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ABSTRACT

CUSTOMIZING THE COMPUTATION CAPABILITIES OF MICROPROCESSORS

by

Nathan T. Clark

Chair: Scott Mahlke

Designers of microprocessor-based systems must constantly improve performance and

increase computational efficiency in their designs to create value. To this end, it is in-

creasingly common to see computation accelerators in general-purpose processor designs.

Computation accelerators collapse portions of an application’s dataflow graph, reducing

the critical path of computations, easing the burden on processor resources, and reducing

energy consumption in systems. There are many problems associated with adding accel-

erators to microprocessors, though. Design of accelerators, architectural integration, and

software support all present major challenges.

This dissertation tackles these challenges in the context of accelerators targeting acyclic

and cyclic patterns of computation. First, a technique to identify critical computation sub-

graphs within an application set is presented. This technique is hardware-cognizant and

effectively generates a set of instruction set extensions given a domain of target applica-

tions. Next, several general-purpose accelerator structures are quantitatively designed using

critical subgraph analysis for a broad application set.
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The next challenge is architectural integration of accelerators. Traditionally, software

invokes accelerators by statically encoding new instructions into the application binary.

This is incredibly costly, though, requiring many portionsof hardware and software to be

redesigned. This dissertation develops strategies to utilize accelerators, without changing

the instruction set. In the proposed approach, the microarchitecture translates applica-

tions at run-time, replacing computation subgraphs with microcode to utilize accelerators.

We explore the tradeoffs in performing difficult aspects of the translation at compile-time,

while retaining run-time replacement. This culminates in asimple microarchitectural in-

terface that supports a plug-and-play model for integrating accelerators into a pre-designed

microprocessor.

Software support is the last challenge in dealing with computation accelerators. The

primary issue is difficulty in generating high-quality codeutilizing accelerators. Hand-

written assembly code is standard in industry, and if compiler support does exist, simple

greedy algorithms are common. In this work, we investigate more thorough techniques for

compiling for computation accelerators. Where greedy heuristics only explore one possible

solution, the techniques in this dissertation explore the entire design space, when possible.

Intelligent pruning methods ensure that compilation is both tractable and scalable.
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CHAPTER 1

Introduction

For decades industry has produced, and consumers have relied on, exponential perfor-

mance improvements from microprocessor systems. This continual performance improve-

ment has enabled many applications, such as real-time ray tracing, that would have been

computationally infeasible only a few years ago. Despite these advances, many very com-

pelling application domains remain beyond the scope of everyday computer systems, so

the quest for improving performance remains an important research goal.

The traditional method of performance improvement, through increased clock frequency,

has fallen by the wayside as the increased power consumptionnow outweighs any perfor-

mance benefits. This development has spurned a great deal of recent research in the area of

multicore systems: trying to provide efficient performanceimprovement through increased

parallelism.

Not all applications are well suited for multicore environments, though. In these sit-

uations, an increasingly popular way to efficiently providemore performance is through

customized hardware, also known as computation accelerators. Adding accelerators to a

general-purpose design not only provides significant performance improvements, but also

major reductions in power consumption as well [120]. There are many examples of cus-

tomized hardware being effectively used as part of a system-on-chip (SoC) in industry, for

example the encryption coprocessor in Sun’s UltraSPARC T2 [95].

There are three major challenges in utilizing hardware accelerators: design of the ac-

celerators, cost effective architectural integration, and compilation support.
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1.1 Design of Computation Accelerators

Efficiency versus programmability is the central tradeoff involved in designing hard-

ware accelerators. Accelerators improve efficiency by performing larger amounts of com-

putation in hardware than general-purpose designs. However, the more computation an

accelerator performs in hardware, the less likely it is for that accelerator to be useful across

multiple applications.

At present, the most popular strategy for exploiting computation accelerators is to build

a system consisting of a number of special-purpose application specific integrated circuits,

or ASICs, coupled with a general purpose processor. The ASICs are specially designed

hardware accelerators to execute large portions of the application that would run too slowly

if implemented on the processor. While this approach is effective, ASICs are costly to

design and offer only a hardwired solution that permits almost no postprogrammability.

An alternative design strategy is to augment the core processor with small, acyclic

special-purpose hardware to increase its computational capabilities in a cost-effective man-

ner. The instruction set of the core processor is extended tofeature an additional set of

operations, and hardware support is added to execute these operations in the form of new

function units. The Tensilica Xtensa is an example commercial effort in this area [49].

There are a number of benefits to augmenting the instruction set of a core processor with

small acyclic accelerators. First, the system is postprogrammable and can tolerate changes

to the application. Though the degree of application changeis not arbitrary, the intent is that

the customized processor should achieve similar performance levels with modest changes

to the application, such as bug fixes or incremental modifications to a standard. Second,

the computation intensive portions of applications from the same domain (e.g., encryption)

are often similar in structure. Thus, the customized instructions can often be generalized

in small ways to make them more useful across a set of applications. Last, some or all

of the ASICs become unnecessary if the augmented core can achieve the desired level of

performance. This lowers the cost of the system and the overall design time.

The central question with this approach is the degree of human effort required to design

an efficient set of instruction set extensions. This effort can often be more time consuming
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and expensive than the design of an ASIC. The current Xtensa system places much of this

burden on the user to define, implement, and exploit the customized processor.

Automation is the key to making instruction set customization successful. To this end,

this dissertation presents the design of a system that automates hardware selection of the

acyclic custom instructions. Hardware design is accomplished via intelligent dataflow

graph exploration. The exploration focuses on efficient discovery and selection of com-

putation subgraphs from which custom hardware is constructed. The major challenge is

navigating through an almost limitless design space without artificially constraining the

size and shape of the subgraphs. This dissertation demonstrates that the technique is high

quality, and provides a valuable tool for identifying critical computations in a target appli-

cation set.

Once the acyclic accelerator design technique is in place, this work leverages it to fur-

ther explore the programmability-efficiency tradeoff in different accelerator designs. Three

novel, more general-purpose acyclic accelerators are presented: a configurable compute

accelerator (CCA), a programmable carry function unit (PCFU), and a cyclic computa-

tion accelerator for loop bodies. The CCA and PCFU provide the functionality of a wide

range of acyclic application-specific instruction set extensions in a single hardware unit.

The CCA consists of an array of function units that can efficiently implement many com-

mon dataflow subgraphs. The PCFU implements these subgraphsusing lookup-table based

structures similar to a field-programmable gate array (FPGA). Both of these structures

are more programmable than application- or domain-specificinstruction set extensions;

however, they are less efficient. At the other end of the spectrum is the loop accelera-

tor. The loop accelerator only targets the innermost loops of applications, making it less

programmable. However, since loops constitute larger pieces of computation than simple

acyclic subgraphs, the loop accelerator is much more efficient.
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1.2 Architectural Integration of Computation Accelera-

tors

Hardware accelerators efficiently improve the performanceof their targeted application

domains, but they have problems associated with them, as well. The main problem is that

there are significant non-recurring engineering costs associated with implementing accel-

erators. The addition of accelerators to a baseline processor brings along with it many of

the issues associated with designing a brand new processor in the first place. For example,

a new set of masks must be created to fabricate the chip, the chip must be reverified (using

both functional and timing verification), and the new instructions must fit into a previously

established pipeline timing model. Furthermore, applications must be re-engineered to in-

corporate support for the new accelerators.

To overcome these problems, this dissertation proposes a strategy to customize the com-

putation capabilities of a processor within the context of ageneral-purpose instruction set,

referred to astransparent instruction set customization. The goal is to extract many of the

benefits of traditional hardware accelerators without having to break open the processor

design and application binary each time. The fundamental idea is that subgraphs to be ac-

celerated are identified and then dynamically replaced withmicroarchitectural instructions

that configure and utilize whatever accelerators are present in the system.

Several different strategies are proposed for using these accelerators without changing

the instruction set. One strategy, a fully dynamic scheme, performs subgraph identifi-

cation and instruction replacement in hardware. This technique is effective for preexist-

ing program binaries. To reduce hardware complexity, a hybrid static-dynamic strategy is

proposed, which performs subgraph identification offline during the compilation process.

Subgraphs that are to be mapped onto the accelerator are marked in the program binary

to facilitate simple configuration and replacement at run-time by a hardware translator or

dynamic compiler.

These utilization techniques culminate as an architectural framework to efficiently sup-

port transparent instruction set customization in a general-purpose processor. The frame-

work utilizes a hybrid approach of statically-identified, dynamically-realized custom in-
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structions. Subgraphs targeted for acceleration are identified during compilation or as a

post-link optimization and are marked in the program executable. At run time, subgraphs

are discovered, mapped, and executed on hardware accelerators. The hybrid approach en-

ables the combination of sophisticated offline subgraph detection algorithms with the flex-

ibility of online realization of the customized instructions. The key idea is that in order to

facilitate efficient dynamic realization, the most difficult aspects of the translation problem

should be performed statically.

Transparent instruction set customization is technique flexible enough to enable binary-

compatible accelerator utilization for a wide range of accelerator designs. This disserta-

tion demonstrates its application for the CCA, PCFU, loop accelerator, as well as single-

instruction multiple-data (SIMD) accelerators.

1.3 Compilation for Computation Accelerators

An overlooked challenge with exploiting computation accelerators, and another focus

of this dissertation, is the associated compiler support for accelerators. The compiler has

two major tasks. First, it must identify candidate subgraphs in the target application that

are functionally executable on the accelerator. This is essentially a subgraph isomorphism

problem. The second task is to select which candidate subgraphs to actually execute on the

computation accelerator. Candidates often overlap, thus the compiler must select a subset

to maximize performance gain. This task is essentially a graph covering problem.

Most prior solutions employ a greedy compiler approach for both subgraph identifi-

cation and selection to make the problem tractable. As with all greedy approaches, this

approach can achieve sub-optimal solutions in both identification and selection. This dis-

sertation proposes an new approach for compiler subgraph mapping that combines much

more thorough methods with a set of intelligent pruning techniques. Pruning ensures the

proposed algorithms are scalable in both application and accelerator size to provide practi-

cal compilation times.
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1.4 Organization

The remainder of this dissertation is organized as follows.Chapter 2 develops an au-

tomated technique for designing high quality acyclic instruction set extensions for one or

more target applications. This provides a useful tool for automatically extracting the criti-

cal computation subgraphs from a set of applications. Chapter 3 utilizes this technique to

determine functionality requirements for a general-purpose acyclic subgraph accelerator.

These requirements lead to the design of two novel families of accelerators based on arrays

of combinational logic and lookup-tables. Following that,Chapter 4 investigates transpar-

ent instruction set customization: methods for utilizing accelerators without costly changes

to a processor’s instruction set. Chapter 4 introduces these ideas in the context of acyclic

computation accelerators, and Chapter 6 extends transparent customization for SIMD ac-

celerators. Turning attention to the compiler side, Chapter 5 develops automated methods

for identifying computation subgraphs to map onto accelerators. The design and utilization

of cyclic accelerators is covered in Chapter 7. Finally, Chapter 8 summarizes the results

presented in this dissertation.
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CHAPTER 2

Automatic Design of Domain-Specific Acyclic Accelerators

2.1 Introduction

In recent years, the markets for cellular phones, digital cameras, network routers, and

other high performance but special purpose devices have grown explosively. In these sys-

tems, application-specific hardware design is used to meet the challenging cost, perfor-

mance, and power demands. The most popular strategy is to build a system consisting

of a number of highly specialized application specific integrated circuits (ASICs) coupled

with a low cost core processor, such as an ARM [115]. The ASICsare specially designed

hardware accelerators to execute the computationally demanding portions of the applica-

tion that would run too slowly if implemented on the core processor. While this approach

is effective, ASICs are costly to design and offer only a hardwired solution that permits

almost no postprogrammability.

An alternative design strategy is to augment the core processor with special-purpose

hardware to increase its computational capabilities in a cost-effective manner. The in-

struction set of the core processor is extended to feature anadditional set of operations.

Hardware support is added to execute these operations in theform of new function units

or co-processor subsystems. The Tensilica Xtensa is an example commercial effort in this

area [49].

There are a number of benefits to augmenting the instruction set of a core processor.

First, the system is postprogrammable and can tolerate changes to the application. Though
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the degree of application change is not arbitrary, the intent is that the customized processor

should achieve similar performance levels with modest changes to the application, such as

bug fixes or incremental modifications to a standard. Second,the computationally intensive

portions of applications from the same domain (e.g., encryption) are often similar in struc-

ture. Thus, the customized instructions can often be generalized in small ways to make

their use have applicability across a set of applications. Last, some or all of the ASICs

become unnecessary if the augmented core can achieve the desired level of performance.

This lowers the cost of the system and the overall design time.

One central question with this approach is the degree of human effort required to iden-

tify and implement an efficient set of instruction set extensions. In addition, the effort

required to modify the software development tool chain to effectively understand the ex-

tended instruction set is substantial. This effort can often be more time consuming and

expensive than the design of an ASIC.

We believe automation is the key to making instruction set customization successful.

To this end, this chapter presents the design of a system thatcombines automatic hardware

selection and seamless compiler exploitation of the custominstructions. Hardware design

is accomplished via intelligent dataflow graph exploration. The exploration subsystem

focuses on efficient discovery and selection of computationsubgraphs from which custom

hardware is constructed. The major challenge is navigatingthrough an almost limitless

design space without artificially constraining the size andshape of the subgraphs.

Once the custom instructions are discovered, several generalization techniques are ap-

plied to allow for quality mapping of subgraphs to each hardware unit. This ensures that

custom instructions are useful across an entire domain of applications. These generaliza-

tion techniques are unique to the field of instruction set customization.

Compiler exploitation of the custom instructions is accomplished through a flexible

subgraph matching engine. Applications are analyzed to match computation subgraphs

that can be replaced by custom instructions. This allows thecustomized hardware to be

effectively utilized no matter what application is run on it. The compiler work presented

here is later extended and more fully evaluated in Chapter 5.

Many other researchers have proposed systems to accomplishthe task of automated in-
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struction set generation. The contributions of this chapter are four fold. First, we present a

novel technique for efficient dataflow graph exploration andselection. Second, we present

the design and demonstrate the implementation of a completesystem, including retar-

getable compiler. Most previous work neglects the problem of compiling to a processor

with custom instructions. Third, and most importantly, we use the system to analyze how

effectively instruction set extensions designed for one application can be applied to other

applications in the same domain. Several techniques to increase the cross-application util-

ity are explored. Lastly, we provide some analysis on how custom instructions differ when

designed with multiple applications in mind.

2.2 Related Work

A large body of research has gone into instruction set customization. Work in [8], [109],

[125], [54], [52], and [126] all showed possible gains from using this technique. While

these works show the potential utility of instruction set customization, they do not pro-

vide methods to automate the process. Many other systems have been proposed to auto-

mate this process, though. These systems can be categorizedbased on how they solve two

sub-problems: identification of custom instruction candidates and how to make use of the

candidates.

Candidate Discovery -Informally stated, candidate discovery is determining subsets

of an application’s dataflow graph, orDFG, that would be amenable for implementation

in hardware. In the most general sense, each node of the DFG can either be included or

excluded from a candidate, yielding O(2numberofnodes) potential candidates. Several tech-

niques have been proposed to handle the intractability of this problem.

Early work [4] side-stepped the candidate discovery problem altogether by predefining

a set of candidates. This strategy requires a designer to enumerate a superset of useful

candidates to select from, and utilizes design automation in the selection phase. While some

advantages of customization are realized, this approach islimited by the large amount of

work necessary to define an appropriate superset of candidates and the poor results obtained

when an appropriate superset is not available.
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Work by Bennett [13] proposes iterative combination of primitives that occur in subse-

quent lines of code to reduce static code size. This method assumes that a base instruction

set is given corresponding to a high level language. Statistics are gathered on the frequency

of operations occurring near each other and the highest ranking combination is chosen as a

new instruction. This technique is irrespective of the dataflow graph and is primarily used

as a code size reduction technique.

Bennett’s work is similar to candidate discovery algorithms in [104], [103], [128], [11],

[20], and [64], in that all of these papers propose iterativecombination of primitives. Iter-

ative solutions typically combine two nodes, replace all such occurrences in the DFG, and

repeat until some constraints are met. These solutions havethe benefit of very good run

times (typicallyO(N2)) when compared to more thorough strategies, but risk being stuck

in local maxima. Each edge is combined in a locally optimal manner, reminiscent of greedy

heuristics.

Holmer proposed a more global technique [56], which was later extended by [61]. This

technique discovered candidates by performing an initial grouping of nodes based on the

schedule time in the DFG, then iteratively breaking and recombining these groups. Work

by Bose [16], is similar to this, except that this work operated on a syntax tree, instead

of a DFG, and used many more candidate transformations than breaking and combining.

Another major difference is that Holmer guided use of the transformations using simulated

annealing, attempting to maximize the worth of the instruction set, where Bose performed

transformations unguided with the expected goal of improvement. The application of these

two algorithms was mainly for designing entire instructionsets, as opposed to just ISA

extensions.

Choi [24] generated initial candidates in a similar manner to Holmer. This work advo-

cated combining instructions that could be executed in parallel and then combining those

parallel sets to create custom instructions that were both wide and deep. In order to cut

down on the number of potential candidates explored, Choi used an artificial limit on how

deep the combined instructions can be. The main contribution of [24] is a new formulation

of the candidate discovery problem: they discovered candidates using a modification of

the subset-sum problem, and attempted to find the minimal setof instruction extensions
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to meet a certain performance requirement (as opposed to simply discovering the optimal

instruction extensions for a given cost). The main weaknesses of this work are the artificial

limit on custom instruction length and the initial phase of combining parallel instructions

performed when it is not clear that parallel combination is best.

Other work proposes dealing with intractability by limiting the size of the problem.

The algorithm proposed in [7] and [34] searches a full binarytree, where each step decides

whether or not to include a node of the DFG into a candidate. Ways to prune the tree are

proposed, helping avoid the worst case O(2N) runtime, but the size of the DFG must still

be relatively constrained in order for the algorithm to complete in a timely manner. This

limits its usefulness for very large basic blocks.

Some researches have proposed heuristic ways to limit the search space without artifi-

cially constraining it. In [6], the least used half of all candidates are removed after each

iteration of candidate discovery. While this technique will catch all important candidates in

hot portions of the code, it potentially misses useful candidates that are moderately used in

many portions of the application. Work by Sun [119] performsa similar pruning, but uses

a more complex priority function to rank the candidates, taking into account the number

of inputs and outputs, as well as dynamic occurrences. In Sun’s work, candidates that do

not meet a certain percentage of the best discovered candidate so far are removed. Work

in reconfigurable computing [98] initially partitions the DFG into small pieces based on

heuristics. Candidates are then selected for these partitions. Heuristic based methods such

as this have the benefit of not artificially constraining the problem by potentially getting

stuck in local minima or limiting the types of candidates discovered.

Utilization - The problem of how to make use of the candidates is the other major

issue to solve for instruction set customization. The vast majority of automated systems in

this field have neglected this problem. Most systems combinethe discovery and selection

phases so that whenever candidates are selected, they are immediately replaced in the code,

e.g. [61]. These systems typically do not provide methods toreuse the new instructions in

other applications. As such, it is necessary to look at work in the compiler community.

Automated utilization of custom instructions generally happens during the code gen-

eration phase of compilation. Traditional code generationmethods use a tree covering
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approach [3] to map the DFG to an instruction set. The DFG is split into several trees,

where each instruction in the ISA covers one or more nodes in the tree. The tree is cov-

ered using as few instructions as possible. The purpose behind splitting the DFG into trees

is that there are linear time algorithms to optimally cover trees, making the process very

quick.

One problem with this method, though, is that DFGs are not trees. It is shown in

[77] that tree covering methods can yield suboptimal results, particularly in the presence

of irregular subgraphs common in custom instructions. To overcome this, [77] proposes

splitting all instructions into “register-transfer” primitives and recombining the primitives

in an optimal manner using integer programming. Work by Liao[80] attacked the same

problem, and developed an optimal solution for DFG coveringby augmenting a binate

covering formulation. While both of these solutions are optimal, they also have exponential

runtime, and must be selectively used.

Research in [101] describes a new way to look at the code generation problem. In

this work, computationally complex algorithms are used to insert custom instructions and

heuristics handle the rest of code generation. An application is initially decomposed into

an algebraic polynomial expression which is functionally equivalent to the original appli-

cation. Next, the polynomial is manipulated symbolically in an attempt to use custom in-

structions as best as possible. For example, a polynomial could be expanded using function

identities (e.g. adding 0 to a value) to better fit an existingcustom instruction. Custom in-

structions are inserted as intrinsic function calls in the polynomial, and functionally equiv-

alent high level language is output once all of this is complete. The high level language

can then be used as input to a standard compiler. The main contribution of this work is the

method of algebraically modifying of code to better make useof available instructions.

Our System -The candidate discovery technique proposed in this chapteris similar to

the work in [7] in that a full exponential search is used whereappropriate. The technique in

this chapter differs in that it incorporates a heuristic function, similar to [119] and [98], to

help divide the problem when exponential search is too slow.This is discussed in detail in

Section 2.3. In Section 2.4, the custom instruction utilization framework is described. This

framework ties together several ideas from other work into one system, and addresses some
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Figure 2.1: Organizational structure of the hardware compiler.

runtime issues with previously proposed solutions. The main contribution in this work is

presented in Section 2.5: the custom instructions generated by our system are applied to

benchmarks across several domains, and the results of theseexperiments are analyzed.

Techniques to improve the effectiveness of cross domain instructions and the issue of how

to design instructions for multiple applications are also tackled. Domain-wide discovery

and analysis of custom instructions has not been previouslyexamined.

2.3 Dataflow Graph Exploration

The purpose of the dataflow graph (DFG) explorer is to determine candidate subgraphs

for instruction set extensions. Implementing subsets of the DFG in hardware typically

allows for better performance, lower power consumption, and reduced code size than the

corresponding implementation as a sequence of primitive operations. Determining which

parts of a DFG would make the best custom instructions is a difficult problem, though. The

most glaring difficulty is that the number of potential candidates for a given DFG increases

exponentially in the number of operations. Exploration heuristics must be developed to

overcome this problem.

The overall structure of our DFG exploration engine is shownin Figure 2.1. One or

more applications are fed into the system as profiled assembly code. The code has not

been scheduled and has not passed through register allocation, which is important so that

false dependencies within the DFG are not created. Initially, the application passes through

a DFG space explorer, which determines candidate subgraphsfor potential instruction set

extensions. The space explorer selects subgraphs subject to some externally defined con-

straints such as the maximum die area allowed for any custom function unit (CFU), or the
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Figure 2.2: A) Sample DFG from blowfish. Shaded nodes delineate a CFU. B) Preprocessed
C code this DFG came from. C) Excerpt from the hardware library. “Adders” is
the die area relative to a 32-bit adder.

maximum allowable register read and write ports. A hardwarelibrary provides timing and

area estimates to the DFG explorer so that it can accurately gauge the cycle time and area

requirements of combined primitive operations.

A list of subgraphs, annotated with area and timing estimates, is passed to a candidate

combination stage. This stage groups subgraphs that would be executed on the same piece

of hardware. Grouping the subgraphs creates a set of candidate CFUs and enables calcula-

tion of an estimated performance gain by using the profile weights of all the set members.

The combination stage also performs some generalization steps to enable more subgraphs

to map onto the same potential hardware implementations. All of this information is passed

to a selection mechanism that determines which CFUs best meet the needs of the applica-

tion(s). Finally, the prioritized list of CFUs is convertedinto a machine description (MDES)

form that can be fed to the compiler.

Throughout this section, the DFG shown in Figure 2.2 from theblowfish applica-
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tion [53] is used for illustrative purposes. For simplicity, each operation or node is assumed

to take 1 cycle to execute on the baseline processor.

2.3.1 Subgraph Discovery

The exploration strategy employed in this work starts by examining each node in the

DFG and using it as a seed for a candidate subgraph. This seed is grown downward along

dataflow edges to create a new candidate. For example, if the seed was node 6 in Figure 2.2,

it would be grown to nodes 7, 8, 9, and 12. When candidates overlap with each other (such

as the candidates with nodes 6-7 and 6-8 in the example), a newcandidate is created with

the union of their nodes (6-7-8). During growth, each intermediate candidate is recorded for

potential implementation as a CFU. Growing the candidates continues until some external

constraints are met, such as the candidate crossing a control flow boundary or exceeding

the number of register read ports available.

Initially, this system used a naı̈ve implementation that looked at all possible dataflow

edges to grow the seed nodes. Using this approach guaranteesidentification of the best

possible set of connected candidates, since all possible candidates are generated. However,

the number of candidates quickly grows out of control for many applications.

The key observation gained from experimenting with this na¨ıve approach is that grow-

ing along the majority of dataflow edges examined by exponential growth simply do not

make sense. For example, assuming the goal is maximizing performance on the DFG in

Figure 2.2, growing along the edge between nodes 6 and 9 has little value, because node 9

is not on the critical path (i.e., the longest dependence path(s) in the DFG).

Previous work [7] [34] has shown that using an exponential solution, such as growing

along all edges is sufficiently fast for some applications, when intelligent pruning is used.

There are many applications that have too many nodes for exponential search, though.

For these large DFGs, we propose using aguide functionto determine which edges are

directions that do not need to be grown toward. By heuristically removing unimportant

edges, the DFG is effectively partitioned into smaller sections, which can then be used by

the exponential growth algorithm described above. This strategy allows us to maintain the
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quality of the resultant candidates without taking exponential time or resources.

Our previous work [32] proposed using a guide function as a method for inclusion,

which is to say that only edges which were determined to be important were grown along.

This effectively avoided the exponential search associated with subgraph discovery, but

in some instances overcompensated for the problem. Using the guide function to remove

edges takes the opposite approach and only prunes the searchspace when necessary.

One important characteristic of this technique is that the partitioning step can be tuned

to more efficiently explore the design space. Partitioning the DFG into just a few larger

sections will ensure better coverage of the design space, while partitioning the DFG into

many smaller sections will result in reduced run times and memory consumption of the

exploration algorithm. An example of exploiting this tradeoff would be using larger parti-

tions in parts of the DFG that have higher profile weight, as they are more likely to yield

important candidates. All previously proposed solutions use a single exploration strategy

for all parts of the DFG, where as this technique can modify its strategy to effectively use

the computational resources available.

2.3.2 Guide Function

The purpose of the guide function is to intelligently rank which dataflow edges would

most likely be involved in unimportant candidates. The guide function essentially tries to

replace the architect by determining these unimportant edges, thus its decisions must reflect

the same properties the architect would use. The guide function proposed here uses three

categories to rank the desirability of edges: criticality,latency, and area. In the candidate

discovery system, each of the guide function categories is allotted 10 points of weight, and

the sum of these categories determines the total desirability of each edge. The edges with

the lowest desirability are more likely to be cut if the DFG needs to be partitioned.

Criticality - This category ranks edges highly when they appear on the longest de-

pendence path(s) of a DFG. CFUs that occur on the critical path are likely to give the

application performance improvement, because they shrinkthe height of the DFG. Since

performance improvement is typically the most desired result of CFUs, cutting edges along
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these paths is undesirable. An example of this from Figure 2.2 would be the edges from

node 6. The edges toward nodes 7 or 8 would rank higher in termsof criticality than would

the direction toward nodes 9 or 12, because the aforementioned nodes are on the critical

path. Points are awarded using the equation10
slack+1

, where slack is the number of cycles an

operation can be delayed without lengthening the critical path. Thus, the edge from node

6 to 7 would get 10
0+1

= 10 points and the edge from node 6 to 9 would get10
2+1

= 3.33

points. Note that it is important to give candidate edges credit even when they are slightly

off the critical path as the heuristic provides because auxiliary paths often become critical

after several CFUs are formed.

Latency - Combining operations that require fewer cycles to execute in conjunction

than they do individually will lead to high quality CFU candidates. The largest performance

gains are possible by combining several low latency operations, such as bit-wise logicals,

where many can be executed in a single cycle. Conversely, if two nodes on an edge cannot

be executed in fewer cycles when combined, then the resultant candidate is less beneficial.

The latency category models this trend. Latency points are distributed using the equation
old latency
new latency

∗ 10. The latency of a CFU is calculated by summing up the fractional delays of

the two atomic operations (see Figure 2.2c) connected to theedge. For example, node 10

can be executed in 0.06 cycles as indicated by the ‘Cycles’ entry for the AND opcode in

Figure 2.2c. Exploring the edge toward node 13, which has a latency of 0.3 cycles, would

get 0.06
0.06+0.30

∗ 10 = 1.67 points. In contrast, growing from node 6 toward node 9, would

get nearly all ( 0.09
0.09+0

∗ 10 = 10) the points allotted for latency.

Area - Since cost is a major constraint in the design of embedded processors, area is an

important factor in the choice of CFUs. The guide function considers the area to be the sum

of the areas required to implement each primitive operationon an edge (see Figure 2.2c).

Note that register file ports are a design constraint, thus they do not factor into the area

calculation. Further, CFUs do require additional decode logic and interconnect, but we

assume that primitive operation area is the dominant term. The area category gives more

points to directions that least increase the total area of the candidate. Area points are

calculated the same way as latency,old area
new area

∗ 10. As an example, growing from node 19

to node 23 would yield 0.01
1.0+0.01

∗ 10 = 0.1 points and growing from 9 to 19 would yield
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0.01
0.01+0.01

∗ 10 = 5 points.

The guide function gives a weight to each edge in the DFG. If the DFG proves to be

too large for the exponential exploration algorithm, a recursive bisection is performed on

the DFG until the partitions are small enough (typically 50 or fewer nodes). For example,

if the DFG in Figure 2.2 was too large, then it would have to be split into smaller pieces.

To do that, at least one edge would have to be cut. In this figure, the edge from node 18

to node 22 is the first choice to cut, because it has the smallest weight according to the

guide function. Cutting that edge creates two new partitions and eliminates all candidates

that contain that edge from being explored. If the two new partitions are still two large,

the process is repeated until they are small enough. The partitioning is performed using

hMetis [63], a high-quality multi-level partitioner. Edgeweights from the guide function

lead hMetis toward cutting edges which will not lead to good candidates. In practice,

partitioning the DFG greatly reduces the design space to thepoint where most applications

can be fully explored in under 5 minutes on a Pentium 4 system.

With the guide function/partitioning heuristic in place, it is important to verify two

points: that the heuristic does indeed prune the search space, and that good candidates are

not missed because the partitioner incorrectly precludes them. Figure 2.3a demonstrates

the first point. Each dot on this graph represents the number of candidates examined when

exploring one basic block from three encryption applications that are characterized by large

loop bodies. This figure shows that the partitioner is able toeffectively curve the exponen-

tial growth associated with the DFG exploration problem. This algorithm can be used on

very large DFGs and without artificially constraining the types of candidates generated,

which are both weaknesses of some previously proposed algorithms.

To ensure that good candidates are not dismissed, the heuristic was compared against a

full exponential search using strict external constraints(candidates were only allowed 3 in-

put and 1 output port). Figure 2.3B shows the speedups1 attained from using the candidates

generated by both algorithms. As shown in the figure, the two curves track identically due

to the fact that the partitioning heuristic did not prune anyimportant candidates during its

search. DFGs can be constructed where the heuristic will miss important candidates, but

1The experimental setup used to obtain this data is explainedin detail in Section 2.5.
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this was not observed in any of the test cases.

2.3.3 Candidate Combination and Generalization

After discovery, it is a straightforward process to group identical candidate subgraphs

together into candidate CFUs. A simple test that checks graph equivalence, while taking

into account commutativity, accomplishes this. For example, if subgraphs 7-10-13-16 and

8-11-14-17 were discovered in Figure 2.2, the graphs would be checked for equivalence

and then combined into the candidate CFU “<<-AND-ADD->>”. The profile weights

are then used to get an estimate of the number of cycles each CFU improves performance.

In the case that CFUs are being designed for multiple applications, the cycle estimates

are scaled to ensure that one application does not dominate simply because it has a longer

execution profile. Using a compiler to get an exact measurement by scheduling with each

instruction is possible, but the complexity makes this solution undesirable. In practice, the

profile-based estimates proved reasonably accurate.

After candidate grouping, a generalization process takes place to make the candidates

more useful across a domain of applications. Two techniquesare employed to accomplish

this. The first issubsumed subgraphs. Subsumed subgraphs take advantage of the fact that

most atomic operations have an associated identity input, allowing values to pass through

a node without changing. Using Figure 2.4 as an example, if CFU “AND-XOR-ADD” was

discovered, CFU “AND-ADD” can be executed on the same hardware because one input
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of the XOR operation could be set to 0. CFUs “AND-XOR” and “XOR-ADD” could also

be subsumed by “AND-XOR-ADD”. The cost of implementing these subsumed subgraphs

is simply a MUX on one input of every node being bypassed; thus, for very little additional

cost the number of subgraphs that map onto a CFU is increased.

The second generalization technique is calledwildcarding. Wildcards are subgraphs

that are a similar shape as the original CFU, but operations at one node may differ. Com-

bining two CFUs with similar structure allows us to share hardware and map multiple

subgraphs onto the same CFU. Two examples of wildcards are given in Figure 2.4. If

the original CFU implements “AND-XOR-ADD”, then both “OR-XOR-ADD” and “AND-

XOR-SUB” would be recorded as potential wildcards, if they appeared in the input DFG,

since they only differ by one node from the original CFU.

A stronger version of wildcarding, termedpreemptive wildcardingin this work, gener-

alizes a CFU to have many potential operations at each node. Unlike regular wildcarding,

the preemptive subgraphs do not necessarily have to appear in the input DFG. The idea

behind preemptive wildcarding is that many operations havevery similar hardware imple-

mentations, e.g. ADD and SUB, or can be added to a node for verylittle cost. Additionally,

we have observed that applications within a domain have similar shaped DFGs, even if the

operations at individual nodes do not match. Preemptively adding this functionality allows

many more subgraphs to map to a single CFUs and makes them muchmore useful across

a domain of applications. Again, an example of preemptive wildcarding is given in Figure

2.4. Here logical operations were added to the AND and XOR nodes, and SUB was added

to the ADD node.

It is important to note that in this phase of the exploration framework, no binding de-

cisions are made with regards to subsumed subgraphs and wildcarding. The generalization

phase simply creates new, generalized candidates with updated area and cycle estimates

to reflect what the potential cost and benefit of generalizingeach original candidate. The

selection algorithm can then weigh the costs and benefits of generalizing and make an ap-

propriate decision. Since preemptive wildcarding often does not improve the estimated

cycle savings for an input DFG, it is always performed if the cost required is less than a

predefined threshold.
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2.3.4 Candidate Selection

Selecting CFUs with a given area constraint is similar to the0/1 knapsack problem.

There is a set of resources (the CFUs) that all have a value (the estimated cycle savings)

and a cost (die area), and the goal is to maximize the total value for a given cost. It is widely

known that the 0/1 knapsack problem is NP-complete, although it is solvable in pseudo-

polynomial time using dynamic programming. Strategies areneeded to avoid intractability

in this stage of design automation as well.

It is important to mention that CFU selection has one caveat missing in the 0/1 knapsack

problem: the values of all the other CFUs change once a CFU is selected for inclusion.

