instruc-
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tion set. Some two-word instructions are necessary to support 24-bit absolute addressing

modes with 16-bit instructions. Address update modes facilitate manipulation of the 24-bit

addresses stored in the address registers by allowing both pre- and post-update operations.

Load and store instructions are available with or without update and in word or byte mode.

The core contains sixteen 16-bit data registers that are split into two register windows

each containing eight data registers (RF0, RF1). Similarly, six 24-bit address registers are

evenly split into two register windows (ARF0, ARF1). This windowing scheme permits

instructions to be encoded in 16 bits by reducing the number of bits required to encode the

sixteen register operands from 4 bits to 3 bits. In general, instructions can access only one

register window at a time. The only exceptions are the non-windowed instructions which

are used to copy data and addresses between the two windows. A window bit stored in the

Machine Status Register (MSR) selects the active register window. Additional window

bits can be added to the MSR to support extra register windows. A special instruction

(WSWAP) switches register windows in a single cycle by changing the MSR window bit

setting. Three additional non-windowed address registers (a stack pointer, frame pointer,

and link register) are provided for subroutine support.

The WIMS design is somewhat atypical of most processors used in previous research

in that it contains no caches. Caches were not needed because memory accesses to the on-

chip SRAM banks complete in one cycle. Moreover, the area/power overhead associated

with the tag memory and logic for tag comparisons of conventional cache organizations

did not make sense in the design. However, instruction fetch contributes to a large frac-

tion of the overall power dissipation of the chip (around 30% for the WIMS processor),
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thus a simple, software-managed scratch-pad (SP) or loop cache (LC) was added to the

design. The LC is a small SRAM (512-bytes in the current design) that can be designed

with substantially lower power dissipation characteristics than the 16KB banks used for

the rest of the memory (“main memory”). Fig. 2.1 shows the architecture block diagram

of the WIMS microcontroller with the LC. The LC occupies a range of the physical ad-

dress space, thus copying instructions into the LC corresponds to copying instructions into

those specific physical addresses. The memory management unit treats the LC as another

memory bank in terms of routing requests to it.

The WIMS microsystem operates under constrained environments with no access to

a constant source of power supply. Hence, it is imperative that it operate at ultra low

power in order prolong the limited battery life. Thus, the WIMS microcontroller archi-

tecture, with a tight energy budget, forms an ideal platform to explore hardware/software

co-design techniques to optimize power at all levels of the design. We have implemented

compiler managed schemes to effectively exploit the above described register windows

and loop cache architectural features. Data caches have become very common within em-

bedded processors, although the current generation WIMS processor does not include one.

To make our techniques applicable to a wider class of embedded designs, we have inves-

tigated compiler/hardware techniques to effectively manage the data cache for power and

performance.

We use the WIMS platform as our basic infrastructure to evaluate and explore different

techniques towards memory power optimizations. Many of the above mentioned architec-

tural features are common in most current generation embedded processors. Thus, our
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solutions are applicable to improve power and performance for a broader class of embed-

ded systems.



CHAPTER III

Reducing Spill Pressure Using A Windowed Register File
Architecture

3.1 Introduction

In the embedded processing domain, in order to create energy efficient designs, a com-

mon approach employed by designers is to create narrow bitwidth instruction designs (eg.,

8 or 16 bits per instruction). Examples of such designs include the Motorola-68HC12 [65]

and the Thumb instruction set extensions in the ARM [80] processor. Tight instruction

encodings offer the advantage of compact code and thus smaller instruction memory re-

quirements.

While reduced code size can save area and power, the performance of such systems can

be problematic. Many embedded applications, such as signal processing, encryption, and

video/image processing, have significant computational demands. Low-power designs are

often unable to meet the desired performance levels for these types of applications. This

thesis focuses on one particular aspect in the design of narrow bitwidth processors, the

architected registers. An instruction-set with limited encoding (8 or 16-bits) significantly

reduces instruction fetch power by reducing the code footprint. But reduced encoding lim-

14
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its the bits available to specify source and destination operand specifiers, thus restricting

the number of architected registers to a small number (e.g., eight or less). For example,

the TMS320C54x [92] processor has eight address registers and the ADSP-219x [5] has

sixteen data registers. Similarly, the Thumb mode in the ARM [80] architecture uses a

16-bit instruction encoding with eight addressable registers. Restricting the number of

addressable registers often limits performance by forcing a large fraction of program vari-

ables/temporaries to be stored in memory. Spilling to memory is required when the num-

ber of simultaneously live program variables and temporaries exceeds the register file size.

This has a negative effect on power consumption as more burden is placed on the memory

system to supply operands each cycle.

Our approach is to provide a larger number of physical registers than allowed by the

instruction set encoding. This approach has been designed and implemented within the

low-power, 16-bit WIMS (Wireless Integrated Microsystems) microcontroller (see Chap-

ter II). The registers are exposed as a set of identical register windows in the instruction set.

At any point in the execution, only one of the windows is active, thus operand specifiers

refer to the registers in the active window. Special instructions are utilized to activate and

move data between windows. The goal is to provide the appearance of a large monolithic

register file by judiciously employing the register window.

Traditionally, register windows have been used to reduce the register save and restore

overhead at procedure calls, such as in the SPARC architecture [85]. A similar but more

configurable scheme called the Register Stack Engine (RSE) is implemented in the IA-64

architecture [41]. The register stack supports a variable sized window for each procedure,
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wherein the size is determined by the compiler and communicated to the hardware through

special instructions. When the number of physical registers is exceeded, a hardware engine

is invoked to save and restore the registers to memory. The RSE is primarily targeted at

reducing the save/restore overhead incurred by procedure calls. Windowing techniques

have also been employed in embedded microprocessors, including the ADSP-219x [5]

and Tensilica’s Xtensa [91]. These processors typically use register windows to reduce

context switch overhead while handling real-time critical interrupts.

Our studies have shown that for the more loop-dominated applications found in the

embedded domain, the use of register windows to reduce procedure call overhead has lim-

ited impact on performance. We did a study where each procedure used a separate window

with 8-registers per window. An infinite supply of windows was assumed, thus eliminat-

ing all caller/callee save/restore overhead. This resulted in less than 2% improvement in

performance. The central problem is that a majority of embedded applications spend most

of their time in loop nests contained within a single procedure [36]. Thus, the overhead

due to register spills dominates the save and restore code at procedure boundaries. Our

approach is to make use of multiple register windows within a single procedure to reduce

spill code. Eliminating spill loads and stores reduces memory accesses and thus improves

performance and power consumption.

To support intra-procedural window assignment, the compiler employs a graph par-

titioning technique. A graph of virtual registers is created and partitioned into window

groups. In the graph, each virtual register is a node and edges represent the affinity (the

desire to be in the same window) between registers. Spill code is reduced by aggressively
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(c)(b) (d)

for ( i = 0;  i < 100;  i ++ ) {

a [i] = b[i]  *  c[i] + d[i]

} 

(a)  

loop:

ADD     R1-3, R1-0, R1-6

LOAD   R1-2, [R1-3]

ADD     R1-3, R1-0, R1-7

LOAD   R1-4, [R1-3]

MPY     R1-3, R1-2, R1-4

ADD     R1-2, R1-0, R1-5

ADD     R1-1, R1-1, #1

LOAD   R1-4, [R1-2]

ADD     R1-2, R1-3, R1-4

STORE  [R1-0], R1-2

ADD      R1-0, R1-0, #4 

CMP      R1-1, #100

BRCT    loop

1

3

2

loop:

LOAD   R1-1, [SP, #24]

ADD     R1-0, R1-3, R1-1

LOAD   R1-0, [R1-0]

LOAD   R1-1, [SP, #32]

STORE [SP, #72], R1-0

ADD     R1-0, R1-3, R1-1

LOAD   R1-0, [R1-0]

LOAD   R1-1, [SP, #72]

MPY     R1-0, R1-1, R1-0

STORE [SP,#40], R1-0

LOAD   R1-0, [SP, #16]

ADD     R1-1, R1-3, R1-0

LOAD   R1-0, [R1-1]

LOAD   R1-1, [SP, #40]

ADD     R1-0, R1-1, R1-0

LOAD   R1-1, [SP, #80]

STORE [R1-3], R1-0

ADD     R1-0, R1-1, #1

ADD     R1-3, R1-3, #4

CMP     R1-0, #100

BRCT   loop

loop:

WMOV  R1-0, R2-1

WSWAP R, #1

ADD       R1-3, R1-2, R1-0 

WMOV  R1-0, R2-2

LOAD    R1-1, [R1-3]

ADD      R1-3, R1-2, R1-0

LOAD    R1-0, [R1-3]

MPY      R1-3, R1-1, R1-0

WMOV  R1-1, R2-3

ADD      R1-1, R1-2, R1-1

LOAD    R1-1, [R1-0]

ADD      R1-0, R1-3, R1-1

STORE  [R1-2], R1-0

WSWAP R, #2

ADD       R2-0, R2-0, #1

WSWAP R, #1

ADD       R1-2, R1-2, #4

WSWAP R, #2

CMP       R2-0, #100

BRCT     loop  

Figure 3.1: Register window example. (a) C-source; Assembly code for (b) 1-window of
8-registers (c) 1-window of 4-registers (d) 2-windows of 4-registers. Registers are denoted
by window number ‘-‘ the allocated register number.

assigning virtual registers to different windows, hence exploiting the larger number of

physical registers available. However, window maintenance overhead in the form of acti-

vating windows (also known as window swaps) and moving data between windows (also

referred to as inter-window moves) can become excessive. Thus, the register partition-

ing technique attempts to select a point of balance, whereby spills are reduced by a large

margin at a modest overhead of window maintenance.

3.2 Windowed Architecture Example

In order to demonstrate the benefits of register windowing for reducing spill code while

incurring the overhead of the window management instructions, consider the example
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shown in Figure 3.1. The original C-source is shown in Figure 3.1(a). The loop segment

has been mapped to three different register window configurations: Figure 3.1(b) shows

1-window of 8-registers, Figure 3.1(c) shows 1-window of 4-registers, and Figure 3.1(d)

shows 2-windows of 4-registers. For clarity, we use a generic RISC-like instruction set

instead of the WIMS instruction set and assume a unified register file instead of disjoint

address and data files throughout all examples in this chapter. In the assembly code in Fig-

ure 3.1, the leftmost operand is the destination. We use the notation Ri-j, where i denotes

the window number and j denotes the register number. For the window swap operation

(WSWAP), the first operand specifies the register file, while the second argument specifies

the new active window. This allows windows within each register file to be controlled

independently.

The windowed register file architecture restricts all operands within a single instruc-

tion to refer to the current active window. All operations following a WSWAP access their

operands from the new active window. WMOV denotes the inter-window move instruc-

tion which can move values between any two register windows. If an operation refers to

registers in different windows, one or more WMOV operations are required. Considering

Figure 3.1(d), the WMOV instruction (instruction marked 1) transfers the value from reg-

ister (R2-3) to the register (R1-1), which is then used in the following ADD instruction.

The STORE instruction (instruction marked 2) accesses all of its operands from window

1. The WSWAP (instruction marked 3) toggles the active window from 1 to 2 so that the

following ADD instruction can source all of its operands from window 2.

In Figure 3.1(b), all program variables and temporaries can fit in registers and hence
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no spill is generated with 8-registers. Conversely with 4-registers, significant spill code

(the load and store instructions shaded in dark gray) is generated as there are insufficient

registers to hold the necessary values as shown in Figure 3.1(c). In Figure 3.1(d), by par-

titioning the variables and temporaries into 2-windows of 4-registers, no spill is generated

although there is an overhead of 4-window-swaps and 3-inter-window moves (all shown

in light gray). This configuration has the same number of total registers as that in (b) with

the encoding benefits of (c). On the WIMS processor, where every instruction executes in

a single cycle, Figure 3.1(c) has an 8-cycle overhead as compared to Figure 3.1(b), while

Figure 3.1(d) has only 7 extra instructions. More importantly, Figure 3.1(d) has fewer

loads and stores (0 spill operations) to memory as compared to (c) (8 spill operations) and

thus consumes significantly less memory power.

The remainder of the chapter explains the compiler algorithm to automatically par-

tition the variables and temporaries referenced in a procedure into the available register

windows, as illustrated in Figure 3.1(d), such that the spill cost is reduced while minimiz-

ing the extra overhead due to the window swaps and inter-window moves.

3.3 Register Window Partitioning

3.3.1 Overview

The overall compilation system for register window partitioning is based on the Tri-

maran infrastructure [96] and is shown in Figure 3.2. Ignoring the gray boxes, the base

compiler system consists of the machine independent frontend which does profiling, clas-

sical code optimizations (such as common sub-expression elimination, constant folding,

induction variable elimination, etc.), loop unrolling, and procedure inlining to produce a
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Figure 3.2: Overview of the compiler system with extensions to support register windows.

generic assembly code for a load-store architecture. The assembly code uses an infinite

supply of virtual registers (VRs) to communicate values between operations. A machine

description file (MDES) is used to describe the architecture of the target machine for gen-

erating machine-specific assembly code. The MDES contains a detailed description of

the register files including the windows into which each file is partitioned, number of reg-

isters, connectivity of register files to function units, instruction format, and a detailed

resource usage model which is used by the instruction scheduler. The connectivity model

helps the compiler’s code generator conform to the architectural specifications of the tar-

get machine. After prepass scheduling, all VRs are partitioned into the available register

windows. For each register file, the register allocator uses a graph coloring algorithm [48]

to assign physical registers to the VRs, generating spills if required. Finally, the resultant

code is postpass scheduled to produce the fully bound assembly code.

The new phases added to handle register window partitioning are shown in gray boxes

in Figure 3.2. Register partitioning treats each window/partition as a separate register
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file and binds VRs allocated to a given partition to the corresponding register file. The

partitioning algorithm could assign VRs referenced by an operation to different windows.

The code generator inserts appropriate inter-window moves to honor the architectural con-

straints of all registers accessed by a single operation coming from the same window. The

swap insertion phase inserts window swaps in the code so that two operations that access

different register windows are separated by a window swap. The swap optimizer then re-

moves the redundant swaps. Prior to postpass scheduling, an edge drawing phase inserts

additional dependence edges to ensure that operations do not move across window swaps.

The register window partitioning algorithm is modeled as a graph partitioning problem

where the nodes in the graph correspond to VRs1 used in the assembly code and the edges

represent the affinity between VRs. The goal is to partition the VRs into different register

windows/partitions so as to minimize the overall spill, inter-window moves, and window

swaps, which indirectly leads to our overall goal of performance/power improvement by

reducing the number of memory accesses for data operands.

Partitioning consists of two distinct phases - weight calculation and node assignment.

Each partition is assigned a weight that measures the cost of spilling the VRs assigned

to that partition. The affinity between VRs is captured using edge weights, which rep-

resents the penalty incurred if two nodes connected by the edge are assigned to different

partitions. The penalty can be an inter-window move, window swap, or both. If two VRs

referenced within a single operation are assigned to different partitions, the code generator

is forced to insert an inter-window move. Similarly, if two VRs in different operations are

not assigned to the same window, a window swap is required at some point between the

1Nodes and VRs will be used interchangeably in the rest of the chapter.
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loop:

1  ADD    VR34, VR27, VR32

2  LOAD  VR6, [VR34]

3  LOAD  VR9, [VR27]

4  MPY    VR10, VR6, VR9

5 ADD     VR20, VR20, VR10

6 ADD     VR2, VR2, #1

7 ADD     VR27, VR27, #4

8 CMP     VR2, 32

9 BRCT    loop

3104 1

Figure 3.3: Example loop to illustrate the register window partitioning algorithm.

two operations. Unlike traditional graph partitioning that uses statically computed node

weights, the partitioning algorithm uses partition weights that change dynamically during

the partitioning process.

The node assignment phase uses the calculated weights to consider moving nodes

between partitions so as to minimize the sum of all the partition weights and the inter-

partition edge weights. The register partitioning algorithm uses a modified version of

the Fiduccia-Mattheyses graph partitioning algorithm [30] which is an extension of the

Kernighan-Lin algorithm [47]. The partitioning algorithm is region-based2, i.e., all the

VRs in the most frequently executed region are partitioned, followed by the VRs in the

next most frequently executed region, and so on. The node assignment phase must ensure

that the partitioning decisions are honored across all regions.

Figure 3.3 is a code segment from the inner-most loop of the finite impulse response

(FIR) filter. The dynamic execution frequency, obtained from profiling the application on

a sample input, is 3104. This example will be used throughout this section to illustrate the

2A region is any block of code considered as a unit for scheduling like a basic block or superblock [63].
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32
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{443, 0} {443, 0} {443, 0} {443, 0} {4168, 0} {443, 0} {443, 0}

{1062,3104}{387, 3104} {387, 0} {2719, 0} {1034, 0} {3104, 0}

{387, 3104} {387, 0} {1064, 3104} {443, 0} {443, 0}

{387, 3104} {1241, 0} {620, 0} {620, 0}

{1008, 0} {387, 0} {387, 0}

{443, 3104} {443, 3104}

{0, 3104}

(a)

(b)

loop:

1  ADD    VR34, VR27, VR32

2  LOAD  VR6, [VR34]

3  LOAD  VR9, [VR27]

4  MPY    VR10, VR6, VR9

5 ADD     VR20, VR20, VR10

6 ADD     VR2, VR2, #1

7 ADD     VR27, VR27, #4

8 CMP     VR2, 32

9 BRCT    loop

3104
1

VR10

VR20 VR2 VR34

VR6
VR9

VR27 VR32

VR32, VR20

VR6

VR10

Spilled VRs

Partition Weight: Spill Cost of VRs 32, 20, 6, 10 = 

3104 + 6208 + 6208 + 6208 = 21728

VR27                        :   4 * 3104

VR2                          :   3 * 3104

VRs 34, 9, 10, 20, 6  :   2 * 3104

VR32                        :   1 * 3104

(c)

Figure 3.4: Example of partition and edge weight calculations. (a) Edge weight matrix:
each cell contains {swap cost, move cost}. (b) Spill cost of VRs. (c) Partition weight
computation assuming all VRs assigned to one partition.

weight calculation and node assignment process. For illustrative purposes, the goal here is

to partition this region into 2-windows of 4-registers each, although the WIMS processor

has 2-windows of 8-registers per window. In this work, profile information is used in the

edge and partition weight calculations. Alternately, static weights based on the nesting

depth of loops can also be used.

3.3.2 Edge Weight Calculation

An edge is associated with every pair of VRs. The edge weight is used by the par-

titioning algorithm to represent the degree of affinity between two VRs. The algorithm

tries to place two nodes with high affinity in the same partition, while trying to minimize

the sum of the edge weights between nodes placed in different partitions. An edge weight

is an estimate of the number of dynamic moves and swaps required when two VRs are

placed in different windows. By placing two VRs with high affinity in a single partition,

the algorithm reduces the number of swaps and moves. The edge weight between VRs is
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expressed as a matrix (see Figure 3.4(a)) computed prior to the node assignment process.

The edge weight is the sum of two components: the estimated move cost and swap cost.

Move Cost: An operation may only reference registers from a single window. Thus,

VRs referenced by a single operation that are assigned to different partitions require an

inter-window move (WMOV) operation. For every pair of VRs, the total number of such

dynamic instances is the estimated move cost. In Figure 3.3, VRs 6 and 9 are referenced in

operation 4. If these VRs are in different windows, a WMOV is required for this operation.

Hence, the move cost for VRs 6 and 9 is the frequency of operation 4 or 3104. Conversely,

VRs 27 and 6 are not referenced together in any operation and hence do not require a

move. This process is carried out for all pairs of VRs producing the matrix of values in

Figure 3.4(a) (right entry in each cell).

Swap Cost: If two VRs are assigned to different windows/partitions, a window swap

(WSWAP) is required before the operation that refers to the second VR. Swap cost es-

timates the number of swaps required between every pair of VRs assuming that they are

assigned to different partitions. For every pair of VRs, the region is scanned in linear order.

On reaching the first VR, the current active window is assumed to be 1. On encountering

the second VR, the current active window becomes 2 and hence a swap is required right

before the operation which references the second VR. Continuing further, on seeing an

instance of the first VR again, the active window changes and another swap is required.

No swap is required for consecutive references to the same VR. At the end of the region,

the total number of swaps gives an estimate of the number of swaps required between this

pair of VRs. The swap cost is therefore the number of swaps times the profile weight of
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the region under consideration.

In Figure 3.3, between VRs 27 and 34, the swaps are computed as follows. We assume

that VRs 27 and 34 are assigned to windows 1 and 2 respectively. VR27 is referenced

in operations 1, 3, and 7 and so these operations are assigned to window 1. VR 34 is

referenced in operation 2 and so the operation is assigned to window 2. In the sequen-

tial execution, swaps need to be inserted after operations 1 (window 2 activated) and 2

(window 1 activated). Hence, the total swap cost is 2∗3104 = 6208.

Adding swap cost between every pair of VRs can over-estimate the importance of

swaps as the number of swaps is a function of the partition assignment of all the VRs and

not just between two VRs. For example, consider operations 3 and 4 in Figure 3.3. If VRs

9 and 27 are assumed to be in window 1 and VRs 10 and 6 in window 2, the above method

would count the swap four times, between 9-10, 9-6, 27-10, and 27-6, although only a

single swap is necessary.

To deal with this over-counting, swap counts are used to normalize the swap cost be-

tween every pair of VRs. The swap count is the number of swaps between every pair

of operations due to every pair of VRs. For example, between operations 6 and 7, 5

swaps are required. These swaps are due to VR pairs 10-27, 20-27, 2-27, 27-9, and

27-6. Generalizing this, let c1,c2...ck be the swap count due to swaps required by all

pairs of VRs after operations op1,op2...opk. If two VRs vri and vr j, require a swap

after these k operations, then the normalized swap cost estimate between vri and vr j is

(1/c1 + 1/c2 + ... + 1/ck) ∗ cost o f swap, where cost o f swap is the cost of a single

swap operation. Intuitively, a swap after an operation could be shared by multiple VR
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pairs. Further, regardless of the number of windows, at most one swap is required between

every pair of operations. Thus, if n VR pairs introduce a swap after an operation, then

the contribution to the swap cost by any one of those VR pairs is 1/n. In Figure 3.3, VRs

10 and 27 require a swap after operations 3 and 6. Since operation 3 has a swap count of

5 (due to the 5 pair of VRs including 10 and 27 listed above) and operation 6 also has a

swap count of 5 (including 10 and 27), the swap cost estimate between VRs 10 and 27 is

(1/5+1/5)∗3104 = 1241 (Figure 3.4(a), left entry in each cell).

3.3.3 Partition Weight Calculation

The partition weight estimates the spill cost for the VRs assigned to each partition. The

node assignment phase tries to minimize the sum of the weights of all the partitions. The

partition weights are computed using a crude linear scan register allocation algorithm [73]

to compute the estimated dynamic spill cost.