Individual operations can appear in multiple CFU candidates. Once a CFU is selected, it is

necessary to update the estimated cycle savings of the otherCFUs so that double counting

does not occur. Using an example from Figure 2.2 again, assume the two highest ranked

CFUs were 7-10-13-16, and 7-10-13. If 7-10-13-16 was selected first and did not update

the value of 7-10-13 to reflect the fact that it can no longer use any of its operations, then 7-

10-13 would be selected also, even though it would provide nogain above what 7-10-13-16

already provided.

One strategy used for CFU selection is a simple greedy method, illustrated in Figure
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2.5. Given a list of CFU candidates, the one with the best ratio of value
cost

is greedily selected.

Once CFU 2 is selected, the heuristic iterates through the list of remaining candidates and

removes operations that were claimed by it. In Figure 2.5, operations 1 and 7 were removed

from CFU N and its value was updated to 0, as it had no more operations left. Operation

3 was removed from CFU 1 and its value was likewise updated to 16. Once all CFUs are

updated, the selection process is repeated until the area budget is exhausted.

Because the selection heuristic is greedy, it is not guaranteed to give an optimal solution,

and frequently does not. For example, when the greedy algorithm selects based only on

estimated cycle savings, performance does poorly at the lowcost budget points compared

to when it selects based onvalue
cost

. However, the opposite is true at high cost points.

In an attempt to improve the selection heuristic, a version based on dynamic program-

ming was implemented as well. This is a straightforward extension of the algorithms pre-

sented in [58]. The problem with the dynamic programming method is that it requires

candidates to update their estimated value many more times than the greedy method. This

computational overhead is quite significant, and in order toalleviate it, a simplifying as-

sumption is made. Prior to the selection, each operation is assigned to the candidate with

the largest estimated speedup. This eliminates the need to frequently update candidate val-

ues, but potentially misleads the selector. Despite this, the dynamic programming method

typically provides better results than the greedy method.

Dealing with wildcards and subsumed subgraphs adds anotherchallenge to the selection

process. The main issue is the possibility that implementing a subsumed subgraph as a

separate CFU is more desirable than implementing it on existing, subsuming hardware. As

an example consider the large gray CFU from Figure 2.2. If “XOR - <<” were to be run

on custom hardware, it could be done for a minimal area overhead on the large, gray CFU;

however, there would be a latency penalty of going through three more operations (there

are no early exits from operations 7 or 8). It may be that creating a special “XOR -<<”

unit is the better solution. Subsumed CFUs are not removed from the selection pool, so

that the option to include both the subsumed and subsuming candidate is available.

Another issue is whether to count all the subsumed subgraphsand wildcards when de-

termining the estimated value of a CFU. If they are counted, then in addition to updating
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Figure 2.6: A selection of CFUs generated by the exploration system.

the estimated value of other CFUs based on the operations in the candidate subgraphs, it is

also necessary to update the values based on all the operations in the subsumed or wildcard

candidate subgraphs. This creates a large computational overhead for every subgraph selec-

tion. Additionally, this means frequently attributing operations to small subsumed portions

of a large CFU, when more performance could have been gained by attributing them to a

separate CFU (like the example in the previous paragraph). The case just described occurs

quite frequently, so CFUs are selected as if they had no subsumed subgraphs or wildcards.

When a selection is made, the costs of the subsumed subgraphsand wildcards are updated

to reflect that they can now be added for very little cost overhead.

2.3.5 Example CFUs

The types of CFUs generated by this system are quite varied, depending on the input

DFGs. Some examples of selected CFUs across six applications are shown in Figure 2.6.

Often, the system generates instructions that an architectwould expect to see, such as

the multiply-accumulate selected for djpeg and the saturating-add selected for gsmencode.

This provides some empirical evidence that the system is making intelligent decisions. The

system also frequently generates custom instructions thatappear very unusual, too, such as

the ones for 3des, blowfish, crc, and gsmdecode.
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2.4 Compiler Utilization

The purpose of the compiler is to automatically exploit CFUsavailable for any given

application. The basic structure of the retargetable compiler is shown in Figure 2.7. Ap-

plications are run through a front-end, producing a genericRISC assembly code. The

assembly code is unscheduled and uses virtual registers. The compiler uses a machine de-

scription, or MDES, to determine what CFUs are available foruse. Given the assembly

code and MDES, the compiler performs dataflow analysis to generate a DFG, discovers

all subgraphs in the DFG that match available CFUs, prioritizes these matches, replaces

the matches with custom instructions, and finally performs the typical tasks of register al-

location and scheduling. The steps that differ from traditional compilation techniques are

described in detail below. Again, the compilation strategypresented in this section is more

fully described and evaluated in Chapter 5.

2.4.1 Pattern Matching

Pattern matching is the most critical step in CFU utilization. The first step in this

process is determining all available CFUs from the MDES. From a high level, the MDES

describes what resources a CFU consumes, the latency of the operation, the number and

type of inputs and outputs, and the structure of the subgraphthat the CFU implements.

Discovering the subgraphs in the DFG can be viewed as the subgraph isomorphism

problem, which is known to be NP-complete. To perform subgraph identification, the
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vflib graph matching library [35] is employed. While the algorithm used in vflib is still

exponential worst case, the best case is only polynomial, and the overhead added to the

compile time found in practice is minimal.

The vflib algorithm finds matching subgraphs by starting at individual nodes that occur

both in the DFG and the CFU. These nodes are termed apartial match. The partial matches

are then expanded along DFG edges to create new partial matches in a manner that is similar

to DFG space exploration.

Figure 2.8 shows part of a DFG that is similar to one in the sha benchmark [53]. Given

a CFU to implement the operations in subgraph 2-5-6, the pattern matcher would begin by

looking at all left shift (<<) nodes: 2, 14, and 16. These partial matches would then be

grown toward all consumers, since node 2 has a consumer in theCFU. This would create

partial matches 2-3, 2-6, 14-18, and 16-19. 2-3 and 14-18 no longer match the CFU, so

only 2-6 and 16-19 are considered. These two partial matchesare then grown toward the

producers of 6 and 19, since the original CFU had two producers feeding the OR node. This

process continues until all the partial matches either definitively match or do not. Subgraph
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matching is repeated for all CFUs, so that all potential subgraph matches in the DFG are

discovered.

At this stage, the same operation may appear in multiple subgraph matches. Deciding

which match an operation should be placed in is an NP-hard problem, though. The optimal

solution proposed in [80] was prohibitively slow when implemented in our compiler. To

overcome this, a partitioning technique was again employed.

The traditional solution mentioned previously uses a binate covering formulation which

optimally maps CFUs onto a DFG. Typically an entire DFG is mapped at one time in

this method. However, there are usually very few nodes that appear in multiple matches,

meaning that the matches do not frequently overlap. This fact allows the problem to be

separated into several, independent binate coverings on subsets of the DFG. To illustrate

this, consider a mapping was being performed on the DFG in Figure 2.8. If no matches

contained both nodes 13 and 15, then the graph could then be partitioned along the edge

that connects them. Binate covering could be done independently on the left nodes and

the right partitions without sacrificing optimality. A branch and bound algorithm was used

to solve the binate covering formulation. Once the sub-problems are solved, an optimal

solution to the entire DFG can be constructed from the optimal sub-solutions, much more

quickly than when looking at the entire DFG at once. While cases can be constructed to

make this technique prohibitively slow as well, in practiceit was very fast, typically taking

no more time than the scheduling phase of compilation.

2.4.2 Custom Instruction Replacement

On the surface, replacing the matched subgraph with a custominstruction is fairly sim-

ple. There are some important issues that must be consideredin order to guarantee the

correctness of the resultant program, however. Using the DFG shown in Figure 2.8, sub-

graph 2-5-6 will be replaced with a custom instruction. The question that arises is, “Where

should the custom instruction be placed in relation to otheroperations in the assembly

code?” To ensure correctness of the program, the custom instruction must be placed after

all the predecessors of the operations in the subgraph (after nodes 1 and 4 in this example),
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and also before all the successors (nodes 3 and 15 here). Assuming the node identifiers

define the sequential order of the assembly code for this example, there is a potential prob-

lem with where to place the custom instruction. Replacing node 2 is incorrect because the

custom instruction would be placed before node 4. Similarly, replacing nodes 5 or 6 is

incorrect because it would be placed after node 3.

To prevent this from occurring, the assembly code is reorganized prior to subgraph re-

placement. For subgraph 2-5-6, the last scheduled predecessor is node 4 and the earliest

scheduled successor is node 3. As long as the custom instruction is inserted between these

operations, program semantics will be maintained. For every subgraph match, if the last

predecessor comes after any successors, then those successors and any operations depen-

dent them are moved after the last predecessor. In this example, we would move node 3

after node 4 , and then safely insert the custom instruction after the last predecessor.

Once the subgraphs are replaced and the code is reordered forcorrectness, scheduling

and register allocation take place, leaving us with an application that intelligently utilizes

the available CFUs.

2.5 Experimental Results

The system proposed was constructed as part of the Trimaran research infrastructure

[121]. The DFG exploration engine was implemented as a standalone module, and the

compiler backend was modified to facilitate subgraph matching and replacement. The cycle

time and area estimates in the hardware library were calculated using Synopsis design tools

and an Artisan 0.18µ standard cell library.

For this evaluation, two simplifying assumptions are made.First, no memory instruc-

tions were included in CFUs. Having custom instructions that access memory creates CFUs

with non-deterministic latency as well as requires consideration of cache ports during DFG

exploration. Memory disambiguation within a custom instruction must also be factored

when doing pattern replacement in the compiler. The second assumption was that cus-

tom instructions were not allowed to contain branches or cross control flow boundaries

(if-conversion of the code is allowed, however). These restrictions were put in place so
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that custom instructions can remain stateless and atomic. Both assumptions are due to lim-

itations in the DFG explorer and compiler, and do not reflect inherent limitations of the

approach.

Sixteen full benchmarks were run through the CFU generationsystem and fifteen sets

of CFUs for each benchmark were created. Each set corresponds to an area budget allotted

to the CFUs (relative to one 32-bit ripple-carry adder, two adders, etc.). The sixteen bench-

marks can be divided into four domains: encryption, network, audio, and image. The en-

cryption category contains 5 benchmarks (blowfish, rijndael, and sha) from MiBench [53]

and two other encryption applications (3des and Rc4). The network category consists of

three benchmarks (crc, ipchains, and url) from NetBench [90], and the audio (gsmdecode,

gsmencode, rawcaudio, and rawdaudio) and image (cjpeg, djpeg, epic, and mpeg2dec) do-

mains are from MediaBench [75].

The baseline processor for the experiments is a four-wide VLIW that can issue one inte-

ger, one floating-point, one memory, and one branch instruction each cycle. The instruction

set and latencies of each instruction are similar to those ofthe ARM-7 [115]. In all of our

studies, the custom instructions require an integer issue slot to execute, thus an integer op-

eration and a custom instruction cannot execute in the same cycle. This was done so that

any speedups observed are due to custom instructions and notfrom adding parallelism to

the processor. A 300 MHz system clock was assumed for timing constraints, and custom

instructions that require more than one clock cycle to execute are pipelined so as not to

affect cycle time. A maximum of four input and two output ports was placed as an external

limit on all CFUs generated. Generally speaking, approximately 10-20 custom instructions

were needed to attain the maximum speedups presented in the following figures. It is im-

portant that this number is small, in order to keep the impacton instruction set encoding

minimal.

Although not presented in this work, a prototype of this system has been built in the

ARM OptimoDE framework [28]. This prototype allowed us to measure the actual die area

overhead for adding custom instructions to a processor. While the prototype implemen-

tation was fairly naı̈ve, we found that custom instructionscould be added to a processor

for roughly 20% additional die area. The majority of this overhead was due to additional
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control bits that resulted from adding an issue slot for custom instructions. Note that in our

simulations, no issue slot is added, and thus the overhead for the model used in this chapter

will likely be much less than the 20% reported in [28].

Performance Versus Area: The four graphs in Figure 2.9 compare the performance

gain in each of the four benchmark domains as the total cost budget for CFUs is var-

ied. Each line in the graphs represents the speedup of an application with CFUs designed

specifically for it compared to the baseline processor. One of the interesting trends in these

graphs is that speedups seen in benchmarks vary greatly. Encryption benchmarks tend to

benefit quite a bit from CFUs, with 3des, rijndael, and sha showing speedups of 2.39, 2.08,

and 1.91, respectively, at the higher cost points. On the contrary, some applications in

other domains show very little speedup (e.g. mpeg2dec, epic, and ipchains). Investigation

into this revealed that these benchmarks had a significant number of branches and mem-

ory operations, which hindered the combinable operations available for the DFG explorer.

Conversely, the encryption benchmarks contained large subgraphs dominated by simple

arithmetic and logical operations, which are ideally suited for custom hardware.

Another very noticeable trend in Figure 2.9 (blowfish and djpeg in particular) is that

at some higher cost points there is a dip in speedup. This is due directly to the greedy

node assignment in the dynamic programming selection heuristic. Recall that in the pro-

posed selection algorithm (see Section 2.3.4), when a node appears in multiple candidates,

a pre-selection pass removes that node from all candidates except the one with the largest

estimated latency decrease. This assignment saves a great deal of computation during se-

lection, but is just a heuristic, and can make bad decisions.For blowfish, a speedup of

approximately 1.7 is attained at cost point 4, by assigning several nodes to small and gen-

erally useful CFUs. At cost point 5 the heuristic assigned the nodes that used to be in small

CFUs to a very large CFU, artificially inflating its value in comparison to the smaller ones.

In reality, the compiler was not able to make use of the large CFU as well as the smaller

ones, and thus performance suffered.

Cross Compilation and Generalization:Figures 2.10 and 2.11 show the performance

of applications when run with CFUs designed for other applications within the same do-

main. Two benchmarks are listed for each set of bars; the firstone is the application being
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run, and the second one is the application the hardware was designed for. For example,

the second set of bars from the left in Figure 2.10, 3des-Blowfish, shows the speedup ob-

tained when running 3des on CFUs designed for blowfish. Each bar in these figures uses

the CFUs designed at a cost point of 15 adders. The white bars use CFUs that have no

generalization, the gray bars utilize wildcarding and subsumed subgraphs, and the black

bars have preemptive wildcarding in addition to the subsumed subgraphs. Although only

the encryption and audio domains are shown here, the trends in these two figures hold in

both the network and image domains.

One interesting pattern in these figures is that when one application does well using

another application’s CFUs, it does not necessarily mean that the opposite is true. For

example, rijndael does well on rc4’s CFUs, but rc4 gets almost no speedup from using

rijndael’s CFUs without generalization.

The most dominant trend in these figures is that without generalization techniques (i.e.

the white bars), most applications do quite poorly when using hardware designed for an-

other application. Rijndael was able to achieve a 1.85 speedup using CFUs designed for

rc4, but apart from that, none of the other performance improvements even begin to ap-

proach what was achieved with hardware designed specifically for that application. This

result was surprising, since applications in the same domain generally have similar DFG

structure. The reason this happens is because while the DFGsare similar, they do not match

exactly. This serves as strong motivation for the use of CFU generalization techniques for

domain-specific acceleration.

As CFUs are generalized (moving to the gray and then to the black bars), it becomes

obvious that the critical issue to exploiting CFUs across multiple applications is the ability

to map multiple subgraphs onto the CFU hardware. Using opcode classes and subsumed

subgraphs allows several applications to approach the speedups attained with CFUs de-

signed specifically for them, e.g. rijndael on rc4, 3des on rijndael, and gsmencode on

gsmdecode. Most cross compiles show significant speedups when using generalization

techniques, which points toward the conclusion that applications within a domain gener-

ally have similar DFG structure in the computationally intense portions of their DFGs.

An important point in Figures 2.10 and 2.11 is that the generalization techniques are
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typically not very useful for native compiles. For example,gsmdecode shows little im-

provement from generalization in Figure 2.11 on CFUs designed for itself. This is because

the CFUs are chosen specifically to handle the most computationally intensive portions of

the code, leaving few nodes in important parts of the code available to be utilized by wild-

card or subsumed subgraphs. The fact that generalization does not help native compiles

provides further evidence that the DFG exploration tool does a good job at finding and

selecting appropriate CFUs.

Designing CFUs for multiple applications: An alternative strategy to preemptively

generalizing CFUs from one application is to design them with multiple applications in

mind. This allows for more certainty that the CFUs designed will work across a domain.

Figure 2.12 shows the results of designing CFUs for certain subsets of the encryption

domain. The horizontal axis shows which applications the CFUs were designed to target.

For example, the middle set of six bars in the left graph showsthe speedups of six applica-

tions when using CFUs designed for Blowfish, Rc4, and Sha simultaneously, at a cost point

of 15 adders. Moving from left to right along the horizontal axis in each graph effectively

generalizes the CFUs for the encryption domain, since an additional application is used as

input at each step. The left and right graphs show two different paths for generalizing the

CFUs.

There are three important trends to note in Figure 2.12. First, adding applications gen-

erally improves average performance. For example, moving from the first set of bars to the

second set in the left graph, 3des, blowfish, sha, and md5 all improve performance. Rc4

loses a little performance because in the first set, the CFUs were designed specifically for

that application and in the second set, part of the area budget is devoted to sha as well.

Regardless, the average speedup of the six applications monotonically increases as more

applications are taken into account when designing the custom instructions. This is true on

the right graph as well.

Second, speedups achieved from the rightmost (domain-wide) set of bars are close to

speedups achieved by designing specifically for that application. For example, the speedup

for 3des on CFUs designed specifically for it is 2.39 comparedto 2.32 on the domain-wide

CFUs (rightmost set of bars), and blowfish has a speedup of 1.59 in both the application
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specific and domain-wide CFUs are used. The reason that thesespeedups are attainable

in the domain-wide CFUs is that the DFGs of these applications are quite similar and the

generalization techniques that we have proposed allow for creating hardware that maps to

the core computational needs of each application.

The last important trend to note in Figure 2.12 is that the md5application generally

improves speedup as the CFUs become more general. Md5 is a program for computing

checksums to detect data transmission errors, and is similar in structure to encryption al-

gorithms. Since md5 shows good speedups on the domain-wide CFUs, and they were not

designed with this application in mind, it seems likely thatthese CFUs will be effective on

next generation encryption applications.

2.6 Summary

Application-specific instruction set extensions are an efficient way to meet the growing

performance and power demands of embedded applications. Designing these extensions

has traditionally been very user intensive, as an architectmust determine what would make

a good extension and manually insert intrinsics into the code to make use of these exten-

sions. In this chapter, we have presented a system that automates this process. Using an

efficient dataflow graph exploration heuristic, we are able to discover and automatically

select custom function units to meet the demands of an application. We have also demon-

strated how a compiler can make use of these custom function units in any application and

how to increase their utility through simple generalization techniques.

Our system has demonstrated significant speedups for several applications, with as

much as 2.39 for 3des and an average of 1.69, while utilizing modest additional die area.

We have shown that typically exact subgraph matches do not occur across applications in

a domain, but by using simple generalization techniques (wildcards and subsumed sub-

graphs) cross-application utilization can be substantially improved. Additionally, we have

shown that designing custom instructions with several applications in mind at one time is

an effective way to achieve the goals of generalization, andto design with future algorithms

in mind.
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CHAPTER 3

Generalized Acyclic Accelerators

3.1 Introduction

As covered in the previous chapter, instruction set customization is one method for effi-

ciently providing enhanced performance in processors. By creating application-specific ex-

tensions to an instruction set, the critical portions of an application’s dataflow graph (DFG)

can be accelerated by mapping them to specialized hardware.Though not as effective as

ASICs, instruction set extensions improve performance andreduce energy consumption

of processors. Instruction set extensions also maintain a degree of system programmabil-

ity, which enables them to be utilized with more flexibility.An additional benefit is that

automation techniques, such as the ones used by ARM OptimoDE, Tensilica, and ARC,

have been developed to allow the use of instruction set extensions without undue burden

on hardware and software designers.

The main problem with application specific instruction set extensions is that there are

significant non-recurring engineering costs associated with implementing them. The addi-

tion of instruction set extensions to a baseline processor brings along with it many of the

issues associated with designing a brand new processor in the first place. For example, a

new set of masks must be created to fabricate the chip, the chip must be reverified (using

both functional and timing verification), and the new instructions must fit into a previously

established pipeline timing model. Furthermore, extensions designed for one domain are

often not useful in another, due to the diversity of computation causing the extensions to
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have only limited applicability.

To overcome these problems, the next two chapters focus on strategies to customize the

computation capabilities of a processor within the contextof a general-purpose instruction

set, referred to astransparent instruction set customization. The goal is to extract many of

the benefits of traditional instruction set customization without having to break open the

processor design each time. This is achieved in two steps. First, a compute accelerator

is added to the baseline processor design to provide the functionality of a wide range of

application-specific instruction set extensions in a single piece of hardware. Next tech-

niques are developed to invoke the accelerators, without augmenting the instruction set.

The focus of this chapter is on design of more general purposeacyclic computation

accelerators. An effective design must be capable of executing a wide variety of domain-

specific instruction subgraphs faster and more efficiently than a conventional processor

pipeline. It must also be both cost effective and power efficient to make its use feasible

in an embedded computing environments, and be amenable to efficient run-time control

generation. The final issue is the most difficult to quantify,but implies a programmable

substrate that is configured with a modest number of control signals.

Two families of designs are presented in this chapter. First, a configurable compute

accelerator, or CCA, consists of an array of combinational function units that can efficiently

implement many common dataflow subgraphs. The second is a parameterized lookup table

(LUT) based accelerator. LUTs are the basis of FPGAs, and natively support any bit-

wise function. This power comes at the cost of efficiency, so the LUT-based accelerator

presented is tailored to more efficiently target important subgraphs.

A detailed analysis of the CCA and PCFU designs show that theyimplement the most

common subgraphs while keeping control cost, delay, and area overhead to a minimum.

3.2 Related Work

Utilizing instruction set extensions to improve the computational efficiency of applica-

tions is a well studied field. Domain specific instruction setextensions have been used in

industry for many years, for example Intel’s SSE or AMD’s 3DNow! multimedia instruc-
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tions. Techniques for generating domain specific extensions are typically ad-hoc, where an

architect examines a family of target applications and determines what is appropriate.

In contrast to domain specific extensions, a great deal of work has been done on the

design of a reconfigurable computation accelerators. Examples include PRISM [8], PRISC

[109], OneChip [23], DISC [125], GARP [54], and Chimaera [128]. All of these designs

are based on a tightly integrated FPGA, which allows for veryflexible computations. How-

ever, there are several drawbacks to using FPGAs. One problem is that the flexibility of

FPGAs comes at the cost of long latency. While some work [92] has addressed the issue,

implementing functions in FPGAs remains inefficient when compared to ASICs that per-

form the same function. Second, FPGA reconfiguration time can be slow and the amount of

memory to store the control bits can be large. To overcome thecomputational inefficiency

and configuration latency, the focus of most prior work dealing with configurable computa-

tion units was on very large subgraphs, which allows the amortization of these costs. This

work differs in that we focus on acceleration at a finer granularity.

Recent research [130] has proposed using a finer granularitycompute accelerator based

on slightly specialized FPGA-like elements. By restricting the interconnect of the FPGA-

like elements, they reduce the delay of a accelerator without radically affecting the number

of subgraphs that can be mapped onto it. While the flexibilityto map many subgraphs

onto configurable hardware is appealing, there are still thedrawbacks of a large number of

control bits and the substantial delay of FPGA-like elements.

A key observation we have made is that when collapsing dataflow subgraphs for cus-

tomized instruction set extensions, the flexibility of an FPGA is generally more than is

necessary. FPGAs are designed to handle random computation. The computation in appli-

cations is structured using a relatively small number of computational primitives (e.g. add,

subtract, shift). Thus, the types of computation performedby instruction set extensions

can be implemented much more efficiently by designing a dedicated circuit corresponding

to primitives from dataflow graphs. Constructing a circuit of dataflow graph primitives

has the additional benefit of keeping the configuration overhead to a bare minimum. This

is because selecting from a few primitives is far simpler than selecting from all possible

computations. By sacrificing some generality, we are able toachieve a much simpler archi-
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Encryption MediaBench SPECInt
Depth crc blowfish rijndael djpeg g721encgsmencunepic gzip vpr parservortex Average

2 11.13 10.37 4.17 29.79 42.51 41.57 74.87 39.19 44.37 50.39 38.07 47.53
3 11.27 72.29 77.75 38.91 69.38 41.57 95.23 53.48 46.07 82.20 63.49 72.30
4 22.37 81.42 77.75 100 69.38 41.57 100 62.21 95.49 82.54 100 82.61
5 22.37 99.98 100 100 84.71 45.84 100 73.40 99.99 82.54 100 88.85
6 100 100 100 100 84.71 48.77 100 95.46 100 100 100 95.53
7 100 100 100 100 87.24 100 100 100 100 100 100 99.47
≥8 100 100 100 100 100 100 100 100 100 100 100 100

Table 3.1: Cumulative percentage of dynamic subgraphs with varying depths

tecture that still captures the majority of subgraphs.

REMARC [93] and MorphoSys [86] are two designs that also proposed computation

architectures more suited for computation of DFG primitives than an FPGA. These copro-

cessors were geared toward large blocks in multimedia applications, as compared to our

design, which executes smaller blocks of computation. BothREMARC and MorphoSys

must be programmed by hand to be effectively utilized, sincethey target large blocks of

very regular computation.

Other work [17, 62, 102, 111, 113] proposed subgraph execution structures specifically

optimized for linear chains of execution. That is to say these structures only execute sub-

graphs that have two inputs, one output, and a small number ofintermediate nodes. Con-

straining the subgraphs in this way has been shown to effectively increase the bandwidth

of execution resources; however, it restricts the performance increase from dataflow graph

compaction [131]. In this work, we develop a more generic architecture, to support the

execution of more arbitrary acyclic dataflow subgraphs. These subgraphs are larger than

simple linear subgraphs, and attack the computation limitations of processors more than

the resource limitations.

3.3 Design of a Configurable Compute Accelerator

The main goal of a CCA is to execute many varied dataflow subgraphs as quickly as

possible. A matrix of function units (FUs) is a natural way ofarranging a CCA, since it

allows for both the exploitation of parallelism in the subgraph and also for the sequential
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propagation of data between FUs. In order to be effective, the FUs need to have adequate

functionality to support the types of operations that are frequently mapped onto them.

A set of experiments were performed to determine the depth (number of rows) and the

width (number of columns) of the matrix of FUs, as well as the capabilities of each FU.

Using the SimpleScalar toolset [9] for the ARM instruction set, traces were collected for a

set of 29 applications. The application set consisted of four encryption related algorithms

and selected MediaBench and SPECint benchmarks. The goal ofthis benchmark set was

to represent a wide variety of integer computational behavior.

Traces from these benchmarks were analyzed offline using theoptimal discovery al-

gorithm (described in section 4.3.2) to determine the important subgraphs a CCA should

support. The characteristics of these subgraphs were then used in determining the configu-

ration of our proposed CCA. The subgraphs were weighted based on execution frequency

to ensure that heavily utilized subgraphs influenced the statistics more. Because dynamic

traces are used as the basis for analysis, conservative estimates have to be made with re-

gards to which operation results must be written to the register file. That is, unless a register

is overwritten within the trace, it must be written to the register file, because it may be used

elsewhere in the program. This potentially restricts the size of subgraphs available to of-

fline replacement schemes, however it accurately reflects what is necessary for supporting

runtime replacement techniques.

The subgraphs considered in this study were limited to have at most four inputs and

two outputs. Further, memory, branch, and complex arithmetic operations were excluded

from the subgraphs as will be discussed later in the section.Previous work [131] has shown

that allowing more than four input or two output operands results in very modest perfor-

mance gains when memory operations are not allowed in subgraphs, thus the input/output

restriction is considered reasonable.

A similar characterization of subgraphs within traces was performed previously [117].

This differs from the analysis here in that we gear experiments specifically toward the de-

sign of a CCA. The previous work proposed many additional uses for frequently occurring

subgraphs, for example cache compression and more efficientinstruction dispersal.
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1 2 3 4 5 6 7

1 100.00 59.02 22.89 13.14 6.48 4.20 0.25
2 91.11 50.57 9.93 4.10 0.59 0.15 0.01
3 57.39 17.79 6.25 2.89 0.09 0.02 0.01
4 18.53 8.27 1.58 0.11 0.02 0.01 0.00
5 8.65 2.06 0.14 0.04 0.01 0.01 0.00
6 2.13 1.23 0.09 0.01 0.01 0.00 0.00
7 1.23 0.10 0.07 0.01 0.00 0.00 0.00
8 0.11 0.07 0.01 0.00 0.00 0.00 0.00

Table 3.2: Matrix utilization of subgraphs

3.3.1 Analysis of Applications

The matrix of FUs comprising a CCA can be characterized by thedepth, width, and

operation capabilities. Depth is the maximum length dependence chain that a CCA will

support. This corresponds to the potential vertical compression of a dataflow subgraph.

Width is the number of FUs that are allowed to go in parallel. This represents the maximum

instruction-level parallelism (ILP) available to a subgraph. The operation capabilities are

simply which operations are permitted in each cell of the matrix.

Depth of Subgraphs:Table 3.1 shows the percentage of subgraphs with varying depths

across a representative subset of the three groups of benchmarks. For example, the 81.42%

in blowfish at depth 4 means that 81.42% of dynamic subgraphs in blowfish had depth

less than or equal to 4. Although only 11 benchmarks are displayed in this table, the final

column displays the average of all 29 applications run through the system. On average

about 99.47% of the dynamic subgraphs have depth 7 or less. Since the depth of the CCA

directly affects the latency through it, depth becomes a critical design parameter. It can be

seen that a CCA with depth 4 can be used to implement more than 82% of the subgraphs

in this diverse group of applications. Going below depth of 4seriously affects the coverage

of subgraphs implementable by the CCA. Therefore, only CCAswith maximum depth of

4 to 7 are considered.

Width of Subgraphs: Table 3.2 shows the average width statistics of the subgraphs

for the 29 applications. A value in the table indicates the percentage of dynamic subgraphs

that had an operation in that cell of the matrix layout (higher utilized cells have a darker
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Uop Opcode Semantics Percentage
ADD addition 28.69
AND logical AND 12.51
CMP comparison 0.38
LSL logical left shift 9.81
LSR logical right shift 2.37
MOV move 11.66
OR logical OR 8.66
SEXT sign extension 10.38
SUB subtract 4.82
XOR logical exclusive OR 5.09

Table 3.3: Mix of operations in common subgraphs

background). For example, 4.2% of dynamic subgraphs had width 6 or more in row 1.

Only 0.25% of subgraphs had width 7 of more, though. Similar cutoffs can be seen in the

other rows of the matrix, such as between widths 4 and 5 in row 2. This data suggests that

a CCA should be triangular shaped to maximize the number of subgraphs supported while

not needlessly wasting resources.

FU Capabilities: Table 3.3 shows the percentage of various operations present in the

frequent subgraphs discovered in above set of benchmarks. Operations involving more

expensive multiplier/divider circuits were not allowed insubgraphs, because of latency

considerations. Additionally, memory operations were also disallowed. Load operations

have non-uniform latencies, due to cache effects, and so supporting them would entail

incorporating stall circuitry into the CCA. This would increase the delay of the CCA and

make integration into the processor more difficult.

Table 3.3 shows that 48.3% of operations involve only wires (e.g. SEXT and MOV)

or a single level of logic (e.g. AND and OR). Another 33.9% of operations (ADD, CMP,

and SUB) can be handled by an adder/subtracter. Thus, the adder and the wire/logic units

were the main categories of FUs considered for the design of aCCA. Although shifts did

constitute a significant portion of the operation mix, barrel shifters were too large and

incurred too much delay for a viable CCA.
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Figure 3.1: Block diagram of the depth 7 CCA

3.3.2 Proposed CCA Design

The proposed CCA is implemented as a matrix of heterogeneousFUs. There are two

types of FUs in this design, referred to as type A and B for simplicity. Type A FUs perform

32-bit addition/subtraction as well as logical operations. Type B FUs perform only the

logical operations, which include and/or/xor/not, sign extension, bit extraction, and moves.

To ease the mapping of subgraphs onto the CCA, each row is composed of either type A

FUs or type B FUs.

Figure 3.1 shows the block diagram of a CCA with depth 7. In this figure, type A FUs

are represented with white squares and type B FUs with gray squares. The CCA has 4

inputs and 2 outputs. Any of 4 inputs can drive the FUs in the first level. The first output

delivers the result from the bottom FU in the CCA, and the second output is optionally

driven from an intermediate result from one of the other FUs.

The outputs of the FUs are fully connected to the inputs of theFUs in the subsequent
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Depth Configuration Control Delay Cell area FPGA delay
4 6A-4B-3A-2B 172 bits 3.19 ns 0.38 mm2 18.84 ns
5 6A-4B-4A-2B-1B 197 bits 3.50 ns 0.40 mm2 19.97 ns
6 6A-4B-4A-3B-2A-1B 229 bits 4.56 ns 0.45 mm2 24.86 ns
7 6A-4B-4A-3B-2A-2B-1B 245 bits 5.62 ns 0.48 mm2 25.39 ns

Table 3.4: CCA configurations and synthesis results

row. The decision to only allow units to talk to the next row was made to keep the amount

of control to a minimum. As the outputs of one row and the inputs of the next are fully

connected, the interconnect network is expensive in terms of delay. This delay was neces-

sary, however, to reduce the complexity of the dynamic discovery and selection algorithms

described in the next section.

The critical path of adder/subtracter circuits is much longer than any of the other oper-

ations supported by the CCA. To control the overall delay, the number of rows with adders

is restricted. More than 99.7% of dynamic subgraphs can be executed on a CCA with 3

adders in serial, and so the depth 7 CCA in Figure 3.1 is restricted to having 3 rows of

type A FUs. Further, restricting the CCA to only 2 rows of typeA FUs allows it to support

only 91.3% of the subgraphs, but significantly improving thedelay of the CCA. The type

A and type B rows were interspersed within the CCA, because empirical analysis shows

many of the subgraphs perform a few logic operations betweensubsequent additions. This

is particularly true in the encryption applications.

Four CCA models were synthesized using Synopsys CAD tools with a popular standard

cell library in 0.13µ technology. Each model has different depth and row configurations,

shown in Table 3.4. The configurations in this table indicatethe number and type of FUs

in each row, from top to bottom. For example, the depth 4 CCA has 6 type A FUs in

row 1 and 4 type B FUs in row 2. Delay of the CCA and the die area are also listed in

this table. The depth 4 CCA had a latency of 3.19ns from input to output and occupied

0.38mm2 of die area. The last column of Table 3.4 contains the delay ofeach CCA design

when synthesized on an FPGA1. It suggests that FPGAs may not be a suitable device for

1Xilinx Virtex-II Pro family, based on 0.13µ technology
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an efficient implementation of the CCA at this granularity ofsubgraph, though we did

not perform any measurements of direct realization of the applications’ subgraphs via the

FPGA.

The control bits needed for each model are also shown in Table3.4. Each FU has four

opcode bits that define its functionality. Since the output of each FU is connected to every

input port of the FUs in the next level, signals to control thebus are required. The number

of those signals corresponds to twice the number of FUs in thenext level, considering there

are two input ports for each FU and each output could feed eachinput. Control bits for

which FU provides the second output are also needed. The total number of control bits was

a critical factor in the design of these CCAs.

3.3.3 Integrating the CCA into a Processor

In the context of a processor, the CCA is essentially just another FU, making integration

into the pipeline fairly straightforward. The only datapath overhead consists of additional

steering logic from reservation stations and bypass paths from the CCA outputs. The CCA

itself is not pipelined, removing the complexity of having to introduce latches in the matrix

of FUs or having to forward intermediate results from internal portions of the matrix.

Accommodating a 4 input, 2 output instruction into the pipeline is slightly more com-

plicated. One potential way to accomplish this is to split every CCA operation into 2 uops,

each having 2 inputs and 1 output. By steering the 2 uops consecutively to a single CCA,

a 4 input, 2 output instruction can be constructed without altering register renaming, the

reservation stations, the re-order buffer, or the registerread stage. The downside to this

approach is that the scheduling logic is complicated by having to guide the two uops to the

same CCA.

Interrupts are another issue that must be considered duringCCA integration. The

proposed CCA was intentionally designed using simple FUs that cannot cause interrupts.

However, splitting the CCA operation into 2 uops means that an external interrupt could

cause only half of the operation to be committed. To avoid this problem, the 2 uops must

be committed atomically.
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Pipeline 4 wide
RUU size 128

Fetch Queue Size 128
Execution Units 4 simple ALUs,

2 multipliers,
2 memory ports

Branch Predictor 12-bit gshare
Frame Cache 32k uops, 256 inst traces
L1 I-cache 32k, 2 way, 2 cycle hit
L1 D-cache 32k, 4 way, 2 cycle hit
Unified L2 1M, 8 way, 12 cycle hit
Memory 100 cycle hit

Frame Cache Discovery 5000 cycles
and Replacement Latency

Table 3.5: Processor configuration

Control bits for the CCA can be carried along with the 2 uops. Since there is at most

245 bits of control necessary in the proposed CCAs, this means that each uop would carry

around 130 bits, which is roughly the size of a uop in the IntelP6 microarchitecture.

3.4 Experimental Evaluation

The proposed accelerators were modeled in the SimpleScalarsimulator [9] using the

ARM instruction set. Within SimpleScalar, some ARM instructions are broken into micro-

operations, e.g., load multiple, which performs several loads to a continuous sequence of

addresses. Many ARM instructions allow for an optional shift of one operand, and it is

important to note that these shifts are also broken into uops. Since our CCA does not

support shifts, it would otherwise not be possible to execute these operations on the CCA.

The simulated processor model is a 4-issue superscalar with32k instruction and data

caches. More details of the configuration are shown in Table 3.4. Consistent with Sec-

tion 3.3, the benchmarks used in this study consist of 29 applications from SPECint, Me-

diaBench, and four encryption algorithms. We select a representative subset of the appli-

cations to show in our graphs, consisting of four SPECint applications (175.vpr, 181.mcf,

186.crafty, and 255.vortex), six MediaBench applications(djpeg, cjpeg, epic, mpeg2enc,
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Figure 3.2: Varying the CCA configurations

rasta, and rawdaudio) and four popular encryption applications (3des, blowfish, rijndael

and rc4). Each benchmark was run for 200 million instructions, or until completion. The

initial 50 million instructions of each SPEC benchmark wereskipped to allow the initial-

ization phase of the benchmark to complete. All of the benchmarks were compiled using

gcc with full optimizations.

Figure 3.2 compares the performance across varying depth CCAs using an offline

discovery algorithm and retirement-based replacement (described in the next chapter).

Speedups are calculated as the ratio of execution cycles without and with the CCA of the

specified configuration. The configuration of the CCAs match the descriptions in Table 4.1

and all have a latency of one. From the graph, the most obviousresult is the flatness of

each set of bars. Little performance is gained as larger CCA designs are utilized. However,

this result could be anticipated as it agrees with the depth statistics observed in Table 3.1.

Generally, adding depth to the subgraph beyond 4 provides only modest gains in coverage

(depth 4 covers 82%). Further, the large, important subgraphs that would have been exe-

cuted on the 7-deep CCA can simply be broken into two subgraphs executed on the smaller

CCAs. As long as there is enough ILP and the large subgraph is not on the critical path, this

additional reduction of latency achieved with a larger CCA will not significantly improve
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Figure 3.3: The effect of CCA latency on speedups

performance.

There are a number of notable exceptions to the flat behavior.For example, some

benchmarks show a performance jump at one particular CCA size. For instance, blowfish

from depth 4 to depth 5. This is because a critical subgraph was admitted at that point. In-

terestingly, sometimes adding depth actually hurts the performance, as in the case of cjpeg.

This is because of second order effects involved with subgraph discovery. Sometimes cre-

ating a CCA operation out of a large 7-deep subgraph, while optimal from the coverage

standpoint, is not as effective as creating two smaller subgraphs.

Figure 3.3 shows the affect of CCA latency on overall performance. This graph reflects

static discovery, retirement-based replacement and a CCA of depth 4. Speedup is calculated

in the same manner as in the previous graph. This figure shows that the effect of CCA

latency is highly dependent on the application. For example, rc4’s speedup rapidly declines

when the latency is increased, reaching zero for latency 3 and beyond. This is because rc4

has one dominant critical path on which all the subgraphs appear. Since the subgraphs

are all on the critical path, the performance is highly sensitive to the number of cycles to

execute each one.

On the other hand, 186.crafty suffers little penalty from the added latency of the CCA.

This behavior is generally attributed to one of two reasons.First, the critical path is memory
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bound, thus CCA latency is a second order effect. Second, theapplication has enough

ILP so that longer CCA latencies are effectively hidden. Such applications benefit from

more efficient execution provided by the CCA, but are less sensitive to latency. Other

applications, such as 3des and rawdaudio, degrade slightlyat small latencies (e.g., 1-3

cycles), then fall off sharply at larger latencies (e.g., 4 or 5 cycles). This reflects the point at

which the CCA instructions become the critical path becauseof their added latency. As the

latency increases, benefits from vertically compressing the dataflow graph disappear. The

speedups that remain are solely due to the additional parallelism provided by the CCA.

3.5 CCA Summary

So far in this chapter, we have presented a novel mechanism toaccelerate application

performance through the use of a configurable compute accelerator, or CCA. A CCA is a

group of function units connected in a matrix-like configuration, added to a general-purpose

core to implement dataflow subgraphs. Subgraphs from a stream of processor instructions

are identified and mapped onto this CCA.

Our experiments reveal that significant speedups are possible for a variety of appli-

cations, both from the embedded and general-purpose computing domains. The speedup

was up to 66% for a 4-deep CCA (26% on average), and the area overhead is reasonably

small. The CCA has a moderate degree of latency tolerance, and thus can be more easily

integrated into any modern processor pipeline.

3.6 The Programmable Carry Function Unit

The remainder of this chapter presents the programmable carry function unit, or PCFU,

an alternate design for acyclic computation accelerators.The PCFU is a lookup table (LUT)

based accelerator. LUT based accelerators were previouslyintroduced in [130], where ev-

ery bit was given a separate LUT configuration. Here, a generalization of the prior tech-

nique is used. The PCFU leverages the design of carry look-ahead adders to break the

cascaded tree of LUTs in the original design, creating a faster and more efficient design.
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Figure 3.4: An example dataflow subgraph and the output expressed as a function of the
inputs.

The PCFU is not a single design, but rather specifies a parameterized design space

that offers complex tradeoffs between subgraph execution capabilities (programmability)

with the cost and worst-case delay (efficiency) of the substrate. Thus, we will now present

a systematic exploration of the PCFU design space. We examine the critical tradeoffs

associated with designing LUT based arrays including LUT size, number of carry signals

that are propagated, and support for non-LUT operators, such as shift. To perform this

exploration, a complete compilation and simulation systemfor PCFUs based on the ARM-

9 processor are used. PCFU designs are developed in Verilog and synthesized to measure

area and delay.

3.7 PCFU Operation and Design Space

The design of a generalized accelerator substrate on which dataflow subgraphs are exe-

cuted is a major challenge. The accelerator should be programmable enough to cover most

of the recurrent subgraphs, and at the same time be easy to configure and have low latency

to execute subgraphs efficiently.

In this section, we describe a LUT-based accelerator, the Programmable Carry Function

Unit (PCFU). The PCFU can execute subgraphs of any number of logical operations and a

predefined number of additions/subtractions. The PCFU offers the advantage of being suf-

ficiently programmable to cover a wide variety of subgraphs,while maintaining a relative
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low interconnect complexity and latency compared to FPGA devices.

3.7.1 Principles

The PCFU approach builds on the principles introduced in [130], with the basic idea

being to extract a logical expression of each output bit as a function of the inputs to the

subgraph. Given this logical expression, a LUT stores the truth table corresponding to this

expression, which is used later to directly compute the output given the inputs.

Consider the example of Figure 3.4. Each bit of the output register, r7, can be ex-

pressed as a logical function ofr1, r2, r3, r4 and the carry bits from any additions in

the subgraph. For example, the output function for biti of the output of the subgraph can

be expressed asfr7i = r6i ⊕ r4i ⊕ cin2i−1, since this is the definition of a bit-wise add.

Next, r6i can be re-expressed as(r5i ∧ r3i), yielding the second equation in Figure 3.4.

Likewise,r5i can be expressed as a function ofr1, r2, and the carry signal generated by

the first addition in the subgraph. Once this is done, each bitof r7 is expressed as a logical

function of only the inputs and the carry signals, shown at the bottom of Figure 3.4. Using

this process allows for expressing any sequence of logical,integer instructions as a func-

tion of the input registers of the subgraph. This enables direct mapping of subgraphs into

lookup tables, with the only difficulty being the need to calculate the carry signals.

Figure 3.5 shows the accelerator proposed in [130], called the Functionunit. In this

design, each carry bit is calculated and forwarded to the higher significant bit. The LUTs

fr7iLUT , cin1iLUT , andcin2iLUT implement the functionsfr7, cin1, andcin2 re-

spectively. TheFunctionunit provides fine grain programmability and flexibility by spec-

ifying different LUT configurations for each output and carry bit. This high flexibility

comes at the cost of high latency because of the ripple schemeto propagate the carry to

upper significant bits. Also, this accelerator requires a large amount of control data to

configure each bit and their associated carries.

The PCFU is also a LUT-based accelerator, but avoids both thelarge configuration and

the high latency of the ripple carry propagation by defining one LUT (and associated carry

LUTs) for all output bits. Aside from saving on-chip space, this approach allows us to
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Figure 3.5: Organization of the LUT basedFunctionunit from prior work.

leverage fast carry propagation schemes, such as Kogge-Stone [67] or Brent-Kung [18]

parallel prefix adders.

Most of the existing fast carry propagation techniques are based on first calculating

a (gi, pi) pair [68], where given inputs bitsai andbi, gi = ai ∧ bi (generate), andpi =

ai ⊕ bi (propagate). If subtraction is done instead of addition,bi is replaced bȳbi. This

p-g pair of values is then fed to a carry propagation network to calculate the carry bits.

The PCFU design generalizes the calculation of the(gi, pi) pair by creating a pair of LUT

configurations (gi LUT - pi LUT) for each addition/subtraction. For example, in Figure 3.4

the (g,p) pairs of the 2 additions can be expressed asg1i = r1i ∧ r2i, p1i = r1i ⊕ r2i,

g2i = ((r1i⊕ r2i⊕ cin1i−1)∧ r3i)∧ r4i, andp2i = ((r1i⊕ r2i⊕ cin1i−1)∧ r3i)⊕ r4i. By

separately computing the carry signal using these LUTs and carry propagation networks,

the PCFU breaks the dependence of output bits on the values oflower order input bits.

That is, bit 31 of the output is not a function of bit 0 of the input values as long as we

have the carry signal precomputed. This enables the PCFU to have a much lower latency

than most FPGA-based accelerator designs, which need to propagate the carry signal from

lower order bits.

Figure 3.6 shows the design of a PCFU that can collapse a sequence of dependent
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Figure 3.6: Baseline PCFU design.

instructions with up to two additions or subtractions, andany number of logical opera-

tions, given a fixed number of inputs. Note that, although Figure 3.6 may suggest that

the two additions/subtractions need to be dependent, the PCFU can collapse any two addi-

tion/subtraction regardless of their position in the subgraph. That is, they may be in parallel,

dependent or even interleaved with other logical operations.

For a given subgraph, the basic idea of the PCFU is to generatea LUT (OutLUT)

configuration for the output function and appropriate configurations (gi LUT and pi LUT)

to generate the carries for each individual addition/subtraction in the subgraph. The purpose

of theciniin signal is to implement subtractions. The primary benefit of using the PCFU
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Figure 3.7: PCFU design space.

over previous work [130] is the use of more advanced carry generation networks and fewer

configuration bits in the accelerator.

3.7.2 PCFU Design Space

Figure 3.7 shows basic building blocks of a generalized PCFUthat can support N in-

puts, 3 additions/subtractions, 2 outputs, and shift operations at the inputs and outputs of the

dataflow subgraph. The basic building blocks of the PCFU are the carry generator for each
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addition/subtraction supported and an output LUT for each subgraph output supported.

Increasing the number of outputs supported by the PCFU is a fairly straight forward

process, which only requires adding an output LUT in parallel with the already existing

output LUTs. None of the other structures in the PCFU are affected.

Supporting additional inputs is more complicated, since itinvolves increasing the size

of the LUTs for the carry generators and the output LUTs. Thisis because the logical

function for each bit depends on another Boolean variable (the new input), which doubles

the size of each truth table used to compute results.

Similar to increasing the number of inputs, increasing the number of adds that are sup-

ported doubles the size of the output LUTs, since the outputsare now a function of another

carry-in signal. Beyond this, supporting more adds requires an additional set of carry prop-

agate LUTs, which are dependent on the inputs and all previous carry-in signals. This

means that the added carry-propagate LUT is larger than all the previous carry propagate

LUTs combined. A new carry generation tree lies directly on the critical path of the PCFU,

as well.

Supporting shift operations within subgraphs is desirable, but infeasible on the PCFU.

Allowing shifts would make each output bit a function of every input bit, instead of the

small number of input bits in the proposed design. This wouldmake the LUTs very large.

However, separate shifters may be added at the inputs and/orthe outputs of the PCFU to

support shift operations at the inputs and outputs of the dataflow subgraphs. This would

not change the size of the LUTs, but would lengthen the critical path of the PCFU.

Each of these vectors in the design space is explored in Section 3.8.

3.8 Exploring the PCFU Design Space

The purpose of this section is to evaluate the different tradeoffs involved in designing a

PCFU for subgraph acceleration. The designs are evaluated using latency of the PCFU, die

area consumed by the PCFU, as well as performance improvement of the PCFU-augmented

processor.

Evaluation of the performance improvement achieved using PCFUs was done using
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Figure 3.8: Effectiveness of the baseline 4-input, 2-output PCFU design.

a version of the Trimaran compiler [121] ported to the ARM instruction set. The com-

piler was augmented with a parameterized subgraph matchingengine, which allowed us

to easily change the types of subgraphs selected based on thecharacteristics of the under-

lying hardware. After subgraphs selection, binaries were created using the GNU assem-

bler/linker, and simulated using SimpleScalar ARM [9]. Thesimulator was configured to

model an ARM 926EJ-S processor [5], a popular single-issue embedded core with a five

stage pipeline.

In order to determine the latency and area properties of the PCFUs, several designs were

synthesized, including place-and-route. The designs wereimplemented using Synopsys

tools with a standard cell library in 0.13µ. The critical path latencies are reported, as well

as the die areas given both inmm2 and as the percentage area of an ARM926EJ-S core

without caches. Note that not every design simulated, was synthesized, since creating and
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Design Latency (ns) Area (mm2) Area (% of ARM926EJ-S)

2 In, 1 Out, 2 Adds, No Shift 3.03 0.052 2.3
2 In, 2 Out, 2 Adds, No Shift 2.66 0.056 2.5
3 In, 1 Out, 2 Adds, No Shift 3.24 0.068 3.1
3 In, 2 Out, 2 Adds, No Shift 3.32 0.100 4.5
4 In, 1 Out, 2 Adds, No Shift 3.79 0.134 6.1
4 In, 2 Out, 2 Adds, No Shift 4.20 0.171 7.7
4 In, 3 Out, 2 Adds, No Shift 4.57 0.230 10.4
5 In, 1 Out, 2 Adds, No Shift 5.25 0.214 9.7
5 In, 2 Out, 2 Adds, No Shift 5.30 0.306 13.9
5 In, 3 Out, 2 Adds, No Shift 5.40 0.397 18.0
6 In, 1 Out, 2 Adds, No Shift 5.47 0.465 21.1
6 In, 2 Out, 2 Adds, No Shift 5.27 0.600 27.2
6 In, 3 Out, 2 Adds, No Shift 5.87 0.787 35.8

Table 3.6: Synthesis results for PCFU designs with varying numbers of inputs and outputs.

verifying HDL for the PCFUs is a very time consuming process.

We chose to evaluate our designs using benchmarks from the SPECint2000 and Me-

diaBench [75] benchmark suites, as well as several encryption kernels. Full runs of each

benchmark using the training input set were performed. Applications from the two bench-

mark suites that do not appear were omitted either due to verylong runtime (in the case of

254.gap), or limitations in the compiler infrastructure.

Baseline Design.In order to explore the various dimensions of the PCFU designspace,

we first define a starting point. Previous work [28] has shown that a subgraph execution

unit with 4 inputs and 2 outputs, supporting two adds is a reasonable design choice. As

such, this is baseline for our evaluation. The design of thisPCFU can be seen in Figure 3.6.

The speedups attained using this baseline design are presented in Figure 3.8 for the

three groups of benchmarks. Unless otherwise noted, simulation was done assuming that

the PCFU requires one cycle to execute the subgraph and does not affect the cycle time

of the processor. The main point to take from this figure is themagnitude of the bars.

On average, a speedup of 1.62 over the baseline processor is observed, with a maximum

of 2.79. This shows that transparent instruction set customization using a PCFU is an

effective way to improve the performance of embedded processors. Also note that the
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Figure 3.9: Effectiveness of PCFU designs with varying numbers of inputs and outputs.

speedup varies a great deal from application to application. This is correlated to the size

of the computation subgraphs available for execution on thePCFU. Since subgraphs are

bounded by memory operations, applications that perform a large amount of computation

(especially logic operations) between memory accesses benefit the most.

Design Space Parameters.The PCFU design space is evaluated along three indepen-

dent axes: number of inputs/outputs, number of additions, and support for shift operations.

The number of additions specifies the number of carry chains that the PCFU implements.

In varying the number of additions, it is also possible to emulate PCFUs with larger number

of additions by connecting smaller PCFUs in series, e.g., a 2-adder PCFU can be emulated

by connecting two 1-adder PCFUs in series. Shift operationsare not supported directly by

the PCFU, but by creating hybrid accelerator substrates consisting of PCFUs and shifters.

Number of Inputs/Outputs. The first design space parameter is the effect that the
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Design Latency (ns) Area (mm2) Area (% ARM926EJ-S)

4 In, 2 Out, 0 Adds, No Shifts 0.62 0.042 1.9
4 In, 2 Out, 1 Adds, No Shifts 2.44 0.095 4.3
4 In, 2 Out, 2 Adds, No Shifts 4.20 0.171 7.7
4 In, 2 Out, 3 Adds, No Shifts 5.78 0.361 16.4

4 In, 1 Out, 2 Adds, No Shifts 3.79 0.134 6.1
4 In, 1 Out, 2 (1-1) Adds, No Shifts 3.77 0.116 5.3
4 In, 1 Out, 3 Adds, No Shifts 5.82 0.274 12.4
4 In, 1 Out, 3 (2-1) Adds, No Shifts 6.50 0.212 9.6
4 In, 1 Out, 3 (1-1-1) Adds, No Shifts 6.10 0.180 8.1

Table 3.7: Synthesis results for PCFU designs with varying numbers of additions supported.

number of inputs and outputs has on the system. These parameters are very important, as

they have a strong impact on the types of graphs that can be executed on the PCFU. The

number of inputs/outputs in the PCFU also has an effect on theregister file since each of

the inputs/outputs must be read from or written to it. This means that a large number of

inputs or outputs requires a larger register file, multiple cycles to read and write results, or

“shadow register files” to increase the operand bandwidth without increasing the latency.

All of these options carry overheads.

From the perspective of PCFU design, the number of inputs must be carefully con-

trolled. Increasing the number of inputs by one means that each output bit is the function

of another binary variable. This essentially doubles the size of each LUT in the design.

Aside from the exponential increase in area, this LUT size increase also causes the overall

latency of the PCFU to increase as well.

The number of inputs and outputs also plays a role in control generation for the PCFUs.

Recall that in the PCFU control generator, the meta-register file is responsible for generat-

ing the LUT entries. For every additional input, the size of the LUTs double, meaning that

the size of the meta-register file also doubles. Increasing the number of outputs is less crit-

ical for control generation, as all the LUT configurations ofthe live-out values are stored

in the meta-register file. That is, the baseline design already supports multiple outputs, so

very little additional complexity is needed to support them.

The effects of adding inputs and outputs to a PCFU can be seen in the synthesis results
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in Table 3.6. In this table, each PCFU design is represented by a 4-tuple specifying the

number of inputs, the number of outputs, the number of supported additions, and what shift

values (if any) are supported. Initially increasing the number of inputs has a small effect

on the total PCFU area and latency; moving from two to three inputs increases the area

by 0.016mm2 and the latency by 0.21ns. However, the exponential increase in LUT size

quickly begins to dominate. For example, moving from five inputs to six causes an increase

in latency of 0.22ns, and the die area more than doubles, going from 0.214 to 0.465mm2.

This demonstrates that the number of inputs must be carefully balanced in the design of a

PCFU.

Increasing the number of outputs is not as critical of an issue in terms of PCFU design.

Each additional output from the PCFU requires an additionalfunction LUT to compute the

result using the inputs and the carry-in signal(s). No additional LUTs are needed beyond

that, and none of the other structures change in size. This essentially means that adding an

output should increase the area of the PCFU in a roughly linear fashion, and have a small

or no effect on the latency. These trends can be seen in Table 3.6. Moving from four inputs

and two outputs to four inputs and three outputs increases the area by 0.059mm2, and the

latency by 0.37ns. The non-linearity is due to increased MUX sizes and certainsignals

(e.g., the carry-ins) having to drive a larger number of cells.

One confusing trend in Table 3.6, is that not all of the synthesis results agree with what

was predicted. For example, moving from six inputs and one output, to two outputs, and

to three outputs caused the area of the PCFU to grow super-linearly. Adding more outputs

also caused the latency to change a great deal, despite the fact that the critical path has the

same number of logic levels in all three designs. These observations are an unfortunate

side-effect of heuristics used in the synthesis tools, and are beyond our control.

Figure 3.9 shows the average speedup across our benchmark suite when varying the

number of inputs and outputs allowed in the PCFU. When addinginputs and outputs for

this experiment, we assumed that reading the inputs and writing the results back to the

register file each took one cycle regardless of the number of inputs/outputs. This was done

to determine how well the compiler can take advantage of the inputs/outputs available to it,

independent of other hardware restrictions.
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The main point to take away from Figure 3.9 is that four inputsand two outputs seems

to be the point of diminishing return. That is, increasing the number of inputs beyond four

or the number of outputs beyond two does not substantially improve the resulting perfor-

mance. Four inputs and two outputs are necessary to support the most important compu-

tation subgraphs in our set of applications. Conversely, reducing the number of inputs to

three or two drops the speedup to 1.55 and 1.49, respectively. Reducing the number of

outputs to one drops the speedup to 1.45. While these drops may not seem significant, the

average is hiding the fact that the speedup of some benchmarks drop significantly, while

other benchmarks are relatively unaffected. For example, the speedup of MD5 dropped

78% moving from four inputs to two, and the speedup of EPIC fell 58% moving from two

to one output.

Number of Additions. As with the number of inputs, the number of additions sup-

ported by the PCFU must also be carefully constrained. Supporting an additional add

operation would necessitate creating two new LUTs and a Kogge-Stone tree to calculate

the Propagate and Generate signals for that add. These new P-G LUTs will be a function of

each input and all previous carry-in signals, meaning that their size will be twice as large

as the previous largest P-G LUTs. Beyond the additional LUTs, the size of each function

LUT doubles, since each output is also a function of this new carry signal. This increases

the area of the PCFU and lengthens the critical path much morequickly than simply adding

inputs or outputs.

Adding the new P-G LUTs means that control will have to be generated for them as

well. This entails adding three new registers to the meta-register file for the new P-LUT,

G-LUT, and carry LUT. Space for the added control of these LUTs must be added to the

configuration cache as well as the meta-register file; however, overall latency of the control

generation is not affected, and area increases linearly with the number of adds.

The top portion of Table 3.7 shows the synthesis results whenvarying the number of

adds supported. Note how increasing the number of adds supported more than doubles the

die area of the PCFU in most cases. The latency of the PCFUs also increases a great deal,

since the critical path now runs through an additional carrygenerator and larger function

LUTs. For these reasons, it is important to limit the number of additions supported in the
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PCFU.

One trick that can be played to reduce the area overhead of supporting many additions,

is to compose a larger PCFU out of smaller ones. For example, atwo-adder PCFU could

be created by serially merging two one-adder PCFUs with a MUX. The MUX is used to

select a subset input values from the result of the first PCFU and the subgraph inputs. Using

a MUX to control the number of inputs prevents the exponential growth of the LUTs, at

the cost of potentially supporting fewer subgraphs. Our experiments have shown that the

subgraphs not supported never occur in any of the applications tested, though, making this

a good trade off.

The lower portion of Table 3.7 shows the synthesis results ofthese composite PCFUs.

Next to the number of adds in the design column, parentheses occur indicating the forma-

tion of the composite PCFU. For example, “(1-1-1)” indicates a three-add PCFU designed

as three one-add PCFUs chained together serially. This table clearly shows how creating

PCFUs as a composite of smaller PCFUs is an effective way to reduce the area incurred by

supporting more add operations. The variations in latency reflect the trade off of the criti-

cal path traveling though fewer large LUTs (when the PCFU is not composite) versus the

critical path traveling through more small LUTs (when the PCFU is composed of 1-adder

PCFUs).

Figure 3.10 shows the effect the number of adds supported hason the speedups at-

tainable by the PCFU system. This figure shows that significant speedup gains can be

achieved by moving from zero to one to two adds. This trend highlights the prevalence of

add instructions in our applications. Moving beyond two adds yields quite limited results,

though. This is mainly because computation subgraphs are limited by memory operations.

The amount of computation done between memory accesses typically does not encompass

more than two add instructions. This is not as true in the encryption-style applications

which contain a relatively large amount of computation between memory accesses.

Support for Shifts. Another design parameter explored was the addition of shiftoper-

ations in subgraphs supported by the PCFU. In the general case, it is impossible to support

shifts at arbitrary places within subgraphs. Doing so wouldmake each output bit a function

of each input bit creating function LUTs the size of2total input bits. However, it is feasible to
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Figure 3.10: Effectiveness of PCFU designs with varying numbers of additions supported.

place a shifter at the inputs or outputs of the PCFU. This would allow support for shifts in

subgraphs provided there was no computation before the shift (or after the shift, in the case

of shifts at the outputs) performed on the PCFU. Adding theseshifters would not affect the

size of the LUTs or the internal PCFU structure, but would require some additional MUXes

at the inputs (and/or outputs). The downside is that the shifters would appear on the critical

path.

In terms of control generation, allowing shift capabilities in the PCFU involves adding

few bits in the configuration to specify the shift value and direction for each input and/or

output. Though this does increase the critical path of control generation slightly, it is a

trivial extension. Allowing shift operations increases the size of the configuration size as

thelog of the number of shift values supported, thus the area overhead increases at that rate

as well.

To analyze the effectiveness of allowing shifts within subgraphs, we first examined

the types of shifts that could potentially be used. Figure 3.11 shows the types of shifts that

appeared in important subgraphs. That is, if the compiler allowed shifts to appear anywhere
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Figure 3.11: Distribution of shift values within subgraphs.

in subgraphs, this graph shows the types of shifts that were selected for subgraph inclusion;

the shifts that would be useful to support in the PCFU. The horizontal axis in this figure

is the constant value of the shift instruction (or variable in the case that the operation did

not use a compile time constant), and the vertical axis showsthe percentage of dynamic

instructions averaged across the benchmarks. As an example, around 1.5% of dynamic

instructions in our benchmarks were shifts by the constant 16, which would have appeared

in subgraphs provided the PCFU supported them.

Figure 3.11 shows that the shifts useful in subgraphs are dominated by a relatively small

number of constants. As would be expected, two is the most common shift value, since it

is frequently used for address calculation in the 32-bit ARMarchitecture. One key trend

in this figure is that variable shifts (the far right bar) werequite infrequent. This is a good

sign, as supporting variable shifts in the PCFU generally requires larger area. Conversely,
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Design Latency (ns) Area (mm2) Area (% ARM926EJS)

4 In, 2 Out, 2 Adds, No Shifts 4.20 0.171 7.7
4 In, 2 Out, 2 Adds, 2 at Inputs 4.64 0.213 9.6
4 In, 2 Out, 2 Adds, 1, 2, 16 at Inputs4.86 0.224 10.1
4 In, 2 Out, 2 Adds, Any at Inputs 5.22 0.224 10.1
4 In, 2 Out, 2 Adds, Any at Outputs 5.15 0.201 9.1

Table 3.8: Synthesis results for PCFU designs with varying types of shifts supported.

supporting shifts by a small number of constants merely requires a small bit of wiring and

an additional MUX.

Using this information, several designs supporting shiftswere synthesized; the results

are in Table 3.8. In order to limit the area overhead associated with barrel shifters, we used

logarithmic shifter in the synthesized designs. The chart shows using logarithmic shifters

generally caused the latency to increase a great deal when supporting additional constants,

however, it did not incur a substantial area gain. For example, supporting any shift value

was nearly the same area as supporting the three most frequent constants. Also note that

supporting shift values at the tail of subgraphs was less costly than at the head; this is

intuitive, as there are only two outputs compared with four inputs.

Speedup results for these designs are in Figure 3.12. For each set of shift values sup-

ported, there are three bars displayed: one for when shifts are supported only at the inputs

(or head of the subgraph), one for shifts only supported at the outputs, and one for shifts

supported anywhere within the subgraph. Although the last bar is not supported by the

PCFU, it provides a comparison as to how well shifts at the inputs or outputs meet the

overall need for shifts in subgraphs.

In general, providing capabilities for a small number of shift values does provide a

substantial amount of speedup. For example, allowing shifts by 1, 2, or 16 at the outputs

improved speedups by 7% over the baseline design. Providingshifts at the end of subgraphs

is slightly more beneficial than at the head of subgraphs, again, because many shift-by-two

ops are used for address calculation. The address calculation feeds memory operations,

which must appear outside the subgraph. Allowing shifts anywhere in subgraphs does
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offer significant benefit over restricting shifts to the fringes, but most of the gains from

adding shifts can be attained by only adding them at the inputs and outputs.

Cost vs. Performance for all Designs.To summarize the trade offs of the design space,

we combined the synthesis and simulation results in Figure 3.13. The horizontal axis has

the cost of a design, and the vertical axis shows speedup attained using that design. The

speedup numbers in this figure were scaled to reflect cycle time increases. The ARM926EJ-

S typically runs at 250 MHz using a standard synthesis flow in 0.13µ technology [5]. In

the left portion of Figure 3.13, if a PCFU design could not meet the 4ns cycle time, then

the entire processor was slowed to the frequency of the PCFU.For example, if a PCFU had

a critical path of 8ns, then we assumed two cycles of the baseline machine could occur in

the same time as one cycle of the machine using that PCFU. The right graph in Figure 3.13

performs the same scaling, but assumes that the PCFU takes two cycles to execute (e.g., the

PCFU is pipelined). This allows us to compare the cycle time versus subgraphs supported

trade offs for PCFUs in the context of processors with higherclock frequencies.
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The main observation to take from the 1-cycle PCFU graph is that to offset increas-

ing the clock cycle, it is imperative to support many more subgraphs. Only one of the

Pareto-optimal design points (4I, 2O, 2A, None) increased the clock cycle, and that was

only by 0.2ns. Figure 3.9 shows the increased number of subgraphs, by moving to four

inputs/two outputs, needed to justify slowing the clock cycle. When clock cycle is taken

into account, there generally are not enough large dataflow subgraphs to justify the PCFU

designs targeting them.

Under the assumption of a two cycle PCFU, it is a different story, however. Assuming

the PCFU takes two cycles to execute implies that none of the PCFU designs extend the

clock cycle. This enables the benefits of supporting the larger subgraphs to show them-

selves. For example, the 5I, 3O, 2A, None design point is Pareto optimal under the two-

cycle assumption. Despite this, using two cycles to supportlarger subgraphs did not out-

perform the one-cycle PCFU designs that target smaller subgraphs.

3.9 PCFU Summary

In the past few sections, we have explored the design of Programmable Carry Func-

tion Units, a hardware substrate for executing acyclic dataflow subgraphs. Several different

design parameters were examined, ranging from the number ofsubgraph inputs/outputs

supported, to the number of addition/subtractions supported, to the the types of shifts al-

lowed. Evaluation of these designs was done with simulationas well as synthesis, to fully

evaluate the hardware tradeoffs in the context of the ARM926EJ-S embedded processor.

Overall, we have shown that implementing a carefully designed PCFU can provide sub-

stantial speedups (1.47 on average) over a baseline embedded processor for relatively little

area overhead. We also demonstrated that non-pipelined PCFU designs that support more

subgraphs, but increase the cycle time of the processor, aregenerally not wise design points.

However, that conclusion is reversed in the case of pipelined PCFU designs.
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Figure 3.13: The cost/performance trade off across various PCFU design points.
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CHAPTER 4

Utilization of Generalized Acyclic Accelerators

4.1 Introduction

In the previous chapter, acyclic computation acceleratorswere proposed that are general

enough to use in a wide range of applications. In this chapterwe develop ways to utilize

those accelerators.

At present, specialized hardware is typically exploited through the use of customized

instructions or instruction set extensions, as an application specific instruction set processor

(ASIP). The central problems with an ASIP approach are the hardware design and software

migration time/costs. ASIP designs incur substantial non-recurring engineering costs. For

example, each new ASIP must be verified both from the functionality and timing perspec-

tives. Additionally, a new mask set must be created to fabricate the chip. On the software

side, the compiler must be retargeted to each new processor and any hand-written libraries

must be migrated to the new platform. Automation of some of these tasks may be possible;

however, the majority of this work is still a manual process.All of these challenges make

it difficult to adopt a new ASIP despite the potential advantages.

This chapter develops two methods to utilize compute accelerators that do not alter the

instruction set, thus avoiding the pitfalls of ASIPs. We term these methodstransparent

instruction set customization.

The first method proposed, a fully dynamic scheme, performs subgraph identification

and instruction replacement in hardware. This technique iseffective for preexisting pro-
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gram binaries. The second method reduces hardware complexity using a static subgraph

identification offline during the compilation process. Subgraphs that are to be mapped onto

the accelerator are marked in the program binary to facilitate simple accelerator configura-

tion and replacement at run-time by the hardware.

In the remainder of this chapter, we describe the hardware and software algorithms nec-

essary to facilitate dynamic customization of a microarchitectural instruction stream. The

tradeoffs of these algorithms are discussed and the effectiveness of each is experimentally

determined.

4.2 Related Work

Once an accelerator has been designed, it becomes necessaryto map portions of an

application onto the accelerator. Two examples of using thecompiler to statically map

dataflow subgraphs onto a CCA are [32] and [101]. Both of thesetechniques target fixed

hardware, and it is not clear if the algorithms extend to cover accelerators not exposed to

the instruction set.