Given a set of VRs assigned to a partition, the live-ranges (the range of operations from

all defines to all uses of the value) of the VRs are computed. For each VR, its dynamic

reference count is calculated using the profile information. If the VR is spilled, then the

dynamic reference count gives an estimate of the load/store overhead for spilling that VR.

For every operation in the region spanned by the live-range of the VRs under consideration,

the interfering VRs are considered as candidates for spill. If the number of overlapping

live-ranges for that operation is more than the number of registers in that partition (size of

the register window)3, the interfering VRs are spilled until the overlapping live-ranges are

less than the register window size. Note, we are only estimating the weight of the partition

3In our implementation, we assume the number of available register is one less than the window size.
This is done to factor in the interferences due to inter-window moves that are inserted later.
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by estimating spills. The actual spill code insertion is done during register allocation

within each window after the window assignment process.

The VRs are chosen for spilling in increasing order of dynamic reference count. If two

VRs have the same dynamic reference count value, the one with larger live-range is spilled.

Once a VR is spilled, it no longer interferes with the rest of the operations and hence is

not considered for subsequent operations if there is an overlap. The cost of the partition is

the sum of the dynamic reference counts of the spilled VRs. If a VR is already assigned to

the register window (from an earlier region) then, for the rest of the VRs interfering with

this VR, the number of available registers is reduced by one.

In Figure 3.4(b), the spill cost/dynamic reference count for each VR is shown while

in Figure 3.4(c), the live-ranges of the VRs are shown on the right. Assume that all VRs

are assigned to a single partition and three physical registers are available per partition.

At operation 1, five VRs (20, 2, 34, 27, and 32) are live simultaneously. Since there are

only three registers available in the partition, VRs 32 and 20 are spilled. VR 32 has a

spill cost of 3104 as there is only a single reference of that VR in operation 1, while other

VRs are referenced more than once and have spill cost greater than 3104. Hence, VR 32

is picked first. VRs 20 and 34 both have a dynamic reference count of 6208, but VR 20

has a larger live-range and is chosen next for spilling. At operation 2, VRs 20, 2, 34, 6,

27, and 32 are live. Since 32 and 20 are already spilled, only VR 6 gets spilled as it has a

smaller dynamic reference count than VRs 2 and 27, and larger live-range than VR 34. At

operation 3, VRs 20, 2, 6, 9, 27, and 32 are live. Since 32, 20, and 6 are already spilled,

no more VRs are spilled as the number of remaining live VRs is equal to three. VR 10 is
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spilled at operation 4. For the rest of the operations, no additional VRs are spilled. So, for

this partition, the partition weight is the spill cost of the spilled VRs 32, 20, 6, 10, which

is 3104+6208+6208+6208 = 21728. In actual implementation, instead of considering

every operation, only operations which are at the start/end points of any live-range are

considered. So in Figure 3.4(c), only operations 1, 2, 3, 4, 5, and 9 are considered. For the

other operations, the live-range information does not change and hence are ignored.

Since region-based partitioning is performed, window assignments of a higher priority

region can affect the decisions in a lower priority region. While computing the partition

weights, it is possible that there are live VRs that are already assigned to partitions from

processing higher priority regions. If these VRs were not spilled, then they are assumed

to be pre-bound to a register. Thus, the window has one fewer register available per such

pre-bound register.

3.3.4 Node Partitioning

The goal of the node partitioning phase is to reduce the overall spill cost while mini-

mizing the impact due to inter-window moves and swaps. Starting from an initial partition,

the node partitioning algorithm tries to iteratively distribute the VRs into different parti-

tions so as to reduce the sum of the weights of all partitions, while trying to minimize the

edge weights between nodes assigned to different partitions. The node partitioning tech-

nique that we used is a modified version of Fiduccia-Mattheyses’s [30] graph partitioning

algorithm (FM). It consists of two phases - initial partitioning and iterative refinement.

Initial Partitioning: Placing all VRs in the first partition can create an unbalanced

initial configuration which can affect the quality of the partitioning algorithm. The initial
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Algorithm 3.1: Initial partitioning of node (VRs).

InitPartition() ;1

Input: List of VRs within a procedure and the number of windows/partitions
sortedList = Sort all VRs in decreasing order of dynamic reference count ;2

foreach (partition p) do3

foreach (vr ∈ sortedList) do4

LR = list of ops in which vr is live ;5

spill = false ;6

foreach (op ∈ LR) do7

allocatedVrs = list of vrs at op that are live and allocated to partition p ;8

numAvailRegs = number of registers in window/partition p - number of9

allocatedVrs ;
if (numAvailRegs ≤ 0) then10

spill = true ;11

break ;12

end13

end14

end15

if (!spill) then16

add vr to partition p ;17

mark vr as allocated to partition p ;18

remove vr from sortedList ;19

end20

end21

if (!sortedList.isEmpty()) then22

add all VRs in sortedList to first partition p ;23

end24

partitioning algorithm tries to distribute the VRs into partitions so as to start with an initial

configuration of relatively less register pressure while being incognizant of the swap and

move overhead. If a given window/partition has sufficient registers to accommodate the

VRs, then all of the VRs are allocated to that partition. If not, the VRs are assigned based

on a priority order to a particular window/partition until no more VRs can be assigned to

it without the need for spilling. The remaining VRs are then placed in the next partition

until it gets saturated and so on.

The algorithm for the initial distribution of VRs to windows/partitions is given in Al-
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gorithm 3.1. Initially, all VRs are sorted based on the dynamic reference count (step 1)

so that the most important VRs are assigned first. For a given partition, allocation is at-

tempted for every VR in the sorted list. The allocation is done using a simple linear scan

register allocation algorithm similar to the technique described in Section 3.3.3. It should

be again noted that this heuristic generates an initial partition of VRs to register windows

without actually register allocating them. For every VR, its live-range (LR) is computed

(step 4) as a list of operations. For every operation op in LR (step 6), num avail regs,

which is the difference between the total number of registers in the current partition and

number of allocated registers that are live at op, is computed (steps 7 and 8). If there are

free registers (step 9), then this VR is assigned to the current partition (steps 16, 17, and

18), else it is assumed to be spilled. This process continues for all VRs in the sorted list

such that they are either assigned to the current partition or spilled. The spilled VRs are

then attempted for assignment to the next partition (step 2) using the same algorithm. Once

all of the partitions are processed, any remaining spilled VRs that could not be assigned to

any partition are simply assigned to the first partition (step 22).

Iterative Refinement: After the initial assignment, the iterative refinement phase tries

to move VRs across partitions to reduce the overall spill cost (partition weights) while

minimizing the overhead due to swaps and moves (edge weights between partitions). The

algorithm for the node partitioning is given in Algorithm 3.2. Initially, a set of n-partitions

(where n is the number of register windows) is created (pset, step 1) and initialized using

the initial partitioning algorithm described in Algorithm 3.1 (step 2). This partition con-

figuration is used as the seed configuration for the first pass. In step 3, the overall weight
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Algorithm 3.2: Node (VR) partitioning.
Input: List of VRs within a procedure
Input: n: number of windows/partitions
pset = create n partitions ;1

InitPartition() ;2

minOverallWt = compute overall weight of pset ;3

save current partition configuration ;4

savedInfo = false ;5

while (minOverallWt > 0) do6

srcPart = find an unbalanced partition from pset ;7

if (srcPart = NULL) then8

if (savedInfo) then9

restore part configuration ;10

savedInfo = false ;11

end12

else13

break /* terminate partitioning */ ;14

end15

unlock all locked vrs in pset ;16

end17

vr,destPart = FindBestVr(srcPart) ;18

if (destPart = 0) then19

remove srcPart from pset ;20

continue ;21

end22

move vr to destPart ;23

lock vr in destPart ;24

overallWt = compute overall partition weight of pset ;25

if (overallWt < minOverallWt) then26

minOverallWt = overallWt ;27

save current partition configuration ;28

savedInfo = true ;29

end30

end31

restore partition configuration ;32

of the set of partitions is computed. The overall weight is the sum of the partition weights

and the weights of the cut edges across all partitions. The initial partition configuration

is then saved in step 4 assuming that it is the best seen yet. During a single iteration of

the loop in step 6, the partition (srcPart) with the maximum weight is selected (step 7). If

such a partition exists (step 17), the node with the largest gain (FindBestVr) is selected.

Algorithm 3.3 gives the algorithm for FindBestVr. For every node in the source parti-

tion, FindBestVr computes the gain in moving the node to all other destination partitions.
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Algorithm 3.3: Find the best VR to be moved to a different partition.
FindBestVr(srcPart) ;
Input: Partition srcPart from which the best VR to be moved is selected
return bestnode: Best VR that is to be moved from srcPart, destPart: destination partition
to which the VR has to be moved foreach (node in src partition) do

foreach (destPart ∈ pset) do
move node to destPart ;
oldTotalWt = srcpWtOld + destpWtOld ;
newTotalWt = srcpWtNew + destpWtNew ;
partitionWtGain = oldTotalWt − newTotalWt ;
edgeWtGain = oldEdgeWt − newEdgeWt ;
gain = partitionWtGain + edgeWtGain ;
if (gain > maxgain) then

bestnode = node ;
maxgain = gain ;

end
end

end

Gain is defined as the sum of the partitionWtGain and edgeWtGain, where partitionWt-

Gain is the reduction in total partition weights when the node is moved from the source to

the destination partition. Similarly, edgeWtGain is the reduction in edge weights between

nodes in the source and destination partitions. In Algorithm 3.3, srcpWtOld/destpWtOld

is the weight of the source/destination partition before the node is moved, while srcpWt-

New/destpWtNew is the weight of the source/destination partition after the node is moved.

The node (bestnode) with the highest gain and the destination partition (destPart) to which

it is to be moved are returned.

The partitioning algorithm then picks the node with the highest gain (vr) and performs

the move to the destination partition (destPart, step 22). It should be noted that the highest

gain could be a negative value. Allowing negative gains helps avoid local minima. Once a

node is moved over to the new partition, it is locked in the new partition and not considered

in the current pass (step 23). The overall partition weight is then recomputed in step 24.
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Figure 3.5: Partitioning applied to example: (a) Initial partition, (b) Gains for each VR
moving from P1 to P2 after the initial partition.

If the overall weight is less than the minimum overall weight, it implies that the resultant

partition configuration is the best configuration seen so far and hence the configuration is

saved. If FindBestVr has no more VRs to move (either because all VRs have been locked

or there are no destination partitions to move to), the srcPart is removed from the set of

partitions (steps 18 and 19). In step 8, if there are no more partitions left, the current pass

is ended. If during the previous pass, a better configuration was seen and saved (savedInfo

flag is set to true), then the best configuration seen so far is restored and used as the seed for

the next pass (step 9). Before commencing the next pass, all VRs are unlocked (step 15).

If savedInfo is set to false, it implies that during the previous pass a better configuration

was not seen and the partitioning is terminated. The partitioning is also terminated if the

minOverallWt reaches 0 (step 6). On exit, the best partition seen over all passes is restored

as the final partition (step 31).

Example: The initial partition configuration is shown in Figure 3.5(a). To compute
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= 3104
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VR9

VR10VR32

VR27

VR34

VR6

VR2

VR20

Partition weight of P1   Partition weight of P2 = 0

= spill cost of VR 32

= 3104

loop:

1   WSWAP  R,   #1

2   LOAD      32:R1-0,   [SP, #0]

3   ADD        34: R1-3,   27:R1-1,   32:R1-0

4   LOAD     9:R1-3,   [27:R1-1]

5   LOAD     6:R1-2,   [34:R1-3]

6   MPY       39:R1-0,   6:R1-2,   9:R1-3

7   WMOV   10:R2-2,   39:R1-0

8   WSWAP  R,   #2

9   ADD        20:R2-1,   20:R2-1,   10:R2-2

10 ADD        2:R2-0,   2:R2-0,   #1

11 WSWAP  R,   #1

12 ADD        27:R1-1,   27:R1-1,   #4

13 WSWAP  R,   #2

14 CMP        2:R2-0,   #32

15  BRCT     loop

Figure 3.6: Example after window assignment. The notation VR : Ri − j is used, where
VR is the original virtual register number from Figure 3.3, i is the window number, and j
is the allocated register number.

the initial partitions, the live-ranges and the dynamic reference counts of the VRs are

shown in Figures 3.4(b) and (c), respectively. The VRs are considered in the decreasing

order of dynamic reference count. We assume 3-registers per window. Initially, the top

two VRs, 27 and 2, are allocated to partition 1. Next, VRs 34 and 9 are allocated as they do

not interfere with each other and the number of maximum interfering live-ranges is three.

Since partition 1 is now saturated, the rest of the VRs (except VR 32) are assigned to

partition 2. VR 32, which has the least count, is assigned to partition 1 and is spilled. The

initial partitioning algorithm thus distributes the VRs such that the total partition weight is

minimized (3104).

The iterative refinement phase then tries to move each VR from P1, which is the highest

weight partition, to P2 and computes the resultant partition and edge gains. Figure 3.5(b)
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shows the partition, edge, and total gain for moving each VR. The VR with the maximum

total gain is chosen. Here, all gains are negative, so VR 34 with the smallest negative gain

is moved to partition 2. This VR is then locked in partition 2. Subsequently, VR 6 (with

gain 3246) is moved to partition 1 and VR 2 (with gain 8682) is moved to partition 2.

Edge weights are computed statically before partitioning. So, find best vr need only

do a lookup of the edge weight matrix (Figure 3.4(a)) to get the edge weights between a

pair of VRs. But, this is not the case with the partition weights. As nodes migrate from

partition to partition, the interferences among VRs can change and so the partition weight

(spill cost) has to be recomputed (Section 3.3.3) on the fly. Each move of a node would

thus require an O(n) scan of the operations in the region and hence the complexity of

the partitioning algorithm is O(n2) per round of refinement. Figure 3.6 shows the final

partition configuration. The total partition weight is 3104 which is same as the initial

partition weight. The initial partitioning algorithm minimized the number of spills but

did not consider the impact of swaps and moves. The iterative refinement converged at a

configuration such that both spill cost (partition weights) and swap and move cost (edge

weights) are minimized. The final code after register allocation and swap insertion is also

shown in Figure 3.6. The code has 1 spill (operation 2) 4 swaps (operations 1, 8, 11, and

13) and 1 inter-window move (operation 7).

3.3.5 Partitioning Algorithm Optimizations

In order to speed up the partitioning process, two optimizations were implemented

over the core algorithm described above.
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Fast Spill Pressure Estimation: A cycle-by-cycle linear scan of the operations in a

region to determine what VRs are spilled is inherently slow as this has to be done every

time a VR is moved from a source to a destination partition. This dynamic computation

of partition weight was required because the set of VRs that are spilled is a function of the

interfering live-ranges of the current assignment of VRs to that partition. Although accu-

rate, since this is done within the core of the FM partitioning algorithm, it slowed down

the partitioning process. To optimize this process, instead of scanning every operation,

one could only scan the operation with the maximum number of interfering live-ranges to

approximate what VRs are spilled. The process is still dynamic, but less accurate than the

linear scan approach.

Restricting the Number of VRs: Although the partitioning was performed a region

at a time, some of the larger benchmarks had regions with a large number of VRs that

slowed down the partitioning algorithm. This large number of VRs was generated mainly

because the original application source had core kernels that were written in a unrolled

manner. In order to restrict the number of VRs, a compile-time fixed subset of VRs is

partitioned at a time. The VRs in a region are sorted in decreasing order of dynamic

reference count. By sorting the VRs, the algorithm can consider the most important subset

of VRs for partitioning, followed by the next most important subset, and so on. This is

done until all VRs in that region are exhausted. Partitioning decisions for a given subset

are honored while partitioning the next subset (similar to the pre-bounds described at the

end of Section 3.3.3).
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3.3.6 Window Swap Insertion and Optimization

Window swap operations are inserted after window assignment and register allocation

(see Figure 3.2). Initially, a naı̈ve window assignment is performed by walking the region

in sequential program order. A window swap operation is inserted at the beginning of the

region to set the active window appropriately for the first operation in the block. Scanning

each operation, if the assigned window is different from the current register window, a

swap to the new window is inserted. Following every procedure call, a window swap

operation is used to set the current active window to the window of the operation following

the procedure call. This is necessary, as we assume separate compilation, and the state of

the active window is unknown after a procedure return.

Swap optimizations: This naı̈ve method inserts many unnecessary swap operations.

Three swap optimizations were implemented to reduce the swap overhead.

• A swap at the beginning of a region is unnecessary if all control paths leading to that

block have trailing operations which are in the same window as the first operation

in the region.

• It is also possible to hoist a window swap upwards from the beginning of a more

frequently occurring region to the end of less frequently occurring predecessors and

thus reduce the total number of dynamic swaps. This is legal provided that the new

window swap instruction inserted at the end of the predecessor is the last instruction

of that predecessor (this might not be the case for superblocks which have multiple

exits).
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• To prevent redundant swaps after procedure calls, the return from subroutine opera-

tion forces the window to be set to 1. So, if an operation following the procedure call

is assigned to window 1, a swap is not needed. A simple inspection of the control

flow graph is used to remove such redundant swaps.

Instruction combining: To further reduce the swap overhead, experimental studies

were conducted on which operations frequently preceded a swap to identify opportuni-

ties for merging swap with regular operations. Combining must be constrained by the

availability of free opcode encoding bits within the instruction encoding. Inter-window

register move and window-swap was found to be a likely candidate as the WIMS move

operations have free encoding bits. In Figure 3.6, swap operation 8 can be combined with

the inter-window move operation 7. Another interesting complex operation can be formed

by combining a conditional branch with a swap such that the swap would be executed

only if the branch is either taken or fallthrough. But in our experiments the frequency of

their occurrence was found to be less than 2%. By combining the move with the swap we

observed an average of 2% improvement in performance.

Edge drawing: After the swaps are inserted, control dependence edges are inserted

between the swap and all operations preceding and following it. This is done so that the

postpass scheduler does not intermix operations from different windows. All operations

preceding the swap except procedure calls and branches have a 0-cycle control dependency

with the swap4. All operations following the swap have a 1-cycle dependency with the

swap and so would be executed strictly after the swap. The postpass scheduler is then

4branches and procedure calls have a 1-cycle control dependency edge to the following swap as the swap
has to take into effect after the branch or function call.
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invoked to schedule the swaps, inter-window moves, and the spill code while honoring the

new control dependences.

3.4 Experimental Results

3.4.1 Methodology

We implemented the register partitioning algorithm using the Trimaran infrastructure,

a retargetable compiler for VLIW processors [96]. For our study, only the integer register

file was assumed to be windowed and so a set of integer-dominated benchmarks from a

mix of Mediabench [54] and MiBench [36] suites were evaluated. All of the benchmarks

were compiled with control-flow profiling, superblock formation, function inlining, and

loop unrolling. For the experiments, the number of windows and the number of registers

per window were varied to evaluate the energy and performance impact. Two machine

configurations were used - the WIMS processor and a 5-wide VLIW machine with the

following function units: 2 integer, 1 floating-point, 1 memory, and 1 branch. The VLIW-

machine uses the HPL-PD [46] ISA with latencies similar to an Itanium machine with

perfect caches and support for compile-time speculation and predication. The VLIW-style

architecture was chosen due to its increasing popularity in the embedded domain [93]. For

the VLIW machine, the swap instruction is assumed to be compatible with any slot in the

VLIW word, and thus can be assigned to any free slot. In our experiments, the floating-

point unit is often free, thus the swap occupies that instruction slot. Inter-window moves

execute on the integer unit.

We considered the energy/performance improvement of a range of register file config-

urations consisting of 1, 2, 4, and 8 identical windows containing 4 and 8 registers per
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window. The following specific configurations were evaluated: 2-window, 4-window, and

8-window with 4-registers per window (w2.r4, w4.r4, w8.r4) were compared against a

base 1-window of 4-registers (w1.r4); and 2-window and 4-window with 8-registers per

window (w2.r8, w4.r8) were compared against a base 1-window of 8-registers (w1.r8).

This helped illuminate the energy/performance benefits of increasing the effective num-

ber of registers without changing the instruction set architecture. We also fixed the total

number of registers while partitioning them into 2 and 4 equally sized register windows.

In particular, the performance of window configurations w2.r8 and w4.r4 were compared

against the base w1.r16. This helped clarify the performance degradation suffered by a

windowed architecture compared to a non-windowed architecture having the same num-

ber of architected registers. The performance numbers were obtained by multiplying the

schedule length of each region by its execution frequency to get the total dynamic execu-

tion cycles for the whole program. Since we use a single cycle memory system for the

WIMS and the VLIW processors, this approach is quite accurate.

3.4.2 Results

Increasing the number of available registers with a fixed window size: The graph

in Figure 3.7 (top) compares the percent performance improvement in total execution cy-

cles of the w2.r8 and w4.r8 configuration against the base w1.r8 configuration for the

WIMS processor. Averages of 11% and 12% improvement in performance are observed

for the 2-window and 4-window designs, respectively. It should be noted that the per-

formance improvement is the result of increasing the effective number of registers while

retaining a 3-bit operand encoding. The performance ranges from a maximum of 28% for
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Figure 3.7: Performance improvement shown as percent reduction in cycles for the 8-
register WIMS processor (top) and VLIW processor (bottom) for 2 and 4 window designs.
For each benchmark, the results for w2.r8 and w4.r8 are plotted relative to w1.r8.

djpeg to a loss of 6% for g721enc. We observe only a marginal improvement in perfor-

mance for a 4-window design. The additional two windows enable significant reduction

in spill code, but the resulting advantage is offset by an almost equal increase in inter-

window swaps and moves. The partitioning algorithm is able to identify this overhead

using the edge weights, and hence prevents excessive partitioning. But in benchmarks

such as rawd, the heuristic breaks, and a net loss in performance is suffered in scaling
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from 2 to 4 windows.

Figure 3.7 (bottom) compares the performance improvement for the w2.r8 and w4.r8

configurations over the base w1.r8 configuration for the VLIW-machine. We observe an

average of 25% and 28% improvement in performance for 2-window and 4-window de-

signs, respectively. This gain is more than double the gain observed for the WIMS proces-

sor. The larger gains are due to several reasons related to the multi-issue capabilities. First,

the spill code often sequentializes program execution by increasing the lengths of critical

dependence chains through the code. For the VLIW machine, these critical dependence

chains often determine the program execution time. Thus, the elimination of spills trans-

lates into more compact schedules and larger performance gains than for a single-issue

WIMS processor. Second, there is a larger demand for registers to maintain the necessary

intermediate values to support the inherent instruction level parallelism. Thus, the affects

of eliminating spill code are more pronounced. Third, the overhead of swaps and moves

is lower as they can execute in parallel with other instructions. In particular, the swap

often executes in the floating-point slot making it almost ”free” for the integer dominated

applications that are evaluated.

An analysis of the performance for the w2.r8 configuration is presented in Figure 3.8

for the WIMS processor (top). The percent performance improvement in total execution

cycles, which is identical to the plot shown in Figure 3.7, is shown in the leftmost bar of

each set. The rightmost bar shows the percent savings in dynamic spill code. The middle

pair of bars show two components - (i) spill benefit, which is the percent savings in total

execution cycle count due to savings in spill (second bar), and (ii) percent swap and move
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Figure 3.8: Performance analysis for the 8-register WIMS processor (top) and VLIW
processor (bottom). For each benchmark, w2.r8 is plotted relative to w1.r8.

overhead, which is the percent of overall execution cycles due to the extra inter-window

moves and window swaps thereby reducing performance (third bar).

In 11 of the 15 benchmarks, we observe more than 80% reduction in spill code. Per-

formance improvement is obtained when the spill benefit exceeds the swap and move

overhead. This occurs in 13 of the 15 benchmarks (except g721enc and g721dec). The

graph illustrates the competing effects of spill code reduction and swap/move overhead.
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For example, in gsmdec, a 92% reduction in spill code is seen, which accounts for 12%

savings in total cycles. While for g721dec, there is a 90% reduction in spill code, but

this contributes to only 4% savings in total cycles. This implies that the impact of spill is

small for g721enc in the w1.r8 case. Since all instructions take a single cycle, any gain in

performance due to savings in spill is offset by a corresponding reduction in performance

due to swaps and moves. The greedy nature of the partitioning algorithm causes VRs to

be aggressively separated into different partitions, thus increasing the swap/move cost.

The graph in Figure 3.8 (bottom) illustrates the same performance analysis for the

w2.r8 VLIW machine. The spills, swaps, and moves shown in this figure are measured in

percent dynamic operations and not dynamic cycles. Observe that for reasons described

earlier, the impact due to savings in spill are greater than in the WIMS processor. Also,

the overhead of swaps and moves is lower as they can execute in parallel with other in-

structions. Hence, performance improvement is often larger than the difference between

spill benefit and swap/move overhead.

Figure 3.9 compares the performance improvement of 4-register per window configu-

rations on the WIMS (top) and VLIW (bottom) machines. As compared to the 8-register

configurations, the w4.r4 per window case shows much improved performance as com-

pared to the w1.r4 case as four registers are insufficient for both the WIMS and the VLIW

machines. Djpeg, due to loop unrolling, had a high register pressure and hence benefited

significantly when the number of windows was increased for all window file sizes. As with

the 8-register case, the swap and move overhead outweighs the spill savings, and hence a

decrease in performance is observed in g721enc and g721dec for the WIMS processor.
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Figure 3.9: Performance improvement shown as percent reduction in cycles in increasing
the number of register windows in a 4-register WIMS processor (top) and VLIW processor
(bottom). For each benchmark, three sets of data are shown: w2.r4 (left), w4.r4 (middle),
and w8.r4 (right), plotted relative to w1.r4.

Increasing the number of windows with a fixed number of total registers: Fig-

ure 3.10 (top) shows the percent slowdown in dynamic execution cycles due to partitioning

a 16-entry register file into 2 and 4 windows on the WIMS processor. The base w1.r16

has no swap and move overhead. This provides an unachievable upper bound of the parti-

tioning heuristic and helps to gauge how well our heuristics perform against an idealistic

case. For each of the configurations, the total number of registers is the same but they have

been partitioned into multiple equal sized windows. It should be noted that as we partition
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Figure 3.10: Performance degradation while partitioning a 16-entry register file into 2 and
4 windows for WIMS (top) and VLIW (bottom). For each benchmark, w2.r8 and w4.r4
are plotted relative to w1.r16.

the register file, the instruction encoding size decreases, as fewer bits are required in the

register field specifier within the instruction format, but we have not accounted for this

in the data. For the 16-register case, w2.r8 achieves an average of only 16% degradation

in performance while the w4.r4 suffers an average of 40% degradation in performance.

As we partition the register file, swaps and moves are required to distribute the VRs into

all of the windows to reduce the spill pressure. Also, VRs referenced within the same

instruction have to be assigned to the same partition as a single instruction must source all
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of its operands from the current active window. This prevents a perfect partitioning and

increases the spill pressure on a given register window. Although having a large number

of registers is preferred, encoding restrictions limit the actual size. A windowed design

can give the appearance of a larger register file with moderate overhead.

Figure 3.10 (bottom) illustrates a similar experiment on the VLIW processor. We ob-

serve slightly worse results compared to the WIMS processor, as partitioning can increase

the register pressure on a single window, thus increasing spill code, which in turn has a

larger impact on the VLIW machine.

Energy Benefits: The impact of register windows on the total system energy is

now examined. By reducing spill code, the burden on the memory system to provide the

operands is reduced, thereby increasing energy efficiency. Table 3.1 illustrates the energy

breakdown and execution times for different instruction types for the WIMS processor.

The energy measurements were obtained from Synopsys’ Nanosim using post-APR (Au-

tomatic Place-and-Route) back-annotated parasitics. Input vectors were created at 1.8V

and 100MHz operation by running assembled test cases through the pipeline and capturing

the switching activity [94]. The energy due to different register file sizes was negligible

(< 5%) when compared to the pipeline and memory energy as the number of registers

considered was no more than 32.

The graph in Figure 3.11 shows the improvement in total dynamic energy as the num-

ber of 8-register windows is increased on the WIMS processor. The total energy includes

the pipeline and memory energy (instruction fetch, loads and stores). Unlike performance,

since spills dissipate more energy to access memory in comparison to swaps/moves, spill
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Instr. class Energy (nJ) Time (ns)
add-sub 0.55 10

bool 0.38 10
cmp 0.52 10
div 2.27 180
mul 2.22 180
shift 0.35 10

jmp-abs 0.90 30
jmp-rel 0.64 20
br-taken 1.00 30

br-nottaken 0.39 10
win-swap 0.37 10
iw-mov 0.47 10
ld-abs 0.98 20
ld-rel 0.74 10
st-abs .93 20
st-rel .74 10

Table 3.1: Per instruction class energy and execution time for the WIMS processor at
100MHz.

reduction can result in significant improvement in energy consumed. For example, rijndael

achieves a 52% reduction in energy in the w4.r8 configuration. Here, energy reduction is

obtained by exchanging spill for a swap/move. Unlike performance, where a significant re-

duction in spill is required to offset the overhead due to moves and swaps, equal exchange

is good for energy as the number of memory accesses are reduced. It should be noted that

like performance, the energy reduction is observed as we increase the effective number of

available registers while restricting the ability to address only 8 registers within an instruc-

tion. Although our heuristics were geared towards improving performance as opposed to

energy, it can be easily retargeted to optimize for energy by weighting the savings in spill

code more than the savings in swaps and moves.
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Figure 3.11: Percent dynamic energy improvement of w2.r8 and w4.r8 over the base case
of w1.r8.

3.4.3 Comparison among different partitioning heuristics of varying estimation ac-
curacy

Optimal partitioning of VRs into partitions to minimize spills, swaps, and moves is an

NP-hard problem. If there are n VRs and m partitions, an exponential number (O(mn))

of possible assignments needs to be evaluated, which is clearly impractical. Compiler

heuristics for register partitioning provides a trade-off between quality of solution and run-

time. In this section, we explore this trade-off by comparing against two other heuristics -

global and fast.

A region-based heuristic (called region and described in Section 3.3), where edge

weights were computed statically prior to the partitioning process and partition weights

were computed on the fly, was used in all previous experiments. This process, although

fast, is inaccurate, as the actual swap and move cost is a function of the current assignment

of VRs to partitions. Accurate estimates of the swap and move penalties are possible if

the number of swaps and moves are recomputed dynamically during partitioning by scan-
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ning the operations in the procedure. This method, though accurate, is inherently slow. In

addition, region-based partitioning can result in suboptimal decisions if there are multiple

regions with comparable profile weights.

To evaluate a more accurate heuristic, a semi-brute force method was implemented

wherein the basic FM-based partitioning methodology was retained, but two changes were

made: the edge weights were computed during partitioning and the scope was extended to

the whole procedure rather than a region. In order to reduce the computational complexity

of considering too many VRs, a fixed number (set at compile time) of the most frequently

occuring VRs is considered at a time. We implemented this slower semi-brute force-like

method (called global) to compare against our preferred region method to quantify the loss

in partition quality. The partition weights for global were computed just as in region.

To evaluate another faster (compared to the region method), but less accurate heuristic

an FM-based fast heuristic was implemented with static estimation of edge weights while

operating within a region scope. The spill estimation was performed by considering only

the operation with the maximum intersecting live-ranges (see Section 3.3.5). Both fast and

global methods considered only 64 VRs at a time during partitioning. The fast, region, and

global methods represent heuristics that are progressively more complex, while attempting

to more accurately estimate the swap, move, and spill costs.

The graph in Figure 3.12 (top) compares the percent performance improvement in to-

tal execution cycles of the 3 heuristics for the w2.r8 configuration against the base w1.r8

for the WIMS processor. Overall, an average performance improvement of 8%, 11%,

and 13% was obtained for the fast, region, and global methods, respectively. The region
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Figure 3.12: Comparing performance between fast, region, and global heuristics for the
8-register WIMS processor (top) and the VLIW processor (bottom). For each heuristic,
w2.r8 is plotted relative to w1.r8.

heuristic did considerably better than the fast method because it considered a larger set of

VRs (whole region) and estimated spills more accurately. The global method had a pro-

cedure scope that used a more accurate dynamic estimation of swaps and moves, thereby

performing better than the region method.

However, some of the results are not monotonically increasing as one would expect for

more accurate methods. In some cases (gsmdec, rijndael), the region method performed
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better than the global method. These benchmarks had a single region that dominated

execution time. The region method was more effective because it considered all VRs in

the dominant region, whereas the global method could only examine 64 at a time. Also,

since the underlying partitioning algorithm was greedy, an inaccurate estimation of swap,

move, or spill cost sometimes results in the fast or the region heuristics doing better than

the global method, or the fast method doing better than the region method. While running

our experiments, we observed that the compile time for the global method was 75% more

than the fast method, while the region method was 40% less then the global method.

The graph in Figure 3.12 (bottom) repeats the previous experiment for the VLIW ma-

chine. On an average, a performance improvement of 19%, 25%, and 23% is observed

for the fast, region, and global methods, respectively, Again, as described previously, the

heuristic uncertainties combined with the larger set of analyzed VRs caused the compara-

tively faster region method to perform better than the slower global method.

In summary, we prefer the region method as it performed close to the global method

by employing a more intelligent heuristic with substantially faster compilation times.

3.5 Related Work

As an alternative to register windows, hardware and software schemes have been pro-

posed in prior work to increase the effective number of registers. On the hardware side,

register connection [51] and register queues [29, 84] have been proposed to increase the

effective number of physical registers without changing the number of architectural reg-

isters using hardware/compiler support. Register connection uses special instructions to

dynamically connect the core architectural registers to a larger set of physical registers.
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With register queues, each register is connected to a queue of registers that are effective

at maintaining values across multiple loop iterations in software pipelined loops [29, 84].

Both techniques introduce a layer of indirection to access every register operand. Further,

additional hardware structures are used in their implementation to maintain the mapping

between architected registers and physical registers. These techniques are generally tar-

geted at high-performance platforms as their cost/power overhead are too large for embed-

ded processors.

The register file can also be reorganized to deal with the problems of large register

file sizes. Register caches [23] allow low latency register access while supporting a large

architectural register file by caching a subset of the values of the register file in a smaller

but faster register cache. The function units source their operands from the register cache.

Clustering breaks up a centralized register file into several smaller register files, thereby

creating a decentralized architecture [27, 28]. Each of the smaller register files supplies

operands to a subset of the function units, and can be designed more efficiently. However,

these techniques are used to reduce register file access time, porting, and interconnect

complexity. They do not deal with the problem of limited encoding space and thus focus

on orthogonal problems.

A combination of 16-bit and 32-bit instructions have been used in mixed-mode ar-

chitectures like the Thumb instruction set extensions in ARM [80] and MIPS-16 [89] to

provide a balance between reducing code size and retaining performance [53]. The regis-

ter windows have the advantage over this approach of allowing scalability: the number of

effective registers can be increased to any large number using a fixed encoding.
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On the software side, code generation for DSP processors has proven to be a chal-

lenge for compilers [61]. The irregularities of such architectures have motivated the use

of new compiler techniques which were initially considered to be complex and time con-

suming. Graph partitioning has been used in compilers for multi-clustered VLIW pro-

cessors [3, 21, 24]. Several graph partitioning based tools like Chaco [37] and Metis [45]

have been widely used to implement mutli-level Fiduccia-Mattheyses and other more so-

phisticated algorithms. These tools assign static weights to nodes and edges while our

problem requires dynamic assignment of partition weights. A global register partition-

ing and interference graph-based approach has been used in the context of multi-cluster

and multi-register file processors [20, 38]. Graph partitioning has also been explored in

the context of partitioning program variables into multiple memory banks [59]. Our ap-

proach, on the other hand, tries to partition virtual registers into multiple register windows

within a given procedure scope while trying to minimize spill code, inter-window moves

and window swaps.

3.6 Conclusion

In this chapter, the design and implementation of a graph partitioning compiler al-

gorithm to evaluate the benefits of a windowed register file design was discussed. Such

a design increases the effective number of available registers while maintaining a fixed

instruction encoding. The compiler partitions the virtual registers in a procedure into mul-

tiple register windows, thus reducing the overall spill code while minimizing the overhead

due to inter-window moves and window swaps. The design was evaluated over a wide

range of processor and window configurations. Increasing the number of windows from 1
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to 2 yielded an average performance improvement of 10% for the 4-register case and 11%

for the 8-register case on the WIMS processor. The corresponding experiment on a 5-wide

VLIW machine, achieved an average performance improvement of 21% and 25% for the

4 and 8 register configurations, respectively. An average energy reduction of 25% for the

2-window 8-register over the 1-window case was observed on the WIMS processor.



CHAPTER IV

Compiler Managed Dynamic Instruction Placement In A
Low-Power Scratch-Pad Memory

4.1 Introduction

In embedded processors, the instruction fetching subsystem can contribute to a large

fraction of the total power dissipated by the processor. For example, instruction fetch

alone contributes to, around 27% in the StrongARM SA-110 [25] and almost 50% in the

Motorola MCORE [57], of the total processor power. Intuitively, this makes sense as

instruction fetch is one of the most active portions of a processor. Instructions are fetched

nearly every cycle, involving one or more memory accesses, some of which may be off-

chip accesses. In this chapter, we focus on reducing the instruction fetch energy.

A number of approaches have been adopted by designers to reduce instruction fetch

energy. First, more efficient instruction cache designs can be employed to reduce dynamic

or leakage power [49]. Second, instruction compression techniques can be employed to

reduce the number of instruction bits that need to be fetched [58]. Or third, bus encoding

schemes can be employed to reduce the number of bits that switch each cycle [10].

Another approach that is particularly effective for embedded systems is to use loop

56
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caches (LCs) or scratch-pads (SPs) [9, 22, 50, 56, 99, 102] 1. LCs are small instruction

buffers that can be designed to have extremely low-power per access. They are most

effective when execution is dominated by small loops whose bodies can reside entirely

within the LC. LCs can be broadly classified into two categories: hardware or software

managed.

With a hardware managed approach, loops are dynamically copied into the LC and

fetch is re-directed from the L1 instruction cache to the LC using limited hardware sup-

port [22, 57]. Hardware managed caches, referred to as filter or L0 caches [50], use cache-

like tags but are often small and direct-mapped, hence their power characteristics and

access time are much better than those of conventional caches. But, they suffer from high

miss rates and cache management overhead.

To eliminate the overhead of tag comparisons, a tag-less LC has been proposed [56,

57]. Here, the LC is a small instruction buffer placed between the processor and the L1

instruction cache. A LC controller is responsible for identifying recurring code segments

in the dynamic instruction stream, filling the LC, and redirecting fetch to the LC. This

design can be more power efficient than the hardware tagged approach. However, there

are several negatives of this approach, including LC controller complexity and the inability

to relocate loops with control flow or subroutine calls. Moreovoer, the controller can make

sub-optimal decisions as it does not have a complete view of the program execution.

Conversely, software managed SPs [71, 98] reduce hardware management overhead by

relying on the compiler to insert code segments into the SP. A recent study [8] showed that

1In the literature, hardware managed instruction memories are called LCs, while the software managed
memories are called SPs. In this chapter, we will be using both the names interchangeably to denote a
sofware managed memory
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the SP memory has 40% lower power consumption than a cache of equivalent size. The

most common strategy is to statically map hot blocks into the SP using profile informa-

tion [9, 35, 86]. Software static schemes have the advantage of no run-time copy overhead.

Further, a global optimal placement can be performed to maximize the SP effectiveness

over the entire run of the application. However, the major negative is that the SP contents

cannot change during execution.

Software static schemes break down when a program has multiple important loops that

collectively cannot fit in the SP. As a result, only a subset of the loops can be mapped into

the SP. To overcome this problem, compiler-directed dynamic placement has been recently

proposed [87, 103]. With this approach, the compiler inserts copy instructions into the pro-

gram to copy blocks of instructions into the SP and redirect instruction fetch to the SP. As

a result, the compiler can change the contents of the SP during program execution as it

desires by inserting copy instructions at the appropriate locations. Compiler-directed dy-

namic placement has the potential to combine the benefits of the hardware-based schemes

with the low-overhead of the software-based schemes. Previous approaches to dynamic

placement use an integer linear programming (ILP) technique to find an optimal placement

of instructions/data into the SP [87, 103]. But ILP-based approaches may not be practical

in terms of run-time and often fail for moderate to large sized applications.

In this chapter, we evalute a new approach for compiler-directed dynamic placement.

An inter-procedural heuristic for identifying hot instruction traces to insert in the SP is

proposed. Based on a profile-driven power estimate, the selected traces are packed into

the SP by the compiler, possibly sharing the same space, such that the run-time cost due
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to copying the traces, is minimized. Through iterative code motion and redundancy elimi-

nation, copy instructions are inserted in infrequently executed regions of the code to copy

traces into the SP. The approach works with arbitrary control flow and is capable of insert-

ing any code segment into the SP (i.e., not just a loop body). A more detailed comparison

of our work with the ILP-based solution is provided in Section 4.4.3.

The goal of the compiler support proposed in this thesis is to make effective use of the

SP by dynamically copying instructions into it for programs with general control struc-

tures. To this end, a single instruction was added to the WIMS (see Chapter II) archi-

tecture, LC COPY. The LC COPY takes three source operands: the address of the first

instruction of the region of code to be copied (PC relative), the starting chunk in the SP

to begin placement, and the number of chunks to copy. The SP is logically divided into

chunks, each being a fixed size (16 bytes for our experiments). A chunk represents mini-

mum granularity at which copies can occur. By subdividing the SP into chunks, fewer bits

to encode the operands were needed which was important to fit into the 16-bit encoding

of the WIMS architecture. The LC COPY instruction copies number of chunks * size per

chunk bytes into the SP beginning at the starting chunk. The processor stalls while the

copy takes place. The copying can be implemented using a direct memory access engine

or within a software interrupt routine using loads and stores. In our experimental studies,

we assume that the LC COPY can copy 2-bytes per cycle.

Targets of branches into regions of the code that have been selected by the compiler are

modified to point to the addresses in the SP where the region would be placed dynamically

by the WIMS assembler/linker. Instruction fetch is thus redirected to the SP whenever
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Figure 4.1: Example (a) weighted control flow graph (b) static allocation (c) dynamic
allocation as a function of time.

control enters into a selected code region.

4.2 Dynamic Placement Motivation

To demonstrate the issues and benefits of dynamically copying instructions into the

SP, consider the example shown in Figure 4.1. Figure 4.1(a) shows a control flow graph

consisting of three hot regions shaded in gray. The shaded regions represent frequently

executed sequence of basic blocks (BBs) in the code called traces [31]. Trace T1 consists

of BBs 4, 6, and 7, T2 of BBs 9 and 10, while T3 contains a single BB, 12. These

traces were identified by profiling the program on a sample input. Traces can include

either a whole loop (e.g., T3), a part of a loop (e.g., T1), embedded procedure calls (e.g.,

T2), or any other complex control flow. The traces are annotated with the profile weights
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(frequency) and size in bytes. The profile weights are 100, 1000, and 50 while the sizes

are 64, 32, and 32 for T1, T2, and T3 respectively.

For illustration, assume the SP size is 96-bytes. The trace profit, which measures the

desirability of placing a trace in the SP, is given by its size in bytes times the profile

weight (Figure 4.1(a)). Figure 4.1(b) shows the contents of the SP for a static allocation

scheme. As the SP can hold only 96-bytes, the static scheme packs only the top two

profitable traces, T1 and T2, of sizes 64 and 32-bytes, respectively, into the SP. But, the

dynamic scheme (Figure 4.1(c)), is able to allocate all traces by inserting copy instructions

as shown on the edges in Figure 4.1(a). Copy 1 (for T1) is executed once before entering

the inner loop, thus T1 remains in the SP throughout its lifetime. Copies 2 and 3 (both

for T2), and copy 4 (for T3) alternately insert T2 and T3 into the same location in the

SP. Each copy ensures that the trace is inserted into the SP before they are executed. It

should be noted that copy 3 and copy 4 have to be placed within the outer loop to copy

traces T2 and T3 prior to their execution. Placing any of these copies outside can cause

the corresponding loop to be overwritten by the other causing illegal transfer of control.

By effectively overlapping multiple blocks of code and placing copies appropriately, the

dynamic scheme is able to capture all the hot regions and thus achieve better SP utilization.

This approach was first used in pre-virtual memory management operating systems for

overlaying code for different processes [83].

The remainder of this chapter explains the compiler algorithm to automatically identify

and place frequently executed regions in the SP. Additionally, copies are inserted such that

the placement decisions are honored while minimizing the copying overhead.
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Figure 4.2: Overall compiler system for dynamic instruction placement in scratch-pad.

4.3 Dynamic Placement

4.3.1 Overview

The dynamic instruction placement scheme has been implemented within the Tri-

maran [96] compiler framework as shown in Figure 4.2. The compiler frontend performs

control flow profiling and annotates the intermediate representation (IR) with traces [31].

Traces are frequently executed linear sequences of basic blocks that are contiguously laid

out in memory [16]. Traces are formed with a 60% probability of an in-trace transition and

with size limited to that of the SP. These traces are considered as candidates for placement

into the SP. The dynamic placement phase, based on the execution profile information,

then inserts the LC COPY instructions into the IR. The WIMS assembler/linker assigns

instructions to physical memory locations including adjusting of the branch targets for the

relocated code.