Several software frameworks have been proposed which wouldlend themselves to dy-

namically mapping dataflow subgraphs onto accelerators. Dynamo [10], Daisy [39], and

Transmeta’s Code Morphing Software [38] are all schemes that optimize and/or translate

binaries to better suit the underlying hardware. These systems can potentially do a bet-

ter job of mapping an application to accelerators than compile time systems, since they

can take advantage of runtime information, such as trace formation. Using these systems

has the additional benefits that algorithms proposed to statically map computation to an

accelerator would be effective, and full binary compatibility is provided.

Many hardware based frameworks exist for this process, too.Most of these arose from

the observation that in systems with a trace cache, the latency of the fill unit has a negligible

performance impact until it becomes very large (on the orderof 10,000 cycles [45]). That

is, once instructions retire from the pipeline and a trace isconstructed, there is ample time

before that trace will be needed again. Three recently proposed schemes [28, 111, 130]

used this latency to perform the mapping of dataflow subgraphs onto specialized execution
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hardware. Instruction Path Coprocessors [25] and rePLay [42] have also propose taking

advantage of this latency for other instruction stream optimizations.

A simplified dynamic subgraph mapping system was described in [62, 113]. These pa-

pers used the design proposed in [102] as the baseline of their system, which greatly sim-

plifies the mapping problem. Because our goal was to allow formore flexibility than their

CCA design allowed for, our presented identification algorithm is much more complex.

Other recent work [17] proposes using the DISE [37] framework to dynamically replace

subgraphs in the instruction stream. A special instructionis used to signal the DISE engine,

which then inserts the appropriate control logic into the pipeline. This model requires

a DISE aware operating system and processor, since the subgraphs are specified in the

binary at load time, and must be replaced to execute the binary at runtime. Conversely, the

framework proposed in this work does not affect the operating system, nor does it require

any special replacement engine to run the binary.

4.3 Utilization of an Acyclic Compute Accelerator

Once an accelerator is integrated into a processor, it is necessary to provide subgraphs

for the accelerator to execute. Feeding an accelerator involves two steps:discoveryof

which subgraphs will be run on an accelerator andreplacementof the subgraphs with uops

in the instruction stream. In this section, two alternativeapproaches for each of these tasks

are presented.

The two proposed approaches for subgraph discovery can be categorized as static and

dynamic. Dynamic discovery assumes the use of a trace cache and performs subgraph dis-

covery on the retiring instruction stream that becomes a trace. When the instructions are

later fetched from the trace cache, the subgraphs will be delineated. The main advantage

of a dynamic discovery technique is that the use of an accelerator is completely transparent

to the ISA. Static discovery finds subgraphs for an accelerator at compile time. These sub-

graphs are marked in the machine code using two new subgraph specification instructions,

so that a replacement mechanism can insert the appropriate accelerator uops dynamically.

Using these instructions to mark patterns allows for binaryforward compatibility, meaning
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that as long as future generations of accelerators support at least the same functionality of

the one compiled for, the subgraphs marked in the binary are still useful. The static discov-

ery technique can be much more complex than the dynamic version, since it is performed

offline; thus, it does a better job of finding subgraphs.

The two proposed schemes for replacing subgraphs are both dynamic, but performed at

different locations in the pipeline. Replacing subgraphs in the fill unit of a trace cache is

the most intuitive place for this task. As mentioned before,previous work [42] has shown

that delays in the fill unit of up to 10,000 cycles have a negligible impact on overall sys-

tem performance. This delay provides ample time for augmenting the instruction stream.

The second proposal is to replace subgraphs during decode. The impetus behind this idea

was that many microarchitectures (like the Intel Pentium IV) already perform complicated

program translations during decode, so subgraph replacement would be a natural exten-

sion. The biggest advantage of a decode-based replacement is that it makes the trace cache

unnecessary when used in concert with static discovery. Removing the trace cache makes

accelerators more attractive for embedded processors, where trace caches are considered

too inefficient and power hungry.

The primary reason for using dynamic replacement for accelerator instructions is that

complete binary compatibility is provided: a processor without an accelerator could sim-

ply ignore the subgraph specification instructions and execute the instructions directly. This

idea extends to future processors as well. As long as any evolution of an accelerator pro-

vides at least the functionality of the previous generation, the statically discovered sub-

graphs will still be effective. Essentially, this allows for binary compatible customization

of the instruction set.

4.3.1 Dynamic Discovery

The purpose of dynamic discovery is to determine which dataflow subgraphs should be

executed on an accelerator at runtime. To minimize the impact on performance, we propose

to use the rePLay framework [99] in order to implement dynamic discovery.

The rePLay framework is similar to a trace cache, in that sequences of retired instruc-
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1 for i = N to 1 do
2 if opi is in a matchthen
3 Continue

end
4 Initialize current match
5 priority queue.push(opi)
6 while priority queue not emptydo
7 candidate op← priority queue.pop()
8 Add candidate op to current match
9 if current match does not meet constraintsthen

10 Removecandidate op from current match
11 Continue

end
12 foreach parent ofcandidate op do
13 if parent is not in a matchthen
14 priority queue.push(parent)

end
end

end
15 if accelerator implementation ofcurrent match is better than native implementation

then
16 Mark current match in instruction stream

end
17 current match.clear()

end

Algorithm 4.1: Dynamic discovery algorithm

tions are stored consecutively and later fetched. RePLay differs because instead of traces,

it uses frames, where highly biased branches are converted into control flow assertions. A

frame can be thought of as a large basic block, with one entry and one exit point. If any

of the control flow assertions are triggered, the entire frame is discarded. This property

of rePLay provides an excellent opportunity for subgraph discovery, since subgraphs are

allowed to cross control flow boundaries without compensation code. A frame cache also

allows for ample time between retirement and when the instruction stream will be needed

again.

The algorithm proposed for dynamic subgraph discovery and selection is shown in Al-

gorithm 4.1. The basic idea underlying this algorithm is to start at an operation not already
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in a match, and then grow that seed operation toward its immediate parent operations.

When parent operations are added to the seed operation, a newsubgraph is created for re-

placement, provided that the subgraph meets the architectural constraints of an accelerator.

These constraints include number of inputs/outputs, illegal opcodes, and subgraph outputs

cannot feed subgraph inputs (necessary to avoid deadlock).An operation’s slack (i.e., how

critical each operation is to the total dependence height ofthe DFG) is used to determine

the priority of adding operations to the match when multipleparents exist. This heuris-

tic is reminiscent of both Dijkstra’s shortest path algorithm or the ’maximal munch’ code

generation algorithm.

To better illustrate Algorithm 4.1, Figure 4.1C shows a sample run on the DFG in Figure

4.1A targeting the height-four CCA from from Table 3.4. The discovery algorithm starts at

the bottom operation of the frame with operation 13. Node 13 is popped and added to the

match at step 2. Next 13’s parent, node 12, is added to the queue and subsequently to the

current match. When 12’s parents are added to the queue in step 3, note how 11 is ahead

of 10 in the queue because it has a slack of 0 as compared to 5. Slacks for all operations

are given in Figure 4.1B. At step 5, node 9 would be added to thematch; however, the

resulting subgraph would require 5 inputs, which violates the architectural constraints of

the accelerator. Node 9 is simply discarded and its parents are ignored. This process

continues until the priority queue is empty at step 7 and a subgraph is delineated. After the

subgraphs are replaced, Figure 4.1D shows the resulting DFG.

This heuristic guides growth of subgraphs toward the critical path in order to reduce the

dependence height of the DFG. The reason subgraphs are only grown toward the parents of

operations is because this reduces the complexity of the discovery algorithm, and it guides

the shape of the subgraphs to match the triangular shape of the proposed CCA design.
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Note that this algorithm is just a greedy heuristic, and willnot perform as well as offline

discovery algorithms that have been developed.

4.3.2 Static Discovery

In order to reduce the complexity of the hardware customization engine, a method for

offline customization of applications is also proposed. This approach builds on traditional

compiler-based techniques for instruction set customization, and is shown in Figure 4.2.

Initially, the application is profiled to identify frequently executed frames. If the execution

engine uses microcode, the compiler converts the frames from sequences of architectural

instructions to sequences of uops to match what would be seenby the replacement engine.

The most frequently executed frames are then analyzed and subgraphs that can be benefi-

cially executed on an accelerator are selected. Then, the compiler generates machine code

for the application, with the subgraphs explicitly identified to facilitate simple dynamic

replacement.

Trace formation: A trace is a sequence of basic blocks that are highly likely tobe executed

sequentially [85]. Traces are identified by profiling the application on a sample input. The

trace structure is very similar to the frames that are identified and optimized by rePLay,

thus the compiler uses traces as a surrogate for the frames formed by the hardware.

Micro-operation generation: In order to identify subgraphs that can be replaced at run-

time, the compiler must convert its internal representation to match the run-time instruction

stream. For instruction sets such as x86, this implies converting instructions into micro-

operations, thereby creating a uop trace. The compiler alsokeeps track of mapping between

instructions and uops to facilitate later code generation.When targeting microarchitectures

without uops, this step is unnecessary.

Subgraph discovery: The subgraph discovery algorithm used for this chapter is based

on previous two works [32] and [7]. As described in [32], the subgraph discovery can

be logically separated into two phases: (a) candidate enumeration, that is enumerating the

candidate subgraphs that can be potentially become an accelerator instruction, and (b) can-

didate selection, that is selecting the beneficial candidates. The branch and bound technique
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JZ r15
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CCA_START 3, 4
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XOR r9 = r5, r3

MRG r11 = r8, r9
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CCA_END
JZ r15
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XOR r9 = r5, r3

MRG r11 = r8, r9

MRG r13 = r11, r12

AND r14 = r3, 0x20

MRG r15 = r13, r14

CCA_END
JZ r15
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CCA_START instr#, 4

CCA_END

Figure 4.3: Static accelerator instruction insertion

similar to [7] was used to solve the first phase. One additional constraint was added so that

all micro-operations for a particular instruction should be included in the subgraph. The

selection phase was modeled as an instance of the unate covering problem. All nodes in the

DFG corresponding to the trace under consideration have to be covered by the candidate

subgraphs so that the overall performance is maximized. Theratio of number of nodes in

the original DFG to the number of nodes in the DFG with candidate subgraphs replaced

with accelerator instructions was used as the performance metric. An additional weight

was given to nodes based on their slack so that subgraphs on the critical paths are more

likely to be selected.

Code generation: After the best subgraphs to execute on an accelerator have been iden-

tified, the compiler must generate machine code for the application. The objective of this

process is to organize the machine code in a manner that facilitates simple dynamic replace-

ment of the uops by accelerator control signals. To accomplish this two new instructions are

introduced into the ISA:ACCEL START (liveout, height) andACCEL END. AC-

CEL START and ACCELEND serve as markers for the instructions that comprise a sub-

graph to be mapped onto an accelerator. ACCELSTART has two operands: liveout is the

number of the uop that produces an externally consumed register value, and height is the
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maximum depth of the micro-operation subgraph. Note that the last uop of the subgraph is

assumed liveout, creating a maximum of two outputs. Height is used as a quick feasibility

test to efficiently support multiple accelerator variations.

For each uop subgraph, the code generator groups the corresponding macro-instructions

together. The assembly instructions are topologically sorted based on the structure of the

subgraph and placed sequentially in memory. an ACCELSTART instruction is pre-pended

to the list and an ACCELEND is post-pended, thereby isolating the subgraph and making

it simple for the hardware to discover. For any case where a accelerator enabled binary

needs to run on a processor without an accelerator, the ACCELSTART and ACCELEND

instructions are converted to NOPs.

The code generation process is illustrated in Figure 4.3, which is the x86 instruction /

micro-operation view of a DFG from the SPECInt benchmark crafty. The initial trace of

x86 code is shown on the left, which is then converted into micro-operations as shown in

the second box. A subgraph to be mapped onto an accelerator isidentified as shown by

the darker uops. The code generation process groups the micro operations contiguously,

topologically sorts them and inserts the ACCELSTART and ACCELEND operations as

shown in the third box. The sequence of micro-operations is then mapped back to aug-

mented x86 instructions that contain the sorted instructions together with the accelerator

instructions, thereby identifying the micro-operation subgraph at the instruction level.

4.3.3 Subgraph Replacement in Retirement

Replacement is the final step in making use of an accelerator,consisting of generating

the encoding bits for a given subgraph and substituting theminto the instruction stream.

As mentioned in Section 3.3, the encoding of accelerator instructions specifies the opcodes

for each node of an accelerator and the communication between each of the nodes. De-

termining the communication of nodes requires one top-downpass over the operations to

determine producer/consumer relationships. Placing individual operations at nodes in an

accelerator can also be done with one pass over the operations by placing each node in

the highest row that can support the operation while honoring data dependencies. In the
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case where back-to-back additions are needed, but not supported by an accelerator, move

operations are inserted to pass data from the first addition to the second.

As mentioned previously, the rePLay pipeline is an excellent place to perform subgraph

replacement for an accelerator. Taking advantage of framesallows the replacer to create

subgraphs that cross control flow boundaries. Additionallythe latency tolerance of a frame

cache allows ample time for replacement to take place.

4.3.4 Subgraph Replacement in Decode

The other alternative is to replace subgraphs during decode. This technique has smaller

hardware overhead - as the frame cache is unnecessary - but decode-based schemes are

more sensitive to latency and do not allow subgraphs to crossbasic block boundaries.

One possible solution to the latency issue is to take the burden of generating control

bits for accelerator instructions out of the decode stage. To accomplish this, we propose

allowing a certain number of subgraphs to be predefined in thebinary and saved into a

translation table when an application loads. The ACCELSTART instructions could then

just store a pointer into this table for the encoding bits, making replacement trivial. The

obvious benefit is that this scheme has very low hardware overhead. However, there is an

additional constraint that the number of subgraphs that canbe used for the entire program

is limited by the size of the translation table.

4.4 Experimental Evaluation

The proposed discovery and replacement schemes were implemented in SimpleScalar

[9] using the ARM instruction set. The machine configurationfor these experiments was

identical to the 4-issue processor with CCAs used in Section3.4. Within SimpleScalar,

some ARM instructions are broken into micro-operations, e.g., load multiple, which per-

forms several loads to a contiguous sequence of addresses. Many ARM instructions allow

for an optional shift of one operand, and it is important to note that these shifts are also bro-

ken into uops. Since our CCA does not support shifts, it wouldotherwise not be possible
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Figure 4.4: Percentage of dynamic instructions from the I-cache and frame cache

to execute these operations on the CCA.

Figure 4.4 shows the breakdown of instructions executed by the processor. The com-

bined gray and black portions of the bars represent the percent of dynamic instructions that

were provided by the frame cache. The black portion of the bars represents the fraction

of dynamic instructions that were executed on the CCA. When using retirement based re-

placement schemes, it is very important to achieve high coverage, since CCA instructions

only appear in the instruction stream from the frame cache. On average, 91% of instruc-

tions came from the frame cache in our simulations. The static discovery/retirement based

replacement scheme was able to replace 35% percent of the frame cache instructions (or

32% of the total dynamic stream) with CCA operations.

As expected, a larger fraction of replaced instructions generally leads to better attained

speedups. For example, 3des and rawdaudio both have a high percentage of their instruc-
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Figure 4.5: The effect of various discovery/replacement strategies

tions executed on the CCA, and they are among the applications with the highest speedups

in Figure 3.2. However, there is not a one-to-one correspondence between CCA coverage

and speedup. Since many replaced subgraphs may not appear onthe critical path, their

acceleration will only have a small impact on program execution time.

A second experiment is presented in Figure 4.5, comparing the three different discovery

and replacement strategies on processor performance. The first strategy employs static

offline pattern discovery and relies on a translation table in decode to replace instances in

the instruction stream. The second strategy performs dynamic discovery and replacement

in the fill unit of the frame cache. The third strategy is static discovery with replacement

done in the fill unit of the frame cache. All three of these strategies were run using the depth

4 CCA. A translation table size of 32 was chosen for the static-translation table strategy,

because previous work [117] showed that only marginal increases (<0.5%) in dynamic

coverage are possible beyond 20 patterns.

The most apparent trend in the graph is that the static-translation table strategy typically

does rather poorly when compared against the other two techniques. Investigation showed

that this was not because of a limited number of available subgraphs. Rather, this method
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lacks a rePLay-style mechanism to roll back the processor state, which effectively allows

subgraphs to span control flow boundaries. When any branch ina frame is mispredicted,

an assertion occurs and the frame is discarded. Therefore, the frame can be treated as a

large basic block for subgraph replacement. Without the rePLay mechanism, it is more

difficult to allow subgraphs that execute on the CCA to span control flow boundaries. For

this study, we conservatively do not allow any CCA subgraphsto span a branch. While this

approach is correct, a large number of potential CCA subgraphs are lost with this method.

Future work includes relaxing this constraint which will likely increase the effectiveness of

the static-translation table.

The graph also shows that, as expected, the static discoveryoutperforms dynamic dis-

covery with the frame cache. This is because the static scheme is using a much more

powerful discovery technique than the simple dynamic heuristic. However, the dynamic

heuristic does do quite well in a number of cases: 175.vpr, cjpeg, and rc4. One reason for

this is the underlying ISA. Since the ARM ISA has only 16 architecturally visible registers

(and several are reserved), the compiler often inserts a large number of loads and stores

into the code for spilling. Since the CCA cannot execute memory operations, the spill

code artificially limits the amount of computation in the dataflow graph. Larger amounts

of computation generally results in more options during subgraph discovery, implying that

the dynamic discovery algorithm is more likely to have its sub-optimality exposed. The

difference between static and dynamic discovery strategies is likely to be more pronounced

with an ISA that supports a larger number of registers and thus exposes more of the true

data dependencies.

4.5 Transparent ISA Customization Framework for Em-

bedded Processors

The beginning of this chapter looked at three different techniques for transparent in-

struction set customization. The first, a dynamic method wasproposed to identify and

remap subgraphs to accelerators in a trace cache fill unit [99]. The second, a static strategy
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identifies subgraphs offline during compilation and replaces the subgraphs with accelerator

instructions at run-time using a decode time translation table provided in the binary. Both

solutions have major drawbacks. The dynamic approach relies on a trace cache and its

associated hardware optimization system. Such hardware isgenerally not appropriate for

embedded processors due to cost and energy consumption. Further, run-time identification

of patterns is inherently constrained to simple approachesas it is performed during appli-

cation execution. The static approach offers no flexibilityin terms of supporting multiple

accelerators, as a fixed mapping to the CCA is assumed. Further, register encoding limi-

tations in the general purpose processor (GPP) instructionset severely restrict the size of

subgraphs that can map to the CCA.

The next few sections go into detail of the third approach: static selection of subgraphs

with replacement at retirement time. We present how this method provides anarchitectural

frameworkto efficiently support transparent instruction set customization in an embedded

general purpose processor, such as an ARM. Subgraphs targeted for acceleration are iden-

tified during compilation or as a post-link optimization andare marked in the program

executable. At run time, subgraphs are discovered, mapped,and executed on specialized

hardware blocks. The hybrid approach enables the combination of sophisticated offline

subgraph detection algorithms with the flexibility of online realization of the customized

instructions.

Several important challenges are addressed in the proposedframework. First, a plug-

and-play accelerator model is defined that consists of an augmented GPP pipeline with a

predefined interface to an optional hardware accelerator block. The augmented GPP is

designed and verified once. Second, the framework supports awide range of accelera-

tor designs including standard predefined accelerators (such as a CCA) and user-defined

hardware accelerators. Regardless of the specific accelerator (or lack thereof), a single

application binary is created and executed on all platforms. Third, the acceleration of com-

plex acyclic computation subgraphs is supported. Prior work often limits subgraphs to

linear chains, thereby precluding many of the performance benefits achieved with custom

instructions in ASIPs. Fourth, the limited expressibilityof the target instruction set archi-

tecture in terms of register names does not limit contents ofthe selected subgraphs. For
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Figure 4.6: A high-level overview of the executing with a CCA: (a) subgraph identification
and relocation and (b) setting up the CCA subsystem on the first invocation of a
subgraph for future uses

GPP instruction sets such as ARM with only 16 registers, register spills often limit sub-

graphs to small sizes, thus its important to overcome this limitation. Finally, a low-cost

and energy-efficient solution is selected to make the approach appropriate for embedded

computing.

The key benefit of this framework is that it provides a clean interface between a proces-

sor pipeline and an accelerator, enabling easy customization of accelerators for an expected

system workload. We demonstrate how the framework can process a dataflow subgraph to

generate accelerator instruction on the fly, without the costs associated with a trace cache.

Beyond the architecture framework, we also describe the compilation process, by which

subgraphs are identified in applications and communicated to the architecture framework.

4.6 Architectural Framework

The primary contribution of this work is a configurable architectural framework to facil-

itate transparent instruction set customization. This framework allows architects to design

hardware accelerators tuned for an expected workload and easily incorporate them into

a general purpose processor via a well-defined interface. The use of a workload-specific

accelerator allows manufacturers to build machines targeted toward many domains at the

cost of designing and verifying only a single general purpose core and a set of applicable

accelerators.
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This section begins with an operational overview of the framework. The remaining

subsections present a description of the proposed pipelinemicroarchitecture, the stages of

execution of dataflow subgraphs within this pipeline, and the system interface to support

subgraph execution on the system.

4.6.1 Overview

The objective of a framework for transparent instruction set customization is the support

of a hybrid form of execution where subgraphs are staticallyidentified and dynamically

realized. Static identification refers to offline compiler identification of potential subgraphs

for execution on custom hardware. Dynamic realization refers to hardware synthesizing

the custom instructions at run-time and offloading their execution to the CCA.

The high-level process is illustrated in Figure 4.6. Initially, a program is analyzed by

the compiler to identify critical computation graphs that can be mapped onto the CCA.

The operations that comprise the subgraphs are pulled out oftheir original locations and

placed into a separate function body as illustrated in Figure 4.6(a). The BRL, or branch

and link, instruction is used to denote a function call in this figure. Dynamic realization

is accomplished in two phases. Initially, the subgraph is executed on the hardware of the

uncustomized core, denoted as Execution 1 in Figure 4.6(b).During this execution, a hard-

ware engine determines the CCA configuration necessary to execute the entire subgraph

as an atomic unit. In essence, a complex opcode is synthesized on the fly. On subsequent

executions of the subgraph, the new complex opcode is substituted for the invocation of the

subgraph function. Thus, as shown in Figure 4.6(b), the standard hardware must execute

the first occurrence of the subgraph, while all subsequent executions will be relegated to

the CCA.

The combination of static identification and dynamic realization enables powerful of-

fline algorithms to optimize code for subgraph extraction. Further, a well-defined archi-

tectural interface introduces a layer of flexibility so thatpreviously designed and verified

cores can be easily integrated with multiple CCA designs. The remainder of this section

expands the details of the architectural framework to accomplish this model of execution.
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Figure 4.7: Transparent instruction set customization architecturalframework

4.6.2 Pipeline Organization

Figure 4.7 presents a block diagram of the proposed architecture framework. The base-

line processor, at the bottom of the figure, is augmented withthe CCA subsystem at the top

of the figure. The CCA subsystem consists of three major parts: the CCA itself, a configu-

ration cache, and a control generator. The control generator is responsible for examining a

sequence of retiring instructions and determining the required control signals for the CCA.

Each entry of the configuration cache specifies the necessarycontrol signals for configuring

the CCA, including the opcode implemented on each CCA function unit, the interconnect

between function units, and any literal values used by the subgraph.

The core processor is augmented in several places to interact with the CCA. Changes

primarily occur in the instruction fetch stage of the pipeline, where instruction stream sub-

stitution occurs. The branch target address cache, or BTAC (sometimes called BTB in other

literature), is extended to store additional information to decide when it is possible to sub-

stitute a CCA instruction for an invocation of a subgraph function. To accomplish this, a

CCA configuration cache entry and register indexes for values consumed by the subgraph
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are included in the BTAC. The decode and writeback stages arealso modified to provide

register inputs and accept register results from the CCA.

Central to the framework is a well-defined interface betweenthe core and the CCA sub-

system. The interface is designed so that the core can use multiple CCA designs. Since any

hardware placed on the CCA subsystem increases the cost of customization, the necessary

structures were integrated into the main pipeline as much aspossible while maintaining

the flexibility of the interface. The numbered arrows in Figure 4.7 denote the five interface

points between the CCA subsystem and the CPU. These points are the only communication

required between the CPU and the CCA subsystem:

1. The CCA subsystem generates entry information for the BTAC. This includes sub-

graph live-in register indexes and a configuration cache index where the control bits

are stored.

2. During instruction decode, the configuration cache indexis sent to the CCA subsys-

tem.

3. As previously mentioned, the decode stage also provides the CCA with values for

registers that are inputs to the subgraph.

4. The output values from the subgraph are relayed from the CCA subsystem back to

the CPU for register writeback.

5. After retirement, completed instructions are provided to the control generator so that

it can synthesize the CCA instructions from dataflow subgraphs.

4.6.3 Dataflow Subgraph Execution

A single instruction is added to the baseline instruction set to allow the compiler to

delineate patterns for execution on the CCA hardware. A discussion of how the compiler

uses these instructions follows in Section 4.7. The introduced instruction is dubbed BRL’

because its semantics are very similar to a branch-and-linkoperation commonly used for

subroutine calls. BRL’ is treated just like a normal branch-and-link instruction in processors

without a CCA subsystem: the current program counter (PC) isstored to a link register and
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control branches to the branch target address. The processor without a CCA will execute

the instructions in the target subroutine and return to the call site, just as it would for any

other subroutine. To a processor with a CCA subsystem, the BRL’ signifies the start of a

subgraph to execute on the CCA.

When the BRL’ is fetched from the instruction cache, its address is used to index into

the BTAC. The BTAC is a standard component of modern branch prediction schemes used

to hold the destination of a taken branch. In this framework,the BTAC is augmented to

contain two additional pieces of information for each BRL’ instruction. Register numbers

for the inputs to CCA instructions are one of the additional pieces of information. These

values are fed to the instruction decode stage for register reads. An index into the CCA

configuration cache is the second additional piece of information stored in the BTAC. The

configuration cache on the CCA subsystem contains the control bits for the CCA execution

unit. If a BRL’ hits in the BTAC, the configuration cache indexis passed through the

pipeline with other control bits and the PC simply increments to the next instruction (i.e.,

the branch is not taken because the BRL’ was recognized as a subgraph). This prevents

pipeline bubbles that would form if the branch target was taken. If the BRL’ misses in the

BTAC, then it is executed as a normal BRL and control branchesto the procedure.

Recall that control bits from the BTAC provide the registersthat are read during the

decode stage of execution. Since we assume only two registerreads are supported in one

cycle, it may be necessary to use multiple cycles to read all of the operands necessary for

the CCA instruction. Extra communication is provided allowing the decode stage to stall

the fetch unit in order to facilitate this multi-cycle register read. As the registers are read,

they are passed to the CCA system, keeping the width of the interface connection to a

minimum.

The BTAC also passes a configuration cache index through the decode stage and into

the CCA system. The configuration cache contains information pertaining to the routing

of the signals on the CCA, as well as the operations to performat each node in the CCA

grid. This information is separated from the BTAC for two main reasons. First, the number

of control bits is highly dependent on the structure of the CCA. Putting the configuration

cache in the core, as part of the BTAC, effectively restrictsthe size and organization of the
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Figure 4.8: Example of a CCA implementation

CCA, since the number of control bits is set a priori. Second,putting the control bits in a

separate configuration cache allows reuse of the same control bits for different subgraphs.

For example, if two separate subgraphs were identical except for the registers that provide

their inputs, they could share an entry in the configuration cache.

Once the registers and configuration data are passed along, the CCA executes the sub-

graph as a single operation and feeds the results to the writeback stage of the core. The

CCA operates like any other function unit in this regard. An example of a potential CCA

implementation can be seen in Figure 4.8. The CCA here is implemented as a grid-like

grouping of function units with full interconnect between adjacent rows. Because of de-

lay constraints, the two rows have slightly different opcodes available for execution, the

white nodes support add, subtract, compare, sign extend, and all logical operations, while

the gray nodes only support sign extend and logical operations. The design in this figure

was taken directly from our previous work [28], and a more thorough discussion of the

design rationale is described there. After execution on theCCA, results are written to the

register file and instructions are fed the the CCA control generator, which is responsible for
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mapping subgraphs onto the CCA.

4.6.4 Dataflow Subgraph Control Generation

Dynamically determining the control signals for the CCA is the most complex portion

of the CCA subsystem, and is best illustrated through an example, as shown in Figure 4.9.

In this example, the subgraph in the top left corner will be mapped to the CCA in the bottom

left corner. The nodes of this CCA are labeled A-O for easy reference. The assembly code

and subgraph in this example were taken from the Rijndael encryption algorithm.

Instructions are fed through the control generator one at a time after the writeback stage.

The two loads at the top of the example are fed through and ignored, since they are not part

of a subgraph. When the third instruction, a BRL’, is retired, it signals the beginning of a

subgraph and that the CCA subsystem should generate controlinformation for it. The PC

of the BRL’ is recorded so that it can be used to update the BTACwith the appropriate data

when the subgraph has been fully processed.

After the BRL’, instructions are mapped to the CCA grid as they enter the control gen-

erator. Determining where to map the instructions requiresseveral pieces of state, shown

in the right portion of Figure 4.9. The table at the top of eachstep is a content addressable

memory, or CAM, that maps a stack offset to a node that produces the value. The CAM

is used to determine which node in the CCA produced the spilled value when a different

operation in the gets its input from the stack. This allows the control flow generator to

eliminate spill code of transient values within the subgraph. The size of this CAM equals

the number of nodes in the CCA, since each node could potentially spill its produced value.

Since the proposed CCA subsystem does not support memory access operations, if the

compiler is unable to allocate registers to all of the transient variables in a subgraph, then

spill code would effectively partition the subgraph. This restricts performance improve-

ment simply because of register pressure and is our rationale for performing spill code

elimination.

The second piece of state in Figure 4.9 is the current producer table. For each register

in the machine, this table contains the node of the CCA that produced the most recent

92



A B C D E F

G H I J

K L M

N O

0

1

2

0

1

2

3

4

0

1

2

3

CCA

Node

Number

Register

Number

Step 1 Step 2 Step 3 Step 4

CCA Structure

SP

Offset Node

Current

Producer Live-Out

Live-In

R1

False

False

False

True

False

A

Step 5 Step 6

SP

Offset Node

Current

Producer Live-Out

Live-In

A

20

R1

False

False

False

True

False

A

SP

Offset Node

Current

Producer Live-Out

Live-In

A20

False

False

False

True

False

B

R1

R2

SP

Offset Node

Current

Producer Live-Out

Live-In

A20

R1

R2

False

False

True

True

False

B

G

SP

Offset Node

Current

Producer Live-Out

Live-In

A20

R1

R2

False

False

True

True

False

A

G

SP

Offset Node

Current

Producer Live-Out

Live-In

A20

R1

R2

False

False

True

True

True

A

G

K

AND R3, R1, #-4 ST [SP+20], R3 SEXT R3, R2 AND R2, R3, #3 LD R3, [SP+20] OR R4, R2, R3

Step 7

SP

Offset Node

Current

Producer Live-Out

Live-In

A20

R1

R2

True

False

True

True

True

A

G

K

AND R0, R4, #3

LD    R1, [ ]

LD    R2, [ ]

BRL’  SUBGRAPH

CMP   R5, #1

AND  R3, R1, #-4

ST   [SP+20], R3

SEXT R3, R2

AND  R2, R3, #3

LD   R3, [SP+20]

OR   R4, R2, R3

AND  R0, R4, #3

SUBGRAPH:

RET

N

Subgraph Code
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value computed for that register. The control generator also keeps two tables marking

live-in and live-out values of the current subgraph. The table of live-out values records

every time a value is produced by a CCA node. It is necessary toassume that all register

values created are live-out, and must be written to the register file, until proven otherwise.

The live-in registers record which registers are needed as inputs to the subgraph and are

communicated to the BTAC after control generation is complete. The live-in table is the

size of the maximum number of inputs allowed on the CCA execution unit, in this case

four. At the bottom of each step is a running count of the nodesin the CCA (marked in

dark gray) which have been allocated an operation by the control generator.

When the first instruction, AND R3, R1, #-4, enters the control generator, that instruc-

tion looks up each source operand in the current producer table. Since R1 has no current

producer, it is added to the list of live-ins. No other nodes in the subgraph create results that

this operation consumes, so the AND instruction can be assigned to node A in the first row

of the CCA. The current producer table is updated to reflect that R3 is generated by CCA

node A, and R3 is marked as potentially live-out. The opcode AND and constant -4 are

stored as the function executed by node A. The state after processing the AND instruction

is reflected as Step 1 in Figure 4.9.

Spill code for R3 is the next instruction entering the control generator. The compiler

guarantees that any spill code within the subgraph is only for transient values, and thus

can be optimized away without affecting the correctness of the program. In this example

the spill code stores R3 to stack offset 20. Since R3 is produced by node A, that node

value is stored with an index of the stack offset in the CAM. Future instructions that use

values spilled on the stack, use the CAM to determine which node in the CCA generates

the instruction’s inputs. Step 2 in Figure 4.9 shows the control configuration state after

mapping the store instruction.

Following the spill instruction, the SEXT instruction enters the control generator. Since

this instruction uses R2, and R2 has no producer in the current producer table, R2 is marked

as live-in and the instruction is placed at node B in the first row of the CCA. This instruction

produces a value for the spilled register R3, so the current producer of R3 is changed to

node B, and the live-out bit of R3 remains set. When the next AND instruction is mapped,
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a look up of its source operand R3 shows that node B produces it. This means that the

AND operation must be placed in the row below node B, in this case node G. The current

producer table is then updated to reflect that R2 is now produced by node G.

The next retired instruction is the spill code load for R3. The control generator looks up

the spill offset in the CAM and finds that node A generated the value being loaded. Thus,

the LD instruction resets the current producer of R3 to node A, and it remains marked as

live-out. After the spill code load, an OR instruction with sources R2 and R3 is processed.

Both of these sources are produced by other nodes in the subgraph. Since it is dependent

on node G, this operation must execute in the third row. It is placed at node K and updates

the current producer table accordingly. In addition, because the operation requires a source

from the first row (R3), a move must be inserted in row 2. Moves are necessary because

only adjacent rows in this CCA architecture are directly interconnected. This move is

marked in light gray at the bottom of step 6. Similar to previous instructions, the AND is

inserted in the last row of the CCA. The final instruction, an RET, marks the end of this

pattern.

Once the end of the subroutine is reached, the control data isnot yet ready to be writ-

ten to the BTAC and CCA configuration cache, since there existmore live-outs than are

supported by the execution system. The compiler is responsible for proving that only a

limited number of live-outs exist in each pattern. Therefore, to determine which ones are

not actually live-out, it is necessary to monitor the retiring instruction stream and unset the

live-out bit for any register that is defined before used.

Determining true live-outs can either be done by waiting forother instructions to natu-

rally kill potential live-outs, or by having the compiler insert artificial instructions to ensure

that false live-outs are killed quickly. Regardless of the strategy, the latency of killing live-

outs should prove irrelevant to system speedup as prior work[45] has shown that moderate

latencies are likely between trace retirement and recurrence.