The dynamic placement algorithm has two objectives: (i) select traces from the pro-

gram and place them into locations in the SP such that the energy benefit is maximized,

and (ii) place copy instructions so that traces are copied prior to execution while mini-
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mizing the overhead due to copying. To achieve these objectives, the dynamic placement

is divided into two distinct phases - trace selection/placement and copy placement. The

trace selection/placement phase, using the execution profile information and the annotated

traces from the IR, selects the most beneficial traces and decides where they are to be

placed in the SP using an energy benefit heuristic. The placement phase could possibly

overlap the traces within the SP. The placement decisions are driven by energy consid-

erations and do not take performance into account. Following this, the copy placement

phase naı̈vely inserts copy operations on every entry edge of a selected trace in the IR.

This ensures that whenever control reaches a trace that has been placed in the SP, it is

copied prior to execution. Many of these copies may be redundant or present on highly

executed paths, thus causing high copy overhead. Based on a liveness analysis scheme,

the copies are then hoisted in the control flow graph (CFG) across procedure boundaries

to less frequently executed blocks so as to reduce the copy overhead while maintaining

correctness of execution.

The example in Figure 4.1 is used throughout this section to illustrate how the candi-

date traces, T1, T2, and T3 are placed in the SP and how subsequent copy insertion and

hoisting are performed for these selected traces. The CFG is redrawn in Figure 4.3(a) for

convenience. The trace selection/placement and the copy placement phases are detailed in

the sections below.

4.3.2 Trace Selection/Placement

The trace selection phase takes as input the IR annotated with the traces. Traces are

chosen as candidates for SP allocation for two reasons. First, they help reduce the num-
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Figure 4.3: Trace selection and placement example. (a) CFG (b) Benefit and CopyCost
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ber of copies as a single copy instruction can copy a large amount of frequently executed

code, like a loop body, into the SP. Second, a trace is a high frequency path of execution

consisting of basic blocks connected by fall-through edges; thus, the number of control

flow transfers in and out of the SP is reduced. Conversely, traces are fine grained enough

to enable selection of small hot program segments for general applications. For our exper-

iments, we limit the size of the traces to 64 instructions as larger traces may exceed the

size of the SP and thus will not be considered for placement. Only those traces that fit in

the SP and that are executed at least 1% times are selected for potential allocation.

Trace selection/placement involves picking traces and placing them in the SP such

that there is a savings in instruction fetch energy. If a trace is placed in the SP, then
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whenever the trace is executed, it has to be executed out of the SP. This is required as

all branches into the trace have their offsets changed to the location in the SP where the

trace will be placed. Thus, the trace needs to be copied prior to execution which involves

a copy overhead. Also, the exact placement of the trace in the SP is important because if

traces overlap in the SP, repeated copies may be required. The trace selection/placement

algorithm selects and places a trace at a particular location in the SP only if there is an

overall energy benefit for that trace. The trace selection/placement consists of two steps -

(i) computing the energy gain for every trace, and (ii) placing the trace into the SP.

Computing Trace Energy Gain: For a trace to be considered as a candidate for

placement in the SP, the energy savings obtained in executing the trace out of the SP must

be greater than a one-time copy overhead. Thus, traces with a higher copy overhead than

the potential energy gain are non-beneficial and can be filtered out. For every trace, Ti,

the copy cost and benefit of placing the trace in the SP is initially computed assuming

that the SP is of infinite size and the trace does not overlap with any other trace. Since

copying into the SP takes place at the chunk granularity, the size of the trace is computed

in number of chunks. In Figure 4.3(a), T1, T2, and T3 are assumed to take 4, 2, and 2

chunks, respectively. The cost of copying a trace into the SP is the sum of the energy

needed to fetch the trace from the main memory and write the trace into the SP. The copy

cost (measured in nJoules) is given by the equation:

CopyCost(Ti) =
TraceSize(Ti)∗ChunkSize

FetchSize
∗ (MMFetchEnergy + SPWriteEnergy)(4.1)

where TraceSize(Ti) is the size of Ti in chunks, ChunkSize is the size of a single chunk

(assumed 16-bytes), and FetchSize is the number of bytes accessed per fetch from main
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memory to the SP (assumed 2-bytes per access). MMFetchEnergy and SPWriteEnergy

are the energy required for a single fetch from main memory and a single write into the

SP, respectively.

The benefit of placing a trace in the SP is the savings in energy obtained when the

trace is executed out of the SP as opposed to executing from main memory. The benefit

(measured in nano-Joules) is given by the equation:

Benefit(Ti) = ProfileWeight(Ti)∗
TraceSize(Ti)∗ChunkSize

FetchSize
∗(4.2)

(MMFetchEnergy− SPFetchEnergy)

where SPFetchEnergy is the energy required for a single fetch out of the SP and

Pro f ileWeight(Ti) is the execution frequency of Ti obtained through profiling. The cal-

culation of CopyCost and Bene f it for traces T1, T2, and T3 for the running example are

shown in Figure 4.3(b). Here, we assume that the main memory fetch energy is 2 nJ, while

SP fetch/write energy is 1 nJ. The net energy gain of placing a trace is the difference be-

tween the benefit and the copy cost defined as, NetGain(Ti) = Bene f it(Ti)−CopyCost(Ti),

as shown in Figure 4.3(c). Traces for which the net gain is less than zero are not considered

further for placement.

Placing Traces into the Loop Cache: The placement algorithm decides where each

trace is placed in the SP. A trace occupies continuous locations in memory and hence

is assigned to a sequence of contiguous chunks. Thus, the placement algorithm has to

decide on the best starting chunk. If a given trace solely occupies a sequence of chunks,

then the benefit of placing the trace is the same as NetGain. But, this is simply static

placement. Dynamic placement allows multiple traces to occupy the same SP chunk.
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Figure 4.4: Trace selection and placement example. (a) Dynamic execution trace (b)
Temporal relationship graph. (c) Edge weight calculation between nodes T1 and T2 (d)
Placement of T1, T2, and T3 into the SP.

However, a trace must be recopied whenever it gets displaced by an overlapping trace.

Dynamic placement is successful when the combined benefit of placing multiple traces is

more than the overhead due to repeated copying.

In order to compute the overhead due to repeated copying, the previous cost/benefit

analysis is extended to account for the additional copying cost (Dynamic Copy Cost). To

this end, a temporal relationship graph [33] (TRG) is constructed based on a dynamic

execution trace. The dynamic execution trace consists of traces and is obtained during

execution profiling. Figure 4.4(a) shows the dynamic execution trace for a sample run
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of the program in Figure 4.3(a). The TRG helps to estimate the number of dynamic re-

copies required if two traces overlap in the SP. Based on the TRG, the placement algorithm

then overlaps multiple traces within the SP so as to reduce overall copy overhead while

maximizing the energy gain.

The TRG captures the dynamic copy cost between pair of overlapping traces. The

nodes in the TRG are the traces, while the edges are annotated with the dynamic copy

cost. Between every pair of nodes Ti and Tj, the edge weight denotes the number of copies

of Ti (CopyCost(Ti)) for any Tj that occurs between every two consecutive occurrences of

Ti in the dynamic execution trace. A Tj occurring between two consecutive instances of

Ti implies that Ti needs to be recopied prior to its second occurrence, if Ti and Tj overlap

in the SP. The TRG is constructed by linearly scanning the input dynamic execution trace

and maintaining a queue of currently seen traces. Each new trace Ti, seen in the input,

is added to the queue. The queue is then scanned, starting from the tail, for a previous

occurrence of Ti. For every unique trace Tj seen prior to the previous occurrence of Ti,

the edge weight between Ti and Tj is incremented by the copy cost of Ti. The previous

occurrence of Ti is then deleted from the queue as the new instance of Ti becomes the next

previous occurrence.

The TRG for the dynamic execution trace in Figure 4.4(a) is shown in Figure 4.4(b).

Considering T1 and T2 alone, there is an instance of T2 between every instance of T1

and vice-versa. Thus, if T1 and T2 overlap in the SP, two recopies of both T1 and T2

are required. The edge weight between nodes T1 and T2 is therefore 2∗CopyCost(T1)+

2∗CopyCost(T2) (Figure 4.4(c)), where CopyCost is computed as shown earlier in Equa-
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Algorithm 4.1: Pseudo code to select and place traces in the scratch-pad.
Input: SortedTraceList = Traces sorted in decreasing order of NetGain
foreach (trace T ∈ SortedTraceList) do

benefitFound = false ;
for (c = 0 to NUM SP CHUNKS) do

NumChunks(T) = Number of SP chunks occupied by trace T ;
if (c+NumChunks(T) > TOTAL NUM SP CHUNKS) then

break;
end
IntersectTraces = set of intersecting traces at SP chunks c to c + NumChunks(T) ;
DynamicCopyCost = ComputeCopyCost(T, IntersectTraces) ;
net benefit = Benefit(T) - DynamicCopyCost ;
if (netBenefit > currMaxBenefit) then

currMaxBenefit = netBenefit ;
bestStartChunk = c ;
benefitFound = true ;

end
end
if (benefitFound) then

Place trace T at bestStartChunk ;
end

end

Algorithm 4.2: Compute Copy Cost function that computes the cost of copying
trace T

Input: Trace T and the set of intersecting traces IntersectingTraces
return edgewt: Sum of edge weights of T and the traces in IntersectingTraces from the TRG
edgewt = 0 ;
foreach (Trace Ti ∈ IntersectingTraces) do

edgewt += Edge weight between T and Ti, from the TRG ;
end

tion 4.1. Intuitively, the edge weights measure the overhead due to conflicts in the SP when

the nodes (traces) that share the edge are made to share SP chunks. The dynamic copies

represent the minimum set of copies for a sample input. But in reality, the compiler may

not be able to achieve this as it has to conservatively insert copies to ensure the legality

constraint (see Section 4.3.3).

The placement algorithm uses the dynamic copy costs (edge weights in the TRG) to

place each trace in the SP. The pseudo code for the trace selection/placement is shown
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in Algorithm 4.1. Traces are considered for placement in the decreasing order of gain

(NetGain > 0). Each trace is considered at a particular chunk using ComputeCopyCost

function defined in Algorithm 4.2. and is greedily placed at the SP index with the maxi-

mum netBenefit.

Figure 4.4(d) shows how T1, T2, and T3 are placed in the SP. Initially, since the SP

is empty, T2, the highest benefit trace with netBenefit = Benefit, is placed at chunk 0. T1

is placed at chunk 2 where there is maximum net benefit and zero interference. Since the

SP is now full, T3 has to overlap with either T1 or T2. The dynamic copy costs when T3

overlaps with T2 and T1 (edge weights between T3-T1 and T3-T2) are shown on the right

in Figure 4.4(d). Since both the choices have positive netBenefits, there is an advantage in

placing T3 in the SP. The netBenefit when T3 overlaps with T2 is higher than T1, hence T3

is placed at chunk 0 overlapping with T2. A trace is tried at all possible starting chunks.

If no benefit is seen, the trace is never placed in the SP and is always executed out of the

main memory.

It should be noted that traces are obtained for the whole program. This allows selection

and placement of traces across all procedures such that the conflicts are minimized. The

placement heuristic is a greedy heuristic, giving preference to traces of highest benefit

first. Alternately, an integer-linear programming based method could be employed to find

an optimal selection and placement of traces. But this gets impractical for reasonably sized

programs. The greedy heuristic, though not an optimal solution, works well in practice.

The selection and placement algorithm is similar to code placement techniques for cache

miss rate reduction where the code is reorganized to minimize conflict misses and improve
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locality [33, 95].

4.3.3 Copy Placement

The goal of the copy placement phase is to insert LC COPY instructions subject to the

following issues:

• A selected trace should always be present in the SP when control enters the trace.

If two traces T1 and T2 overlap in the SP, a copy of T2 could invalidate T1. Thus,

after control leaves T2 and before T1 gets executed, T1 needs to be recopied.

• A copy of a trace should ideally occur only when it is needed. If a trace is already in

the SP and has not yet been displaced, then it is pointless to recopy the trace. Thus,

a copy should be inserted only when required. Since copies are stalling, redundant

copies not only consume power but also affect performance.

The copy placement algorithm handles the two issues using a phased approach. Ini-

tially, copies are inserted on all edges of the CFG that enter a trace. This naı̈vely guaran-

tees that the trace is copied into the SP before execution regardless of which other traces

displace it. Thus, this ensures correct but inefficient execution. Following this, a phase

of iterative copy hoisting and redundant copy elimination is performed. Iterative copy

hoisting attempts to hoist copies from their initial locations up the CFG, across procedure

boundaries, to infrequently executed blocks subject to legality constraints. The legality

constraint is that there should be sufficient copies to ensure that the trace is copied prior to

execution if displaced by another overlapping trace. Figure 4.5(a) shows the initial loca-

tion of copies in the CFG. We use the convention Cij to denote the jth copy for trace i. In
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Figure 4.5: Copy placement example. (a) Initial copies inserted (b) Hoisting of copies
and live-range computation

the previous section, the trace selection/placement algorithm overlapped traces T2 and T3.

Naı̈vely, if all copies for traces T2 and T3 are moved to BB1, then copies would overwrite

each other. Thus without recopies, this would cause illegal execution. Also, since no other

traces overlap T1, copies for T1, C12 and C13, are redundant. Hence, two of the three

copies are removed. T1 requires just a single copy in BB1.

Copy insertion and hoisting are performed on a global CFG of the entire application,

including all procedures, represented within the underlying IR. The global CFG connects

all procedures with their call sites. For indirect calls, edges are drawn conservatively from
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the call site to all possible targets. Initial copies are placed on the edges of the CFG by

creating extra pseudo BBs at the edges. In Figure 4.5(a), for sake of clarity, we show the

initial copies on the edges.

Iterative copy hoisting and redundant copy elimination are performed in the following

steps.

Live-Range Construction: Copies should be hoisted while being cognizant of the

above mentioned legality constraint. To this end, dataflow analysis techniques are applied

to the CFG. Intuitively, a trace needs to reside in the SP from the copy point until the point

when control leaves the trace and never gets back to the trace. This is akin to live-ranges

used in register allocation [15]. The live-range of a trace is defined as the set of blocks in

the CFG starting from the point where the copy of the trace is defined until the last use of

the trace.

To compute the live-range of a trace, we need to compute the blocks that are live-in to

each trace and the blocks the copy reaches. Thus, traditional liveness and reaching-defs

analysis [1] can be carried out for each trace to compute its live-range. Each trace identifier

Ti is modeled as a variable. The copy for a trace “defines” the trace and is assumed to be

the first instruction in the BB where the copy is placed. The “use” of a trace includes all

BBs that comprise the trace. For a given trace, there can only be one copy of that trace in

a block. While for a given block, there can be multiple copies corresponding to different

traces. The copy for a trace can “kill” another copy for the same trace. The initial live-

ranges consists of just the blocks in the traces and are shown in Figure 4.5(a) for traces T1,

T2, and T3. Although not shown in figure, the live-ranges also include the pseudo blocks
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on edges where the copies are present.

The live-ranges are initialized based on the defines and uses of traces For a block b,

DEF(b) has a ‘1’ for each trace that has a copy in the block. Similarly, USE(b) has a ‘1’

for a trace if that block b is part of the trace. Once the DEF and USE vectors are computed,

iterative data flow analysis [1] is used to compute the LIVEIN and LIVEOUT sets. The

LIVEIN and LIVEOUT sets ∀BBi is defined as

LIV EIN(BBi) = USE(BBi)+(LIVEOUT (BBi)−DEF(BBi))

LIV EOUT (BBi) =
[

BB j∈succ(BBi)

LIVEIN(BB j)

where, succ(BBi) is the set of successor blocks of BBi in the CFG.

Similarly, to compute the reaching definitions of a trace, four bit-vector sets GEN,

KILL, INDEF, and OUTDEF are defined for every BB. Each element in the bit vector,

unlike liveness analysis, corresponds to the copy operations that defines traces. For every

BB b and for every copy in that BB, GEN(b) has a ’1’ for that copy. For a block that has

a copy of a trace Ti, KILL(b) has a ’1’ for all other copies of Ti in other blocks that are

’killed’ by the copy present in b for Ti. Similar to liveness analysis, INDEF and OUTDEF

sets can be defined based on GEN and KILL sets. The only difference being reaching

definitions is a forward dataflow analysis problem while liveness is a backward dataflow

analysis problem.

Once the liveness and reaching definitions are computed, the live-range of a trace can

be defined as the intersection of liveness and reaching definitions. Formally, ∀Ti in the

CFG,

LiveRange(Ti) = {BBi | (Ti ∈ (INDEF(BBi)∧LIVEIN(BBi))}
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Algorithm 4.3: Pseudo code to hoist and eliminate redundant copies.
Input: CFG with copies inserted before entry of each trace
EliminateRedundantCopies() ;
CopyQ = List of copies for all traces sorted in decreasing frequency order ;
while (!CopyQ.isEmpty()) do

C = CopyQ.pop() ;
bb = BB containing the C ;
PredSet = Predecessor BBs of bb ;
while (!PredSet.isEmpty()) do

Remove C from bb ;
Hoist copies to BBs in Pred Set ;
Compute Live Ranges() ;
if (LiveRangesIntersect()) then

undo hoist ;
CopyQ.remove(C) and finalize copy in bb ;
break ;

end
else

EliminateRedundantCopies() ;
OldFreq = freq of C ;
NewFreq = sum of frequencies of copies after C is hoisted ;
benefit = NewFreq − OldFreq ;
if (benefit ≥ 0) then

hoist is successful ;
insert the new copies in BBs contained in PredSet into the CopyQ ;
break ;

end
else

PredSet = new set of predecessors of PredSet ;
end

end
end
CopQ.remove(C) and finalize copy in bb ;

end

Once the live-ranges are constructed, the legality constraint can be defined as follows. If

the live-range of two overlapping traces Ti and Tj intersect, then there is some path in the

program flow where a copy of Ti would displace Tj before Tj is recopied.

Copy Hoisting: The iterative hoisting algorithm tries to move copies that are in BBs

that are frequently executed, up the CFG to BBs of lower frequencies while maintaining

the legality constraint. The algorithm has two goals while hoisting copies : (a) reduce

the overhead of executing the copies, and (b) ensure that the copies are present at the

appropriate points in the program such that the traces are copied prior to their execution.
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The initial copy placement guarantees (b), but at the expense of executing copies even if

the trace is not displaced by another overlapping trace.

These two goals conflict with each other. On the one hand, hoisting copies up the CFG

to blocks of lower frequency is beneficial as it reduces the dynamic copy cost. But, on

the other hand, the live-range of the trace corresponding to the copies grow longer as the

copies are hoisted higher. This can interfere with the live-ranges of other traces that overlap

with this trace, thus violating the legality condition. Alternately, it could prevent other

copies from getting hoisted to ensure the legality condition. The copy hoisting algorithm

addresses this problem by hoisting the most frequently executed copy only while it is

the highest execution frequency. When its frequency decreases, hoisting is iteratively

performed on the new highest frequency copy and so on.

The pseudo code for iterative copy hoisting is shown in Algorithm 4.3. The Elimi-

nateRedundantCopies function (using dominator analysis), eliminates unnecessary copies

of a given trace. A copy is redundant if the BB in which the copy is placed is dominated by

another block which contains another copy for the same trace. The elimination includes a

check for intersecting live-ranges for legality. In Figure 4.5(a), copy C11 dominates copies

C12 and C13, hence C12 and C13 are eliminated. The rest of the copies for all traces are

sorted in decreasing order of frequency. The hoisting algorithm picks the copy with the

highest frequency and iteratively tries to hoist it to its predecessor blocks. If the live-range

intersects with another overlapping trace, the copy is required at the current block and is

not hoisted further. If the hoist is legal and the sum total of frequencies for the set of

copies after the hoist is lower than the sum of the frequencies for the set of copies before
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bar()

BB1

BB2

BB3

BB4

BB6

BB7

BB5

BB14

BB8

BB9

BB10

BB11

BB12

BB13

T2

T3

1000

50

C11

C21

C31

BB1

BB2

foo()

T1
100

C22

Live-range T1: 

BBs: {1, 2, 3, 4, 5, 6, 7,

8, 9, 10, 11, 12, 

13, 14, 1(bar), 2(bar)}

Live-range T2: 

BBs: {1, 2, 3, 4, 5, 6, 7,

8, 9, 10, 11, 14, 

1(bar), 2(bar), 13}

Live-range: T3: BB 12

10

10

Figure 4.6: Final copy placement for example in Figure 4.5(a).

the hoist, the algorithm can claim benefit and confirm the hoist.

Figure 4.5(b) illustrates the hoisting algorithm. Assume that the copies have been

hoisted to the currently shown positions from those shown in Figure 4.5(a). C21 was

moved from its home location on the edge from BB 8 to BB 9 (Figure 4.5(a)) to its cur-

rent position in BB 2 (Figure 4.5(b)) which is outside the inner loop and hence of lesser

frequency. It should be noted that in the example, copies can be hoisted to edges. Subse-

quently, BBs are instantiated at the edges (not shown in example) to house these copies.
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Assume that C11 has moved all the way up to the entry block BB1. Since T1 does not

overlap with any other trace, this move is legal. C21 is the next copy for which hoisting is

attempted to all incoming edges of its home block, BB2. The predecessors are the edges

from BB1 to BB2 and the backedge from BB13 to BB2 (dotted lines). The live-ranges of

T2 before and after the hoist of C21 are shown in Figure 4.5(b). The live-ranges do not

intersect with other traces, thus the hoist is legal. Moreover, since the sum of the frequen-

cies of the incoming edges is the same as the frequency of BB2, the hoist is considered

beneficial. Next, C31, which is of the next highest priority, is hoisted from its home (edge

from BB11 to BB12) to its predecessor block BB11. This causes the live-ranges of T2 and

T3 to intersect. Since T2 and T3 overlap in the SP, this hoist is illegal.

The final copy placement and live-ranges are shown in Figure 4.6. The initial copies of

traces T1 and T2 are performed in BB1. Before control enters T3, copy C31 is performed.

After control leaves T3, T2 is copied back via copy C22. For a copy on an edge, a new

basic block is created and inserted into the CFG. If a copy materializes on the return edge

of the CFG (BB2 of bar to BB10 of foo), then the copy is inserted after the procedure call

within the caller. While if a copy materializes on the call edge (BB9 of foo to BB1 of bar),

it gets inserted before the procedure call in the caller.

Discussion: It should be noted that by using a global CFG, we are able to hoist

copies across procedure boundaries. Considering each procedure independently restricts

copy hoisting to the entry block of the procedure resulting in substantial copy overhead.

Our original design was not inter-procedural and suffered large energy and performance

penalties due to this problem. The global CFG also allows a copy to cross procedure calls,
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thus reducing the copy overhead significantly.

There are two alternatives that could be considered to handle the hoisting problem. The

problem could be formulated as a form of code motion and use techniques like lazy code

motion [52]. However, lazy code motion is not ideal because each instruction is positioned

in sequence at the point of highest profitability, thereby giving one copy complete priority

over others. More importantly, if the live-range intersections are not taken into account

while hoisting, the legality condition can be violated. Conversely, by hoisting the most

profitable copy all the way up, its live-range is increased. This can prevent the hoisting

of other copies as it would intersect with the live-range of the trace corresponding to the

hoisted copy. Thus, interactions between multiple copies must be considered.

Alternately, one could place the copies in the prologue block of the ‘main’ procedure.

This would cause the live-ranges of all traces to intersect. These live-ranges could then

be ‘split’ by inserting copies at less costly points. But, live-range splitting heuristics em-

ployed in register allocation focus on reducing the register pressure so that a later coloring

phase can allocate the live-ranges with reduced spill [12]. In our case, the traces have

already been selected and placed if necessary in overlapping chunks in the SP. The copy

placement and hoisting must guarantee the legality of the placement by introducing appro-

priate ‘spills’ (recopies) at reduced copy overhead.

4.4 Experimental Evaluation

4.4.1 Methodology

Our experimental framework consists of a port of the Trimaran compiler system [96]

to the WIMS (see Chapter II) processor and a modified version of the WIMS processor
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simulator to model a parameterized SP. Note that since the WIMS processor is single-issue,

many of the VLIW transformations, except function inlining, in Trimaran were disabled

for these experiments. The simulator uses a simple energy model attributing a fixed energy

to each SP or memory access for instruction fetch and totaling it up across the run of an

application. On the WIMS processor, instruction fetch energy accounts for approximately

30% of the overall system energy including the processor and memory.

For this study, a set of embedded benchmarks selected from the MediaBench and

MiBench suites were chosen. For all experiments, compiler-directed dynamic placement

(dynamic for short) is compared with compiler-directed static placement (static for short)

that uses profile information to maximally pack the most frequently executed regions into

the SP. In addition, a comparison against varying sizes of traditional instruction caches

(icache for short) was also performed. For each of the experiments, two measures are pre-

sented. First, the instruction fetch energy consumption of each technique with respect to

the baseline where all instructions are fetched from main memory. Second, the hit rate is

the ratio of accesses (SP or icache) to total instruction references.

Two memory configurations were used - WIMS and CACTI. For the WIMS processor,

SP size was varied from 32 to 4k bytes for the study. With each SP size, the energy pre-

sented in Table 4.1 (top) was assumed for each access. The energy consumption estimates

were obtained from configuration specific data sheets from a popular memory compiler

for a 0.18µm process. These values compare to 0.1384 nJ per read of a 16Kb bank from

the regular on-chip memory. The access times for the on-chip main memory and SP are

both one cycle.
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size (bytes) read (nJ) write (nJ)
32 0.0506 0.0388
64 0.0527 0.0413

128 0.0568 0.0463
256 0.0651 0.0563
512 0.0698 0.0701
1024 0.0990 0.1174
2048 0.1020 0.1228
4096 0.1197 0.1416

size (bytes) fetch (SP) (nJ) fetch (Icache) (nJ)
64 0.1803 0.2961

128 0.1888 0.3059
256 0.1980 0.4732
512 0.2188 0.4966
1024 0.2404 0.5233
2048 0.2748 0.5655
4096 0.3277 0.6351

Table 4.1: Per access scratch-pad energy for the WIMS processor (top) and per access
scratch-pad and icache energy using CACTI (bottom, .18µm) for different sizes.

To compare against an icache of equal size, CACTI [104] was used to obtain the en-

ergy numbers for different sizes of icache and SPs. Here, the icache and SP are assumed

to be on-chip, while the main memory is off-chip. For SP, the energy for the tag and com-

parator circuits were subtracted from a correspondingly sized direct-mapped icache [8].

The SP and icache sizes were varied from 64 to 4k 2. For the icache, we assumed 16-

byte line size with 2-way associativity to get the energy numbers as shown in Table 4.1

(bottom). The Am41PDS3228D SRAM [4] was assumed to be the off-chip memory with

3.024nJ per access (16-bits). The icache hit rates were obtained using the Dinero-IV cache

simulator [26]. While comparing static and dynamic with icache, all measurements were

obtained using the CACTI energy numbers. For comparing static versus dynamic for the

WIMS processor, all measurements were obtained relative to the WIMS energy model.

2CACTI did not support a 32-byte cache
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For all studies, a single read/write from the cache to the main memory is assumed to be

2-bytes. In Table 4.1, although there is a difference in absolute energy values between

the WIMS and the CACTI models, this is less important as we do relative comparisons

within each class. The difference in energy numbers between WIMS and CACTI is due

to an abstract energy model used by CACTI as opposed to real datasheet numbers used

for WIMS. The loop cache energy for the dynamic scheme is obtained using the following

equation:

SP Hit Rate ∗ SPFetchEnergy + SP Miss Rate∗MMFetchEnergy(4.3)

+SP stalls ∗ (SPWriteEnergy + MMFetchEnergy)

where, SP stalls is the number of cycles that the processor is stalled while executing the

LC Copy instruction3. The icache energy is computed as follows:

Hit Rate∗ IcacheReadEnergy + Miss Rate ∗NumAccesses ∗(4.4)

(IcacheWriteEnergy + MMFetchEnergy)

where, NumAccesses is the number of fetches required to bring a single cache-line into the

icache during a miss.

4.4.2 Results

Comparison with static: The energy savings and SP hit rates for static and dynamic

placement are compared across all the benchmarks for SP sizes of 64 and 256 bytes in

Figure 4.7 for the WIMS processor. Considering first the 64 byte SP, dynamic is generally

more effective at utilizing the SP. The largest energy benefits occur for cjpeg, unepic, and

3the rest of the terms are described in Section 4.3.2
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Figure 4.7: Comparing energy savings and hit rate of static and dynamic over on-chip
main memory for the WIMS processor.

sha where the static placement savings are more than doubled with dynamic placement.

These benchmarks achieve such large gains by increasing the hit rates in the SP by similar

amounts due to more effective utilization of the SP. The epic application achieves the

largest total energy savings of 58% with dynamic placement. However, static placement

is also very successful with this benchmark, achieving 42%. Epic has a relatively small

innermost loop where a large fraction of the execution time is spent, and the entire loop

body can be placed in the 64-byte SP. Dynamic achieves a modest gain above that by

relocating another loop body into the SP. Overall, dynamic placement achieves an average

energy savings of 28% across the benchmarks compared with 17% for static placement.

Examining the 256-byte SP graphs, the energy savings and hit rates achieved with



84

static and dynamic placement are much closer. Clearly, as the SP size is increased, the im-

portance of dynamic placement goes down as a larger fraction of the hot regions statically

fit into the SP. Cjpeg, djpeg, unepic, gsmencode, mpeg2enc, and pgpencode are examples

where dynamic is still very effective as these benchmarks have a large memory footprint. A

small fraction of benchmarks, where the energy savings with dynamic placement exceeded

static for the 64-byte SP, now achieve worse results with the 256-byte SP. Examples of this

behavior are g721encode, g721decode, rawcaudio, and rawdaudio. These benchmarks are

characterized by a modest number of conflicts between SP entries. The copies could not be

hoisted out of frequently executed code regions due to interference, thus a large number of

run-time copies must be performed. Rawcaudio and rawdaudio have small code size; thus,

static is able to pack all the hot regions in the application into the SP without any run-time

penalty. Dynamic, on the other hand, achieves the same hit-rate but at the expense of the

one-time copy overhead. Overall, for both 64 and 256 byte SP configurations, by packing

multiple hot regions, dynamic is effective at increasing SP hit rates.

The effect of varying SP size on four representative benchmarks on the WIMS proces-

sor is shown in Figure 4.8. Each graph contains 4 lines: SP hit rate for dynamic, SP hit rate

for static, energy savings for dynamic, and energy savings for static. Note that hit rates

(shaded light) use the left hand y-axis and energy (shaded dark) use the right hand y-axis.

A number of interesting trends can be observed from these graphs. First, at smaller SP

sizes, dynamic placement outperforms static placement by a large margin. For mpeg2dec,

dynamic placement increases energy savings from 35% to 75% for a 32-byte SP and from

60% to 80% for a 64-byte SP. Similarly, for pgpdecode, energy savings increases from
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Figure 4.8: Effect of varying scratch-pad size on energy savings and hit rate over on-chip
main memory for the WIMS processor.

38% to 92% for a 128-byte SP. For the other benchmarks, the differences are not as large,

but the same trend occurs. The reason for the increased energy savings is the ability of dy-

namic placement to increase SP utilization. Most of these applications contain a number

of hot code regions that collectively cannot fit in the SP using static placement. It is thus

critical to relocate different regions of code into the SP at different points during program

execution to take full advantage of the SP. The increased utilization is evident by the large

increase in hit rate of dynamic over static for the smaller SP sizes.

A second trend seen in all the graphs is that energy savings goes down for larger SP

sizes, particularly the 1k, 2k, and 4k configurations. The peak energy savings comes at

around 128-512 byte SPs. The reason for this behavior is two fold. First, it becomes less
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Figure 4.9: Comparing energy savings and hit rate of static, dynamic, and icache over
off-chip main memory using CACTI.

beneficial to relocate instructions with larger SPs. For larger SPs, the energy characteristics

are close to that of the on-chip memory, thus the potential savings becomes less. Second,

the overhead of dynamic copying becomes larger, thereby taking away from the percentage

savings. For the larger SP sizes, static performs a good job of packing a significant fraction

of the hot code without any overhead. For dynamic, copy overhead causes the energy

savings to depreciate.

Comparison with icache: Figure 4.9 shows the energy and hit rates for static, dy-

namic, and icache for 64 and 256-byte on-chip cache configurations using CACTI energy

models. The main memory is assumed to be off-chip. The average energy savings for both

static and dynamic are much higher than the WIMS processor. For the 256 byte SP, static
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achieves 59%, while dynamic achieves 79% average energy savings. This is largely due to

the costlier off-chip memory access. The off-chip main memory is over 20x more power

hungry than the on-chip memory.

For all the benchmarks, icache is able to get higher hit-rates compared to static and

dynamic schemes. On average, we observe 98%, 82%, and 62% hit-rate for icache, dy-

namic, and static respectively in the 256-byte cache configuration. In the 64-byte case,

icache records a 70% improvement in hit-rate over dynamic. But this improvement comes

at the expense of energy. Each access to the icache requires tag checks and hence is costlier

than the tag-less SP. In addition, a miss for icache is much more expensive, as it has to fetch

a cache-line of instructions (16-bytes) into the icache every time, which involves multiple

accesses to both the main memory and the icache.

The dynamic scheme is geared towards reducing the overall energy as opposed to raw

hit-rate. The dynamic scheme copies a flexible number of chunks using a LC-COPY

only when deemed beneficial by the compiler, thus leading to a more energy efficient SP

utilization. A miss requires only a single access from the main memory. Dynamic is able

to achieve 66% and 33% improvement in energy savings over icache for the 64-byte and

256-byte SP configurations respectively. In the 64-byte case, for rawcaudio, rawdaudio,

pgpdecode, and gsmdecode, although icache registers over 70% hit rate, there is a decrease

in energy savings over main memory. Overall, icache performs better than static, while

dynamic performs better than the two.

Detailed comparisons: Table 4.2 (left) compares the code size and the size of the

cache required for static, dynamic, and icache to cover 95% of the dynamically executed
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benchmark size(Kb) static (b) dynamic (b) icache (b)
cjpeg 63 4096 1024 256
djpeg 68 2048 512 256
epic 11 1024 128 64

unepic 13 1024 128 128
g721encode 4 2048 2048 256
g721decode 4 2048 2048 512
gsmencode 21 2048 512 512
gsmdecode 19 1024 256 128
mpeg2enc 35 4096 1024 512
mpeg2dec 24 1024 256 64
pegwitenc 21 8192 4096 256
pegwitdec 21 4096 2048 512
pgpencode 102 4096 512 256
pgpdecode 102 4096 512 256
rawcaudio .8 256 256 256
rawdaudio .8 256 256 256
blowfish 5 1024 1024 1024

fir .5 256 64 64
sha 1 512 64 64

average 27.16 2277.05 882.53 296.42

benchmark static dynamic
cjpeg 512 256
djpeg 512 512
epic 512 128

unepic 512 128
g721encode 512 512
g721decode 512 512
gsmencode 2048 512
gsmdecode 512 128
mpeg2enc 512 512
mpeg2dec 256 128
pegwitenc 512 512
pegwitdec 512 512
pgpencode 512 128
pgpdecode 512 128
rawcaudio 256 256
rawdaudio 256 256
blowfish 1024 1024

fir 64 64
sha 512 64

average 502.86 298.87

Table 4.2: The left table shows the code cache size (in bytes) for at least 95% hit rate for
static, dynamic, and icache schemes for the CACTI energy models. The right table shows
the scratch-pad size required for highest energy gains in the WIMS processor.

code for each benchmark. On average, all cache configurations require less than 10x the

code size, which verifies the 90-10 rule. More interestingly, dynamic requires 2.5x less

cache size than static, while icache, with a higher hit rate, requires 7.6x less cache than

static. Table 4.2 (right) shows the SP size for maximum energy savings on the WIMS

processor for each benchmark. On average, the SP size of dynamic is 1.68x less than the

static scheme. Dynamic consumes more cache space than icache as it tries to reduce the

overlaps of traces in the SP so as to decrease the recopy overhead. Table 4.3 give the size

of the SP for maximum energy gains of dynamic over static. On average, at 110 bytes,

dynamic shows over 17% improvement over static.

Finally, Table 4.4 quantifies the SP access behavior of the dynamic allocation scheme

for a 256-byte SP. For each benchmark, column 2 gives the total number of traces in the

code that were allocated to the SP. Column 3 shows the same metric expressed as a per-

centage of all the traces in the code. For example, for pgpencode, 155 traces were packed
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benchmark size % gain
cjpeg 64 25.13
djpeg 64 16.02
epic 128 14.26

unepic 64 38.17
g721encode 32 12.46
g721decode 32 10.83
gsmencode 512 24.06
gsmdecode 128 9.35
mpeg2enc 128 12.19
mpeg2dec 32 25.79
pegwitenc 128 15.68
pegwitdec 128 15.35
pgpencode 128 30.89
pgpdecode 128 26.79
rawcaudio 128 0.10
rawdaudio 64 0.06
blowfish 64 13.03

fir 32 19.18
sha 64 34.26

average 110.22 17.69

Table 4.3: The scratch-pad size at maximum energy gain of dynamic over static.

into the SP, which accounted for only 2.2% of all the traces in the code. Although not

shown in the table, the 155 traces had a combined size of 5186 bytes, which is 20x the size

of the 256-byte SP, but 5% of the total code size. Column 4 gives the dynamic execution

frequency for these selected static traces. For pgpencode, 2.2% of the hot traces accounted

for 87% of the dynamic execution frequency. Column 5 gives the mean number of trace

overlaps per SP chunk. Note that a trace can overlap multiple chunks. For a 256-byte

SP, there are 16 chunks assuming 16-bytes per chunk. Again for pgpencode, an average of

24.5 traces were overlapped per chunk. The dynamic scheme was able to successfully pack

the most frequent hot traces and overlap them with the least number of conflicts. Finally,

column 6 gives the percent overhead in cycles due to dynamic copying. Although the dy-

namic placement algorithm was driven by energy constraints, the performance degradation
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benchmark # traces % traces % dynamic. freq. overlaps % perf loss
cjpeg 79 1.65 89.72 13 -2.11
djpeg 58 1.11 80.36 8.81 -2.17
epic 60 7.25 99.74 8.12 -1.11

unepic 68 6.58 99.89 11.31 -1.06
g721encode 9 3.11 63.11 1.69 -8.55
g721decode 7 2.35 61.85 1.44 -7.56
gsmencode 45 3.66 58.88 9.38 -2.31
gsmdecode 14 1.04 97.58 3.31 -2.19
mpeg2enc 244 13.62 41.81 31.25 -2.39
mpeg2dec 51 3.16 96.32 7.19 -1.56
pegwitenc 42 4.65 72.15 7.31 -4.68
pegwitdec 45 4.89 69.42 8.31 -4.37
pgpencode 155 2.20 87.13 24.5 -2.21
pgpdecode 122 1.75 89.02 20.19 -2.58
rawcaudio 8 10.13 97.77 1.06 -0.01
rawdaudio 8 10.39 99.96 1.00 -0.01
blowfish 10 10.31 50.14 1.62 -1.05

fir 11 33.33 99.84 1.31 -1.17
sha 9 15.25 98.24 1.44 -4.21

average 55.00 7.18 81.73 8.54 -2.57

Table 4.4: Benchmark characteristics on a 256-byte scratch-pad for dynamic allocation
showing number of hot traces selected, fraction of the total number of traces, dynamic ex-
ecution frequency, average number of trace overlaps per chunk in scratch-pad, and percent
performance degradation due to copy overhead.

is only marginal, with an average of 2.57% loss due to copy stalls.

The dynamic placement algorithm was based on profiling the applications on a sample

input. Although our final statistics were compiled using the same input, we did validate,

by running on different input sets, that the control flow behavior of the benchmarks did

not change significantly. The resulting performance/energy changed by less than 1%.

4.4.3 Comparison to ILP-based Solutions

While [87, 103] address compiler-directed dynamic placement, we believe the pro-

posed ILP-formulation for optimal placement is impractical for moderate to large sized
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applications. The ILP-solution attempts to model the problem by having variables for all

possible traces at every edge on the CFG. Each such variable denotes whether the trace

is placed in the SP or memory, and whether it needs to be recopied or not. The problem

is formulated based on an earlier work on ILP-based optimal register allocation [6]. This

works well as long as the number of constraints and variables are limited, but explodes

when attempted for full inter-procedural analysis of large programs. Table 4.5 reflects our

implementation of [103] and shows the number of variables and constraints, the time taken

to solve for inter-procedural placement using a commercial ILP-solver, CPLEX, and the

percentage energy improvement over the dynamic scheme. Such long run-times for a large

number of variables have been acknowledged by the authors in their paper [103]. [87] and

[103] try to reduce this complexity by limiting their analysis to within a procedure or loop

boundaries. But this causes the SP contents to be flushed after procedure calls/returns. We

observed excessive redundant copies to restore the SP contents without inter-procedural

analysis.

Our heuristic based solution offers an alternative approach to ILP that does not achieve

optimal results, but is practical and can handle full inter-procedural analysis of large pro-

grams with arbitrary control flow. For smaller loop-dominated benchmarks with multiple

loop-nests and simple control-flow, the dynamic scheme was able to select and overlap an

optimal set of traces. The iterative copy hoisting algorithm was successful in positioning

the copies at optimal points in the code. As seen in Table 4.5, for all benchmarks the

dynamic scheme performed close to optimal. The degradation for dynamic was observed

due to the greedy nature of the trace placement and copy hoisting heuristics.
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benchmark # variables # equations time % gain
fir 2034 2446 1 min 0

rawcaudio 1980 2516 1 min 2
rawdaudio 1404 1778 1 min 0

g721encode 2927 2584 1 min 11
g721decode 3238 2950 1 min 4

blowfish 8528 10169 1 min 4
sha 13598 14773 3 min 2

gsmencode 148538 142259 20 min 6
gsmdecode 150772 143394 20 min 2

epic 420170 515835 1 hr 1
unepic 227852 298993 1 hr 1
cjpeg 1210512 1496334 40 hr 3
djpeg 933002 1149342 40 hr 3

pegwitenc 1732012 2093478 60 hr 4
pegwitdec 1565644 1904755 60 hr 4
mpeg2enc 7666254 9850505 * *
mpeg2dec 3534664 4382525 * *
pgpencode 12673300 16033319 * *
pgpdecode 10404038 13488579 * *

Table 4.5: Size, time taken, and percent energy gain over the dynamic scheme for a full
program ILP-formulation using CPLEX on a 1-GHz UltraSPARC-IIIi processor. ‘*’ de-
notes failure to complete within 72 hours of run-time.

4.5 Conclusion

In this chapter, an approach for compiler-directed dynamic placement of instructions

into a low-power code cache was proposed. Dynamic placement enables the compiler to

use entries in the code cache to hold multiple hot code regions (traces) over the execution

of an application, thereby increasing the code cache utilization by a substantial amount.

These traces can have any complex control flow or embedded procedure calls. Dynamic

placement is accomplished in two major steps. First, the code cache entries are allocated

among all the candidate traces. A heuristic cost/benefit analysis compares the expected

copy cost with the anticipated energy benefit. Second, copies are inserted followed by
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an iterative process of hoisting and redundancy elimination using liveness analysis on a

inter-procedural control flow graph to derive a cost-effective placement. Our investigation

was carried out in the context of the WIMS (see Chapter II) microcontroller, a processor

designed for embedded sensor systems where power consumption is the dominant design

concern. Results show an average energy savings of 28% with dynamic placement com-

pared with 17% with static for a 64-byte code cache. This is accomplished by increasing

the code cache hit rate from an average of 26% to 49%. For a 256-byte code cache, a more

modest increase in energy savings occurs; 41% with dynamic verses 32% with static. In

comparison to a traditional instruction cache, dynamic placement achieves an average of

25% energy savings.



CHAPTER V

Compiler Managed Partitioned Data Cache Architecture

5.1 Introduction

Caches have been highly successful in bridging the processor-memory performance

gap by providing fast access to frequently used data. They also save power by limiting

expensive off-chip accesses. Data caches have proven to be effective as they help to dy-

namically capture both temporal and spatial locality without software intervention.

However, the use of caches in embedded domains has been limited due to energy in-

efficient tag checking and comparison logic [8]. Set-associative caches can achieve a high

hit-rate and good performance, but it comes at the expense of energy overhead. Direct-

mapped caches remove much of the logic overhead and thus consume much less power

per access, but they incur more misses.

In this chapter, a hardware/software co-managed partitioned cache architecture is pro-

posed that attempts to bridge the performance and energy gap between direct and set-

associative caches. A partitioned cache consisting of multiple smaller direct-mapped par-

titions with the same combined size as a unified direct or set-associative cache is employed.

Management of these partitions is controlled by the compiler using load/store instruction

94
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set extensions. Using a whole program knowledge of the data access patterns, the compiler

controls cache lookup and data placement by assigning individual load/store instructions

to these partitions.

This software-guided partitioned cache architecture has many advantages. First, a

smaller direct-mapped cache is more power efficient than either a unified direct-mapped

or a set-associative cache, as the data and tag arrays are smaller. The software decides

what partitions are activated, thus eliminating redundant tag/data array accesses to reduce

power. Second, by managing the placement of data using the memory reference instruc-

tions, the compiler can enforce a better replacement policy. For example, data items that

are accessed with a high degree of temporal locality can be placed in different partitions

so as to avoid conflicts. But, references that are separated in time or whose live-ranges

do not intersect can be made to share the same partition. Thus, this data orchestration can

help reduce conflict misses.