If at any point the control generator cannot map a subgraph onto the underlying CCA

execution unit, then it simply aborts control generation for that pattern. This allows appli-

cations compiled for CCA subsystem 1 to run on CCA subsystem 2even when the second

may not support all the subgraphs that the first supports. Providing the dynamic control

95



DFG Subgraph

Identification

Code

Motion

Prepass

Sched

Subgraph

Expansion

Reg

Allocate

Subgraph

Compaction

Postpass

Sched

Expansion/

Function

Outlining

Assembly

File

Figure 4.10: Compiler flow diagram. New steps in the compilation process are shown in
gray.

generator as part of the CCA subsystem is key to the retargetability of the system.

The specific hardware structure and overhead of control generators is discussed in Sec-

tion 4.12.

4.7 Compiler Code Generation

In order to exploit the specialized CCA hardware, a CCA cognizant compiler requires

several new steps in the code generation process. The overall structure of the compiler flow

is shown in Figure 4.10; steps added for CCA compilation are gray in this figure. Nor-

mal code compilation has three major steps: scheduling, register allocation, and postpass

scheduling of spill code. At the beginning of compilation, aCCA compiler must deter-

mine which dataflow subgraphs should execute on the CCA. The remaining complexity of

compiling for a CCA stems from the fact that some phases of compilation need to treat the

subgraphs as atomic units and other phases need to understand each constituent node of the

subgraph. Each of these phases is explained in detail in the remainder of this section.

4.7.1 CCA Compiler flow

Subgraph Identification: Given a dataflow graph as input, subgraph identification

determines which portions should be executed on the CCA. This is very similar to the

problem of technology mapping in VLSI design. In the generalcase, where the subgraphs

are not necessarily trees, the problem is NP-complete [3]. Difficulty of the problem is the

primary reason subgraph identification is performed at compile time instead of runtime.
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Heuristics for solving subgraph identification have been the subject of much related

work [3, 80, 87]. This is a very complicated issue, discussedfurther in Chapter 5.

From a high level, subgraph identification is performed in two steps. First, subgraphs

are enumerated within a basic block or superblock, using a branch and bound algorithm.

This algorithm generates the set of all subgraphs capable ofbeing executed on the target

CCA. In the case that a block is too large for full enumeration, the block is intelligently

split into smaller pieces, each of which is fully enumerated.

After enumeration, the second step of subgraph identification is selecting which of the

enumerated subgraphs to execute on the CCA. At issue is that each operation in the dataflow

graph may appear in multiple subgraphs, yet each operation can only be mapped onto the

CCA as a member of one subgraph. Thus, it is necessary to either replicate operations or

a subset of subgraphs must be selected to maximize performance subject to the constraint

that each operation appear in only one subgraph. Beyond that, it is also necessary to de-

termine if the target CCA is capable of executing the subgraph more efficiently than the

constituent operations on the baseline processor. For example, if a subgraph consists of

two dependent ADD operations, and the latency of the target CCA is three cycles, then

executing that subgraph on the CCA is not worth the overhead.In this work, subgraph

selection is accomplished using a dynamic programming heuristic described in [32].

It is important note that subgraph identification is performed before register alloca-

tion. Performing subgraph identification after register allocation introduces many false

dependencies within the dataflow graph, and hinders the sizeof the subgraph that can be

discovered. Indirect evidence of these dependencies exists in the effectiveness of regis-

ter renaming logic in superscalar processors. Even though false dependencies are a major

problem, most related work performed subgraph identification after register allocation, so

it could be done at link-time or run-time.

Code Motion: After subgraph identification, the selected subgraphs are collapsed into

a single instruction. In order to effectively mark subgraphs as a special procedure calls

for the hardware, it is essential that the scheduler maintain the instruction order such that

the subgraphs appear contiguously in the code. Collapsing the subgraph into a single node

cleanly prevents operation reordering without altering the scheduler internals.
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Figure 4.11: The process of downward code motion as (a) the cross branch subgraph is
identified and (b) code is replicated in a new block

When collapsing the subgraph, a problem arises if the subgraph crosses branch bound-

aries. Previous work has shown that preventing subgraphs from crossing branch boundaries

greatly constrains the size of the subgraphs [131]. Thus, a decision must be made as to

where to insert the CCA node relative to the crossed branch. We consider the two extreme

possibilities: before the first branch and after the last branch. Both choices have ramifica-

tions which must be corrected in the code. The process of placing a CCA operation after

the last branch boundary is termeddownward code motionand placing the CCA operation

before the first branch boundary is termedupward code motion. Without loss of generality,

each form of code motion is considered for a single branch operation.

In downward code motion, the subgraph is assumed to span the not taken direction of

the branch. The problem that arises is there could potentially be portions of the collapsed

subgraph which need to be executed before the code at the branch target is executed. Con-

sider the example in Figure 4.11(a), which is a portion of thedataflow graph from the Ri-
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jndael encryption benchmark. The subgraph identified for collapsing is encircled in gray.

If the collapsed node is executed after the branch boundary,the application will execute

correctly as long as the branch is not taken. However, if the branch is taken, then there are

operations within the collapsed subgraph that did not execute but should have. These are

the operations from Figure 4.11(a) that are within the encircled gray subgraph and above

the dotted branch line.

After placing the collapsed subgraph below the branch boundary, the portion above

the branch must be replicated. Figure 4.11(b) shows this process when the branch target

is a block of code with a multiple entries. A new block is created with the code region

from the collapsed node. This code region then unconditionally branches to the original

branch target. In the case where the target block has only onecontrol flow entry point, this

new block is simply collapsed into the beginning of the branch target block. This process

is essentially the same as the bookkeeping code induced through downward code motion

used during trace scheduling [44].

Downward code motion easily extends to patterns which crossmultiple branch bound-

aries. Generally speaking, executing subgraphs that crossbranch boundaries increases the

size of the computation subgraphs executed on the CCA, whichimproves performance.

The trade off is increased code size from operation replication.

The alternative to downward code motion is to place the collapsed subgraph above the

branch boundary, or upward code motion. In this case, the CCAcould potentially execute

code that should never have been executed, and therefore speculates that the branch will

not be taken. If the branch is taken, then code must be inserted to repair the incorrectly

executed instructions. Additionally, operations that could potentially cause exceptions,

such as a divide or load operations, must not be speculatively executed to guarantee correct

execution.

The CCA compiler system implemented in this work exclusively uses the downward

code motion process, placing the CCA operation after the branch. This method always

produces functionally correct code regardless of excepting instructions.

One potential area where downward code motion has difficultyis if a value produced

by a CCA instruction is consumed by the branch. For example, in Figure 4.11(a), if the live
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out from the OR operation was used to determine whether or notthe branch is taken, then

this subgraph cannot be moved below the branch. In this case,the CCA compiler rejects

this potential subgraph as a target for collapsing.

Prepass/Postpass Scheduling:These two phases of compilation are unchanged from

the standard compiler. Later in compilation, the subgraphsare turned into special func-

tion calls using the BRL’ instructions, and thus, it is important to keep all of the subgraph

instructions contiguous in the schedule. This is the main reason why subgraphs are com-

pressed into atomic instructions.

Subgraph Expansion:While scheduling considers the subgraphs as atomic units, reg-

ister allocation needs to consider each instruction separately in order to properly assign the

registers to the internal values. Recall that processors without CCA subsystems must still

be able to execute the code generated for processors with CCAs. This mandates that the

subgraph must be register allocated. Without expanding thesubgraphs, it is difficult for the

register allocator to correctly construct live ranges and assign registers.

Register Allocation: Expanding the subgraphs before the register allocation allows this

phase of compilation to be relatively unchanged. Registersare simultaneously assigned to

all instructions, including the expanded subgraphs, just as they would normally be. The

only change has to do with the addition of some caller save code for the subgraph. Recall

that the subgraph will be implemented as a subroutine call using the BRL’ instruction. The

BRL’ will overwrite the link register, if it is not saved to the stack. Thus, a save and restore

of the link register are added on either side of the subgraph.No additional caller save code

is necessary, since we know exactly which registers will be used in the subgraph and have

already allocated appropriately. In calling conventions where the link register is already

callee saved in the function prologue, this additional codeis not necessary.

An optional optimization to register allocation is to intelligently prioritize the variables

to be allocated. Since the CCA control generator is capable of collapsing spill code of

transient values within subgraphs, there is no need to allocate a register for those values at

the expense of other variables. Giving these transient values very low priorities, guarantees

that register allocation will spill them if necessary, and effectively increases the number of

registers available to the machine.
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Subgraph Compaction: After register allocation, the full subgraph is again com-

pressed to an atomic node in preparation for postpass scheduling. This process is com-

plicated slightly by spill code that is introduced in relation to the subgraph. If a transient

value in the subgraph is spilled, e.g. R3 in Figure 4.9, then this must be combined into

the subgraph. By placing this spill code in the subgraph, thecompiler guarantees that the

results are not needed outside of the subgraph and these loads/stores can be optimized away

by the CCA subsystem. If a value that is live-out of the subgraph is spilled and also con-

sumed in the subgraph, then the store that spills the live outis replicated outside of the

subgraph. A copy of the store must remain in the subgraph so that the control generator

can determine which node produced the spill value. Once the subgraphs are compacted,

postpass scheduling is performed.

Function Outlining: After postpass scheduling, the subgraphs are again expanded into

their constituent nodes. Each subgraph is moved to a separate portion of the code and a

BRL’ is inserted at the former location of the subgraph. Thisprocess is referred to as

function outlining.

The technique of function outlining (sometimes called procedure abstraction) has been

used in previous work [71, 79] for code size reduction. Sincegroups of instructions are

often repeated at several different places within an application, function outlining can com-

bine these instances into one procedure. While the primary purpose of our function outlin-

ing is to delineate subgraphs for the hardware, it also provides us with code compression

to help offset some of the code replication from subgraphs that cross branch boundaries. It

should also be noted that the code size reduction could be improved by making the register

allocator more proactive in assigning the same register values to isomorphic subgraphs.

With function outlining complete, an assembly file is outputthat can be run on any

processor which recognizes the BRL’ instruction.

4.8 Architecture Framework Experiments

Our experimental system was built on top of the Trimaran compiler infrastructure [121].

Trimaran was retargeted for the ARM instruction set and augmented with a parameterized
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Figure 4.12: BTAC hit rate with various entry sizes

subgraph matcher to recognize dataflow subgraphs that map onto the underlying CCA in-

frastructure. Once the subgraphs are identified, code motion, scheduling, and the rest of the

steps described in Section 4.7 are performed. For evaluation, SimpleScalar [9] ARM was

modified to implement the CCA interface and configured to match the ARM-926EJ [5].

The ARM-926EJ is a fairly simple, in-order, five-stage pipelined processor with 16K, 64-

way associative instruction and data caches.

For our experiments, we evaluated a set of embedded and general-purpose benchmarks

consisting of five encryption related applications (Blowfish, MD5, RC4, Rijndael, and

SHA), and a subset of the MediaBench [75] and SPECint2000 applications. The range

of our application set was limited by the current capabilities of the ARM port of the Tri-

maran compiler suite.

BTAC Size Study: Before evaluating the effectiveness of the CCA, we investigated

several possible configurations for the BTAC, which holds the branch addresses and live-in
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information for the CCA subsystem. Figure 4.12 shows the BTAC hit rate given several

different BTAC sizes. The three lines indicate the average hit rates of the BTAC for the

encryption, MediaBench, and SPECint2000 applications. Interestingly, even with only 4

entries, the BTAC was able to capture a fairly large number ofthe marked subgraphs. For

example, in the encryption domain, 45% of the subgraphs werecaptured. In the remaining

experiments, we used to use a 512 entry, four-way associative BTAC, which achieved a hit

rate average of98.5% across all benchmarks.

Performance Study: Figure 4.13 shows the relative speedups that were achieved for

code compiled using both basic blocks and superblocks [89].For each benchmark, three

bars are shown. The first bar is the speedup of basic block codewith a CCA relative to basic

block code compiled without CCA subgraphs. Both of the next two bars are superblock

code with a CCA relative to superblock code compiled withoutCCA subgraphs. The first of

the two superblock bars is for code without code motion applied, which limits the subgraphs

by not allowing them to cross branch boundaries. The second superblock bar was generated
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by allowing the compiler to perform code motion.

All of the results in Figure 4.13 used the general purpose CCAdesigned in our previous

work [28] and shown in Figure 4.8. Synthesis results showed that this CCA used 0.61mm2

of die area, and gave average speedups for the basic block code of 1.60 for SPECint2000,

1.91 for MediaBench, and 2.79 for encryption applications.The encryption applications

showed the most improvement because they tend to have the largest amount of computation

between memory accesses, thereby creating larger subgraphs to map onto the CCA. The

results show that substantial performance gains across a wide range of applications are

realized with a relatively inexpensive compute accelerator that is tightly integrated into a

processor. The CCA provides a more efficient hardware substrate to execute the subgraphs,

which translates into performance gain.

One trend to note in this graph is that in many cases, using superblock code had a

smaller relative speedup than basic block code. Intuitively, superblock code should result

in the identification of larger patterns, which should directly translate into improved perfor-

mance over the basic block code. However, register pressureis an important performance

issue in the ARM processor. Forming superblocks caused an increased size in register live

ranges. This increase in live range size dramatically affected the amount of register spill

code which the compiler was unable to optimize using the CCA.

Applying the code motion techniques discussed in 4.7 to the superblock code resulted

in improved performance in most cases since adding the code motion optimization allowed

the compiler to find patterns which cross branch boundaries.In some cases, such as cjpeg

and g721encode, the performance improvement was as much as 50%, while a few other

cases suffered slight performance degradation. This performance degradation is a result of

code motion enlarging register live ranges as operations are pushed down below branches

and new code is inserted in the target blocks. Again this increases register pressure and

may lead to increased spill code.

Custom CCA Designs: Though a general purpose CCA design provides impressive

performance gains across a diverse set of applications, tailoring a CCA to either a single

application or a domain of applications can yield a more area-efficient design. In order

to explore the design of application and domain specific CCAs, the compilation process
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Figure 4.14: Application specific and domain specific CCA design results

was augmented so that when subgraphs are identified, the operations which comprise the

subgraph and their profile weights are passed to a scheduler.The scheduler then incremen-

tally builds a reservation table for each subgraph. After all subgraphs in the application

have been identified, the scheduler then builds the application-specific CCA structure as

the union of all of the necessary reservations for each subgraph meeting a minimal profile

weight requirement. Lastly, domain specific CCA structuresare built as the union of all ap-

plication specific CCAs synthesized for a particular domain. This approach is not intended

to produce optimal CCAs, but rather illustrate the flexibility of the proposed architectural

framework to support a wide variety of CCA designs.

Figure 4.14 demonstrates the structure of a set of automatically generated application

and domain specific CCAs. The top row of Figure 4.14 consists of one application specific
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Description Design Control Delay Cell area
Application specific CCA for RC4 Figure 4.14(a) 73 bits 4.10 ns 0.25 mm2

Application specific CCA for gsmdecodeFigure 4.14(b) 84 bits 6.04 ns 0.33 mm2

Application specific CCA for 181.mcf Figure 4.14(c) 55 bits 5.68 ns 0.26 mm2

Domain specific CCA for encryption Figure 4.14(d) 181 bits 5.69 ns 0.45 mm2

Domain specific CCA for audio Figure 4.14(e) 140 bits 5.86 ns 0.46 mm2

Domain specific CCA for SPECint Figure 4.14(f) 171 bits 6.05 ns 0.56 mm2

General purpose CCA from [28] Figure 4.8 172 bits 3.19 ns 0.61 mm2

Table 4.1: Synthesis results for various CCA designs

CCA designed for an application in each of the presented domains, encryption, audio, and

SPECint, respectively, while the bottom row consists of theset of domain specific CCAs.

Table 4.1 presents an analysis of the design costs for each ofthe CCAs shown in Fig-

ure 4.14. The table includes the number of control bits necessary to configure the CCA, the

delay through the CCA, and the area of the CCA. Each of these designs was synthesized

with Synopsys design tools using a 130nm Artisan library. In order to provide insight into

the cost of adding a CCA to an actual ARM core, we note that the actual area of an ARM-

926EJ is5.0 mm2. Also important to note is that the design for the general purpose CCA

from [28] was hand-tuned to minimize the number of levels including adders in the CCA

thus significantly reducing delay through the CCA. A more intelligent automated design

process for our application and domain specific CCAs would likely provide improvements

in terms of both area and delay.

Figure 4.15 demonstrates the performance improvements offered by the designs shown

in Figure 4.14. In this graph, the first bar indicates the performance of the general purpose

CCA relative to the baseline processor with no CCA. The second bar demonstrates the

speedup achieved by using the domain specific CCA designed for the domain that the ap-

plication belongs to, assuming a 1-cycle delay through the CCA. The third bar demonstrates

the performance of the same CCA as the second, but assumes a 2-cycle delay through the

CCA. The fourth bar shows the speedup of using the application specific design shown

in Figure 4.14 for each application in the same domain. This means that for applications

within the SPECint domain, all application specific speedupis calculated using the CCA
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Figure 4.15: Application specific and domain specific speedup. For the SPECint do-
main, application specific speedups are generated using theCCA designed for
181.mcf, for the audio domain using the design for gsmdecode, and for encrypt
domain using the design for RC4.

designed for 181.mcf, for the audio domain using the CCA designed for gsmdecode, and

for the encryption domain using the CCA designed for rc4. Thedecision to use the appli-

cation specific design for a variety of different benchmarkswas to show the applicability of

these designs across a set similar benchmarks. The last bar utilizes the same CCA structure

as the fourth, but assumes a 2-cycle delay through the CCA.

From Figure 4.15, it is clear that a domain specific CCA designcan closely match the

performance of the general purpose design at lower cost, provided that it can fit into the

1-cycle delay constraint. Further, the application specific CCA designs tend to closely track

the performance of their respective domain specific designswhile still proving beneficial to

a variety of other applications within their domain at nearly half the area overhead. It is im-

portant to note that the domain specific designs tend to provide marginal performance gains

over their application specific counter parts due to their ability to catch the few subgraphs

that had been pruned from the application specific CCA design.
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4.9 Architecture Framework Summary

In the previous sections, we presented the design and implementation of a flexible ar-

chitectural framework for supportingtransparent instruction set customizationusingcon-

figurable compute accelerators. The use of this framework reduces both system design

and verification costs. A general purpose core implementingthe pre-defined CCA inter-

face need only be designed and verified once. The core may thenbe augmented with

several different styles of compute accelerators offeringa wide range of systems with per-

formance characteristics tailored to an application or domain of applications. In addition

to the architecture framework, we also demonstrate the compilation process used to target

an application toward a particular CCA architecture.

Synthesis results demonstrate the feasibility of the proposed architecture framework in

terms of meeting the timing and area constraints of common embedded processors. Fur-

ther, experimental results demonstrate average performance gains of 2.21x for domain spe-

cific CCA designs, with modest cost overhead beyond the original processor design. The

range of applicability of these designs may be restricted orexpanded in order to both meet

area constraints and satisfy performance goals for a specified range of applications. The

proposed architectural framework provides system designers with a low-cost solution for

designing a wide variety of high-performance systems by augmenting a single core with

multiple implementations of an accelerator subsystem.

4.10 Control Generation for Dynamic Accelerator Target-

ing

The previous sections of this chapter discussed the system architecture and software

side of a statically identified - dynamically realized transparent instruction set customiza-

tion framework. In the remainder of this chapter we focus on the last step: efficiently

performing run-time control generation in hardware. We show that it is indeed possible

to generate the control quickly with low overhead for a divergent set of accelerators using

a single, abstract control generation model. To demonstrate this model, we give imple-
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mentation details showing how to generate control for the varied computation accelerators

previously proposed: a sparsely-connected array of combinational logic elements (CCA),

and a lookup-table based accelerator (PCFU).

The contributions of these sections are threefold:

• We describe a generalized framework for dynamic control generators, and show how

this framework can target varied types of computation accelerators.

• We provide characterizations of the hardware properties ofthese control generators,

showing that they have limited overhead over a baseline processor.

• We introduce novel algorithms for control generation targeting sparse arrays of com-

binational logic, and LUT-based accelerators.

4.11 Dynamically Mapping Architectural to Microarchi-

tectural Instructions

The objective of control generation is to dynamically create complex instructions by

mapping subsets of an application onto a set of hardware accelerators. In essence, this can

be thought of as the inverse to the micro-operation generation that is performed on Pentium

processors, wherein CISC instructions are broken down intoRISC-like micro-operations

for execution on the hardware. In contrast to micro-op generation, CISC-on-demand is only

applied selectively to those subgraphs that can be executedon the hardware accelerators

provided in the processor implementation. To accomplish dynamic control generation,

the pipeline needs to be extended to support subgraph identification and CISC operation

generation. Issues related to this process are described inthe remainder of this section in

the context of a generalized accelerator. Section 4.12 describes detailed control generator

implementations of two very different accelerator classes.
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4.11.1 Structure of a Control Generator

The cornerstone of transparently mapping instructions to accelerator subsystems is the

ability to generate control for the accelerators using instructions from the baseline instruc-

tion set. In essence, control generatorstranslate computation specified using the baseline

instruction set into an equivalent computation to be understood by the accelerator. Since

all hardware-based control generators perform this task, they share many common prop-

erties. This section describes those general properties, before several accelerator-specific

control generator designs are described in Section 4.12.

Figure 4.16 shows the structure of an accelerator control generator. Instructions enter

the control generator after retiring from the baseline pipeline. The instructions undergo

some legality checks to make sure that they are capable of being executed on the targeted

accelerator, and in parallel access some state based on their source operands. If the oper-

ation is legal, then the state from the source operands, the current configuration state, and

the instruction itself are used to generate an updated configuration. Updates to the config-

uration are used to modify the named state associated with the destination operands. Once

the entire computation is mapped instruction-by-instruction, this configuration will be sent

to the control cache, enabling the subgraph to execute on an accelerator. Details on the
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purpose and general structure of these components are described in the remainder of this

section.

Configuration State: The configuration state of a control generator essentially stores

the control, i.e., a description of the dataflow subgraph to be executed in a microcode lan-

guage the accelerator understands. As instructions enter the control generator, the config-

uration state is updated to reflect the computation of the subgraph that has been processed

up to that point.

The data stored within the configuration state is highly dependent on the structure of

the accelerator being targeted. For example, configurationstate might include lookup-

table (LUT) values in an FPGA style accelerator, MUX select values in an accelerator that

requires routing data to various computation units, or evenfull instructions if the accelerator

is instruction driven, such as SIMD engines.

Computation State for Named Variables: In addition to the current configuration

state of the accelerator, state is needed to correspond to named variables within the in-

structions. In most cases, named variables refer to registers specified in the incoming in-

structions. Intuitively, it makes sense that some state is required per register to generate

control for a computation, since registers provide the state to communicate data between

instructions in the baseline pipeline. Similar to the base pipeline, this named variable state

is used to determine the relationship and communication of different instructions within the

dataflow subgraph to be accelerated.

As previously mentioned, the named variables typically referred to in computation are

register numbers. This is not necessarily the case, though.Named variables can also in-

clude variables stored at any memory location that is constant within a subgraph invoca-

tion. For example, consider an instruction set that places spilled variables on the stack us-

ing stack-pointer-plus-displacement memory operations.If the stack pointer only changes

at function entry and exit (a common ABI convention), then the control generator can

guarantee every load or store to a particular stack offset corresponds to the same variable.

Using this knowledge, the control generator can recognize limited forms of communica-

tion through memory, which allows it to take advantage of anyadditional communication

bandwidth the accelerator may have over the baseline pipeline.
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Legality Checks: Legality checks simply determine if the incoming instruction can

be mapped onto the targeted accelerator. Since one binary can be used with any system,

subgraphs identified in the binary can may not be executable on this particular accelerator.

The legality checks ensures that the control is not generated if a particular subgraph is not

executable on its target accelerator.

Checking for functionality is a good example of a legality check. Suppose a control

generator was trying to map a subgraph with a divide instruction, but this particular accel-

erator did not have a divider. The legality check would ensure that no control was generated

for this subgraph, leaving the subgraph to execute on the baseline pipeline.

Configuration Update: Configuration update simply refers to the logic used to update

the configuration state of the control generator. This is thepart of the control generator that

does the translation from instructions in the baseline instruction set to one or more instruc-

tions fed to the accelerator. Configuration update producesa new accelerator configuration

based on the current configuration, the computation performed by the incoming instruction

(i.e., its opcode), and the relationship that this instruction has with the previous computa-

tion (i.e., state from named variables). If at any point the update logic cannot translate an

instruction, control generation for this subgraph is aborted, and nothing is written to the

control cache.

As would be expected, the function of the configuration update logic varies a great

deal with the structure of the targeted accelerator. For example, if targeting an array of

computation units, the configuration update would need to identify which node in the array

to map the incoming instruction onto, and set routing control values appropriately. If the

update logic was targeting an FPGA, it would need to generatenew LUT entries for that

computation substrate.

It is important to keep in mind that mapping computation ontomany accelerator styles

(e.g., placement and routing in FPGAs) is a computationallydemanding task. We are not

proposing to push this burden onto the configuration update logic. It is the responsibility of

the compiler that identifies the subgraphs to express that computation in a way that enables

the configuration logic to remain relatively simple.

Named State Update: After the updated configuration state has been generated, it

112



is necessary to compute the new state for the named variables. This named state update

logic generates information about the computation used to create the destinations of the

incoming instruction. That is, given that the input instruction has been mapped onto the

accelerator, this logic describes what information needs to be known about the destination

register to continue mapping. Using the example of an array shaped accelerator again,

this information might include which node of the array the destination can be found at.

State keeping track of where data values are produced enables future instructions to route

that data to the inputs of their respective computations (this is explained in more detail in

Section 4.12).

Optionally, the named state update unit can also perform a type of register renaming.

For example, if the control generator was targeting an accelerator that had 32 internal reg-

isters, but the baseline instruction set only had 16 addressable registers, the named state

update logic could perform renaming to take advantage of theadditional internal state,

despite the limitation of describing computation using only 16 registers in the baseline

instruction set.

Once the end of a subgraph is identified, the initial PC of the subgraph and configu-

ration state of the control generator is sent to the control cache ensuring that subsequent

encounters of the BRL-to-subgraph will be executed on the accelerator.

4.12 Implementation of Control Generators

To more firmly illustrate control generation techniques, this section details control gen-

erators for two styles of previously proposed hardware accelerators: (1) an array of combi-

national logic units proposed in [28], and (2) a lookup-table based accelerator introduced

in [129]. These accelerator styles were chosen because theysupport a wide range of com-

putational patterns (often a superset of previous work), and they represent very different

substrates for execution (e.g., LUT vs. fixed logic based). These factors make it likely that

the control generation techniques presented here are widely generalizable to many other

types of accelerators.
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Figure 4.17: Combinational logic arrays (a) with a full cross bar betweenrows, (b) with
moderate interconnect, and (c) with sparse interconnect

4.12.1 Arrays of Combinational Logic

When designing hardware to execute dataflow subgraphs, arrays of combinational logic

are a fairly intuitive solution. The height of the array allows for compression of operations

and reduces the need to write transient values back to the register file, while the width

of the array allows for exploitation of natural parallelismthat exists in the computation.

Using combinational logic as the building block also allowsone to exploit highly optimized

macrocells, as designing circuits for these functions has been the subject of decades of

research.

Based on these observations, previous work [28] analyzed the critical computation sub-

graphs in many common applications and proposed the combinational logic array in Fig-

ure 4.17 (a). This array has four inputs, two outputs, and four rows of logic. Each row has a

number of nodes that can execute operations, for example, the first row can execute ADD,

SUB, AND, and several other simple logic operations. The second row in Figure 4.17 (a)

can only execute bit-wise logic operations. In this design,each of the rows is connected

with a full crossbar. This design was found to execute more than 80% of the critical sub-

graphs across a wide range of applications.

While this design was shown to be effective from a software perspective, the crossbar

between rows of the array is a substantial problem. The full interconnect has several detri-
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mental effects. First, it implies several long wires in the design, which increases latency

through the array dramatically. As technology scaling continues, the affects of long wires

will only be exacerbated, meaning that combinational arrays must be restricted to local

communication in order to remain feasible. Second, each input writing to the interconnect

must drive a much higher capacitance. Third, high fan-in multiplexers are needed at the

input of each node. All of these factors either increase latency of the combinational array

or increase the die area and power consumption.

From a control generation perspective, the full crossbar ismuch easier to handle than an

incomplete interconnect. With a full crossbar in the accelerator, determining which node of

the array to map an instruction onto is simply a matter of determining the correct row, since

all nodes within a row are logically equivalent. A high-level algorithm for control gener-

ation with a full crossbar is illustrated in [30]. We extend that algorithm here, providing

more low level details, and enabling it to work without full crossbars between rows.

In this chapter, two new combinational logic arrays were designed, as shown in Fig-

ures 4.17 (b) and (c). The purpose of these designs is not so much to propose new acceler-

ator designs, as it is to demonstrate control generation strategies that are effective on array

based accelerators with sparse interconnect. Note that these designs support a superset of

the subgraphs targeted by some previous work [17, 102, 111] using similar execution sub-

strates, meaning that the control generation techniques presented here are applicable for

those accelerators as well.

4.12.2 Control Generation for Sparse Arrays of Combinational Logic

Generating control for sparse arrays of combinational logic is a challenging problem.

Essentially, the goal is to map the dataflow graph identified for acceleration onto the com-

putation array such that data values flow correctly from operation to operation. This can be

viewed as a simpler form of a place-and-route problem.

The control generator described here uses the template in Figure 4.16. For this type of

accelerator, the configuration state includes the operations performed at each node in the

array and the MUX values which select the inputs for each node. Computation state for
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named variables is a table with an entry for each named variable stating which node in the

array currently generates its value. The method in which this state is used is best described

using an example.

Suppose the code segment in the upper left of Figure 4.18 is tobe mapped to the combi-

national array in the bottom left of that figure. First, the ADD instruction enters the control

generator. The two sources, r1 and r2, are accessed in the named variable table to determine

which array nodes are currently generating their values. Both of these operands are not be-

ing produced, so they are mapped to the first two inputs. Next,the ADD operation is placed

using the configuration update logic. This instruction needs to communicate with both of

its inputs, and so it must be placed such that there is a communication path between it and

the first two input nodes. Determining the available communication patterns within the

subgraph is accomplished through a communication table. This table is indexed by node

ID and returns a bit vector of the nodes that it can potentially communicate with. In order

to determine which array cells an operation could be mapped to, the communication table

values for the producers of the operation’s sources are ANDed together . For example, the

ADD operation has sources produced by Input 1 and Input 2. Input 1 communicates with

node A and B, while Input 2 communicates with nodes A, B, C, andD. Thus, the ADD

operation can be placed on nodes A or B. In this example, we greedily select node A, and

update the configuration state to reflect that node A executesan ADD, and gets its inputs

from nodes input 1 and input 2. With the configuration updated, the named variable state

is updated to reflect that r1 and r2 are produced by nodes input1 and input 2, and r3 is now

produced by node A.

The use of the communication table in configuration updates was not necessary for

combinational arrays with full interconnect since any nodecould communicate with any

other node in the previous row. Interestingly enough, use ofthe communication table

actually simplifies control generation somewhat, despite the added layer of indirection in

the mapping process. Since all the communication information is available statically, the

logic in the control generator can be optimized to take advantage of the reduced possibilities

in mapping. This benefit is similar to an instruction scheduler with two possibilities being

faster than a scheduler with four possibilities, since the decision chain is shorter with only

117



two choices.

Returning to the example, once the ADD is mapped to the combinational array, the OR

now needs to be mapped. First, the sources are looked up in thenamed variable table and r5

is mapped to Input 3. Next, the producers of the two sources are used to determine which

nodes the OR can execute on; in this case those are C and D. The control generator greedily

selects C and updates the configuration. Subsequently, the named state table is updated to

show that r5 is produced by input 3, and r4 is produced by node C. Control generation then

continues with the SUB instruction. At this point, a problemarises during configuration

update because the producers for the SUB instruction (nodesA and C) have no successors

in common. To remedy this, two MOV instructions for the sources are placed at the front

of the instruction mapping queue with the SUB behind them. MOV r3, r3 is then mapped

to node G, since r3 is produced by node A. Similarly the MOV r4,r4 is mapped to node H.

When, the SUB comes to the head of the instruction mapping queue this time, the producers

of r3 and r4 have node K in common, and the SUB is mapped onto that node. After all the

subgraph operations are mapped onto the array, additional moves are inserted for the live

out values. Live outs are determined by observing the instruction trace after the subgraph

and keeping track of which operands generated in the subgraph are used before they are

killed. Once move insertion is complete for live outs, the configuration data is written to

the control cache, enabling execution of the accelerator.

The actual hardware implementation of the control generator is quite simple. The le-

gality check is merely a comparison to ensure that the opcodeof a given instruction is

supported. The configuration update logic requires a lookupinto the communication table,

an AND of those table entries, and then a priority encoder to find a one (if any) bit that is

set in the result. If no bits are set (i.e., no nodes are available), the configuration update

generates one or more MOVE instructions based on which nodesgenerate the sources. If

at any time the configuration logic cannot map an instruction, and adding MOVEs does not

help, control generation is simply aborted.

It is important to note that because of the greedy mapping heuristic, it is possible to

create patterns which can be executed on the combinational array, but cannot be mapped

by the control generator. This is a fundamental problem withmapping to arrays with sparse
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interconnect, since determining the mapping requires an intense search, which is much too

complicated to do in hardware.

4.12.3 LUT-Based Subgraph Execution

Lookup-tables are another attractive structure for developing hardware accelerators.

Because LUTs behave like truth tables, they have the capability to execute any number of

bit-wise operations as one simple table lookup. The Programmable Carry Functional Unit

(PCFU) [129] is an example of a hardware accelerator that takes advantage of this fact. The

PCFU is capable of executing subgraphs with any number of bit-wise operations and a pre-

defined number of additions/subtractions. While this may restrict the number of subgraphs

that can be executed compared to the combinational array, the simple interconnect of the

PCFU allows for lower latency, and lower hardware cost.

4.12.4 PCFU Control Generation

From a control generation standpoint, the key observation to take away from the PCFU

design is that mapping subgraph onto this type of accelerator requires translating compu-

tation into several lookup-table entries. Using the control generator from Figure 4.16 as

a template again, the named state for this control generatoris a LUT value used to gener-

ate that register as a function of the input registers. The legality check for this accelerator

ensures that opcodes in the subgraph are supported and that the maximum number of ad-

ditions is not exceeded (recall carry generators are a fixed resource and a separate one is

required for each addition). The configuration update logictakes the LUT entries for the

source registers of an incoming instruction, and creates a new LUT entry describing how

to compute the destination of that instruction as a functionof the subgraph inputs. The p

and g LUT values comprise the configuration state of this accelerator.