Region-based caches [55] have been proposed, where multiple caches are used to

capture heap, global, and stack accesses. But, unlike their approach, partitioned caches

provide much finer grain data management and control. Instruction-level management

generalizes to all types of data for all classes of applications, including heap dominated

ones, where distinct heap objects can be placed in different partitions. Thus, through

compiler-controlled management, the partitioned cache architecture can achieve the high

performance of a set-associative cache while being within the energy envelope of a direct-

mapped cache.

Further energy reduction is achieved by allowing each of the partitions to be configured
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as a software-controlled scratch-pad. The data-arrays are exposed as part of the physical

address space. By disabling the tag-arrays of selected partitions, a highly configurable

data memory that can be tuned to the application’s memory needs is provided.

5.2 Background

In this section, the need for hardware/software co-managed cache is motivated along

with a discussion of how software can exploit partitioned caches for finer grained cache

management.

Hardware/Software Co-Managed Caches: In a traditional cache design, the hard-

ware is used to determine replacement and allocation policies. A standard hardware cache

controller has two main responsibilities: 1) checking if the referenced data is present in

the cache, and 2) on a miss, deciding where in the cache to allocate the requested data.

Performing checks in hardware allows for fast and efficient access of the referenced data.

It provides the appearance of a uniform address space by hiding the details of the under-

lying cache architecture from the programmer. The tags help in dynamically locating the

cached memory references that can be hard to analyze statically.

However, making decisions in hardware usually forces a single, conservative alloca-

tion and replacement algorithm. Implementing a more flexible replacement policy entirely

in hardware is usually expensive. Hardware-based schemes typically place data using the

set-index field extracted from the address. This does not consider the access behavior pat-

tern of the referenced data. For example, two data items referenced temporally adjacent

to each other can be placed in the same set, thus causing conflicts. To reduce the effect

of conflicts, set-associativity is employed such that conflicting data elements are placed
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in different ways. But here again, a simplistic replacement policy, such as pseudo-LRU,

is used which does not guarantee the absence of conflicts. Moreover, for set-associative

caches, on each reference, every way within the set has to be probed to check for the pres-

ence of the data. Different applications or separate phases within the same application can

have widely varying associativity requirements depending on their locality and working-

set characteristics. Thus, many of these tag checks can be redundant resulting in wastage

of power at no added performance advantage.

Making replacement and allocation decisions in the compiler can offer several benefits,

as it can employ more intelligent heuristics to make replacement decisions at considerably

lower costs. Also, the compiler has the added advantage of analyzing the application’s

future behavior through profiling of the application on a representative input set. Soft-

ware control can thus customize the cache accesses based on the needs of the application.

Software-only approaches like code/data re-organization [18, 76] can help avoid conflicts.

But, the hardware, being transparent, is unaware of these transformations and thus per-

forms wasted tag checks.

We employ a hardware/software co-managed caching policy where the hardware per-

forms the critical cache lookup to reduce access cycle time, while providing hints through

the software to guide the hardware towards efficient management. Exposing the operation

of the cache to the software/compiler facilitates efficient use of this critical storage for both

power and performance.

Partitioned Caches: Cache partitioning allows for coarser grained management by

the software as compared to hardware-based replacement, while delegating critical finer
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granularity operations, such as tag checks, to the hardware. Traditionally, caches are logi-

cally organized into ways, where the tag corresponding to each of the ways are compared

in parallel to reduce access cycle time. The data is read from the matching way. Prior

to matching, the parallel access has to pre-charge and read all the tag and data arrays, but

select only one of the ways1, resulting in wasted dynamic energy [66]. Ideally, in an n-way

set-associative cache, using an oracle predictor, only one of the n-ways has to be read and

the rest can be ignored. For a 4-way cache, accesses to three of four ways are redundant.

Using CACTI [75], for a 1-Kb 4-way set-associative cache, an oracle predictor can save

almost 64% of the cache access energy.

In vertically partitioned [106] or way-partitioned caches [19], each way is treated as

a separate partition. Prior work uses vertical partitions for either energy savings through

hardware control [106] or as coarser grained units that are managed as scratch-pads [19].

We generalize this idea by allowing the compiler finer grain control over the individual

ways. In particular, on a cache access, the compiler decides the partitions or ways to be

probed for the referenced data. Similarly, cache replacement is restricted to certain ways

so as to reduce conflict misses. Although multiple ways can reduce conflicts, pseudo-

LRU replacement algorithms are non-optimal, and thus cannot guarantee correct decisions.

By pro-actively placing temporally co-located data references in different partitions, the

compiler can avoid conflicts. Similarly, references that have poor temporal locality can

be restricted to a single partition or even be allowed to bypass the cache by not assigning

them to any of the partitions, thus preventing cache pollution. Smaller L1 caches with

1L1 caches generally employ parallel access to ensure the fastest access time. Lower levels of the memory
hierarchy, i.e., L2/L3 caches, often serialize tag and data access to reduce unnecessary energy consumption
as access latency is less important.
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low associativity, high degree of conflict misses, and requiring a single cycle access are

ideal candidates for way-based partitioning. It should be noted that partitioning need not

be restricted to individual ways. It can logically be extended to include multiple ways per

partition.

More importantly, in addition to reducing conflict misses, way- partitioned software-

managed caches can restrict cache lookups to only selected ways that are guaranteed to

contain the data. This provides a two-fold advantage. First, restricting memory references,

based on its individual memory needs, to only a subset of the available cache can help save

energy as only the assigned set of tags and their corresponding data arrays are activated.

Second, per-access cycle time can be improved since only a limited set of ways are read

on a single access. Ideally, the compiler can restrict each access to just a single way, thus

matching the energy savings of an oracle predictor.

Way partitioning provides an ideal platform for the compiler to exercise fine-grained

management of data placement at a particular level of the cache hierarchy by reducing

conflicts while lowering the energy consumed. This work focuses on L1 caches, although

the technique can be generalized to other levels of the cache hierarchy. Single level caches

are common in embedded domains, where energy is a primary design constraint. We focus

on software-based way-partitioning of L1 caches as they are typically small and capture

majority of the memory references.

5.3 Partitioned Cache Architecture

In this section, we look at the architecture and the ISA extensions required for a

software-managed way-partitioned cache. The cache controller is altered to allow for a
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LD1 REG, [addr] 0 0 1 1 R

(b)

LD2 REG, [addr] 1 1 0 0 R

(c)

LD3 REG, [addr] 0 1 1 0 U
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Figure 5.1: Hardware/software co-managed vertically partitioned cache

specified subset of the cache ways to be activated on a lookup. In addition, on a cache

miss, the cache can be directed to only use a subset of the ways during replacement. Mod-

ified load/store instructions are used by the compiler to control the operations of the cache.

For a software-managed way-partitioned data cache, an important factor in determin-

ing the cache design is the granularity of partition assignment. Ideally, partition assign-

ment should be made at the cache block level, as replacement decisions are made for each

individual cache block. However, since memory blocks that a program accesses can vary

for every run of the program, we instead assign partitions to the load or store instructions

that access these blocks. By guiding the memory instructions, data placement in the cache

is indirectly controlled. In order to guide load/store operations to their designated cache

ways, we extended the instruction set architecture to include partition designations.

Figure 5.1 shows a 4-way set-associative cache. Each way is treated as a software-

controlled cache partition. As shown on top of Figure 5.1, we conceptually extend the
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load/store instructions with additional operand fields. For a k-partitioned cache, a k bit-

vector immediate field is used to denote the partition (i.e., way) to which the instruction is

assigned. For example, in Figure 5.1(b), LD 1 is assigned to partitions 2 and 3. Similarly,

LD 2 in Figure 5.1(c) is assigned to partitions 0 and 1, and LD 3 in Figure 5.1(d) is assigned

to partitions 1 and 2.

Cache Replacement: On a miss in the cache, a block within the cache must be

selected for replacement. On a miss, only the ways specified by this replacement bit-vector

are considered for replacement. This allows the compiler control over the replacement

decisions among the ways in a set. If an instruction is assigned multiple partitions, LRU or

random policy can be used among the specified partitions. All load/store instructions need

not be annotated with the partition bit-vector. For regular load/store instructions that are

unannotated, all the partitions are considered for replacement. Thus, the flexibility of the

underlying hardware allows the compiler to treat individual loads as needing only a single

way up to all the ways of the cache, based on its access characteristics.

Cache Lookup: On a cache access, all ways that could possibly include the cache

block must be probed. This is required to avoid any coherency and duplication of cache

blocks. If two memory references sharing the same set of data objects are placed in dif-

ferent partitions, then all such partitions have to be checked for the presence of the data.

Otherwise, one of the references, on a miss in its assigned partition, will not only duplicate

the block cached in an another partition, but also read/write a stale value. The lookup can

conceptually be accomplished by adding a second bit-vector for lookup to each instruction,

which corresponds to all the partitions that could hold the referenced data object. During



102

lookup, only the specified ways have to be probed and the other ways need not have their

tag/data arrays activated. Separating replacement from lookup provides the combined

flexibility of improving performance by controlling data placement, while saving power

by avoiding redundant tag checks.

While the lookup bit-vector would accomplish the task, its task can easily be folded

into the original replacement bit-vector and a single extra bit-field. This bit-field, called

the R/U-(Restricted/Unrestricted) bit, is added to each load/store instruction and shown

in Figure 5.1. This field is used to restrict the tag checks to the partitions specified in

the bit-vector. R means that only the specified partitions in the replacement bit-vector

need be probed, while U forces all the partitions to be checked. Although a unified

lookup/replacement bit-vector is less general than having a separate lookup bit-vector,

it has been found to provide comparable benefits at reduced costs.

This lookup-optimization requires the compiler to guarantee that two memory instruc-

tions assigned to different partitions with the R-bit will never access the same data. More

details on how this is done is described in Section 5.4. In the example shown in Fig-

ure 5.1, LD 1 and LD 2 are assigned to two different sets of partitions with their R-bit

set. This restricts them to activate only their assigned ways. Ideally, we could have a set-

associative cache, where each data object is assigned to different ways such that an access

only activates the assigned way. This would enable better per-access energy savings than

a direct-mapped cache while retaining the miss-rate of a set-associative cache as each of

the assigned data objects do not conflict with each other.

ISA Support: The ISA extensions as described above require adding more encoding
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bits, which might not be practical for embedded processors where code size is a primary

design constraint. This overhead can be reduced by using a special purpose register called

the cache access register (CAR) to hold the partition bit-vector. This allows extending

the design to an arbitrary number of partitions. Further, we introduce two different types

of load/store instructions. One that is partition cognizant, while the other that is not.

The partition aware instruction implicitly sources the CAR. Extra move instructions are

required to initialize the registers with a literal corresponding to the respective partition

bit-vector and the R/U-bit. Partition unaware instructions do not use the CAR and perform

lookup and replacement on all the ways just as in traditional designs. As shown in our

experiments, the resulting code-size overhead is only 0.4%.

Besides the modifications to the cache controller to honor the partitions specified by

the current instruction, no additional hardware beyond a standard cache is necessary. The

tag-directory structure is retained. If partitioning is not supported, the assignment can be

ignored and the default set-associative scheme can be used. For future generation pro-

cessors that could be designed with higher or lower associativity, the compiler specified

partitions can be virtualized by allowing multiple specified partitions to refer to a single

way or a single specified partition to refer to multiple ways.

Memory Partitions as Scratch-pads: The partitions used in our architecture are

not limited to a cache-based design. Partitions can be used within embedded processors

as customizable scratch-pad (SP) memories. SPs are local on-chip SRAMs without the

complex tag-checking logic of caches [8]. They can be superior to caches in terms of

energy and provides real-time guarantees. Given this explicit instruction based control
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of the individual ways, the compiler can optionally convert some of these ways to SPs

by deactivating the corresponding tag-array [19]. This is useful in modern embedded

processors, such as ARM, which have highly associative L1 caches. However, such high

associativity is not always required and hence, some of these ways can be configured as

software managed SPs. In fact, the Analog Devices DSP processor allows caches to be

selectively re-configured as SPs. This helps to tune the memory system to the needs of the

application. In Section 5.4, we provide more details on how way-partitioning can be used

to decide how to split the ways between SPs and caches for each application to reduce the

overall energy.

The objective of this work is to balance two opposing goals. On the one hand, cache

access energy can be reduced by restricting memory references to as few ways as possi-

ble. Energy is reduced by limiting the number of tag and data arrays that are activated

during each access. Moreover, controlled placement can help avoid conflict misses, thus

eliminating off-chip accesses. However, this can potentially lead to capacity misses for

references that have a moderate to large working-sets. The working-set of such references

are retained by allowing them to perform data placement across multiple ways. There-

fore, the compiler must balance these trade-offs so as to reduce conflicts while minimizing

energy. Compiler managed way-partitioning provides better management over traditional

cache designs by allowing customization of cache accesses based on the memory access

requirements of the application. The following section describes the compiler algorithm

to automatically assign partitions to the load/store instructions.
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for (i = 0; i < N1; i++) {

…

for (j = 0; j < N2; j++)

y[i + j] += *w1++ + x[i + j]

for (k = 0; k < N3; k++)

y[i + k] += *w2++ + x[i + k]

ld1/st1

ld2/st2

ld3

ld4

ld5

ld6

(a)

Figure 5.2: (a) Example kernel to illustrate compiler-managed cache partitioning. (b)
Fused load/store instructions.

5.4 Compiler Partitioning of Memory Instructions

Software-managed cache partitioning gives the programmer or the compiler explicit

control to manage the different partitions based on the memory needs of the application.

In this section, we describe a compiler heuristic that automatically analyzes an application

and assigns the important load/store instructions within the program to different cache

partitions. The goal of the compiler is to assign these memory reference instructions to

partitions (i.e., ways of the cache) so as to (1) reduce conflicts among data objects that are

simultaneously accessed, and (2) restrict the instructions to just the appropriate number

of partitions so as to satisfy the working-set of that reference. The first goal improves

cache utilization by eliminating conflict misses that arise due to interferences among tem-

porally co-located data reference streams. The second goal tries to reduce the number of

redundant tag/data array checks that would otherwise have to be performed by the hard-

ware. These goals provide the combined benefit of achieving the performance advantage

of set-associative caches while reducing the energy consumed.

Compiler-managed partition assignment consists of two phases: cache estimation and
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assignment. The cache estimation phase analyzes the memory access and usage charac-

teristics of the application to estimate the cache configuration requirement of individual

loads and stores. In addition, it also computes the degree of temporal interference among

each of the loads/stores. In the assignment phase, a greedy heuristic is employed to assign

these instructions to partitions. We employ a combined static and profile-driven compiler

analysis. Pointer-analysis is used to control cache lookups for correctness, while mem-

ory address profiling is used to guide partition assignment. Profile-based analysis is more

accurate in the presence of dynamically allocated data structures. Alternately, affine analy-

sis [90] over array indices can be used to compute the memory reuse patterns and conflicts

of data objects.

Figure 5.2(a) shows a sample C code segment with nested loops. This example is used

throughout this section to illustrate the partitioning process. The load and store instructions

that correspond to the accessed arrays are labeled in the source. Between the two innermost

loops (with indices j and k), the arrays y and x are reused, while accesses to the w objects

(w1 and w2) are distinct. During execution of each innermost loop, the accesses to y, x,

and the w objects are temporally co-located. So to prevent cache misses, each of these data

objects have to be assigned such that they do not overlap with each other. Also, during the

execution of the second loop, w2 should not displace either y or x. But since w1 and w2

are distinct, they have no reuse and hence can overlap in the cache.

5.4.1 Cache Estimation

In order to assign partitions to the load/store instructions, the compiler first analyzes

the application to identify three key attributes - (i) the data sharing pattern among differ-
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ent load/store instructions, (ii) the cache configuration required to satisfy the working-set

requirement of each load/store instruction, and (iii) the degree of conflict between every

pair of load/store instructions.

Multiple instructions could share access to the same set of data structures. Group-

ing such references helps to restrict the number of partitions to which they are assigned.

In addition, it guarantees that instructions that access the same set of data objects have

the same partition assignment. The working-set size estimates how much cache should

be allotted to the instruction, while the degree of conflict guides placement of instruc-

tions to different partitions. These attributes are mined independent of the address and the

organization/replacement-policy of the target cache architecture.

The compiler initially profiles the code by running the application on a train input set.

The profile run generates a trace of the load/store instructions executed during the run

along with the addresses referenced in units of cache blocks. This memory address profile

is processed on-line by analyzing a window of references that slides over the generated

profile data. The window size is bound to two times the size of the cache in units of cache

blocks.

Computing Data Sharing Among Load/Stores

Capturing commonality between instructions that access the same data can help limit

cache accesses to just the required set of partitions. This involves the following - (i) using

points-to analysis to guarantee that instructions that could potentially access the same data

set are assigned to same partitions, and (ii) pro-actively merging such instructions so as to

prevent them from being assigned to different partitions. This in turn reduces the number
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of partitions that are to be activated at run-time.

Points-to Analysis: To restrict the load/store instructions to access a subset of cache

partitions, the compiler has to guarantee that no two references assigned to two different

partitions can access the same data item. This can lead to coherency issues as discussed

in Section 5.3. Pointer analysis is used to avoid this problem. The pointer analysis phase

within our compiler annotates every load/store instruction with a set of object identifiers

that it potentially accesses [67]. The objects can be global/stack arrays/variables/structures

or heap allocated objects.

Initially, each distinct object identifier and its associated load/store instructions are

placed into a separate object set. If an instruction accesses multiple data objects, they

could reside in different object sets and hence the corresponding sets are merged. This

process continues until a set of completely disjoint object sets are obtained. All instruc-

tions within the same object set have to be assigned to the same set of partitions. Or more

conservatively, if they are assigned different partitions, their U-bit (see Section 5.3) is set

so that they check all available partitions on each reference for correctness, thus negating

the energy benefits. Instructions within each object set are guaranteed not to access data

objects of another set and hence can be assigned the R-bit. Each such fused set of instruc-

tions are now treated as a single new instruction which is then used during memory address

analysis. By fusing these aliased instructions, the later placement phase is guaranteed to

make the same placement decision for all actual instructions within this fused instruction.

Heuristic Fusioning: The pointer analysis phase is usually conservative and can po-

tentially fuse more instructions than necessary. To avoid this, we instead perform heuristic
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fusing. Heuristic fusioning is only used for the subsequent assignment phase. But the ac-

tual setting of the R/U-bit is done based on the conservative pointer analysis information

to guarantee correctness (see later Section 5.4.2). Pointer analysis, to ensure correctness,

may potentially tag two references as ’may alias’, although at run-time they have a low

probability of aliasing. Conservatively grouping such references forces them to be as-

signed to the same set of partitions leading to conflicts. Heuristic fusioning avoids this by

separating such references such that the later assignment phase can assign them to differ-

ent partitions. But, based on pointer analysis, the U-bit for both these references have to

be set because, in the unlikely event of an alias, all other partitions have to be probed for

any previously cached data. Although this fails to reduce redundant tag checks, it can help

in improving performance by pro-actively reducing conflicts. Thus, the hardware sup-

ported decoupling of replacement from lookup allows the compiler to perform aggressive

optimizations without being overly conservative.

Based on the profile information, all instructions that share more than a threshold (60%

is used in our experiments) of the commonly accessed cache blocks are fused. This is a less

aggressive, but more accurate form of fusing, which helps to group instructions that truly

alias. These heuristically fused instructions are then considered as an aggregate instruction

to be used in the later phases.

An important point to note is that pointer analysis cannot detect the case when two

loads access different objects that fall within the same cache block. Data padding is used

to prevent such false sharing. Since most objects occupy multiples of cache lines, the

overhead due to padding is minimal.
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Figure 5.3: (a) Trace consisting of array references, cache blocks, and load/stores from
the example in Figure 5.2. (b) Reuse distance (D) for each fused instruction. (c) Hit-rate
estimate for different cache configuration using Equation 5.1.

We use the memory address profile shown in Figure 5.3(a) to illustrate the partitioning

process. This is derived from the example illustrated in Figure 5.2(a). The Bis represent

the cache blocks that are accessed by the load/store instructions labeled in Figure 5.2(a).

Along with the instructions, the corresponding data objects referenced are also shown.

Note, while executing each innermost loop, the access to individual arrays can span mul-

tiple blocks. For example, access to array x in the j-loop spans blocks B1 and B2. In-

structions LD3 and LD4 reference the same array x and so are grouped into a new fused

instruction. In this example, both points-to analysis and heuristic fusioning leads to the

same result and hence for ease of explanation we assume conservative fusing based on

pointer analysis. The grouping of instructions is shown in Figure 5.2(b). Each fused in-

struction is shown as Mi and is also listed at the bottom of the memory address profile in

Figure 5.3(a).
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Algorithm 5.1: Estimating working-set size of load/store instructions
Input: Memory address profile consisting of the load/store instruction and the cache block

referenced {(Lk,B1),(Lk,B2),(Lk,B3), ...,(Lk,Bk)}
Output: Working-set size for each load/store instruction {Lk,Size}
for (i = (k−1) to 1) do

dist++ ;
if (Bi = Bk) then

break;
end

end
if (DistMap[Lk].lookup(dist)) then DistMap[Lk].value(dist)++ ;

else DistMap[Lk].insert(dist,1) ;

Estimating Cache Requirement For Load/Stores

The goal of the compiler is to allocate cache partitions to each load/store instruction so

as to satisfy its working-set requirement. By assigning the right number of partitions, we

eliminate capacity/conflict misses for all data accessed by that reference, while avoiding

any redundant tag/data array accesses.

Working-Set Size Estimation: To estimate the number of partitions, first the working-

set size of each load/store instruction, based on the concept of stack-reuse distance [62]

(denoted as D), is computed. Estimating the average working-set helps decide the cache

size to be allocated for every load/store instruction. The algorithm to estimate the reuse

distance size is shown in Algorithm 5.1. For a specific instruction Lk, a list of cache block

references listed in reference order is used. The size is estimated by looking at past refer-

ences to unique cache blocks by that instruction. The memory address profile is scanned

in reverse order starting from the current reference Bk. All unique references to Bi (6= Bk)

until the last occurrence of Bk is the number of cache blocks required (reuse distance) such

that the current occurrence of Bk hits in the cache. The last Bk seen is then removed from

the memory address profile, and the current Bk becomes the last occurrence for subsequent
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passes. The working-set size of Lk is one more than the weighted average of such reuse

distances.

Consider the example memory address profile shown in Figure 5.3(a). The current

reference is shown by the arrow pointing to the fused instruction M4 that references the

block B1. Prior to this, M4 references B2 after referencing B1 at the beginning of the

memory address profile. Thus, for the current reference of B1 to hit, M4 requires at least

two cache blocks. The reuse distance (D) for each reference Mi is shown in Figure 5.3(b).

Computing Number of Partitions For Each Load/Store: The number of partitions

assigned should be such that its working-set requirement is satisfied. This helps to avoid

conflict/capacity misses for the data accessed by that instruction. This requires an accurate

estimation of the hit-rate of a given load/store instruction for different cache configurations

based on its reuse-distance.

Given a reuse-distance D, cache size in terms of number of blocks B, and associativity

A, the hit-rate can be approximately computed using the formula [11]:

(5.1)
A−1

∑
a=0

(

D
a

)(

A
B

)a (

B−A
B

)D−a

The reuse-distance D, can be interpreted as, for a given reference B, there is, on an average,

D unique references to other blocks Bi between two unique references to B. The above

formula assumes that the intervening references have an equal chance of being placed in

any of the cache blocks within a set.

Using Equation 5.1, the hit probability for different cache configurations is shown

in Figure 5.3(c). Each entry in the matrix represents the hit-rate for a given value of

D. The rows of the matrix are the number of blocks in the cache, while the columns
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represent the associativity (or the number of partitions) in the cache. Here, we are only

concerned with the entries in the diagonal of the matrix. The top left entry represents

a single partition (or way) with the total number of blocks same as that within a single

way. As we proceed along the diagonal, the cache size is increased by adding more ways.

The off-diagonal entries correspond to cases where partitions/ways can be combined to

produce larger direct-mapped caches.

The number of partitions required for each load/store instruction with a given reuse

distance D, is computed from the above matrices by picking the entry along the diag-

onal with the highest hit-rate. Although, we have shown a performance driven matrix,

in reality, we use an energy matrix, where each entry corresponds to the energy con-

sumed for that reference. The energy is computed using the formula NumRe f erences ∗

EnergyPerAccess(B,A) + (1 − HitRate) ∗ NumRe f erences ∗ EnergyPerMiss, where

EnergyPerAccess is a computed from CACTI [75] for a cache configuration with B blocks

and A ways, while EnergyPerMiss is the energy required to fetch a cache line from L2 or

off-chip memory on a miss. The HitRate is obtained from the performance matrix. Us-

ing this new energy matrix, the least energy consuming configuration is selected for each

load/store instruction.

Computing Interferences between Loads/Stores

Section 5.4.1 computed the number of partitions required per load/store instruction.

Since the cache is shared by multiple such instructions, it is important to place them in the

cache so that they do not conflict with each other. References that overlap temporally are

to be placed in different cache partitions, while references that are not simultaneously live
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Figure 5.4: (a) Interference graph with cliques shaded. (b) The new reuse-distance for
each of the cliques. (c) Assignment of loads/stores to partitions/ways. (d) Annotating with
partition bit-vectors.

can share the same set of partitions.

This temporal interference between different load/store instructions is captured using

a graph-based representation, aptly named the interference graph (IG). The nodes in the

IG are the fused load/store instructions. An edge exists between the nodes if the degree

of overlap exceeds some minimum preset threshold. To compute the interference, a single

pass is made over the memory address profile. Every load/store reference that occurs

between two consecutive occurrences of another load/store is recorded. The IG is shown

in Figure 5.4(a) and is computed using the memory address profile shown in Figure 5.3(a).
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It can be observed from the memory address profile that during the execution of the inner

j-loop, references M1, M2, and M4 occur together temporally, while in the k-loop, M1,

M3, and M4 overlap temporally. But references M3 and M2 occur at two different points

in time and do not interfere with each other and hence do not have an edge.

Spatial Locality-Based Optimizations

So far we have tried to capture the temporal locality properties of the application

through memory address profile-based analysis. The target architecture’s default block

size was used to capture the spatial locality for each reference. But, different applica-

tions have differing spatial locality characteristics. Thus to model spatial locality, accurate

estimation of the block size of the application is required.

We saw earlier how the working-set is computed in units of cache blocks for each

memory instruction. The cache configuration, derived from Equation 5.1, assumes that

each block in the working-set has an equal probability of conflicting with every other

block. This turns out to be overly pessimistic for references with high spatial locality.

This in turn can force the reference to be assigned to multiple caches. Data references

that exhibit a high degree of spatial locality can be assigned to a direct-mapped cache, as

such a cache maps spatially adjacent references to adjacent cache blocks, thus avoiding

conflicts. Thus, accurate estimation of block sizes can help restrict memory references to

fewer partitions.

To compute the block size of the application, during a single pass of the memory

address profile, we vary the block size starting from the smallest granularity, which is

the block size of the target cache architecture to a maximum size, which is the size of a
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single partition. For each such block size, the fraction of references that can be captured

by a block of the new size is determined. The block size that maximizes this fraction

is selected as the new block size. This new block size is computed prior to the earlier

described phases and is used to estimate the reuse-distance, the working-set size, and the

cache configuration as described above.

In Figure 5.3, using the default block size, M4 has a working-set of two cache blocks.

But the two blocks that M4 accesses, B1 and B2, are spatially adjacent as they are part

of the array x and hence will not conflict in a direct-mapped cache. By using twice the

default block size, the new working-set is just a single block.

5.4.2 Cache Assignment

The goal of the assignment phase is to assign the load/store instructions to the parti-

tions/ways in the cache. Instructions that exhibit a high degree of temporal overlap are

placed in different partitions so as to prevent their data sets from conflicting.

In Section 5.4.1, we saw, based on the reuse characteristics of each load/store instruc-

tion, how the least energy consuming cache configuration was selected. If there were an

infinite number of partitions, each such load/store instruction could be assigned such that

its cache requirements are satisfied. But, since the number of partitions or ways are lim-

ited, some of these instructions must be assigned to the same set of partitions, thus causing

them to overlap. Again, if these overlapped instructions do not interfere temporally, there

would not be any conflicts. Ideally, during the assignment phase, when faced with a choice

of placing a set of instructions to the same set of partitions, the memory address profile

can be used to compute the combined working-set as described in Section 5.4.1. The least



117

number of partitions that can retain the combined working-set can then be estimated for

this overlapped set of instructions. But this would involve multiple passes of the mem-

ory address profile and is clearly impractical. So we need a quick approximation of the

combined working-set from just the working-set estimates of individual instructions.

To compute the combined working-set size for a set of load/store instructions, we use

the interference graph computed in Section 5.4.1. If an edge exists between two nodes,

they are assumed to interfere. Hence, the total number of cache blocks required to hold the

working-set of both these references combined is the sum of the working-set size of each

reference. But, if they do not interfere, the combined working-set size is the maximum of

the working-set size of both the references.

Computing Working-Sets of Overlapped References Using Cliques: We use the

graph-theoretic notion of a clique to realize the same. Given a set of potentially over-

lapping instructions, M1,M2, ...,Mn, we first consider a sub-graph within the interference

graph consisting of just these nodes. All possible maximum cliques within this sub-graph

are then enumerated. Each clique represents a set of instructions that occur together in time

and hence can potentially conflict. All such instructions thus have to be assigned sufficient

partitions to prevent conflicts. For each clique, the sum of the working-set size of each

node in the clique is computed. The working-set size of the combined set M1,M2, ...,Mn

is therefore the max of the computed sums over all cliques. From this combined reuse-

distance, Equation 5.1 can be used to find the most energy efficient cache configuration

for this set of overlapped instructions.

For the interference graph shown in Figure 5.4(a), assuming that they all have to be
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placed together, the cliques are enumerated in Figure 5.4(b) 2. In this example, we assume

that the block size is same as that of the target architecture and hence use the same reuse-

distance for each instruction as listed in Figure 5.3(b). The reuse distance of the combined

graph is two and is shown in Figure 5.4(b). Thus, if M1, M2, M3, and M4 are overlapped

in the cache, atleast three partitions are required to retain their combined working-set.

Partitioning Algorithm: We use a simple greedy heuristic to place the instructions

in different partitions. Each memory instruction in decreasing frequency order is placed

starting from the first partition to the total number of partitions. At each candidate place-

ment point, the most energy efficient cache configuration for that instruction is picked

(Section 5.4.1). If there are previously placed instructions, the new working-set and the

corresponding cache configuration is selected by enumerating all possible cliques for the

set of overlapped instructions. Because of the overlaps, the number of partitions for the

current instruction can be more than what would have been if only that instruction were

to be considered in isolation. Among all such potential placement points, the position that

results in the most energy efficient configuration is finally selected for placement for that

instruction. This process is then repeated for all instructions.

In our example in Figure 5.2(a), M1 and M4 have a working-set size of one, based on

the new block-size computed in Section 5.4.1. For D equal to zero, the number of partitions

selected is one (from the matrix in Figure 5.3(c)). Since M1 and M4 interfere (from the

IG in Figure 5.4(a)), to minimize conflicts, the greedy heuristic places them in different

partitions. Alternately, if they were to be overlapped, to fit the combined working-set,

2Nodes that are part of a previously enumerated clique are included in a new clique as long as there is
some new node that is not part of any other cliques.
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both the references will have to be assigned to more than one partition, resulting in more

tag checks than necessary. Similarly, M2 and M3 require a single partition and do not

interfere. Their combined working-set fits within a single partition. Hence, M2 and M3

are placed in the same partition but disjointly from M1 and M4. The placement of the Mis

and their corresponding load/store instructions are shown in Figure 5.4(c).

R/U assignment: The placement of load/instructions to partitions is followed by the

assignment of the R/U-bit to the assigned load/store instructions. This bit specifies whether

the placed instruction needs to check only the assigned partitions during cache lookup for

the referenced data. If the R-bit is set, only the assigned ways are probed. If the U-bit is set,

all the ways are probed. This is orthogonal to the assignment to partitions. The assignment

uses the aliased information computed in Section 5.4.1 where, a set of potentially aliasing

loads or stores are grouped into a single set. Two instructions from different sets are

guaranteed not to interfere. If all instructions within the same points-to set have the same

partition assignment, then it is safe to assign the R-bit to each of these instructions. If not,

they are assigned the U-bit to avoid coherency and duplication issues. In Figure 5.4(d),

since each of the Mis access distinct data objects, they are all assigned the R-bit. Thus,

in this example, the compiler was able to restrict each reference to just a single way, thus

providing the energy savings of an oracle way-predictor, while maintaining the hit-rate of

a 3-way hardware cache by pro-actively avoiding conflicts through careful placement.

5.4.3 Partitioning for Scratch-pads

As described in Section 5.3, configuring the partitions as SPs and caches can help

reduce energy by avoiding the tag-checks. For each application, we explore how many
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partitions (or ways) are dedicated to SPs and caches [70]. We only consider placing global

data objects (like arrays, scalars, etc.) as candidates for SPs. Heap allocated objects are

hard to disambiguate and hence are placed in caches. But not all global data objects are

good candidates for the SP. More specifically, if for example, a large array has a small

working-set (say, due to tiling), then it is a better candidate for cache. This is because

caches can capture the dynamic working-set, while for SPs the entire object has to be

placed in the SP. We also assume that the SPs are static, i.e., its contents do not change at

run-time. Caches allow two temporally disjoint objects to reside on the same cache space,

thus leading to better utilization. To account for these two factors, prior to the partitioning

phase, all global objects that have working-sets comparable to the object size, and that

conflicts with the objects are to be placed in the cache, are placed in the SP.

5.5 Experimental Evaluation

5.5.1 Methodology

We use the Trimaran [96] compiler and simulator infrastructure for our experiments.

The simulator is modified to add support for the trace analysis as described in Section 5.4.

A parametrized cache simulator was built to model way-partitioning based on the anno-

tated load/store instructions generated by the compiler algorithm illustrated in Section 5.4.

We assume a RISC-based, single-issue machine similar to ARM to study the effects of

partitioning. The compiler includes aggressive classical optimizations, including function

in-lining and pointer analysis for load/store optimizations.

Benchmarks from the MediaBench benchmark suite are evaluated on varying L1 cache

sizes and configurations. The partitioning is performed using the train input set run to com-
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Benchmark 2-part 4-part 8-part 1-way 2-way 4-way 8-way 16-way
rawcaudio 1.3 1.2 1.3 3.8 1.4 1.4 1.4 1.4
rawdaudio 1.4 1.5 1.5 4.2 1.6 1.5 1.5 1.5
g721encode 0.0 0.0 0.0 1.9 0.0 0.0 0.0 0.0
g721decode 0.0 0.0 0.0 2.0 0.0 0.0 0.0 0.0
mpeg2dec 19.0 20.3 19.2 43.1 21.4 26.1 35.7 42.2
mpeg2enc 6.7 4.8 4.6 13.8 7.1 5.2 5.7 8.6
pegwitenc 71.0 70.6 70.2 77.0 71.1 70.6 70.3 70.5
pegwitdec 94.9 94.3 93.8 99.9 95.1 94.5 94.1 94.3
pgpencode 21.1 20.1 20.1 23.1 21.1 20.5 20.1 20.1
pgpdecode 2.0 1.6 1.8 5.4 1.8 1.6 1.6 1.5
gsmencode 1.2 1.0 1.2 1.9 1.1 1.0 1.0 1.0
gsmdecode 1.2 1.1 1.0 1.8 1.2 1.1 0.9 0.9
epic 28.2 27.7 28.2 31.3 28.0 27.6 28.3 28.5
unepic 19.4 13.7 13.8 24.8 20.5 13.8 13.6 13.7
cjpeg 39.3 25.8 21.3 43.0 38.4 26.3 22.5 22.1
djpeg 48.5 30.4 24.7 75.0 48.5 30.9 25.9 25.7
Average 22.2 19.6 18.9 28.2 22.4 20.1 20.2 20.8

Table 5.1: Misses/1000 instructions with different 1-Kb partitioned cache configurations

pletion, while results are reported on a reference input set. The cache sizes are varied from

256-bytes to 8-Kbytes with 32-byte block size. Small cache sizes were chosen because the

MediaBench applications have a small memory footprint and hence do not require large

caches.

We focus on software-based way-partitioning, where individual load/store instructions

are assigned to one or more ways. We evaluate three different way-partition configurations

- 2-part, 4-part, and 8-part, where n-part denotes a partitioning of the original cache of

n-ways into n-partitions such that each partition is a single way that is direct-mapped

and software managed. We compare against traditional hardware-based 1-, 2-, 4-, 8-,

and 16-way set-associative cache configurations of different sizes. Since partitioning can

default to all ways, the appropriate comparison has to be made between 2-, 4-, and 8-

part to the respective 2-, 4-, and 8-way set-associative cache, respectively. We assume
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LRU replacement policy for the hardware-based cache configurations. For the partitioned

cache, when an instruction is assigned to multiple partitions, LRU is used to select among

the assigned partitions.

The basic motivation behind this configuration was to ideally restrict instructions to

just one partition, while assigning conflicting instructions to different partitions. This

allows only a single smaller direct-mapped way to be activated during each access while

achieving the miss-rate equivalent to a n-way cache. The goal is to level or even out-

perform a set-associative cache while being below the access energy envelope of a direct-

mapped cache as individual ways are smaller than a unified direct-mapped cache.

5.5.2 Results

Impact on Cache Misses: Table 5.1 shows the misses/1000 instructions for different

cache partitions on a 1-Kb cache. On an average, both 4- and 8-part partitions perform

better than even a 16-way hardware managed cache, while the 2-part partition performs

slightly better than the corresponding 2-way cache. For mpeg2dec, 4- and 8-part out-

performs the 4-way and 8-way cache, where we observe an increase in misses for higher

associativity. This is due to the non-optimality of LRU. Overall, partitioning is able to

perform as good as the corresponding set-associative cache.

For the 4- and 8-part caches, partitioning is able to remove around 80% of the conflict

misses compared to a direct-mapped cache, which is close to a 8-way hardware-managed

cache (85%). We observed that capacity misses for the partitioned cache were lower than

in the corresponding set-associative cache. An 8-part cache achieved a 16% reduction

in capacity misses compared to an 8-way cache. This is because capacity misses are
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Figure 5.5: (a) Average data/tag-array accesses and partition assignment for different
cache sizes and configurations and (b) Percentage reduction in energy for a 1-Kb cache

defined based on a fully-associative cache with LRU, which is not optimal. The compiler-

directed data placement is able to eliminate the misses such that it equals or even betters the

hardware-based strategy by pro-actively placing the conflicting data elements in different

ways.

In our study, we also varied the cache sizes to study the impact of partitioning on

different sized caches with different numbers of partitions. In general, we found that for

smaller caches the miss-rate improvement is more for partitioned caches because of higher
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conflict misses. Higher conflict misses for the base case provides opportunities for the

compiler to reduce them by pro-actively avoiding conflicts among co-accessed data items

using a whole program knowledge. Secondly, two and four partitions often perform as

good as a 8-way set-associative cache. Since fewer partitions consume less energy while

maintaining low miss-rates, they are recommended partition configurations.

Tag-checks & Way Assignment: Figure 5.5(a) shows how effective the placement is

in restricting the number of ways assigned. It plots two metrics - (i) the average number of

dynamic data/tag-array accesses and (ii) the average number of partitions that are assigned

per instruction. The first metric is larger than the second as more ways must be probed to

check for the presence of the referenced data. The lines shown in bold are the same metric

for a hardware managed direct, 2-way, 4-way, and 8-way caches where both the number

of tag-checks and replacements are same as the associativity of the cache. The partitioned

cache can independently control both the metrics and hence their values are different.

On an average, for the 8-part configuration, we observe a 36% reduction in cache

accesses and a 63% reduction in assigned ways for MediaBench (Figure 5.5(a)). For the

8-part configuration, the average number of assigned ways (second bar under Average)

is around 2.9. This means that although there are 8-ways, on an average, it behaves like

a 2.9-way associative cache. Other configuration show smaller reductions as they have

lesser partitions.

As we scale the number of partitions and their sizes, the number of assigned ways

decreases proportionally. This is due to the nature of our heuristics that adapt depend-

ing on the available cache partitions. Larger partitions satisfy the working-set needs of
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Figure 5.6: For a 1-Kb cache, (a) percentage reduction in energy-delay and (b) percentage
annotated ld/st instructions and percent code size overhead.

each instruction and hence there is lesser need for them to “spread” across more ways

(Section 5.4.1). Despite assigning to less ways, we are able to achieve miss-rates compa-

rable to hardware-based set-associative caches that have to always activate all the available

ways. The reduction in cache accesses provides ample opportunities for energy savings.

Improvement in Energy: We focus our energy results on the cache sub-system as our

optimizations target only the caches. Figure 5.5(b) compares the percentage improvements

in cache energy saved when compared to the corresponding hardware managed cache with
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the same number of ways on a 1-Kb cache. The energy used is obtained using CACTI-

3.2 [75] assuming the same physical configuration as shown in Figure 5.1. For all caches,

we obtain the energy per access for a single way and scale it by the number of ways

activated to compute the total energy [66]. The Am41PDS3228D SRAM [4] was assumed

to be the off-chip memory with 3.024nJ per access (16-bits).

Since 8-part eliminates all of the misses with a few number of ways, it achieves the

highest relative energy-savings of around 20% (for MediaBench). The 2-part is not able to

eliminate as many tag/data-array checks when compared to 4- or 8-part caches and hence

we observe a comparatively smaller relative energy improvement. For g721encode, we

observe almost 50% savings in relative energy for a 8-part configuration. On average,

when all configurations are compared relative to a direct-mapped cache (not shown), 2-

part partition is the most energy efficient. This is because, the 2-partitions are able to

remove most of the misses with an average of 1.6 tag-checks.

Improvement in Energy-Delay: Figure 5.6(a) compares the percentage improve-

ments in the energy-delay product when compared to the corresponding hardware man-

aged cache with the same number of ways on a 1-Kb cache. Since we model a single-issue

machine, we use the simple performance equation: Hits + Misses ∗MissPenalty, where

miss-penalty is assumed to be the off-chip latency of 25-cycles [82]. Energy-delay shows

similar trends as energy, where relatively, 8-part shows maximum savings.

Code Size: Figure 5.6(b) shows the percentage of load/store instructions that are an-

notated by the compiler on a 4-part 1-Kb cache. The compiler annotates only the most

frequently executed and profitable instructions, while the rest are assigned to all parti-
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Figure 5.7: Percentage energy-delay reduction of partition data cache vs. way-prediction
vs. oracle way-prediction for a 1-Kb cache 4-way associative baseline cache

tions. On average, only 6% load/stores are annotated. As described in Section 5.3, these

annotated instructions require an extra-move instruction to initialize the CAR with the bit-

vector corresponding to the assigned partitions. Since many instructions are assigned to

the same set of partitions, common sub-expression elimination is applied to remove such

redundant moves. The graph also shows that the static move instructions inserted average

around 0.4%. Thus, the code size increase is negligible, which is critical for embedded

processors.

Comparison to Way-Prediction: Way-prediction [13, 66] is a hardware-based tech-

nique that tries to reduce cache access power by predicting the way that contains the data.

On a miss-prediction, the correct way is then accessed. The prediction is done in paral-

lel to the tag accesses. On a miss, an extra cycle latency is incurred when accessing the

cache. We compared our technique against the hardware-based technique and also against
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an oracle way-predictor. A 1024 entry PC-indexed table was used for way-prediction. The

results for a 4-way 1-Kb cache is shown in Figure 5.7. The oracle predictor was used to

provide an upper bound.

On average, the partitioned cache performed 37% better than way-prediction and was

within 11% of a prefect predictor. In some of the benchmarks (for example, rawcaudio),

the partitioned data cache scheme outperformed the perfect predictor. This is because, in

addition to reducing redundant cache accesses, by pro-actively placing conflicting data

objects to different locations within the cache, the cache misses are reduced. On av-

erage, way-prediction achieved around 80% prediction accuracy. In other benchmarks,

like g721encode and gsmencode, the way-predictor did better than partitioned data cache.

Here, the way-predictor achieved accuracy close to the oracle predictor ( 99%). Moreover,

these benchmarks had low miss-rates and hence the partitioned cache could not reduce any

additional misses. The energy loss is mainly attributed to the overestimation of the number

of partitions by the heuristic and is not a fundamental limitation of the architecture.

Partitions as scratch-pad: Finally, we explore the use of converting selected parti-

tions as software-controlled scratch-pads, where the tag-array corresponding to each par-

tition (or way) can be disabled. Figure 5.8 plots the relative improvement in energy for a

4-part partitioned cache with respect to a 4-way cache. Since there are 4-partitions which

can each be individually treated as a scratch-pad, we evaluate four different scratch-pad

configurations - (i) all partitions are software-managed partitioned caches (4-part, sp0),

(ii) 1 partition as scratch-pad while rest are partitioned caches (sp1), (iii) 2-partitions each

for scratch-pad and partitioned caches (sp2), and (iv) 3 scratch-pad partitions and a 1-
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Figure 5.8: Percentage energy reduction for different scratch-pad (sp) configurations w.r.t
a 4-way cache of 4-Kb

part cache (sp3). Since scratch-pads do not have the tag-access energy, they are more

energy efficient than the correspondingly sized caches. We observe that 1 scratch-pad and

3-part cache provide the highest energy benefits. Since only global data is placed in the

scratch-pad, more caches perform better for benchmarks with heap accesses (epic, unepic).