Figure 4.20 shows a high-level example of generating LUT entries for a dataflow sub-

graph. At the left of the figure is the subgraph to be mapped, and the bottom of the figure

shows the named state at various stages of the LUT generation. The PCFU being targeted

in this example can support two inputs and one addition operation, thus each output bit is
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  IsLivein  LiveinIdx  IsOutput  Out LUT  

r0          

r1  yes  0 no   

r2  yes  1 no   

r3          

r4  yes  2 no   

r5  yes  3 no   

r6  no   yes  0110011001100110  

r7  no   yes  1111000000000000  

r8          

r9      

r10          

r11          

r12  no   yes  1111011001 100110  

r13          

r14          

r15          

 

1010101010101010  1100110011001100    

 

  

1111000011110 000  1111111100000000  & 

0110011001100110  11111000000000000  & 

p1LUT  

g2LUT  p2LUT  

cin10 

cin20 

g1LUT  

 

inst1:  EOR r6,r1,r2  
inst2:  AND r7,r4,r5  
inst3:  ORR r12,r6,r7  

r5  r4  r2  r1  (r6)  
 in3  in2  in1  in0  in0  ^ in1  

0 0 0 0 0 
0 0 0 1 1 
0 0 1 0 1 
0 0 1 1 0 

0 1 0 0 0 
0 1 0 1 1 
0 1 1 0 1 
0 1 1 1 0 
1 0 0 0 0 
1 0 0 1 1 
1 0 1 0 1 
1 0 1 1 0 
1 1 0 0 0 
1 1 0 1 1 
1 1 1 0 1 
1 1 1 1 0 

r5  r4  r2  r1  (r7)  

in3  in2  in1  in0  in3 &   in2  
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0 0 0 1 0 
0 0 1 0 0 
0 0 1 1 0 
0 1 0 0 0 
0 1 0 1 0 
0 1 1 0 0 
0 1 1 1 0 
1 0 0 0 0 
1 0 0 1 0 
1 0 1 0 0 
1 0 1 1 0 
1 1 0 0 1 
1 1 0 1 1 
1 1 1 0 1 
1 1 1 1 1 

r5  r4  r2  r1  (r12 ) 

in3  in2  in1  in0  (in0  ^ in1 ) | ( in3 &   in2 ) 
0 0 0 0 0  
0 0 0 1 1  
0 0 1 0 1  
0 0 1 1 0  
0 1 0 0 0  
0 1 0 1 1  
0 1 1 0 1  
0 1 1 1 0  
1 0 0 0 0  
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1 0 1 0 1  
1 0 1 1 0  
1 1 0 0 1  
1 1 0 1 1  
1 1 1 0 1  
1 1 1 1 1  

Configuration Update LogicNamed Variable State

Configuration State

Figure 4.19: LUT generation example
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a function of three input bits (the two inputs, and the carry signal from the addition). The

three input bits imply that each LUT entry is eight bits in size, as23 = 8.

Subgraph mapping begins by looking at the And instruction inFigure 4.20. Initially,

the two sources, r1 and r2, have no LUT value in the named state. Since we are interested

in computing the output given all possible values for the inputs, named state r1 and r2 are

assigned LUT entries which ensure that all possible combinations of one and zero interact

(basically, the corresponding input columns of a regular truth table). This step essentially

begins to construct a truth table. Since r1 and r2 are live-ins, the LUT entries assigned to

them correspond to the input columns of a hypothetical truthtable that outputs to named

state r3.

Now that r1 and r2 have values in the named state, r3 is computed in configuration

update as the And of those two values, and is shown in Figure 4.20 (b). To reiterate, the

value of r3 in the named state table defines how to compute r3 given any values of r1 and

r2, exactly like a truth table.

The subgraph mapping then moves onto the Add instruction. The output of this instruc-

tion is dependent on r1, r2, and also on the carry signal generated during addition. Recall

that the carry-in signal is treated as an input to the computation so that we can leverage

fast carry generation hardware, and so that each output bit is not dependent on the value of

lower order input bits. Since the carry signal of this Add is an input, we assign it a value

in the named state table that corresponds to a third input column of the hypothetical truth

table. This step is shown in Figure 4.20 (c).

Now that the inputs are defined, the LUT entries for outputs ofthe Add operation must

be computed. Recall that a bit-wise add operation isr1i ⊕ r2i ⊕ cini−1. Using the LUT

entries for r1, r2, and cin, the configuration update logic computes this and places the

result in named state r4. Note that because cin is defined as aninput, the configuration

update logic did not need to perform an addition, only two exclusive-ors, which makes the

hardware very fast and simple.

Unlike the registers, the carry signal is generated using a carry propagation network.

Thus, it is necessary to definep andg, the inputs to the carry network. Recall thatp = a⊕b

andg = a ∧ b. Using the values in the named state table for r1 and r2, the configuration
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update logic simply computes the LUT values forp andg, and stores them into the named

state table. The named state table after this step is shown inFigure 4.20 (d).

Mapping continues with the Xor instruction. As with the previous two instructions,

we first check that all the inputs are defined. In this case, r3 and r4 already have valid

values in the named state table and this instruction does notgenerate a carry signal. Next,

the configuration update logic computes the LUT value of r5, by simply Xor-ing the LUT

values of r3 and r4. This is shown in Figure 4.20 (e). Now that the output, r5, is defined

as a function of r1, r2, and carry, we store the named state values of r5, p, and g as the

configuration of this subgraph. This example shows how the control generator is able to

perform logic mapping of a dataflow subgraph onto the PCFU substrate without the typical

complexity associated with FPGA mapping.

Figure 4.19 shows a more detailed example of generating LUT entries for a subgraph

of 3 instructions. The right portion of this figure shows the key components of a control

generator for the PCFU. Note that since LUTs are simply the hardware equivalent of a

truth table, LUT entries are2numberofinputs bits in size. In the example shown, the LUT

entries are 16 bits wide, because the accelerator supports four inputs (corresponding to r1,

r2, r4 and r5). The left portion of Figure 4.19 shows the truthtables that are conceptually

constructed during control generation. These are shown only for clarity and are not part of

the named or configuration state.

Each entry of the named state table has the following fields:

IsLivein This field is set to true when a register is live-in (r1, r2, r4 and r5 in this example).

LiveinIdx Each live-in register is given a unique live-in identifier. This identifier is used

to determine the initial value of the LUT for this register.

IsOutput This field is marked true if the register is an output operand of a previously

decoded instruction in the subgraph.

OutLUT Contains the LUT entry which computes the current value of a register as a

function of the inputs.
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Figure 4.21: Structure of the PCFU configuration update logic

In the example in Figure 4.19, when the instructioninst1 enters control genera-

tion, the correspondingIsOutput field is checked to see if a previous instruction pro-

duces an output in r1, becauseIsOutput is false, theIsLivein entry is set to true

andLiveinIdx is given the index 0. Because this operand is live-in, the corresponding

operand LUT entry is assigned a predefined value corresponding to the rightmost column

of the truth table (column in0); similarly the second operand is assigned a LUT entry cor-

responding to the second column of the truth table (in1). Note that if a register operand

is found to be already marked as live-in, the column given byLiveinIdx is assigned to

the operand’s LUT entry. The two operands’ LUT entries are then fed to the configuration

update logic. The resulting LUT entry, which corresponds tothe XOR of the two input

LUT entries, is stored in the output operand (r6) entry in thenamed state table, and the
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correspondingIsOutput entry is marked as true. The LUT entry calculated corresponds

to column r6, computed as the XOR of column r1 and r2. Similarly, instructioninst2 is

decoded and columns in3 and in4 of the truth tables are ANDed.The resulting LUT entry

is stored in the (r7) entry of the named state table. Finally,when processing instruction

inst3, the corresponding LUT entries are read from the named statetable (because the

IsOutput entry of the operands are marked as true) and sent to the configuration update

logic to calculate the LUT entry for r12. Once all the instructions are processed, the live-out

LUT entries and the p and g LUT entries are stored as the control for this subgraph.

As with the array of combinational logic, the hardware needed to generate control for

the PCFU is quite simple. The legality check ensures that theoperations to be mapped

are bit-wise, or that the maximum number of addition/subtraction operations in a subgraph

are not exceeded. The configuration update logic is for this control generator is shown in

Figure 4.21. Note that the each operation performed on the LUT entries is bit-wise, making

the critical path of this unit only 8 gates long. The named variable state table is the largest

portion of this control generator. Since each register is expressed as a function of the inputs,

it need2inputs bits per register for LUT entries. Beyond this, additional bits per register are

needed to determine whether or not each register is an input or an output to the subgraph.

The input bits are needed to ensure that subgraph inputs are routed to their appropriate LUT

selection slot, and the output bits are needed to select which LUT entries are used in the

PCFU configuration.

4.13 Evaluation of Control Generators

To perform this evaluation, we use a version of the Trimaran compiler [121] ported to

the ARM instruction set. During compilation, selected subgraphs were outlined as function

calls and assembled/linked using the GNU tool chain. The resultant binaries were then run

on a version of SimpleScalar [9] configured to model an ARM 926EJ-S processor [5].

Table 4.2 shows the results from synthesizing various subgraph accelerator designs, and

there associated control generators. These designs were synthesized (including place-and-

route) using Synopsys tools with an Artisan standard cell library in 0.13µ. The latencies
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Latency Area Area (% of
(ns) (mm2) ARM926EJ-S)

Comb. Array - Full Interconnect [28] (Figure 4.17 (a))5.52 0.225 10.26
Comb. Array - Medium Interconnect (Figure 4.17 (b))5.34 0.189 8.62
Comb. Array - Sparse Interconnect (Figure 4.17 (c)) 5.18 0.173 7.88
PCFU (4 inputs -2 outputs) 5.02 0.089 4.08
PCFU (4 inputs) 4.78 0.068 3.11
PCFU (3 inputs) 4.32 0.057 2.59

Array Control Gen. - Full Interconnect 5.03 0.045 2.08
Array Control Gen. - Sparse 4.50 0.038 1.75
LUT-based Control Gen. 4.07 0.162 7.36

Table 4.2: Synthesis Results for Dynamic Control Generators

shown are critical path of the design. Areas are given both inmm2 and as the percentage

area of an ARM926EJ-S core.

There are several interesting trends in the synthesis results to notice. First, pruning

the interconnect did not reduce the latency of the combinational arrays as much as we

had expected. Moving from full interconnect to sparse interconnect only resulted in 6.6%

reduction in latency. However, pruning the interconnect did result in a 30% reduction in

die area. As discussed earlier, pruning the interconnect also resulted in reduced latency and

area of the control generator.

When comparing with the combinational arrays with LUT-based execution units, the

first thing that jumps out is the relative size difference. This was to be expected, as the

combinational arrays replicate function units many times,while the LUT-based unit only

has a few lookup tables and two relatively simple carry-propagation networks. The price

for simplicity in the execution unit is payed for with the relative complexity in control

generation in terms of hardware cost, though. We found the LUT-based control generator

to be almost four times the size of the combinational array control generator. The primary

reason for this is the significant amount of additional statenecessary to generate to LUT

entries in the named state table. Despite the larger area, the LUT-based control generator

had a shorter critical path than the combinational array one. This is because the LUT-based

unit does not have the long decision networks associated with scheduling operations to
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various nodes in the combinational array.

Overall, the synthesis results show that control generators consume very little area over-

head, and are fast enough to fit into existing embedded processors without affecting the

clock cycle.

4.14 Summary

The drive to improve the performance and efficiency of processors will inevitably lead

to the use of more and more computation accelerators. However the traditional methods for

utilizing these accelerators, by changing the instructionset, are very costly. In this chap-

ter we have presented a generalized framework to dynamically generate control for these

accelerators using dataflow subgraphs expressed in the instruction set of the baseline pro-

cessor. Using these systems enables processors without accelerators to run the applications,

and processors with accelerators to run more efficiently.

Through the use of hardware synthesis, this chapter demonstrated the feasibility of the

proposed control generation framework on a variety of different computation accelerators,

including arrays of combinational logic and lookup-table based accelerators. The overhead

of dynamic mapping systems is typically less than 10%, even on simple embedded cores.

Transparent instruction set customization is an effectiveway to improve computation effi-

ciency without the overheads typically associated with instruction set modification.

127



CHAPTER 5

Compilation Techniques for Acyclic Accelerators

5.1 Introduction

Previous chapters have discussed the design and utilization of several types of acyclic

accelerators. The utilization techniques rely on statically identifying subgraphs to execute

on an accelerator, and then dynamically mapping those subgraphs to the micro-architecture.

An often overlooked challenge in this area, and the focus of this chapter, is the compiler

support that underlies static identification. The compilerhas two major tasks when compil-

ing toward accelerators. First, it must identify candidatesubgraphs in the target application

that are functionally executable on the accelerator. This is essentially a subgraph isomor-

phism problem. The second task is to select which candidate subgraphs to actually execute

on the computation accelerator. Candidates often overlap,thus the compiler must select a

subset to maximize performance gain. This task is essentially a graph covering problem.

Most prior solutions employ a greedy compiler approach for both subgraph identifica-

tion and selection [17, 60]. With this approach, a seed operation is selected and a subgraph

compatible with the accelerator is grown by iteratively including connected operations. As

with all greedy approaches, this approach can achieve sub-optimal solutions in both iden-

tification and selection. Further, disjoint subgraphs cannot be identified. However, for

small accelerators, such as 3-1 ALUs, this approach is sufficient due to the simple nature

of compatible subgraphs. The greedy approach breaks down for larger accelerators where

correspondingly larger subgraphs must be identified. As a result, others have proposed us-
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ing exact methods for subgraph isomorphism and covering [76, 80, 101]. These methods

grow exponentially in subgraph size, region size (the unit of operations analyzed by the

compiler), or both. As a result, exact methods can suffer from excessive compilation times

for moderate to large applications and hence may not be practically deployable.

In this chapter, we propose an approach for compiler subgraph mapping that combines

exact methods with a set of intelligent pruning techniques.Pruning ensures the proposed

algorithms are scalable in both application and accelerator size to provide practical compi-

lation times. The approach has three distinct phases. First, potential subgraphs are identi-

fied using bounded enumeration. Subgraph isomorphism is then used to remove candidates

that are not compatible with the computation acceleration.Finally, unate covering is used

to select subgraphs that will be executed on the accelerator.

This chapter makes the following three contributions:

• We collect and describe state of the art algorithms for accelerator compilation.

• New algorithms for identifying and mapping subgraphs optimally with intelligent

pruning mechanisms are proposed.

• The new algorithms are evaluated for both performance and compilation time across

a variety of accelerator designs, and the results are compared to a traditional greedy

approach.

5.2 Problem Statement and Related Work

Compiling an application to make use of computation accelerators boils down to two

steps:enumeratingportions of the application’s dataflow graph (DFG) that can be executed

on the accelerator, andselectingwhich portions to accelerate.

Enumeration consists of generating a set of subgraphs from agiven DFG, and determin-

ing if they can run on an accelerator. Generating a set of subgraphs is difficult, because the

number of subgraphs grows exponentially with the size of theDFG. Determining if the sub-

graphs can run on an accelerator, i.e., determining if they perform the same computation,

is essentially equivalence checking, which is NP-complete. The problem is further compli-
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cated if the accelerators perform a superset of the desired computation (e.g., an accelerator

for dot-products could also accelerate multiply-accumulates in an application).

Selecting which subgraphs to accelerate is also difficult. Typically, the selection prob-

lem is formulated to push as much computation as possible onto the accelerators, while

minimizing overlap between subgraphs. That is, given a set of enumerated subgraphs, find

the group which covers the largest portion of the DFG while minimizing the number of

nodes appearing in multiple subgraphs. This problem is alsoNP-complete and is quite

similar to the well known technology mapping problem in VLSIdesign. Clearly, mapping

applications to subgraphs is a challenging compilation problem.

To side step the problem, the vast majority of previous work relies on hand coding or

greedy heuristics. Work on automated accelerator design typically does not discuss strate-

gies for utilizing the accelerators with compilers. Work byHu [60] is typical of the greedy

solutions: a seed node is selected in the DFG, and is grows along dataflow edges. The

compiler then replaces that subgraph and repeats the process. Here enumeration consists of

finding a seed and growing it, while selection is implicit (any subgraph that is enumerated is

automatically selected). Other previous work [112] performs more thorough enumeration,

but still utilizes greedy selection.

More thorough, traditional code generation methods for tackling subgraph mapping

use a tree covering approach [3]. In this approach, all computation subgraphs potentially

supported by the accelerator must be constructed a priori. During compilation, the DFG is

split into several trees. The trees are then covered by the computation subgraphs using an

algorithm that minimizes the number of computation subgraphs used. The purpose behind

splitting the DFG into trees first is that there are linear time algorithms to optimally cover

trees, making the process very quick.

The major problem with this method is that many DFGs and accelerators are not trees.

It is shown in [76] that tree covering methods can yield suboptimal results, particularly

in the presence of irregular computation commonly targetedby embedded systems. To

overcome this, [76] proposes splitting all instructions into “register-transfer” primitives

and recombining the primitives in an optimal manner using integer programming. Work by

Liao [80] attacked the same problem, and developed an optimal solution for DFG covering

130



by augmenting a binate covering formulation. While both of these solutions are optimal,

they also have worst case exponential runtime, and do not report how long their algorithms

take.

Another major problem with previously mentioned approaches is that they also require

permissible accelerator subgraphs to be enumerated a priori. If an accelerator supports

a wide range of computations, such as an ALU pipeline, this can cause an explosion in

runtime.

Research in [101] describes a different way to look at the accelerator mapping problem.

In this work, an application is initially decomposed into analgebraic polynomial expression

that is functionally equivalent to the original application. Next, the polynomial is manip-

ulated symbolically in an attempt to use accelerators as best as possible. For example, a

polynomial could be expanded using function identities (e.g., adding 0 to a value) to better

fit an accelerator. This enables the algorithm in [101] to utilize subgraphs where the accel-

erator performs a superset of the desired computation. As with previous solutions, though,

this technique also has exponential worst-case runtime. Additionally, handling bit-wise

operations, e.g. XOR, using polynomials is difficult.

In this work, we present compilation techniques to exploit acyclic computation acceler-

ators. These techniques produce higher quality code than greedy heuristics, do not require

a priori enumeration of permissible accelerator subgraphs, and are scalable to large appli-

cations.

5.3 Compilation for Acyclic Accelerators

In this section, we present two different approaches for compiling to acyclic accelera-

tors. The first approach,greedy enumeration - immediate selection, is the most commonly

used approach today. This method generates a set of subgraphs by greedily adding vertices

to a seed vertex from the dataflow graph. Once the subgraphs are grown, they are immedi-

ately replaced in the application, thus the name immediate selection. The second approach,

full enumeration - unate covering selection, is our contribution. This approach generates

all possible dataflow subgraphs subject to certain constraints of the targeted accelerator.
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The set of subgraphs is then pruned down using subgraph isomorphism, and finally unate

covering selects which subgraphs end up being executed on the accelerator.

5.3.1 Greedy Enumeration - Immediate Selection

Greedy enumeration - immediate selection, or greedy algorithms for short, is the stan-

dard method used to target acyclic accelerators, e.g. in [17, 59]. The greedy algorithm

consists of two phases: seed selection and subgraph growth.Using a basic block as input,

the greedy algorithm selects an operation as a seed and triesto expand that seed by iterating

over dataflow edges. After growing one seed as much as possible, the subgraph is replaced.

Next, another seed is selected, and the same steps will be repeated. The algorithm finishes

when no more seeds are available for growing.

The first step in the greedy algorithm, seed selection, can beperformed in several differ-

ent ways. For example, operations closer to the critical path can be chosen as seeds before

less critical operations. Alternately, long latency operations can be selected before shorter

operations. In our experiments,changing seed selection order made very little difference

in the results of the greedy algorithm. In the results presented in this chapter, seeds were

chosen in topological order from the dataflow graph.

After choosing a seed, a subgraph consisting only of that operation is formed. The

algorithm then enters its second phase, subgraph growth, trying to expand this subgraph.

Neighbors of the seed operation will be temporarily added tothe subgraph one at the time.

If this temporary subgraph is executable on the accelerator, then the new node perma-

nently becomes part of the subgraph. If the temporary subgraph is not executable, then the

newly added node will be removed. When it is no longer possible to add neighbors to the

subgraph, it is immediately replaced in the application, and a new seed is selected from

operations not already appearing in a subgraph.

An example of the greedy algorithm is shown in Figure 5.1. Figure 5.1 B is a DFG

from the g721encode benchmark, used in examples throughoutthe chapter. Figure 5.1 A

shows the acyclic accelerator targeted in all of the examples. This accelerator, similar to

one proposed in [30], has 4 inputs, 2 outputs, and 15 functionunits organized in 4 rows.
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Figure 5.1: A. An acyclic accelerator from [30] targeted in examples. B.The first step in a greedy mapping algorithm on a basic block from
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The function units in each row can communicate with functionunits in subsequent rows,

meaning computations with dependence heights of up to 4 are supported. These function

units support the complete set of addition, subtraction, and bit-wise operators on two inputs.

Figure 5.1 B highlights the first subgraph enumerated using the greedy method. Oper-

ation 1 is chosen as the first seed. The subgraph then greedilyadds neighbor operations

3, 6, and 11. After adding operation 11, 13 can not be added since that would create a

subgraph with dependence height 5, which is not supported bythe accelerator. Operations

11’s neighbors 10 and 8 can be added, though, resulting in thefinal subgraph shown in

Figure 5.1 B. The process then repeats with operation 2 as a seed node. This subgraph is

grown along dataflow edges until it reaches operation 7, a multiply, which is not supported

by the accelerator. The final greedy mapping of the DFG is shown in Figure 5.1 D. Assum-

ing each operation and the accelerator each take one cycle toexecute, this mapping would

yield a speedup of17
3+4

= 2.43, since there are 3 unaccelerated operations and 4 accelerated

subgraphs.

5.3.2 Full Enumeration - Unate Covering Selection

Greedy subgraph mappers have proven reasonably effective in many previous works.

Certain combinations of greedy algorithms with more thorough strategies have also proven

effective [112]. In this section, we describe the full enumeration - unate covering selection,

or FEU, algorithm, which solves the mapping problem using exact formulations. This

effectively avoids local minima that inherently cause greedy algorithms to fail. When the

exact formulations are intractable, the FEU algorithm intelligently reduces the search space

to workable levels.

There are three main phases to the FEU algorithm: Enumeration, Pruning, and Cov-

ering. Enumeration generates a set of all subgraphs within aDFG subject to input/output

constraints of the targeted accelerator. Pruning takes theset of subgraphs and performs

additional checks based on functionality and interconnectto determine if the subgraphs

actually can be executed on the targeted accelerator. Once unusable subgraphs are pruned,

unate covering is used to select the best set of subgraph instances for the application being
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compiled.

Individually, each of these steps either grows exponentially with the size of the input

(enumeration) or is NP-Complete [46, 48] (pruning and covering). This has lead most re-

searchers to opt for (typically) linear-time greedy solutions. In the remainder of this section,

we will demonstrate that with careful design, each of these problems can be made tractable

for most practical cases in accelerator compilation. Additionally, we demonstrate in Sec-

tion 5.4 that using more powerful algorithms yields noticeable performance improvements

in code generated over the standard greedy approaches.

5.3.2.1 Full Enumeration

The first step of our compilation algorithm, enumeration, generates a set of dataflow

subgraphs that can potentially be run on a targeted accelerator. The primary reason for

enumerating subgraphs and then later pruning them is that itis much faster than performing

both steps at once. Very fast techniques for finding high-quality subgraphs for acceleration

have been widely developed in the past few years, e.g. [7, 15,27], and this strategy allows

us to take advantage of them.

Tractable subgraph enumeration is clearly a difficult problem. In the most general

sense, each operation in a DFG could either be included or excluded in a potential subgraph

instance, yielding2N potential candidates. Because of space restrictions, the large body of

previous work, and the relative complexity of pruning techniques, we will only describe

how to efficiently enumerate subgraphs at a high level.

Dataflow subgraph enumeration, as described in [7], can be thought of as a binary tree,

where each level of the tree represents an operation (op for short), and each branch in the

tree represents whether or not to include that op in a subgraph. The leaves of the tree

represent all possible subgraphs for a DFG. There are many keys to make full exploration

of this tree tractable.

The most important pruning technique is based on input/output restrictions of the ac-

celerator. Using the DFG from Figure 5.1 B as an example, if a targeted accelerator only

supported 2 inputs, then any candidate subgraph including ops 1, 2, and 5 would be infea-

sible. Enumeration can be bounded for each branch of the treethat includes all of those
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ops. Likewise, pruning for outputs greatly reduces the search space. Care must be taken to

avoid prematurely pruning the search space, though. For example, a subgraph with ops 6

and 10 would appear to have 2 outputs; however, if op 11 is included, then subgraph 6, 10,

11 only has 1 output, perhaps making it feasible.

Another important pruning technique is excluding candidates with values that leave and

then reenter the subgraph. Using Figure 5.1 B as an example again, this filter would prune

the search space of any subgraph that included ops 1 and 6 but excluded op 3. Subgraph 1,

6 could not be run on an accelerator since the output of 1 is used to calculate an input to 6.

These techniques make subgraph enumeration practical for the vast majority of blocks

within applications; there are some instances where additional steps are needed. In these

cases, the DFG is heuristically partitioned into several sub-blocks, which are then enumer-

ated. The implication of partitioning is that no candidate subgraphs can cross the boundary

(i.e., it cannot have ops in multiple partitions). Edges areheuristically weighted to guide

the partitioner so that is does not unnecessarily cut edges for important subgraphs. For

example, if the targeted accelerator did not support multiplication, then all the edges to and

from op 7 in Figure 5.1 B would be given weight 0, since the ops on either side of the

edges could never be in a feasible candidate. Edges bordering memory operations are also

given weight 0 whenever the accelerator does not support memory access. All other edges

are given weights based on characteristics such as whether or not they are on the critical

path. Previous work [27] demonstrated that this heuristic partitioning is an effective way to

prune the enumeration space without unnecessarily removing useful subgraph candidates.

5.3.2.2 Pruning through Subgraph Isomorphism

Pruning is the next step after enumeration generates potential subgraphs to execute on

the accelerator. The purpose of pruning is to ensure that candidates can actually be executed

on the accelerator. This takes into account functionality and connectivity issues that were

ignored during enumeration. Pruning occurs after enumeration because these checks are

either not possible to perform on partial candidates or too heavy weight to test in the middle

of filling in the enumeration search tree.

The method employed to determine that subgraphs can executeon an accelerator is
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based on subgraph isomorphism. Loosely stated, subgraph isomorphism determines whether

or not a subset of the nodes in a particular graph are equivalent to a separate graph. In this

case, a graph representing the hardware structure is constructed, and we attempt to find a

subset of hardware vertices that can create a computation equivalent to the subgraph cre-

ated in enumeration. If we find such a subset, then the dataflowsubgraph is capable of

being executed on the accelerator.

There are several pros and cons to pruning based on subgraph isomorphism. One ben-

efit is that, as with enumeration, a great deal of related work(e.g. [70, 122]) has looked at

developing heuristics to efficiently solve subgraph isomorphism the problem. We leverage

and improve upon these prior techniques in this work. An additional benefit is that pre-

vious work [124] has shown it is possible to automatically generate hardware subgraphs

from a microarchitectural specification. This means that a compiler targeting accelerators

could potentially be retargeted by simply feeding it a hardware description of the targeted

accelerator(s).

The main weakness of isomorphism-based pruning is that it isnot a true equivalence

check. That is, the algorithm only checks that nodes used to represent computation form

equivalent graphs, not that they are equivalent computations. For instance, if a DFG repre-

sented a multiplication by 10 as a left-shift by 3 bits, a left-shift by 1 bit, and an addition

of those two results, then this would not match an accelerator with a multiplier. In order to

recognize multiple graphs that perform the same computation, pruning would have to per-

form a full equivalence check, typically using BDDs [22] or their relatives (ADDs, BMDs,

etc.). This is far more computationally demanding than isomorphism for accelerators of

practical size, although an interesting avenue for future work.

The implications of this drawback are twofold. First, the compiler is at the mercy of

the software writer to a certain extent. If the algorithm is described in software differently

than it is represented in the hardware graph, then the compiler will be unable to accelerate

it. Second, accelerator hardware structures that do not mapdirectly to a single node in

the DFG are difficult to utilize. For example, a lookup-tableis capable of executing any

number of consecutive bit-wise operations from a dataflow graph. Because of this, there is

no equivalent (finite) hardware graph that can represent this computational structure.
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This drawback affects both full-enumeration-based and greedy-based compilation al-

gorithms, and leaves room for improvement. However equivalence-based algorithms have

proven intractable to this point.

Subgraph Isomorphism Algorithm: The algorithm used to determine isomorphism,

Algorithm 5.1, is based on the backtracking search strategydescribed in [70], which was

itself adapted from [122]. The basic idea is to recursively assign one vertex fromS ′, the

dataflow subgraph, to a corresponding vertex inT , the hardware graph, and check to ensure

that the corresponding edges exist in both graphs whenever anew node is assigned. In order

for this algorithm to be computationally feasible, a numberof steps are taken to prune the

search space.

Algorithm 5.1 takes the two graphsS ′ = (V ′, E ′) andT = (W, F ) as input. In this

formulation,V ′ represents operations in the subgraph,E ′ dataflow edges in the subgraph,

W FUs in the accelerator, andF wires connecting those FUs. Initially, a group of sets,

M , are calculated such thatMi contains all vertices inW that are of the same computation

type asvi. Essentially this step creates a set of candidate nodes inT that each node in

S ′ can be mapped to. For example, ifv1 was an ADD node,M1 would contain all hard-

ware nodes with addition capabilities inW . This process corresponds to lines 2 - 6 of

Algorithm 5.1. This information is passed to the procedureAssignV ertex, along with the

mapping function,x(), and the vertex number to be mapped.

TheAssignV ertex() procedure iterates over the set of possible nodes (line 13 inAl-

gorithm 5.1) testing that every edge inE ′ has a corresponding edge inF for the nodes

that have already been mapped (lines 15 - 17). Assuming that the edges match,x() is up-

dated and the sets of potential matches,M , is updated to reflect the new information. This

pruning of the search space is critical to avoiding an exponential explosion of runtime.

Two techniques are used to remove nodes fromM after a node assignment. The first,

lines 25 - 26, looks at all vertices inV ′ not yet assigned and checks to see if there is an

edge inE ′ connected to the node just assigned,v′
vertex. If such an edge exists, any nodes in

M that do not have a corresponding edge inF connected withx(v′
vertex) can be removed

from the search space. The second pruning technique (lines 28 - 29) leverages the fact that

that we are dealing with directed acyclic graphs. When creating S ′ andT , we impose the
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1 Input: S′ = (V ′, E′), T = (W, F )
2 foreachv′i ∈ V ′ do
3 foreachwj ∈ W do
4 if v′i is equivalent towj then
5 if dependenceheight(v′i) ≤ dependenceheight(wj ) then
6 Mi = Mi + wj

end
end

end
end

7 Call AssignV ertex(M, x, 1)

ProcedureAssignV ertex(M, x, vertex)
8 if vertex > |S′| then
9 if Subgraph outputs mapthen

10 return ISOMORPHIC
end

11 else
12 return NOT ISOMORPHIC

end
end

13 foreachmi ∈ Mvertex do
14 edges match = true
15 for j = 1..vertex do
16 if ev′

j
,v′

vertex
∈ E′ andex(v′

j
),mi

/∈ F then

17 edges match = false

end
end

18 if edges match then
19 setx(v′vertex) = mi

20 M ′ = M
21 assignment works = true
22 for j = vertex + 1..|V ′| do
23 M ′

j = M ′

j − mi

24 foreachmk ∈ M ′

j do
25 if ev′

vertex,v′

j
∈ E′ andex(v′

vertex),mk
/∈ F then

26 M ′

j = M ′

j − mk

end
27 else
28 if ev′

vertex ,v′

j
∈ E′ andk < i then

29 M ′

j = M ′

j − mk

end
end

end
30 if |M ′

j | == 0 then
31 assignment works = false

end
end

32 if assignment works then
33 result = callAssignV ertex(M ′, x, vertex + 1)
34 if result == ISOMORPHICthen
35 return ISOMORPHIC

end
end

end
end

36 return NOT ISOMORPHIC

Algorithm 5.1: Subgraph isomorphism algorithm
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restriction that the vertices must be topologically sortedwithin the setsV ′ andW . That is

to say,∀ verticesi, j such thati > j, ei,j /∈ E. In other words, there are no edges from

vertices with higher order numbers to vertices with lower order numbers. This restriction

allows us to remove any vertex fromM which has a lower order number than the currently

assigned order number, since no such backward edge can existin F . If at any point during

pruning, the size of the candidate set falls to zero (line 30), then it is no longer necessary

to examine this part of the search tree. These simple pruningtechniques turn an intractable

problem into one that is solved much faster than instructionscheduling in our compiler

infrastructure.

After pruning the search space,AssignV ertex is recursively called to assign the next

vertex using the reduced search space,M ′. This is continued until all nodes inS ′ map to

corresponding nodes inT though the functionx(), or it is proven that no such mapping

exists. Once a mapping is found, it is still necessary to ensure that the subgraph outputs

map onto the targeted accelerator (line 9). This is done using the Dijkstra’s algorithm to

find the shortest path between nodes producing the outputs and output ports. If this final

check passes, then the subgraph can indeed execute on the targeted accelerator.

Improvements Over Previous Work: There are three main algorithmic improvements

over previous proposed subgraph isomorphism algorithms. First, as previously mentioned,

vertex numbers are assigned topologically to ensure that ifan edge exists, then the source

number is less than the destination number. This dramatically reduces the sets of potential

candidates,M , shown in lines 28 and 29. A second improvement prunes the candidate sets

by using dependence height of the candidates (line 5 of Algorithm 5.1). Dependence height

refers to the maximum sized chain of operations that must precede a particular operation in

a graph. For example, in Figure 5.1 B, node 10 has a dependenceheight of 1 since 8 must

precede it, and node 11 has a dependence height of 3, since thechain 1-3-6 must precede

it. When creating a set of candidates for node 11 in the representative hardware graph, we

know that skipping any nodes with dependence height less than 3 will not affect the solu-

tion. This optimization also relies on the acyclic nature ofthe graphs we are matching, and

has a dramatic impact on the overall algorithm runtime. The last optimization developed

relates to the order in which nodes are assigned. Note that inAssignV ertex, pruning of
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Figure 5.2: A. Subgraph from Figure 5.1 A to be tested for subgraph isomorphism, B. hard-
ware accelerator being targeted

M occurs when edges do not match up in the current assign,x(). Thus, it is in our interest

to make these comparisons as high in the search tree as possible. This is accomplished by

assigning vertices in order determined by a depth first search (not shown in Algorithm 5.1).

Unlike the previous two optimizations, this technique is applicable for any style graph,

not just directed-acyclic graphs. These three optimizations contribute to make subgraph

isomorphism a tractable way to determine whether a dataflow subgraph can execute on a

hardware accelerator.

Subgraph Isomorphism Example: Algorithm 5.1 is complicated and we will hope-

fully clarify it through the example in Figure 5.2. Here, thedataflow subgraph in Fig-

ure 5.2 A (from Figure 5.1 B) is checked for subgraph isomorphism on the accelerator

graph in Figure 5.2 B. First, a set of candidates in Figure 5.2B is constructed for each

vertex in Figure 5.2 A. This corresponds toM in the algorithm. Examining vertex 3, we

see that only hardware vertex C can execute logic operations, soM3 = {C}. Likewise,

M6 = {F, G, H}, since any of those hardware vertices could execute the subtraction. The

candidate set of vertex 11,M11 = {G, H} demonstrates the dependence height pruning;

F can not be in the solution space because there is only one hardware vertex preceding it.

The remaining two sets,M8 = {A} andM10 = {D, E} are as would be expected.