Otherwise, larger scratch-pads help retain more global objects, thus reducing tag-checks

for such data (rawdaudio, g721encode). In general, scratch-pads require more memory as

the entire data object has to be placed rather than just the working-set. Cjpeg and djpeg

perform poorly with scratch-pads as majority of the data they use are heap allocated and

hence require more caches.

5.6 Related Work

Multiple/Split Partitioned Caches: A variety of hardware cache organizations [34,

74, 77] consisting of multiple/split caches aimed at storing data based on spatial, tempo-
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ral, or a combination of access pattern behavior have been explored in the past. All of

these schemes employ hardware techniques to dynamically classify memory blocks into

each of the special caches (partitions). The cache controller is modified to detect the

access pattern and route the data to the appropriate cache partition. Recently, hardware-

based programmable decoders have been suggested in [107] to reduce conflict misses in

direct-mapped caches. Hardware-based dynamic partitioning of shared caches for multiple

processes or threads [88] have also been proposed.

The use of compile time classification of memory reference instructions into spatial,

temporal, and spatial-temporal has been explored in [78]. The classified data references

are then cached into three separate organizations. At run-time, the cache controller places

data in a given cache depending on the instruction. Spatial and temporal caches are very

small and fully associative, while spatial-temporal caches are larger. Different block sizes

are also used for each of the caches.

Although our partitioned cache approach is similar in spirit to earlier work on split

caches, our scheme is more flexible in that we allow more generalized form of partitions.

In addition, instead of a dedicated hardware controller deciding on what data needs to re-

side in which partition, the compiler, is used to make partitioning decisions. Most other

partitioning schemes physically partition the caches with customized configurations which

might not be applicable for all workloads. In comparison, our scheme can easily be de-

faulted to a traditional unified cache by using regular load/store instructions.

The partitioned cache techniques presented in [42, 72] differ from the scheme we pro-

pose in several aspects. Their hardware scheme does not handle coherency issues, whereas
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we selectively probe all cache partitions to detect and resolve coherency and data dupli-

cation. Our scheme also has the ability to specify multiple non-contiguous partitions with

possibly a global replacement among the different partitions. In addition, we only need to

partition a select set of load/store instructions and can easily default to a traditional cache

based on the needs of the application. [42, 72] use hardware-based partition descriptor

tables to record the size and offset of the partitions in the original cache. The PC of the

load/store instruction is used to index into another table to identify the assigned partition.

This can affect hit time. They limit their analysis to loops with affine accesses and do not

handle multiple partitions for a single load/store.

Coarser-Grained Partitioning: While our method uses a fine-grained approach

to partitioning, more coarser-grained techniques have been studied in the past. A hard-

ware/compiler scheme is used in [97] to classify an instruction as cacheable or non-

cacheable based on the miss rate. In region-based caching [55], caches are partitioned

depending on whether an access is to the heap, stack, or the global address space. Mini-

max caches [101] partition scalars and non-scalars to different caches to reduce conflicts.

Page-based partitioning has been proposed in [82], where a smaller direct-mapped cache is

placed next to a larger main cache. To avoid conflict misses, page coloring schemes have

been proposed in the past [81]. But, these require additional OS support and are depen-

dent on whether the cache is virtually or physically indexed. Moreover, they are targeted

towards reducing just the conflicts within a cache and not towards reducing the number

of tag lookups. Our scheme can control data placement irrespective of the underlying ad-

dressing schemes. It allows more fine-grained partitioning and control and can emulate
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the above strategies by annotating the instructions based on their broader classification.

Instruction-driven control can generalize to all kinds of data access patterns.

Hardware/Software-Based Cache Management: FlexCache [64] uses software-

based cache management by grouping references to hot pages to avoid redundant tag-

checks. This can affect hit-case latency, which is reduced using ISA extensions and special

registers to store the address translations. They do not target partitioned caches, which

combine the benefit of both traditional caches and software management.

Way-partitioning [19] partitions the ways (columns) of a cache such that the replace-

ment decisions are restricted to certain ways. A bit-vector is used to restrict the allowable

ways and use the reserved partitions as scratch-pad memories. They do not make fine-

grained replacement decisions on a per instruction basis, which allows us to tackle both

energy and conflict misses. Their technique performs partitioning at the page-level by

modifying the TLB. Moreover, they do not allow restricting lookups to the assigned parti-

tions. Thus, our technique generalizes on their method.

Cache management through compiler specified hints has been proposed in [79] to de-

cide what data is to be retained/evicted. But, their focus is on reducing conflicts and are

not always applicable in general, especially in the presence of dynamically allocated data.

The hardware still performs energy inefficient tag checks. Our work instead tries to effi-

ciently use the available ways in a set-associative cache for energy improvements while

maintaining performance through a mix of static and profile-driven analysis. The proposed

solution can be applied over the existing code/data re-organization techniques [18, 76] to

further improve performance.
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Hardware/Software Techniques Towards Cache Energy Savings: To reduce the

energy consumed in set-associative caches, recently, pseudo set-associative caches have

been proposed [13, 39, 40, 66]. The basic idea is to probe each of the ways sequentially

or use some form of hardware way prediction. For the common case, where the first ac-

cess results in a hit, there can be substantial savings in energy and access time. Unlike

our method, the probing is done in hardware with no compiler control. Our technique is

more general, as it can selectively activate different sets of tag/data-arrays for different

references in the application without incurring any cycle time overheads. In fact, for in-

structions that need to access multiple ways, we can allow techniques similar to theirs to

further reduce power at the expense of increased cycle time. Dynamically reconfigurable

caches have been proposed in [2, 7, 106] where selected portions of the cache can be dis-

abled for energy savings and for dynamically tuning the memory configuration depending

on the application’s needs. Compiler-based techniques to reduce tag energy have been

proposed in [105]. These techniques do not try to reduce conflict misses. Alternately,

banking [32] can be deployed to reduce cache access energy, but this is orthogonal to

partitioning and can be applied to individual partitions if desired.

5.7 Conclusion

In this chapter, we presented a novel compiler-managed partitioned cache architecture,

where individual ways within the cache are explicitly controlled by load/store instructions.

These load/store instructions provided hints to the hardware to control placement within

individual ways, while regulating the ways that need be probed during cache access. This

primary benefit was in avoiding redundant tag/data array checks, thus reducing energy,
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while maintaining or even improving performance through intelligent placement of data.

In addition, a compiler algorithm that uses whole program knowledge to assign instruc-

tions to the partitions with negligible increase in code size is presented. An average 24%

energy savings was achieved with four 1-Kb direct-mapped caches when compared to a

4-way set-associative 4-Kb cache.



CHAPTER VI

Conclusion

6.1 Summary

Power is one of the primary design parameters in the design of embedded systems.

Embedded processors typically operate under tight environmental constraints where they

often do not have access to a constant source of power. Hence, they have to operate at

a really low power budget so as to prolong the limited battery life. Many of the current

generation embedded processors perform computationally intensive tasks, such as image

and video processing with real-time constraints. Thus, it is imperative that we focus on

energy saving techniques that do not sacrifice on performance.

Memory power has become one of the dominant contributors to the overall system

power. Current techniques to solve the memory power problem can be broadly classified

into hardware and software techniques. In general, hardware-only solutions tend to be

expensive and are limited in their scope of optimization. But on the positive side, they can

adapt to the dynamically varying program conditions and have less performance overhead.

Software-only solutions, on the other hand, are usually conservative so as to guarantee cor-

rectness. Moreover, they are limited to statically analyzable code and data access patterns,

135
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like loop-nests and arrays. They do not adapt well to dynamically allocated data that

are accessed through pointers. But, they offer the advantage of having a whole program

knowledge to pro-actively optimize for the entire application.

This thesis demonstrated synergistic hardware/software techniques that address the

memory power problem. A combined hardware/software solution not only provides the

advantages of both hardware and software-only solutions, but also allows aggressive soft-

ware optimizations. Through ISA extensions, the compiler provides hints to the hardware

for better program management, while the critical operations are delegated to the hardware

so as to not compromise performance.

Register files and on-chip memories form a hierarchy of storage structures that are

faster and low power. By maximizing the utilization of these on-chip structures, off-chip

accesses can be avoided, thus resulting in substantial savings in memory power. Any

hardware/software technique should therefore try to efficiently utilize these structures so

as to save power without sacrificing on performance. We have proposed and evaluated

three different hardware/software techniques that effectively utilize the on-chip register

files, instruction, and data memories. These techniques were evaluated within the context

of the WIMS microcontroller that is used in low-power embedded sensor-based systems.

First, we looked at a windowed register file architecture that provides the appearance

of a large register file without compromising on the instruction encoding space. A novel

graph partitioning compiler algorithm was developed that partitions the virtual registers

in a procedure into multiple register windows, thus reducing the overall spill code while

minimizing the overhead due to inter-window moves and window swaps. We evaluated our



137

design over a wide range of processor and window configurations. Increasing the number

of windows from 1 to 2 yielded an average performance improvement of 10% for the 4-

register case and 11% for the 8-register case on the WIMS processor. The corresponding

experiment on a 5-wide VLIW machine, achieved an average performance improvement

of 21% and 25% for the 4 and 8 register configurations, respectively. An average power

reduction of 25% for the 2-window 8-register over the 1-window case was observed on the

WIMS processor.

Second, we evaluated a compiler-directed scheme to effectively manage a low power

scratch-pad memory. Unlike traditional instruction or data caches, scratch-pad memories

lack the complex tag checking and comparison logic, thereby proving to be efficient in

area and power. We proposed a compiler-managed dynamic placement algorithm, wherein

multiple hot code sequences, or traces, are made to overlap each other in the code cache

at different points in time during execution. Special copy instructions are provided to

copy the traces at run-time. The compiler, based on a power estimate, initially selects the

most frequent traces across all procedures into the code cache. Through iterative code

motion and redundancy elimination, copy instructions are inserted in infrequently exe-

cuted regions of the code to copy traces into the code cache. For a 64-byte code cache,

the compiler-managed dynamic scheme achieves over 64% energy improvement over the

static-based solution in a low-power embedded microcontroller.

Finally, we evaluated a partitioned data cache architecture, where a unified set-associative

cache was replaced by multiple direct-mapped caches with the same combined size. Tra-

ditional data caches achieve high performance, but at the expense of increased dynamic
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power due to often redundant tag and data-array checks. We evaluated a combined hard-

ware/software scheme where, each of the smaller cache partitions are exposed to the com-

piler through load/store instruction extensions. This allows the compiler to make better

placement decisions to reduce cache misses. More importantly, the compiler also orches-

trates which data partitions are activated on a lookup, thus removing unnecessary tag and

data-array accesses. An average 24% energy savings was achieved with four 1-Kb direct-

mapped caches when compared to a 4-way set-associative 4-Kb cache.

6.2 Putting it All Together

The register window and software-managed scratch-pads are implemented within the

WIMS microcontroller. Although the partitioned data cache work is more exploratory

and no implementation exists in any current generation microprocessors, we evaluated the

projected savings on the WIMS processor due to partitioning of the data caches.

6.2.1 Methodology

To evaluate the combined benefits of all three optimizations, similar experimental setup

as detailed in the earlier chapters was used. For the register window case, the instruction-

level energy model of the WIMS processor was used to calculate the energy savings of

scaling the number of register windows from 2 to 4. The base case assumed was the WIMS

processor with a single register window of 8-registers. The WIMS processor has an all on-

chip memory that is partitioned into 4-banks of 16-Kb each. So any spill loads/stores saved

reduces the number of on-chip memory accesses.

To evaluate the loop-cache configuration, the read/write access energy for the on-chip
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loop-cache and the on-chip memory was used. Any access that is not directed to the loop-

cache goes to the on-chip memory. The size of the loop-cache was varied from 64-bytes

to 512-bytes. Both static and dynamic loop-cache allocation schemes were evaluated.

For larger loop-cache sizes and for applications with a not too large instruction memory

footprint, the simpler static scheme performed better than the dynamic scheme. The loop-

cache on the WIMS processor is just a small bank of on-chip memory. Since the WIMS

processor has an all on-chip memory, the energy difference between an access to the loop-

cache and the main memory banks are relatively small. To measure the overall system

energy savings for the loop-cache, the percentage contribution of an on-chip memory ac-

cess was computed and was found to be close to 20% of the system energy. This is not

surprising given that an instruction is accessed almost every cycle.

Finally, for the partitioned data cache scheme, an on-chip 1-Kb direct mapped data

cache and a 4-Kb 4-way set-associative cache were assumed to be the baselines, with the

miss being directed to an off-chip memory. The Am41PDS3228D SRAM [4] was assumed

to be the off-chip memory with 3.024nJ per access (16-bits). The number of partitions

were varied from 2 to 8. As mentioned earlier, the current generation WIMS processor

does not include a data cache, so the savings obtained is just an estimate. CACTI [75] was

used to model the energy for different cache configurations. The overall contribution to

the system energy by the direct-mapped data cache was found to be around 15%.

6.2.2 Results

The combined energy savings due to register windows, scratch-pads, and partitioned

data caches are shown in Figure 6.1. The results are shown for a 2-window 8-register con-
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Figure 6.1: Combined energy savings on the WIMS processor using 2-windows of 8-
registers, a 512-byte loop cache, and a 1-Kb partitioned data cache.

figuration with a 512-byte scratch-pad and a 1-Kb data cache that is partitioned into multi-

ple 256-byte direct mapped caches. The baseline is a 1-window 8-register machine with no

on-chip scratch-pad, but an on-chip instruction memory, and a 4-way set-associative data

cache. On average, we observe close to 30% savings in dynamic energy savings when all

three optimizations are applied.

The major contributor to the overall system energy savings is the register window

scheme. This is primarily due to savings in the number of spill instructions and the re-

sulting reduction in the number of main memory accesses. The contribution to the overall

system energy savings due to the software-managed loop-cache is comparatively lower.

But, here the savings is measured against an all on-chip main memory. Since WIMS has a
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Figure 6.2: Pareto optimal graph with area overhead incurred on the x-axis and the energy
savings obtained on the y-axis for different window, loop-cache, partitioned data cache
configurations.

64-Kb on-chip memory that is partitioned into 4 banks of 16-Kb, the energy savings due

to a 512-byte on-chip loop cache is not pronounced. But for most embedded processors

that use off-chip memories, the corresponding savings would be significantly higher.

Similarly, the contribution by the partitioned data cache to overall system energy is

comparatively low. For the data cache, we assume that a miss results in an off-chip access.

Since a 4-way cache has a high hit-rate, the number of off-chip accesses are low. Much

of the energy savings is due to savings obtained by avoiding redundant tag/data-array

accesses. The contribution by the 4-way 1-Kb data cache to the overall system energy is

found to be around 20%. As shown in Chapter V, although we are able to save around 18%

of the cache access energy, the overall contribution to system energy savings is smaller.
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Figure 6.2 shows the Pareto optimal graph for different configurations of register win-

dows, loop-cache, and partitioned data caches. The baseline for all points is 1-window

of 8-registers, on-chip instruction memory, and a 1-Kb direct-mapped cache. For refer-

ence, the base WIMS processor with a 512-byte loop-cache, 64-Kb on-chip memory, and

2-windows of 8-registers with support for peripherals, on-chip ADC is around 12.5mm2.

The notation w2.r8 and w4.r8 denotes 2- and 4-windows of 8-registers each. 512b.d de-

notes a 512-byte loop cache that is dynamically allocated, while 1K.2p and 1K.4p refers to

a 1-Kb cache with 2 and 4 partitions. As we add more features, such as larger loop-caches,

more register windows, or more number of cache partitions, the relative energy savings

is higher. But, we also observe an increase in the chip area due to these structures. At

one extreme is a 2-window 8-register configuration which has the least energy savings and

lowest area overhead, while at the other end is a 4-window 8-register configuration with

a 512-byte dynamically managed loop-cache, and a 4-partition cache configuration. The

knee of the Pareto optimal curve is a 2-window 8-register configuration with a 256-byte

loop cache and a 2-partition data cache.

6.2.3 Discussion

Due to high register pressure, scaling to two windows provided the highest overall

benefit. Beyond two windows, the relative energy benefit does not justify the area overhead

of adding more registers. Of course, this depends on the nature of the application. For a

wider issue machine, where there is even more register pressure, scaling to four windows

might be more beneficial.

Although the loop-cache provided less significant energy savings, many embedded
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processor do include an on-chip loop-cache to avoid the power hungry off-chip accesses

without incurring the area/energy penalty of a traditional instruction cache. Overall, smaller

loop-cache sizes of the order of 256 to 512-bytes provided the maximum energy savings.

For smaller loop-cache sizes, the dynamic scheme clearly out-performs the static scheme,

although for larger sizes, static seems to be an attractive option. In fact, one scheme does

not nullify the usage of the other. Thus, depending on the nature of the application and

the size of the loop-cache, a combined scheme might provide more benefit than either one

used in isolation.

For the partitioned data cache, the four partition configuration provided the maximum

energy savings. This provides just sufficient associativity to reduce the conflict misses,

while allowing the compiler enough flexibility in isolating accesses to different partitions

so as to pro-actively reduce conflicts while eliminating redundant cache accesses. Scaling

to eight partitions actually resulted in reduced energy savings with higher area overhead.

Although this exploration did not include the use of the cache as a scratch-pad, from

the results in Chapter V, for more regular benchmarks, configuring selected partitions as

scratch-pads provides added energy savings. Thus, partitioning provides the flexibility of

tuning the memory sub-system depending on the needs of the application to improve both

power and performance.

To conclude, all three schemes must be collectively applied to reduce the overall mem-

ory power. Depending on the available area budget, the sizes of each of the hardware struc-

tures can be varied. Given a processor with one or more of these features, the compiler

techniques developed in this dissertation can be used to effectively utilize these storage
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structures to save energy and also to improve performance.

6.3 Future Directions

The work presented in this dissertation can be extended in numerous directions. One

possible variation of the register windowing algorithm presented in Chapter III is to reorder

the instructions so as to reduce the number of window toggles. A compiler could perform

a separate pass prior to window assignment to schedule the instructions while honoring

the dependencies such that, the instructions that could potentially be assigned the same

window are grouped together.

The windowed register file architecture limits register accesses to a single window

at a time. This prevents any accesses to variables that are stored in the other window,

unless they are explicitly moved to the current active window. The disadvantage of such

a scheme is that if the current active window is saturated, it can introduce extra spills

to accommodate the variable from the other window. An architectural variation to avoid

this is to use a sliding window just as in the SPARC architecture. This will allow better

sharing of registers across windows. By sliding the active window, registers from both the

windows can be accessed without any move or spill overhead. This reduces the number

of moves, because often, a single instruction needs to source its variables from multiple

windows.

Although we implemented the windowing architecture to target just a single register

file, in the WIMS processor, both the address and the data register files are windowed.

But, both these files have separate bits in the MSR to control the active window. Having

separate toggle instructions for data and address registers can affect performance. The
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older generation WIMS processor had a single toggle bit that toggled both the data and

address registers simultaneously. Although this can constrain the compiler, it can reduce

the toggle overhead. A possible extension to the compiler algorithm would be to handle

both data and addresses simultaneously so as to reduce spill pressure on both the register

files, while minimizing the combined toggle overhead.

On the memory side, a hybrid scratch-pad plus cache solution can help get the com-

bined benefits of both scratch-pads and hardware-managed caches for both data and in-

structions. For statically analyzable code and data access patterns, a dynamically managed

scratch-pad can be used to improve both power and performance. The hardware-managed

cache is useful for hard to analyze code like dynamically allocated data or third party

libraries, OS etc.

Beyond compilers, virtual machines or dynamic compilation systems can provide a

system level solution to better manage the underlying hardware. Compilers usually are

restricted to optimizing a single application. But, a typical system will have multiple

processes/threads that constantly interact or contend with each other for limited hardware

resources. One of the limitation of the loop-cache system is that the compiler assumes that

the loop-cache is dedicated to a single application So on a context switch it is required

that the contents of the loop-cache be saved and restored. This might be too much energy

and performance overhead. One naive solution is to partition the loop-cache and dedicate

parts of it to critical portions of the application like the interrupt handler routines or the

OS. But this has the obvious disadvantage of providing too little or too much to certain

applications. This possibly diminishes the advantage of a dynamic code placement system.
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Perhaps a better solution would be to have a run-time system that can handle multi-

ple applications. A run-time system, has a whole system view that can help manage the

resources across applications. In fact, future systems will have close levels of interaction

between the compiler and the run-time system. The compiler can convey the application’s

resource requirements to the dynamic system, while the run-time system in turn, uses this

information to optimize across applications. One excellent example of such an interaction

is the partitioned data cache, where the compiler analyzes an application for its memory

requirements at different points in the program, and assigns cache partitions virtually. The

run-time system can then use this information to allocate physical partitions to different

applications, taking into account the current state of the system.
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ABSTRACT

HARDWARE/SOFTWARE TECHNIQUES FOR MEMORY POWER

OPTIMIZATIONS IN EMBEDDED PROCESSORS

by

Rajiv A. Ravindran

Chair: Scott Mahlke

Power has become one of the primary design constraints in modern embedded micro-

processors. Many embedded applications perform computationally demanding tasks, such

as signal processing and encryption, that require high performance processors. Hence,

traditional power savings techniques that sacrifice performance for power are not always

applicable. It is well known that the memory sub-system is responsible for a significant

fraction of the overall power dissipation. On-chip memory structures, such as register files,

caches, and scratch-pads, provide fast and energy efficient access to program and data by

reducing the slower and power hungry off-chip accesses. Memory power, therefore, can

be reduced by employing techniques to effectively utilize these storage elements. In this

dissertation, three different compiler orchestrated, but hardware-assisted techniques, are

proposed that target these on-chip storage elements while remaining performance neutral.



A windowed register file architecture that provides a large number of physical registers

without compromising on the instruction encoding is proposed. A novel graph partitioning

compiler algorithm was designed that partitions virtual registers within a procedure across

multiple windows. This reduces memory demand by avoiding spills, thus improving both

power and performance.

Scratch-pad memories, unlike traditional hardware caches, lack the complex tag check-

ing and comparison logic, thereby proving to be efficient in area and power. A compiler

managed dynamic instruction placement algorithm was designed wherein, multiple hot

code sequences are made to overlap each other in the scratch-pad at different points in

time during execution through specially provided copy instructions.

Finally, data caches have been effective in dealing with more irregular data access pat-

terns. But, they employ hardware-based lookup and replacement schemes that have high

energy overheads. A partitioned data cache architecture is proposed in which, enhanced

load/store instructions are used to control fine-grain data placement and lookup within a set

of cache partitions. This fine-grain control can avoid conflicts, thus providing the perfor-

mance benefits of highly associative caches, while saving energy by eliminating redundant

tag- and data-array accesses.

These techniques are evaluated within the context of a low-power WIMS microproces-

sor resulting in a combined system energy savings of around 32%.