After the candidate sets are computed, a depth first search isperformed (irrelevant of

edge directions) to determine the order in which to assign vertices. In this example, the
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assignment order will be 3, 6, 11, 10, and 8, although this ordering is irrelevant for cor-

rectness.AssignV ertex() is then called for node 3. The algorithm iterates over the setof

candidates,M3, and updatesM for neighbor vertices. In this case, since vertex 6 neighbors

vertex 3,M6 can remove candidatesG andH from its set, since neither of those vertices

are neighbors ofC. Next, AssignV ertex() is recursively called to map vertex 6. The

algorithm maps vertex 6 toF , since that is the only possibility inM6. lines 15-17 check to

make sure that since there is an edge from vertices 3 to 6, thatthere is also an edge from

C to F . VertexG is removed fromM11, since there is no edge fromF to G, and again

AssignV ertex() is called for vertex 11. Vertex 11 is mapped toH, and 10 is mapped toE

similarly to the previous two nodes. However, once 10 is mapped toE, then the candidate

setM8 becomes empty, since there is no edge fromA to E. This bounds the recursion of

AssignV ertex() which then tries another assignment for vertex 10,D. Using this map-

ping, vertex 8 can be assigned toA, which will complete the mapping, and prove that there

is a subgraph of Figure 5.2 B that is isomorphic to Figure 5.2 A.

5.3.2.3 Selection using Unate Covering

Now that we have a set of subgraphs thatcan execute on the accelerator, it is neces-

sary to select which onesto execute on the accelerator. In standard greedy solutions this

step is implicit within enumeration: each enumerated subgraph is automatically selected.

However, greedy selection can also be performed in conjunction with full enumeration al-

gorithms, e.g., in [112]. Greedy selection algorithms, typically map the largest subgraph

onto the application, remove all overlapping subgraphs from the consideration, and then

repeat this process until no more candidates remain. The problem with this technique is

that it will provide suboptimal results whenever the largest subgraph is not part of the best

solution.

Instead of a greedy heuristic, we propose solving the selection problem by convert-

ing it to a unate covering. Informally speaking, unate covering problems operate on a

Boolean matrix,M , where the rows represent vertices in a DFG, and the columns represent

subgraphs; if the value ofMi,j is true, this means that operationi occurs in subgraphj.

Traditionally, the goal of unate covering is to find a set of columns (or subgraphs) with
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1 Input: boolean matrixM , whereMi,j = true if op i is in subgraphj
2 Output: A vectorx, xi ∈ {0, 1}

n, whereMx = (1, 1, 1, ..., 1)T and
∑n

i=1 xi is minimized

3 Sort columns ofM in order of decreasing size
4 Call Cover(1, true,M, x)
5 Call Cover(1, false,M, x)

ProcedureCover(subgraph, add subgraph,M, x)
6 if add subgraph then
7 if (Mx&&(M1,subgraph,M2,subgraph, ...Mm,subgraph)T ) 6= (0, 0, 0...0)T then

// Subgraph overlaps with the partial solution.
8 return

end
9 xsubgraph = 1

10 if Mx == (1, 1, 1, ...1)T then
11 if

∑n
i=1 xi < fewest subgraphs then

12 fewest subgraphs =
∑n

i=1 xi

13 best solution = x

end
// Found a complete cover.

14 return
end

end
15 if subgraph + 1 > n then

// Did not find a complete cover after examining all subgraphs.
16 return

end
17 if

∑n
i=1 xi +

m−
Pn

i=1(Mx)i
Pm

i=1 Mi,subgraph
≥ fewest subgraphs then

// The current solution cannot possibly be the best.
18 return

end
19 Call Cover(subgraph + 1, true,M, x)
20 Call Cover(subgraph + 1, false,M, x)

Algorithm 5.2: Unate covering selection algorithm

minimal cost, such that each operation is covered at least once. In this formulation, the cost

of a subgraph could be a variety of things, such as the number of cycles needed to execute

on a particular accelerator, or the power consumed by a subgraph. As with using subgraph-

isomorphism for the pruning algorithm, unate covering was chosen for selection because

there is much prior work [36, 48] that can be leveraged to makethis problem tractable.
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Before discussing the details of our unate covering algorithm, Algorithm 5.2, it is im-

portant to point out one difference between this and standard unate covering formulations.

Traditionally, unate covering allows an operation to appear in multiple subgraphs in the

final code. However, we have made the decision to disallow this possibility. Allowing an

operation to appear in multiple subgraphs essentially replicates the computation and will

unnecessarily increase power consumption. The downside isthat disallowing overlapping

subgraphs can hurt application performance in multi-issueprocessors, and actually makes

the covering search space much larger. Performance loss canoccur because the first oper-

ation in a subgraph has to wait for all subgraph inputs to be ready before being executed.

The covering search space becomes larger, because many techniques to prune the space,

such as row and column dominance, no longer work if overlap isnot allowed. Despite the

changes resulting in a large search space, the runtimes of our unate covering formulation

are quite reasonable for practical inputs, and the resulting code will be more suitable for

embedded systems.

Unate Covering Algorithm: The algorithm used to perform unate covering based se-

lection is shown in Algorithm 5.2. As previously mentioned,input to the algorithm is a

m by n Boolean matrix, where rows correspond to operations and columns to subgraphs.

The output of this algorithm (line 2) is a vector,x, wherex5 = 1 means that subgraph 5 is

in the optimal cover. The constraintMx = (1, 1, 1, ..., 1)T ensures that each operation is

covered by exactly one subgraph. Note that the standard unate covering constraint, which

allows overlap, isMx ≥ (1, 1, 1, ..., 1)T . To ensure that a solution is feasible, each indi-

vidual node is inserted intoM as a subgraph which covers only one operation. OnceM is

constructed, the columns are sorted in decreasing order, and a standard branch-and-bound

algorithm,Cover(), is called.

Inside the functionCover(), one subgraph is considered for addition to the current

cover,x. Line 7 in Algorithm 5.2 tests to see if there is any overlap between the current

cover and the candidate subgraph. TheMx matrix multiplication creates a column vector of

the current set of ops that are covered, andMi,subgraph is the set of ops covered bysubgraph.

Assuming there is no overlap, line 9 addssubgraph to the current cover, and then the cover

is tested to see if all ops are covered (line 10). If a completesolution exists, the total number
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of subgraphs is calculated, and if it is the fewest yet seen, then this cover is recorder as being

the best. Note that if there were multiple accelerators in the targeted processor, the notion

of what constitutes the ’best’ solution (line 11), could easily be expanded to include column

weights based on which accelerator a subgraph used.

If the Cover() function does not have a complete solution, then two checks are per-

formed to prune the search space before recursing down the search tree (lines 15 - 18). The

first check, lines 15 and 16, simply bounds the search tree when it runs out of subgraphs

to examine: essentially when it hits leaves of the tree. The second check bounds when the

current solution cannot possibly be better than the best known solution, by computing a

lower bound on the partial cover,x. The first portion of line 17,
∑n

i=1 xi, calculates how

many subgraphs are in the current cover. The second portion of the equation calculates the

number of ops that still need to be covered and divides by the number of ops covered by

the current subgraph. Since the subgraphs are sorted by size, and they are always added

in order of decreasing size, the second portion of the equation gives a lower bound on the

number of additional subgraphs that must be added to complete a cover. The check in line

17 is the primary catalyst that makes this unate covering algorithm practical for subgraph

selection.

Improvement Over Previous Work: As with the isomorphism algorithm, there are

several techniques that make this unate covering algorithmfaster than previous solutions.

The first of these is sorting the subgraphs in order of decreasing size (line 3 of Algo-

rithm 5.2). While this does not directly prune the search tree, it does enable other pruning

techniques, such as the check in line 17. Another technique is to always branch toward

adding a subgraph first (lines 4 and 19). Since the subgraphs are sorted by size, and the

subgraphs are considered in consecutive order, always adding ensures the first complete

cover will be exactly the same as the greedy solution. The greedy solution provides an

excellent bound to quickly prune bad portions of the search tree. Additionally, by reaching

the greedy solution first, if the algorithm runs for an unusually long time, it can always be

stopped at without fear of a solution worse than greedy.

Unate Covering Example:Figure 5.3 A shows an example of the Boolean matrix,M ,

used in Algorithm 5.2. This matrix shows several subgraphs which were enumerated from

145



…

1

H

1

I

111116

11115

1

1114

1

1

113

11112

11111

1110

1119

118

116

15

114

113

112

111

JGFED…CBA …

1

H

1

I

111116

11115

1

1114

1

1

113

11112

11111

1110

1119

118

116

15

114

113

112

111

JGFED…CBA

Subgraphs

Ops

5

21

3

7

4

6

17

10

9

12

8

16

13

11

15
14

SUB

SHL

AND

SHL
SHL

ADD

MPY

ADD

SHRA

SHRA

SHL
SHRAAND

CMP

SHRA
SHRA

BEQ

Live In

Live out

Live InLive In

Live out

5

21

3

7

4

6

17

10

9

12

8

16

13

11

15
14

SUB

SHL

AND

SHL
SHL

ADD

MPY

ADD

SHRA

SHRA

SHL
SHRAAND

CMP

SHRA
SHRA

BEQ

Live In

Live out

Live InLive In

Live out

A. B. C.

Figure 5.3: A. Example unate covering problem used to map subgraphs fromthe basic block in Figure 5.1. B. The mapping solution with
full-enumeration and greedy selection. C. Mapping solution with full-enumeration and unate covering selection.

1
4

6



the basic block from g721encode, shown in Figure 5.1 B (many subgraphs were omitted

for space and clarity reasons). The subgraphs correspond toan accelerator which has 4

inputs, 2 outputs, and can support any computation with a dependence chain of 4 or less,

also pictured in Figure 5.1. Notice how the subgraphs are sorted from largest at the left

(covering 9 operations), to the smallest at right (each operation node as a subgraph).

Algorithm 5.2 begins theCover() function by adding subgraph A, the largest subgraph,

to its current cover,x. It will then recurse, and attempt to add B tox. The check at line 7

will prevent this since the two subgraphs overlap, and this branch of the search space will

be pruned. Eventually, by moving across the matrix in Figure5.3, subgraphs D, then G,

and then H will be added to A to create a complete cover, shown in Figure 5.3 B. This is

the full-enumeration / greedy-selection solution. Assuming a single-issue processor, and

the accelerator and each operation in Figure 5.1 B takes one cycle to execute, this solution

will yield a speedup of17
3+3

= 2.83 for this block. The first 3 in the denominator accounts

for the right-shift, branch and the multiply that were not accelerated, and the second 3 is

for each of the 3 subgraphs that will be run on the accelerator.

After the unate covering algorithm finds the greedy-selection solution, it will continue

to explore the search tree and eventually discover the coverB, D, E, shown in Figure 5.3

C. This solution uses fewer subgraphs, and will be recorded as the best solution on line 13.

The speedup for this solution is17
2+3

= 3.4. This compares quite favorably with the speedup

obtained using the greedy enumeration - immediate selection described in Section 5.3.1,

which is only 17
7

= 2.43. Clearly full-enumeration with unate-covering based selection can

provide benefits beyond greedy heuristics.

5.3.2.4 Algorithm Runtimes

There are clearly performance benefits to be had over the standard greedy algorithms,

if accelerators can be targeted using the NP-Complete formulations that we have proposed.

The major concern is that the proposed algorithms are tractable. Figure 5.4 demonstrates

that they are.

Each point in these graphs represents the algorithm runtimeof a basic block from 1 of

23 MediaBench [75] and MiBench [53] applications. The data was collected on a 3.06 GHz
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Pentium 4 machine with 1 GB of RAM. Applications were compiled to target an accelerator

with 4 inputs, 2 outputs, and a maximum dependence height of 4(similar to the accelerator

proposed in [30]). Each algorithm was given a maximum time limit of 600 seconds per

block, at which point the algorithm was terminated and reported the best solution seen up

to that point. Note thatonly one basic block out of 23 applicationsreached the time limit

for any of the proposed algorithms; that was during subgraphenumeration.

To summarize the results for subgraph enumeration, more than 99.8% of basic blocks

were fully enumerated in less than 1 second, and more than 99.95% of the blocks were

enumerated within 10 seconds. As mentioned previously, theworst case block timed out

at 600 seconds. This could be prevented by more aggressivelypartitioning the block into

smaller components. Overall, the enumeration algorithm runtime appeared to grow only

linearly with the size of the basic block, which makes this algorithm quite scalable.

Runtimes for the subgraph isomorphism algorithm were also very reasonable. More

than 99.7% of blocks had subgraph isomorphism checked for all their enumerated sub-

graphs in less than 1 second. The worst case runtime for any ofthe blocks was only 2.47

seconds.

As with subgraph enumeration, runtime for unate covering grew roughly linearly with

the size of its input matrix, and the runtime was very fast in the common case. More than

99.1% of blocks ran unate covering selection in less than 1 second, while 99.8% finished

in less than 10 seconds. The worst case runtime for any block was 60.25 seconds (this was

the same block that timed out during enumeration).

In terms of total runtime for all three phases (full enumeration, isomorphism based

pruning, and unate covering selection), more than 98% of blocks took less than 1 second

to run. 99.5% of basic blocks took less than 10 seconds total.The worst case block out

of the 23 applications took 11.03 minutes. If the worst case block proved too slow, the

algorithms were designed so that the timeout could easily bereduced without drastically

affecting solution quality.

These results show that if you are compiling to target an accelerator statically, runtime

is no reason to use a greedy heuristic.
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5.4 Experiments

In order to evaluate the proposed mapping algorithm, an experimental framework was

built using the Trimaran research compiler [121] and SimpleScalar ARM simulator [9].

Trimaran was retargeted for the ARM instruction set and subgraphs to be accelerated were

delineated in the in the binary. After compilation, the simulator recognized the subgraphs

and modeled them as if an accelerator was present. SimpleScalar was configured to repre-

sent an ARM-926EJ [5], a popular embedded core, with accelerators that took one cycle to

execute.

Twenty three benchmarks from MediaBench [75] and MiBench [53] were used to eval-

uate the proposed mapping algorithms. Omitted benchmarks were due to issues in the

compiler infrastructure. We tested three different algorithms: greedy enumeration - imme-

diate selection (as described in Section 5.3.1), full enumeration - unate covering selection,

or FEU (described in 5.3.2), and a hybrid technique full enumeration - greedy selection, or

FEG.

Algorithm Comparison: Figure 5.5 shows the speedups attained when using the three

proposed algorithms to target the 4 input / 2 output accelerator shown in Figure 5.1 A. The

figure illustrates that the FEU algorithm consistently outperforms greedy on nearly every

benchmark. On average, 9% more speedup was achieved by usingthe FEU algorithm in-

stead of greedy heuristics. Sha showed the largest difference between greedy and FEU, at

32% improvement. The primary reason for this is that full enumeration identified a consid-

erable number of disconnected subgraphs in the critical loop, which the greedy algorithm

was not capable of finding. Dijkstralarge showed the least improvement when moving

from greedy to FEU mapping. The important subgraphs in this benchmark only consist of

2 back-to-back instructions, thus the subgraphs are easy toidentify regardless of enumer-

ation algorithm. As would be expected, this shows that computation-bound applications

with very large basic blocks benefit more from the FEU algorithm than applications with

small basic blocks.

One surprising result illustrated in Figure 5.5 is that mostapplications did not benefit

from unate covering selection (comparing FEG with FEU). On average FEU performed
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Figure 5.5: Comparison of subgraph mapping algorithms

only 1% better than FEG. The main reason for this is that the critical computation in most

basic blocks was small enough that very few subgraphs were needed in the cover. If more

subgraphs are used to cover the DFG (for example, when targeting a smaller accelerator)

then greedy selection is more likely to get stuck in a local minima and perform worse.

However, when targeting the large accelerator from Figure 5.1 A, greedy selection is suffi-

cient. In two instances, djpeg and rijndael, unate coveringselection actually caused slight

performance decreases. This is due to second-order effects, such as cache alignment, that

are not modeled by the unate covering formulation.

Sensitivity to Targeted Accelerator:Figure 5.6 shows how much better FEU performs

relative to greedy when varying the targeted accelerator. Bars greater than one imply FEU

performed better than greedy and bars less than one imply greedy performed better than

FEU. The rightmost bar for each benchmark represents the 4 input / 2 output accelerator

used throughout this chapter. The 3 input / 1 output accelerator consists of two back-to-
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varying the targeted accelerator

back functions units, and is modeled after the accelerator used in [60]. The 4 input / 1

output accelerator has computation capabilities somewhere in between those two, with 7

function units and maximum dependence height of 3.

There are several interesting trends illustrated by this figure. First note that FEU out-

performs greedy much more on the 4/2 configuration than on the4/1 or the 3/1. This is

because accelerators with only one output preclude disconnected subgraphs from being

executed. If no disconnected subgraphs are allowed, then greedy can potentially find the

same subgraphs as full enumeration. This definitely helps narrow the gap between the two

algorithms. In general, larger accelerators with multipleinputs and outputs place more

importance on high quality subgraph enumeration.

A second important trend in Figure 5.6 is that FEU outperforms greedy more in 3/1

than in 4/1. The reason for this is that the small number of function units in 3/1 (only 2)

152



made the number of subgraphs selected in the final cover relatively high, compared with

4/1 which has 7 function units. Since more subgraphs are needed, more emphasis is placed

on the covering algorithm, and unate covering helped quite abit. The 4/1 accelerator

used relatively few subgraphs, that were all discoverable via greedy enumeration, therefore

FEU provided little benefit beyond the greedy algorithm. This shows that more thorough

strategies, used in FEU, are more important whenever the search space is very large.

A last trend to note in Figure 5.6 is that in certain benchmarks, such as md5, greedy

actually performed better than FEU. This is due to the partitioning used during full enumer-

ation. Recall that in order to make full enumeration tractable, very large blocks have to be

partitioned into smaller pieces. Occasionally this partitioning precludes full enumeration

from finding important subgraphs which can be discovered by greedy methods. This prob-

lem is pronounced in accelerators with only one output, since full enumeration cannot make

up ground on greedy by using disconnected subgraphs. Figure5.6 motivates future work

to develop faster enumeration algorithms and better partitioners to alleviate the problem in

md5.

Effect of Register Allocation: Figure 5.7 depicts the result of applying the FEU map-

ping algorithm before and after register allocation. This is an important result because many

researchers have proposed subgraph mapping in virtual machines or as a part of binary-to-

binary translation. The drawback of subgraph mapping afterregister allocation is that spill

code essentially breaks dataflow edges by placing values in memory. This limits the size of

computation subgraphs that can be identified for acceleration. On the other hand, register

allocation does introduce some additional computation (e.g. stack adjustments) that could

potentially be accelerated, which is not available when mapping before allocation.

On average, we found that performing subgraph mapping priorto allocation produced

results with 8% more speedup than post-allocation mapping.In some benchmarks, like

rawcaudio, the innermost loop was so small that there was no spill code, and so there was

no difference in the results. In other benchmarks, such as 3des, the amount of spill code

was so large that virtually none of the pre-allocation subgraphs were discoverable post-

allocation. Only one benchmark, epic, performed better from post-allocation mapping.

Figure 5.7 clearly shows that performing subgraph mapping pre-allocation in the compiler
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Figure 5.7: Comparison of mapping effectiveness before and after register allocation using
the accelerator from Figure 5.1 A

is much more effective than post compilation techniques, such as binary translation.

5.5 Summary

In this chapter, we addressed the inefficiencies of traditional compiler algorithms used

to identify candidate subgraphs for execution on computation accelerators. Several new

algorithms were developed to find better candidates for bothsmall and larger acyclic accel-

erators. Simulation results demonstrate that our proposedalgorithms achieve, on average

9%, and as much as 32% more speedup than traditional greedy solutions.

This work also quantified the effect of register allocation on subgraph identification.

On average, performing subgraph mapping prior to register allocation results in 8% more

speedup. This result implies that performing dynamic subgraph identification in hardware

or a virtual machine would significantly reduce the effectiveness of mapping algorithms.
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CHAPTER 6

Applying Transparent Customization to SIMD

Accelerators

6.1 Introduction

Single-instruction multiple-data (SIMD) accelerators are commonly used in micropro-

cessors to accelerate the execution of media applications.These accelerators perform the

same computation on multiple data items using a single instruction. To utilize these acceler-

ators, the baseline instruction set of a processor is extended with a set of SIMD instructions

to invoke the hardware. Intel’s MMX and SSE extensions are examples of two genera-

tions of such instructions for the x86 instruction set architecture (ISA). SIMD accelerators

are popular across desktop and embedded processor families, providing large performance

gains at low cost and energy overheads.

As with the acyclic accelerators discussed in previous chapters, SIMD accelerators are

a proven mechanism to improve performance. However, the forward migration path from

generation to generation is a difficult problem. SIMD hardware evolves in terms of width

and functionality with each generation. For example, the Intel MMX instructions operated

on 64-bit vectors and this was expanded to 128-bit for SSE2. The opcode repertoire is

also commonly enhanced from generation to generation to account for new functionality

present in the latest applications. For example, the numberof opcodes in the ARM SIMD

instruction set went from 60 to more than 120 in the change from Version 6 to 7 of the ISA.
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SIMD evolution in desktop processors has been relatively stagnant recently, with vector

lengths standardizing at 4 to 8 elements. However, this is not the case in embedded systems.

For example, the ARM Neon SIMD instructions were extended from 4 to 16 8-bit elements

in 2004 [12]. Other recent research [81] has proposed vectorlengths of 32 elements are the

most suitable size for signal processing accelerators. Undoubtedly, SIMD architectures are

still evolving in many domains.

Migration to new generations of SIMD accelerators is very difficult, though. Once an

application is targeted for one set of SIMD instructions, itmust be rewritten for the new

set. Hand-coded assembly is commonly used to exploit SIMD accelerators; thus, rewriting

applications is time consuming, error prone, and tedious. Programming with a library

of intrinsics can mitigate the problem to some degree, but software migration still requires

substantial effort, as code is usually written assuming a fixed SIMD width and functionality.

To effectively deal with multiple generations of SIMD accelerators and overcome the

software migration problems, this chapter investigates the use of delayed binding with

SIMD accelerators. Delayed binding is a technique used in many areas of computer science

to improve the flexibility and the efficiency of systems. For example, dynamic linkers de-

lay the binding of object code to improve portability and space efficiency of applications;

dynamic compilers take advantage of late binding to performoptimizations that would

otherwise be difficult or impossible without exact knowledge of a program’s runtime envi-

ronment [51]. Examples of delayed binding in processors include the use of trace caches

and various techniques for virtualization [99]. Just as in software systems, these techniques

aim to improve flexibility and efficiency of programs, but often require non-trivial amounts

of hardware and complexity to deploy.

Similar to the transparent instruction set customization presented in Chapter 4, delayed

binding of SIMD accelerators is accomplished through compiler support and a translation

system, collectively referred to asLiquid SIMD. The objective is to separate the SIMD

accelerator implementation from the ISA, providing an abstraction to overcome ISA mi-

gration problems. Compiler support in Liquid SIMD translates SIMD instructions into

a virtualized representation using the processor’s baseline instruction set. The compiler

also isolates portions of the application’s dataflow graph to facilitate translation. The
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translator dynamically identifies these isolated dataflow subgraphs, and converts them into

architecture-specific SIMD instructions.

Liquid SIMD offers a number of important advantages for families of processor im-

plementations. First, SIMD accelerators can be deployed without having to alter the in-

struction set and introduce ISA compatibility problems. These problems are prohibitively

expensive for many practical purposes. Second, delayed binding allows an application to be

developed for one accelerator, but be utilized by completely different accelerators (e.g., an

older or newer generation SIMD accelerator). This eases non-recurring engineering costs

in evolving SIMD accelerators or enables companies to differentiate processors based on

acceleration capabilities provided. Finally, SIMDized code in a Liquid SIMD system can

be run on processors with no SIMD accelerator or translator,simply by using native scalar

instructions.

The contributions of this chapter are fourfold:

• It describes an compiler/translation framework to realizeLiquid SIMD, which de-

couples the SIMD hardware implementation from the ISA.

• It develops a simple, ISA-independent mechanism to expresswidth-independent

SIMDization opportunities to a translator.

• It presents the design and implementation of a light-weightdynamic translator capa-

ble of generating SIMD code at runtime.

• It evaluates the effectiveness of Liquid SIMD in terms of exploiting varying SIMD

accelerators, the runtime overhead of SIMD translation, and the costs incurred from

dynamic translation.

6.2 Overview of the Approach

SIMD accelerators have become ubiquitous in modern generalpurpose processors.

MMX, SSE, 3DNow!, and AltiVec are all examples of instruction set extensions that are

tightly coupled with specialized processing units to exploit data parallelism. A SIMD ac-
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celerator is typically implemented as a hardware coprocessor composed of a set of func-

tional units and an independent set of registers connected to the processor through memory.

SIMD accelerator architectures vary based on the width of the vector data along with the

number and type of available functional units. This allows for diversity in two dimensions:

the number of data elements that may be operated on simultaneously and the set of available

operations.

The purpose of this chapter is to decouple the instruction set from the SIMD accelera-

tor hardware by expressing SIMD optimization opportunities using the processor’s baseline

instruction set. Expressing SIMD instructions using the baseline instruction set provides

an abstract software interface for the SIMD accelerators, which can be utilized through a

lightweight dynamic translator. This lessens the development costs of the SIMD accelera-

tors and provides binary compatibility across hardware andsoftware generations.

There are two phases necessary in decoupling SIMD accelerators from the processor’s

instruction set. First, an offline phase takes SIMD instructions and maps them to an equiv-

alent representation. Second, a dynamic translation phaseturns the scalar representation

back into architecture-specific SIMD equivalents.

Converting SIMD instructions into an equivalent scalar representation requires a set

of rules that describe the conversion process, analogous tothe syntax of a programming

language. The conversion can either be done at compile time or by using a post-compilation

cross compiler. It is important to note that the SIMD-to-scalar conversion is completely

orthogonal to automated SIMDization (i.e., conversion canbe done in conjunction with

compiler-automated SIMD code or with hand coded assembly).Further, no information

is lost during this conversion. The resulting scalar code isfunctionally equivalent to the

input SIMD code, and a dynamic translator is able to recover the SIMD version provided it

understands the conversion rules used.

Dynamic translation converts the virtualized SIMD code (i.e., the scalar representation)

into processor-specific SIMD instructions. This can be accomplished using binary transla-

tion, just-in-time compilation (JITs), or hardware. Offline binary translation is undesirable

for three reasons. First, there is a lack of transparency; user or OS intervention is needed

to translate the binary. Second, it requires multiple copies of the binary to be kept. Lastly,
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there is an accountability issue when applications break. Is the application developer or the

translator at fault?

JITs or virtual machines are more viable options for dynamictranslation. However,

in this chapter we present the design of a dynamic translatorusing hardware. The main

benefit of hardware-based translation over JITs is that it ismore efficient than software

approaches. This chapter shows that the translation hardware is off the processor’s critical

path and takes less than 0.2mm2 of die area. Additionally, hardware translation does not

require a separate translation process to share the CPU, which may be unacceptable in

embedded systems. Nothing about our virtualization technique precludes software-based

translation, though.

The remainder of this chapter describes a compiler technique for generating code for

an abstracted SIMD interface, coupled with a post-retirement hardware method for dy-

namic translation. Our high level processor architecture is presented in Figure 6.1. A basic

pipeline is augmented with a SIMD accelerator, post-retirement dynamic translator, and a

microcode cache that stores recently translated SIMD instructions. This system provides

high-performance for data parallel operations without requiring instruction set modifica-

tions or sacrificing binary compatibility.
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6.3 Liquid SIMD Compilation

The purpose of the compiler in the Liquid SIMD framework is totranslate SIMD in-

structions into an equivalent scalar representation. Thatis, the compiler re-expresses SIMD

instructions using an equivalent set of instructions from the processor’s scalar ISA. Since

the scalar ISA is Turing-complete, any SIMD instruction canbe represented using the scalar

ISA. The challenge is finding a representation that is easy toconvert back to SIMD and is

also relatively efficient in its scalar form.

It is important note that this chapter is not proposing any techniques that rely on the

compiler to automatically SIMDize a program. While the approach presented could be

used in conjunction with automatic SIMDization techniques[14, 40, 69, 73, 127], this is not

the main focus of this chapter. Instead, we focus on how to design a scalar representation of

SIMD code, which executes correctly on a baseline processor, and is amenable to runtime

translation.

6.3.1 Hardware and Software Assumptions

Before describing the actual strategy for abstraction, it is important to explicitly state

some assumptions about the hardware targeted and applications to be run. First, it is as-

sumed that the targeted SIMD accelerators operate as a separate pipeline. That is, the

SIMD accelerator shares an instruction stream and front endwith a baseline pipeline, but

has separate register files and execution units.

Second, it is assumed that the SIMD accelerator uses a memory-to-memory interface.

That is, when executing SIMD instructions, the basic sequence of events is a loop that loads

vectors, operates on them, and finally stores the vectors back to memory. In this model,

there is no register-to-register communication between the scalar register file and the vec-

tor register file, and intermediate data not stored to memoryis not accessed by successive

loops. The assumption that there is little register-to-register communication is validated

by production SIMD accelerators, which usually have eithervery slow or no direct com-

munication between the two register files. The lack of intermediate data communication

between loops is a side-effect of the types of loops being optimized; typically the ideal

160



size of a vector, from the software perspective, is much too large to fit into the hardware

vector size. For example, one of the hot loops in 171.swim operates on vectors of size 514.

If hardware supported vectors that long, then computed results could be passed between

successive loops in a register. Since the results do not fit inhardware, the results have to be

passed through memory.

A last assumption is that the application must be compiled tosome maximum vector-

izable length. That is, even though the binary will be dynamically adjusted based on the

vector width supported in the hardware, there is some maximum vector width supported

by the binary. The reason for this assumption is due to memoryalignment. Most SIMD

systems restrict memory accesses to be aligned based on their vector length. To enforce

such alignment restrictions, the compiler aligns data based on an assumed maximum width.

The binary can be dynamically adjusted to target any width less than the maximum. The

trade off here is code size may unnecessarily increase if an accelerator supports narrower

widths than the assumed vector size.

Implicit in this alignment restriction is the assumption that targeted accelerators only

support execution widths that are a power of 2 (i.e., 2, 4, 8, ...). That is, a binary compiled

for maximum vector width of 8 could not (easily) be dynamically translated to run on

a 3-wide SIMD accelerator, because data would be aligned at 8element boundaries in

the binary. Assuming SIMD accelerators are power-of-2 widths is certainly valid for the

majority of SIMD accelerators in use today.

6.3.2 Scalar Representation of SIMD Operations

With these assumptions in mind, we now discuss how to convertSIMD instructions into

an equivalent scalar representation. The conversion rulesare shown in Table 6.1. This sec-

tion will walk through the thinking behind these rules, and Section 6.3.4 will demonstrate

the usage of the rules in a detailed example.

The most natural way to express SIMD operations using scalarinstructions is by creat-

ing a scalar loop that processes one element of the SIMD vector per iteration. Since SIMD

accelerators have a memory-memory interface, vector loadscan be converted to scalar
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Analogous to category (7), but writes elements to 
memory in a different order, instead of reading them.

r3 = ld [bfly + ind]

r4 = add ind, r3

[addr + r4] = str r1

v1 = vbfly v2

[addr] = vstr v1

(8) Permutations; reorders 
vector elements

Compiler inserts a read-only array, bfly, into the 

code, which stores how elements are reordered. This 
is used in conjunction with the induction variable to 
bring in vector elements in a different order. Values 
stored in bfly uniquely identify a permutation.

r3 = ld [bfly + ind]

r4 = add ind, r3

r1 = ld [addr + r4]

v2 = vld [addr]

v1 = vbfly v2

(7) Permutations; reorders 
vector elements

Similar to category (5), r3 = add r1, ind

[addr + r3] = str r2

[addr + r1] = vstr v2(6) Base-plus-displacement 
memory accesses

Induction variable is used to select one vector 
element to operate on each iteration. Loads are used 
to identify width of vector elements (e.g., byte or 
halfword).

r1 = ldb [addr + ind]v1 = vldb [addr](5) Memory accesses

Loop-carried dependence (r1) is used to represent 

that each element of the vector is used to calculate 
one result.

r1 = min r1, r2r1 = vmin v2(4) Reductions; multiple 
vector elements used to 
compute one result

Compiler inserts a read-only array, cnst, into the 

code, which stores the unsupported constant. The 
array is indexed using the loop’s induction variable to 
retrieve the appropriate portions during each scalar 
iteration.

r3 = ld [cnst + ind]

r1 = or r2, r3

v1 = vor v2, 0xFF00FF00(3) Data parallel; operates 
on vector and non-scalar 
supported constant

Analogous to category (1)r1 = and r1, 0xFFv1 = vand v2, 0xFF(2) Data parallel; operates 
on a vector and a scalar 
supported constant

Used for any operation which has an equivalent 
scalar operation. SIMD operations without a scalar 
equivalent (e.g., saturating arithmetic) must construct 
an idiom using multiple instructions.

r1 = add r2, r3v1 = vadd v2, v3(1) Data parallel; operates 
on two vectors

CommentsScalar EquivalentExample SIMD InstructionSIMD Category
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CommentsScalar EquivalentExample SIMD InstructionSIMD Category

Table 6.1: Rules for translating SIMD instructions into scalar equivalents. Operands begin-
ning with r are scalars, operands beginning withv are vectors, andind is the
loop’s induction variable.

loads using the loop’s induction variable to select a vectorelement. The size of a vector’s

elements is derived from the type of scalar load used to read the vector (e.g., load-byte

means the vector is composed of 8-bit elements). Similar to memory accesses, data paral-

lel SIMD operations can be represented with one or more scalar instructions that perform

the same computation on one element of the vector. Essentially, any data parallel SIMD

instruction can be converted to scalar code by operating on one element of the SIMD vector

at a time.

If any SIMD operation does not have a scalar equivalent (e.g., many SIMD ISAs but

few scalar ISAs support saturating arithmetic), then the scalar equivalent can be constructed

using an idiom consisting of multiple scalar instructions.For example, 8-bit saturating ad-

dition could be expressed in the ARM scalar ISA asr1 = add r2, r3; cmp r1,

0xFF; movgt r1, 0xFF, where the move instruction is predicated on the compari-
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son. Vector masks, or element-specific predication, is another common example of a SIMD

instruction that would likely be constructed using idioms.A dynamic translator can rec-

ognize that these sequences of scalar instructions represent one SIMD instruction, and no

efficiency is lost in the dynamically translated code. Again, the scalar instruction set is

Turing-complete, so any data parallel SIMD instructioncan be represented using scalar

instructions. The only downside is potentially less efficient scalar code if no dynamic

translator is present in the system.

More complicated SIMD instructions, which operate on all vector elements to produce

one result (e.g., max, min, and sum), can be represented using a loop-carried register in

the scalar loop. For example, category (4) in Table 6.1 showshow a vector min can be

represented. If the result register is used both as a source and destination operand, and

no other operation definesr1 in the loop, thenr1 will accumulate the minimum of each

vector element loaded intor2. The dynamic translator can easily keep track of which

registers hold loop-carried state, such asr1 in this example, meaning vector operations

that generate a scalar value fit into the Liquid SIMD system.

One difficulty in using a scalar loop representation of SIMD instructions is handling

operations that change the order of vector elements. Permutation instructions illustrate this

problem well. Suppose a loop is constructed and begins operating on the first element

of two SIMD vectors. After several data parallel instructions, a permutation reorders the

vector elements. This means that the scalar data that was being operated on in one loop

iteration is needed in a different iteration. Likewise, thepermutation causes scalar data

from future (or past) iterations to be needed in the current iteration.

To overcome this problem, we propose limiting permutation instructions to only occur

at memory boundaries of scalar loops. This allows the reordering to occur by using loads

or stores with a combination of the induction variable and some statically defined offset.

Essentially, this loads the correct element for each iteration.

The last two rows of Table 6.1 briefly illustrate how reordering at memory boundaries

works. In category (7), a butterfly instruction reorders theelements ofv2. In order for the

scalar loop to operate on the correct element each iteration, the induction variable needs

to be modified by an offset, based on what type of permutation is being performed. The
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compiler creates a read-only array,bfly, that holds these offsets. Once the offset is added

to the induction variable, the scalar load will bring in the appropriate vector element. A

dynamic translator uses the offsets to identify what type ofpermutation instruction is being

executed in the scalar equivalent. Offsets are used, as opposed to absolute numbers, to

ensure vector width independence of the scalar representation.

The downside of using offsets to represent permutations is that element reordering oper-

ations must occur at scalar loop boundaries using a memory-memory interface. This makes

the code inherently less efficient than standard SIMD instruction sets, which can perform

this operation in registers.

Using only the rules in Table 6.1 and simple idiom extensions, we were able to express

the vast majority of the ARM Neon SIMD instruction [12] set using the scalar ARM ISA.

Neon is a fairly generic SIMD instruction set, meaning the techniques developed here are

certainly applicable to a wide variety of other architectures.

6.3.3 Limitations of the Scalar Representation

Although using this scalar representation has many benefits, there are some drawbacks

that must be taken into consideration. The most obvious is that virtualized SIMD code will

not be as efficient on scalar processors as code compiled directly for a scalar processor.

This is primarily because of the memory-to-memory interface, the lack of loop unrolling,

and the use of idioms. Performance overhead is likely to be minimal, though, since vectors

in the working set will be cache hits, the loop branch is easy to predict, and the idioms used

are likely to be the most efficient scalar implementation of agiven computation. Another

mitigating factor is that the scalar code can be scheduled atthe idiom granularity to make

the untranslated code as efficient as possible. As long as theidioms are intact, the dynamic

translator will be able to recover the SIMD code.

Another drawback of the proposed virtualization techniqueis increased register pres-

sure. Register pressure increases because the scalar registers are being used to represent

both scalars and vectors in the virtual format. Additionally, temporary registers are needed

for some of the proposed idioms. This could potentially cause spill code which degrades
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performance of both the scalar representation and translated SIMD code. Empirically

speaking, register pressure was not a problem in the benchmarks evaluated in this chap-

ter.

A last limitation is that there are two classes of instructions, from ARM’s Neon ISA,

which are not handled by the proposed scalar representation. One such instruction isv1

= VTBL v2, v3. In theVTBL instruction, each element ofv2 contains as an index for

an element ofv3 to write intov1. For example, if the first element ofv2 was 3, then

the third element ofv3 would be written into the first element ofv1. This is difficult to

represent in the proposed scalar representation, because the induction variable offset, which

defines what vector elements are needed in the current loop iteration, is not known until

runtime. All other permutation instructions in Neon define this offset statically, allowing

the compiler to insert a read-only offset array in the code.

The second class of unsupported instructions is interleaved memory accesses. Inter-

leaving provides an efficient way to split one memory access across multiple destination

registers, or to write one register value into strided memory locations. This is primar-

ily used to aggregate/disseminate structure fields, which are not consecutive in memory.

There is no scalar equivalent for interleaved memory accesses, and equivalent idioms are

quite complex.

The performance of certain applications will undoubtedly suffer from not supporting

these two classes. None of the benchmarks evaluated utilized these instructions, though,

meaning the most important SIMD instructionsare supported by the proposed scalar rep-

resentation.

6.3.4 SIMD to Scalar Example

To illustrate the process of translating from SIMD to the scalar representation, this sec-

tion walks through an example from the Fast Fourier Transformation (FFT) kernel, shown

in Figure 6.2. There is a nested loop here, where each iteration of the inner loop operates

on eight elements of floating point data stored as arrays in memory. This is graphically

illustrated in Figure 6.3. The compiler (or engineer) identifies that these operations are
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for(i = 0; i < 128; i += 8) {

for(j = i, n = 0; n < 4; j++, n++) {

k = j + 4;

tr = ar[i] * RealOut[k] -

ai[i] * ImagOut[k];

RealOut[k] = RealOut[j] - tr;

RealOut[j] += tr;

}

}

Figure 6.2: Example FFT loop.

suitable for SIMD optimization and generates vector load instructions for each eight ele-

ment data segment. The compiler then schedules vector operations for the loaded data so

that the entire inner loop may be executed as a small sequenceof SIMD operations, shown

in Figure 6.4(A).

Figure 6.4(B) presents the scalar mapping of the SIMD code from Figures 6.3 and 6.4(A).

Here, the vector operations of the SIMD loop are converted into a series of sequential op-

erations, and the increment amount of the induction variable is decreased from eight to

one, essentially converting each eight element operation into a single scalar operation. The

vector load and butterfly instructions in lines2-5 of the SIMD code are converted into a

set of address calculations and load instructions in lines2-5 of the scalar code. As pre-

viously mentioned, SIMD permutation operations are converted into scalar operations by

generating a constant array of offset values added to the loop’s induction variable. These

offsets are stored in the static data segment of the program at the labelbfly. The value

stored at the addressbfly plus the induction variable value is the offset of the element of

the data array to be loaded in the current iteration.

Most of the vector operations from the SIMD code in lines6-18 are data parallel,

and simply map to their scalar equivalent operation (e.g., thevmult on SIMD line 8 is

converted to amult on scalar line 8). However, there are a few considerations that need

to be made for non-parallel operations. Note that the operation on line17 of the SIMD

code requires that all of the values invf3 be computed before theor operation, because
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Figure 6.3: Vector representation of Figure 6.2.

thevbfly operation in line15 exchanges the position of the first and last vector element.

In order to properly transform this code segment into a set ofscalar instructions, the loop

body for the scalar code must be terminated early, and the operands to theor operation

must be calculated and stored in a temporary location at the end of each loop iteration, as

shown in lines18-19 of the scalar code. Then, a second loop is created (lines24-30)

that performs the serialor operation across each element of data. By separating scalar

equivalents in different loops, the compiler essentially performs a loop fission optimization

to ensure that certain SIMD operations are fully completed before others in the next loop

are started.
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A. B.

mov    r0, #0 # Initialize i

Top_of_loop_1:

ld    r1, [bfly + r0]       # Load offset for butterfly

add   r1, r0, r1

ld    f0, [RealOut + r1]    # Load the shuffled vectors

ld    f1, [ImagOut + r1]

ld    f2, [ar + r0]         # Load ar and ai

ld    f3, [ai + r0]

mult  f2, f2, f0            # Compute tr

mult  f3, f3, f1

sub   f6, f2, f3

ld    f5, [RealOut + r0]

sub   f3, f5, f6            # Add/Sub RealOut and tr

add   f4, f5, f6

ld    r2, [mask + r0]       # Load the mask values

and   f3, f3, r2            # Mask off the useless data

and   f4, f4, r2

ld    r3, [bfly + r0]

add   r3, r0, r3

str   [tmp0 + r3], f3       # Store butterflied data

str   [tmp1 + r0], f4       # Need to store other live data

add   r0, r0, #1 # Increment i

cmp   r0, #128

blt   Top_of_loop_1

mov   r0, #0                # Reset induction variable

Top_of_loop_2:

ld    f3, [tmp0 + r0]       # Load the butterflied data

ld    f4, [tmp1 + r0]       # Load the other live data

or    f0, f3, f4            # Combine the two vectors

str   [RealOut + r0], f0    # Store the result

add    r0, r0, #1

cmp    r0, #128

blt    Top_of_loop_2
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mov    r0, #0 # Initialize i

Top_of_loop_1:

ld    r1, [bfly + r0]       # Load offset for butterfly

add   r1, r0, r1

ld    f0, [RealOut + r1]    # Load the shuffled vectors

ld    f1, [ImagOut + r1]

ld    f2, [ar + r0]         # Load ar and ai

ld    f3, [ai + r0]

mult  f2, f2, f0            # Compute tr

mult  f3, f3, f1

sub   f6, f2, f3

ld    f5, [RealOut + r0]

sub   f3, f5, f6            # Add/Sub RealOut and tr

add   f4, f5, f6

ld    r2, [mask + r0]       # Load the mask values

and   f3, f3, r2            # Mask off the useless data

and   f4, f4, r2

ld    r3, [bfly + r0]

add   r3, r0, r3

str   [tmp0 + r3], f3       # Store butterflied data

str   [tmp1 + r0], f4       # Need to store other live data

add   r0, r0, #1 # Increment i

cmp   r0, #128

blt   Top_of_loop_1

mov   r0, #0                # Reset induction variable

Top_of_loop_2:

ld    f3, [tmp0 + r0]       # Load the butterflied data

ld    f4, [tmp1 + r0]       # Load the other live data

or    f0, f3, f4            # Combine the two vectors

str   [RealOut + r0], f0    # Store the result

add    r0, r0, #1

cmp    r0, #128

blt    Top_of_loop_2
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mov    r0, #0 # Initialize i

Top_of_loop:

vld    vf0, [RealOut + r0]  # Load the vectors

vld    vf1, [ImagOut + r0]

vbfly  vf0, vf0 # Butterfly RealOut

vbfly  vf1, vf1 #  and ImagOut

vld    vf2, [ar + r0]       # Load ar and ai

vld    vf3, [ai + r0]

vmult  vf2, vf2, vf0        # Compute tr

vmult  vf3, vf3, vf1

vsub   vf6, vf2, vf3

vld    vf5, [RealOut + r0]

vsub   vf3, vf5, vf6        # Add/Sub RealOut and tr

vadd   vf4, vf5, vf6

vmask  vf3, vf3, 0xF0       # Mask off the useless data

vbfly  vf3, vf3

vmask  vf4, vf4, 0xF0

vor    vf0, vf3, vf4        # Combine the two vectors

vstr   [RealOut + r0], vf0  # Store the result

add    r0, r0, #8 # Increment i

cmp    r0, #128

blt    Top_of_loop
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mov    r0, #0 # Initialize i

Top_of_loop:

vld    vf0, [RealOut + r0]  # Load the vectors

vld    vf1, [ImagOut + r0]

vbfly  vf0, vf0 # Butterfly RealOut

vbfly  vf1, vf1 #  and ImagOut

vld    vf2, [ar + r0]       # Load ar and ai

vld    vf3, [ai + r0]

vmult  vf2, vf2, vf0        # Compute tr

vmult  vf3, vf3, vf1

vsub   vf6, vf2, vf3

vld    vf5, [RealOut + r0]

vsub   vf3, vf5, vf6        # Add/Sub RealOut and tr

vadd   vf4, vf5, vf6

vmask  vf3, vf3, 0xF0       # Mask off the useless data

vbfly  vf3, vf3

vmask  vf4, vf4, 0xF0

vor    vf0, vf3, vf4        # Combine the two vectors

vstr   [RealOut + r0], vf0  # Store the result

add    r0, r0, #8 # Increment i

cmp    r0, #128

blt    Top_of_loop
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Figure 6.4: (A) SIMD code for Figure 6.2, and (B) scalar representation of the SIMD code in Figure 6.4(A).
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6.3.5 Function Outlining

Once the SIMD instructions are translated into scalar code,the compiler needs some

way to identify to the translator that these portions of codeare translatable. This is ac-

complished by outlining the code segment as a function, similar to the technique proposed

in [30]. The scalar equivalent code is surrounded by a branch-and-link and a return instruc-

tion so that the dynamic translator is notified that a particular region of code has potential

for SIMD optimization.

In the proposed hardware-based translation scheme, when a scalar region is translated

into SIMD instructions, the SIMD code is stored in the microcode cache (see Figure 6.1),

and the branch-and-link is marked in a table in the processor’s front end. The next time this

branch is encountered, the front end can utilize the SIMD accelerator by simply access-

ing the SIMD instructions in the microcode cache and ignoring the branch. This allows a

processor to take advantage of SIMD accelerators without explicit instruction set modifi-

cations.

One potential problem with marking translatable code regions by function calls is false

positives. This happens if the dynamic translator creates SIMD code for a function that was

not meant to be SIMDized. Typically, this is not a problem. ABIs require that functions

have a very specific format, which does not match the outlinedfunction format described

for scalarized loops. Therefore, the dynamic translator would not be able to convert most

non-translatable functions. Even if the translator was able to convert a function that it

was not meant to, the SIMD code would be functionally correctas long as there were no

memory dependences between scalar loop iterations. Remember, the translator is simply

converting between functionally equivalent representations. The scenario of a false positive

that produces incorrect code is highly unlikely, but the only way to guarantee correctness is

to mark the outlined functions in some unique way (e.g., a newbranch-and-link instruction

that is only used for translatable regions).
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6.4 Dynamic Translation to SIMD Instructions

Once a software abstraction is defined for describing SIMD instructions using a scalar

ISA, there needs to be a runtime method for translating them back into SIMD instructions.

As mentioned in Section 6.2, there are many valid ways to do this: in hardware at decode

time, in hardware after instruction retirement, or throughvirtual machines or JITs. The

software abstraction presented in the previous section is independent of the translation

scheme.

Here, the design of a post-retirement hardware translator is presented. Hardware was

chosen because the implementation is simple, it adds littleoverhead to the baseline proces-

sor, and hardware is more efficient than software. Post-retirement hardware was chosen,

instead of decode time, because post-retirement is far off the critical path of the proces-

sor. Our experiments in Section 6.5 and previous work [45] both show that post-retirement

optimizations can be hundreds of cycles long without significantly affecting performance.

The biggest downside to a post-retirement dynamic mapping is that the modified microcode

needs to be stored in a cache and inserted into the control stream in the pipeline frontend.

6.4.1 Dynamic Translation Hardware

From a high level, the translator is essentiallya hardware realization of a determinis-

tic finite automaton that recognizes patterns of scalar instructions to be transformed into

SIMD equivalents.Developing automata (or state machines) to recognize patterns, such as

the patterns in Table 6.1, is a mature area of compiler research. A thorough discussion of

how to construct such an automata is described in [2].

The structure of the proposed post-retirement dynamic translator is shown in Figure 6.5.

To prove the practicality of this structure, it was implemented in HDL (targeting the ARM

ISA with Neon SIMD extensions) and synthesized using a 90nm IBM standard cell pro-

cess. The results of the synthesis are shown in Table 6.2. Notice that the control generator

runs at over 650 MHz, and takes up only 174,000 cells (less than 0.2mm2 in 90nm), with-

out using any custom logic. This shows that the hardware impact of the control generator

is well within the reach of many modern architectures.
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Figure 6.5: Structure of the proposed translator.

Description Crit. Path Delay Area
8-wide Translator 16 gates 1.51 ns 174,117 cells

Table 6.2: Synthesis results for the dynamic translator.

Partial Decoder: The dynamic translator has three inputs from retirement of the base-

line pipeline: the instruction that retires (Inst in the figure), the data value that instruction

generated (Data), and an abort signal (Abort). Initially, the retired instruction is fed into

a partial decoder to determine the source/destination operands and the opcode. It is only a

partial decoder, because it only needs to recognize opcodesthat are translatable; any other

opcodes simply cause translation to abort mapping of the outlined function. This portion of

the control generator is potentially redundant, dependingon the microarchitecture, because

the retiring instruction will likely have the opcode and operand information stored in its

pipeline latch. Overall, the partial decoder only takes a few thousand cells of die area, so it

does not contribute significantly to the area overhead; it isresponsible for 5 of the 16 gates

in the critical path, though.
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Legality Checks: The purpose of the legality checker in the dynamic translator is to

monitor the incoming instructions to ensure that they can betranslated. Scalar instructions

that do not map to a SIMD equivalent generate an abort signal that flushes stateful portions

of dynamic translator. In addition to an instruction generated abort signal, there is an abort

signal from the base pipeline to stop translation in the event of a context switch or other

interrupt. The legality checker also signals when a subgraph has finished mapping, enabling

the microcode buffer to write the translated SIMD instructions into the microcode cache.

The legality checks only comprise a few hundred cells and do not occur on the critical path.

Register State: After the instruction is decoded, the operands/opcode access some

state, which is indexed based on the register numbers. This register state determines the

translation strategy for this instruction. Register statealso includes whether or not a register

represents a scalar or vector, the size of the data currentlyassigned to the register (e.g., 16

or 32 bit), and previous values stored in the register. The opcode and register state comprise

the data used to transition between states in the automata.

Overall, there are 56 bits of state per register and a large number of MUXes in the

register state module, making this structure comprise 55% of the control generator die

area. Since the ARM ISA only has 16 architectural integer registers, 55% of the die area

is likely proportionally smaller than dynamic translatorstargeting architectures with more

registers. Additionally, this structure will increase in area linearly with the vector lengths

of the targeted accelerator.

The previous values assigned to each register are stored in the register state in order to

identify operations that are defined using offsets in memory(e.g., the butterfly instruction

discussed in Section 6.3). Recall that instructions that reorder elements within a vector

are encoded by loading an offset vector, adding the offsets to the induction variable, and

using that result for a memory access. In the dynamic translator, load instructions cause

the data to be written to the destination register’s state. When a data processing instruction

uses that destination register as a source operand, (e.g., to add those values to the induc-

tion variable), then the previous values of the address are copied to the data processing

instruction’s destination register state. When a memory access instruction uses a source

that has previous values recorded in the register state, this signals that a shuffle may be
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v1 = vdp v2, v3r1 is a vector; size of r1 is 
recorded

r2 is a vector; r3 is a vector(6) r1 = dp r2, r3

[r1 + r2] = vstr v3r1 is a scalar; r2 is the induction 
variable

(4) [r1 + r2] = str r3

v3 = vpermute v3

[r1 + r2] = vstr v3

r1 is a scalar; r2 is a vector; r2 
has values loaded into it from an 
offset array

(5) [r1 + r2] = str r3

The input instruction is 

passed unmodified
all source operands are scalar(11) any other instruction

r1 = add r1, SIMD_widthr1 is the induction variable(10) r1 = add r1, #1

r1 = vred v2r1 is a scalarr1 is a scalar; r2 is a vector(9) r1 = dp r1, r2

None: this format is 

only used to update the 

induction variable for 

permutations.

r1 is a vector; values loaded into 
r2 are copied to r1

r2 is a vector; r3 is the induction 
variable (or vice-versa); r2 has 
values loaded into it

(8) r1 = dp r2, r3

v1 = vdp v2, #constr1 is a vector; size of r1 is 
recorded

r2 is a vector; r3 is a vector; r3 
has values loaded into it

(7) r1 = dp r2, r3

v1 = vld [r2 + ind]

v1 = vpermute v1

r1 is a vector; size of r1 is 
recorded

r2 is a scalar; r3 is a vector; r3 
has values loaded into it from an 
offset array

(3) r1 = ld [r2 + r3]

v1 = vld [r2 + r3]r1 is a vector; size of r1 is 
recorded (i.e., byte, halfword, 
etc.); value loaded is stored in r1

r2 is a scalar; r3 is the induction 
variable

(2) r1 = ld [r2 + r3]

r1 = mov #constr1 is marked as the induction 

variable

(1) r1 = mov #const

Instruction(s) GeneratedUpdated Register StateCurrent Register StateScalar Instruction

v1 = vdp v2, v3r1 is a vector; size of r1 is 
recorded

r2 is a vector; r3 is a vector(6) r1 = dp r2, r3

[r1 + r2] = vstr v3r1 is a scalar; r2 is the induction 
variable

(4) [r1 + r2] = str r3

v3 = vpermute v3

[r1 + r2] = vstr v3

r1 is a scalar; r2 is a vector; r2 
has values loaded into it from an 
offset array

(5) [r1 + r2] = str r3

The input instruction is 

passed unmodified
all source operands are scalar(11) any other instruction

r1 = add r1, SIMD_widthr1 is the induction variable(10) r1 = add r1, #1

r1 = vred v2r1 is a scalarr1 is a scalar; r2 is a vector(9) r1 = dp r1, r2

None: this format is 

only used to update the 

induction variable for 

permutations.

r1 is a vector; values loaded into 
r2 are copied to r1

r2 is a vector; r3 is the induction 
variable (or vice-versa); r2 has 
values loaded into it

(8) r1 = dp r2, r3

v1 = vdp v2, #constr1 is a vector; size of r1 is 
recorded

r2 is a vector; r3 is a vector; r3 
has values loaded into it

(7) r1 = dp r2, r3

v1 = vld [r2 + ind]

v1 = vpermute v1

r1 is a vector; size of r1 is 
recorded

r2 is a scalar; r3 is a vector; r3 
has values loaded into it from an 
offset array

(3) r1 = ld [r2 + r3]

v1 = vld [r2 + r3]r1 is a vector; size of r1 is 
recorded (i.e., byte, halfword, 
etc.); value loaded is stored in r1

r2 is a scalar; r3 is the induction 
variable

(2) r1 = ld [r2 + r3]

r1 = mov #constr1 is marked as the induction 

variable

(1) r1 = mov #const

Instruction(s) GeneratedUpdated Register StateCurrent Register StateScalar Instruction

Table 6.3: Rules used to dynamically translate the scalar code to SIMD code. dp refers to
any data processing opcode, andvred refers to a vector opcode that reduces a
vector to one scalar result (e.g., min).

occurring. Those previous values (i.e., the offset vector)are used to index a content ad-

dressable memory (CAM), and if there is a hit, the appropriate shuffle is inserted into the

SIMD instruction stream. If the CAM misses, then the offset being loaded is a shuffle not

supported in the SIMD accelerator and translation is aborted. Note that storing the entire 32

bits of previous values is unnecessary, because the values are only used to determine valid

constants, masks, and permutation offsets; numbers that are too big to represent simply

abort the translation process. The process of reading a source register’s previous values,

and conditionally writing them to the destination register, accounts for 11 of the 16 gates

on the critical path.

Opcode Generation Logic:Once register state for an instruction’s source operands has

been accessed, it is passed to the opcode generation logic. Opcode generation logic uses

simple combinational logic to determine how to modify an opcode based on the operands.
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This essentially performs the reverse of the mapping described in Section 6.3, using rules

defined in Table 6.3. For example, if the incoming instruction is a scalar load, then the

opcode logic will write a vector load into the microcode buffer and tell the register state

to mark the destination as a vector. Likewise, if the incoming instruction is an add, and

the register state says both source registers are vectors, opcode generation logic will write

a vector add into the microcode buffer and mark the destination register as a vector. A

small amount of state is kept alongside this logic to recognize idioms of scalar instructions.

Whenever an idiom is detected, this logic has the ability to invalidate previously generated

instructions in the microcode buffer.

Opcode generation logic is fairly simple provided the SIMD instruction format is simi-

lar to the equivalent scalar instructions, since the scalarinstructions require little modifica-

tion before insertion into the microcode buffer. This is thecase with our implementation,

and thus the logic only takes up approximately 9000 cells. Control generation is not on the

critical path in the current implementation, but it is very close to being critical. It likely

would be on the critical path if there was not good correlation between baseline and SIMD

instruction formats.

Microcode Buffer: The final component of the dynamic translator is the microcode

buffer. This is primarily just a register array used to storethe SIMD instructions until

a region of scalar code has completed mapping. The maximum length of a microcode

sequence was limited to 64 instructions in this implementation. Section 6.5 shows that this

is sufficient for the benchmarks examined. At 32 bits per instruction, the microcode buffer

contains 256 bytes of memory, which accounts for a little more than half of its 77,000

cells of die area. The rest of the area is consumed by an alignment network for collapsing

instructions when idioms or permutations invalidate previously generated instructions.

Recall that the register state is used to detect when memory operations are indexed

using a previously loaded offsets from constant arrays (Categories (7) and (8) in Table 6.1).

When this situation is detected, the opcode generation logic will insert the appropriate

permutation and memory instructions. At this point, the previously generated vector load of

the offset vector can safely be removed. Removing this instruction while inserting multiple

other instructions requires an alignment network. It should be noted that removing the
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vf5 = vld [RealOut + r0]ld    f5, [RealOut + r0]11

SIMD GeneratedScalar Instruction

blt  Top_of_loop_1blt   Top_of_loop_123

cmp  r0, #128cmp   r0, #12822

r0 = add r0, #8add   r0, r0, #121

vf4 = vbfly vf4

[tmp1 + r0] = vstr vf4

str   [tmp1 + r0], f420

vf3 = vbfly vf3

[tmp0 + r0] = vstr vf3

str   [tmp0 + r3], f319

add   r3, r0, r318

v3  = vld [bfly + r0]ld    r3, [bfly + r0]17

vf4 = vmask vf4, #constand   f4, f4, r216

vf3 = vmask vf3, #constand   f3, f3, r215

v2  = vld [mask + r0]ld    r2, [mask + r0]14

vf4 = vadd vf5, vf6add   f4, f5, f613

vf3 = vsub vf5, vf6sub   f3, f5, f612

vf6 = vsub vf2, vf3sub   f6, f2, f310

vf3 = vmult vf3, vf1mult  f3, f3, f19

vf2 = vmult vf2, vf0mult  f2, f2, f08

vf3 = vfld [ai + r0]ld    f3, [ai + r0]7

vf2 = vfld [ar + r0]ld    f2, [ar + r0]6

vf1 = vfld [ImagOut + r0]

vf1 = vbfly vf1

ld    f1, [ImagOut + r1]5

vf0 = vfld [RealOut + r0]

vf0 = vbfly vf0

ld    f0, [RealOut + r1]4

add   r1, r0, r13

v1  = vld [bfly + r0]ld    r1, [bfly + r0]2

mov   r0, #0mov   r0, #01

vf5 = vld [RealOut + r0]ld    f5, [RealOut + r0]11

SIMD GeneratedScalar Instruction

blt  Top_of_loop_1blt   Top_of_loop_123

cmp  r0, #128cmp   r0, #12822

r0 = add r0, #8add   r0, r0, #121

vf4 = vbfly vf4

[tmp1 + r0] = vstr vf4

str   [tmp1 + r0], f420

vf3 = vbfly vf3

[tmp0 + r0] = vstr vf3

str   [tmp0 + r3], f319

add   r3, r0, r318

v3  = vld [bfly + r0]ld    r3, [bfly + r0]17

vf4 = vmask vf4, #constand   f4, f4, r216

vf3 = vmask vf3, #constand   f3, f3, r215

v2  = vld [mask + r0]ld    r2, [mask + r0]14

vf4 = vadd vf5, vf6add   f4, f5, f613

vf3 = vsub vf5, vf6sub   f3, f5, f612

vf6 = vsub vf2, vf3sub   f6, f2, f310

vf3 = vmult vf3, vf1mult  f3, f3, f19

vf2 = vmult vf2, vf0mult  f2, f2, f08

vf3 = vfld [ai + r0]ld    f3, [ai + r0]7

vf2 = vfld [ar + r0]ld    f2, [ar + r0]6

vf1 = vfld [ImagOut + r0]

vf1 = vbfly vf1

ld    f1, [ImagOut + r1]5

vf0 = vfld [RealOut + r0]

vf0 = vbfly vf0

ld    f0, [RealOut + r1]4

add   r1, r0, r13

v1  = vld [bfly + r0]ld    r1, [bfly + r0]2

mov   r0, #0mov   r0, #01

Table 6.4: Example translating scalar representation from Figure 6.4(B) back into SIMD
instructions.

offset load is not strictly necessary for correctness, and eliminating this functionality would

greatly simplify the microcode buffer.

After the microcode buffer receives the End signal from the legality checker, SIMD

instructions are written into the microcode cache. SIMD code will then be inserted into the

pipeline upon subsequent executions of the outlined function.

175



6.4.2 Dynamic Translation Example

To better illustrate how the dynamic translation hardware functions, Table 6.4 shows

an example, translating the scalar loop in Figure 6.4(B) back into SIMD instructions for

an 8-wide SIMD accelerator. The second loop from Figure 6.4(B) would be translated

in a similar manner, and not refused with the original fissioned loop. Translation is very

straight-forward for the vast majority of opcodes in the example, making the design of a

hardware dynamic translator simple.

Instruction 1, the move, is the first instruction to enter thedynamic translator. As per

the rules in Table 6.3,r0 is marked as the induction variable in the register state, and the

instruction is inserted into the microcode buffer unmodified.

Next, instruction 2 is translated. This is a load based on a scalar (the addressbfly)

and the induction variable (r0). Table 6.3 shows this is translated into a standard vector

load. R1 is marked as a vector and the value loaded is stored as a previous value ofr1 in

the register state. After that, instruction 3 is translated. The register state shows thatr0

is the induction variable andr1 is a vector with previous values associated with it. This

instruction generates no instruction.

Now instruction 4 needs to be translated. Since one of the sources,r1, has previous

values associated with it, this load may correspond to a shuffle instruction. The register

state will look at the previous values, use them to CAM into a ROM and see that these

offsets correspond to a known permutation instruction. In parallel, the load is being turned

into a vector load by the opcode generation logic. Both of these instructions are inserted

into the microcode buffer. Additionally, a pointer from theregister state is used to remove

the vector load created for instruction 2; a load of the offset is not necessary once the

butterfly is inserted. This process of creating a load and shuffle is repeated for instruction

5.

Translating the remaining instructions in this example is just a matter of applying the

rules presented in Table 6.3. Any instruction that does not match the rules defined in that

table does not meet the proposed scalar virtualization format, and causes translation to

abort. Once all scalar instructions have been translated, the outlined function returns, and
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the microcode buffer writes the SIMD instructions into the microcode cache. This enables

the SIMD code to be inserted into the instruction stream uponsubsequent encounters of the

outlined function.

6.5 Evaluation

To evaluate the Liquid SIMD system, an experimental framework was built using the

Trimaran research compiler [121] and the SimpleScalar ARM simulator [9]. Trimaran was

retargeted for the ARM instruction set, and was used to compile scalar ARM assembly

code. The ARM assembly code was then hand-modified to includeSIMD optimizations

and conversion to the proposed scalar representation usinga maximum targeted SIMD

width of 16. Automatic SIMDization would have been used had it been implemented in

our compiler. Again, automatic SIMDization is an orthogonal issue to abstracting SIMD

instruction sets.

In our evaluation, SimpleScalar was configured to model an ARM-926EJ-S [5], which

is an in-order, five stage pipelined processor with 16K, 64-way associative instruction and

data caches. A parameterized SIMD accelerator, executing the Neon ISA, was added to the

ARM-926EJ-S SimpleScalar model to evaluate the performance of SIMD accelerators for

various vector widths. Simulations assumed dynamic translation took one cycle per scalar

instruction in an outlined function. However, we demonstrate that dynamic translation

could have taken tens of cycles per scalar instruction without affecting performance.

Liquid SIMD was evaluated using fifteen benchmarks from SPECfp2000 (171.swim,

179.art, 172.mgrid), SPECfp95 (101.tomcatv, 104.hydro2d), SPECfp92 (052.alvinn, 056.ear,

093.nasa7), MediaBench (GSM Decode and Encode, MPEG2 Decode and Encode), and

common signal processing kernels (FFT, LU, FIR). The set of benchmarks evaluated was

limited by applicability for SIMD optimization and the current capability of the ARM port

of our compiler. None of these limitations were a result of the Liquid SIMD technique.

Dynamic Translation Requirements: In order to further understand the costs of Liq-

uid SIMD, we first studied characteristics of benchmarks that impact design of a dynamic

translator. One such characteristic is the required size ofthe microcode cache. The mi-
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Benchmark Mean Max
052.alvinn 12.5 13
056.ear 34.5 36
093.nasa7 45.5 59
101.tomcatv 35.5 61
104.hydro2d 27.2 40
171.swim 37.8 51
172.mgrid 46.2 62
179.art 12.8 19
MPEG2 Dec. 12.5 13
MPEG2 Enc. 14.5 19
GSM Dec. 25 25
GSM Enc. 19.5 28
LU 11 11
FIR 11 11
FFT 31.3 38

Table 6.5: Number of scalar instructions in outlined function(s).

crocode cache is used to store the SIMD instructions after anoutlined procedure call has

been translated. This characteristic is also important forsoftware-based translators, as it

affects the size of code cache needed for the application.

We found that supporting eight or more SIMD code sequences (i.e., hot loops) in the

control cache is sufficient to capture the working set in all of the benchmarks investigated.

One question remaining then is how many instructions are required for each of these loops.

With a larger control cache entry size, larger loops may be translated, ultimately providing

better application performance. The downside is increasedarea, energy consumption, and

latency of the translator. However, large loops that do not fit into a single control cache

entry may be broken up into a series of smaller loops, which dofit into control cache. The

downside of breaking loops is that there will be increased procedure call overhead in the

scalarized representation. This section later demonstrates that procedure call overhead is

negligible when using an 8-entry control cache.

Table 6.5 presents the average and maximum number of instructions per hot loop in

the benchmarks. In some benchmarks, like 172.mgrid and 101.tomcatv, hot loops in the

Trimaran-generated assembly code consisted of more than 64instructions, and were broken

into two or more loops. This decreased the number of instructions in each loop dramatically
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Benchmark < 150 < 300 > 300 Mean
052.alvinn 0 0 2 19984
056.ear 0 0 3 96488
093.nasa7 0 0 12 23876
101.tomcatv 0 0 6 16036
104.hydro2d 0 0 18 24346
171.swim 0 0 9 33258
172.mgrid 0 0 13 5218
179.art 0 0 5 2102224
MPEG2 Dec. 0 1 1 269
MPEG2 Enc. 0 3 1 257
GSM Dec. 0 0 1 358
GSM Enc. 0 0 1 538
LU 0 0 1 15054
FIR 0 0 1 13343
FFT 0 0 3 7716

Table 6.6: Number of cycles between the first two consecutive calls to outlined hot loops.
The first three columns show the number of outlined hot loops that have distance
of less than 150, less than 300, and greater than 300 cycles between their first two
consecutive calls.

because it also reduced the number of load and store instructions caused due to register

spills. Table 6.5 shows that 172.mgrid and 101.tomcatv havethe largest outlined functions

with a maximum of nearly 64 instructions. In most of these benchmarks, it would be

possible to decrease the number of instructions per loop to less than 32 in order to decrease

the size of the microcode cache.

These results lead us to propose a control cache with 8 entries of 64 SIMD instructions

each. Assuming each instruction is 32 bits, this would totala 2 KB SRAM used for storing

translated instruction sequences.

Another benchmark characteristic that affects dynamic translator design is latency be-

tween two executions of hot loops. Translation begins generating SIMD instructions for

outlined scalar code the first time that a code segment is executed. If translation takes a

long time, then SIMD instructions might not be available formany subsequent executions

of that hot loop. This restricts the performance improvement achievable from a Liquid

SIMD system. Moreover, if translation takes a long time, then the dynamic translator will

need some mechanism to translate multiple loops at the same time.
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Table 6.6 shows the number of cycles between the two first consecutive calls to outlined

hot loops for the benchmarks. In all benchmarks except MPEG2Encode and Decode, there

is more than 300 cycles distance between outlined procedurecalls. The reason for large

distances is that the scalar loops usually iterate several times over dozens of instructions,

and also because memory accesses tend to produce cold cache misses. Table 6.6 shows

that there is significant time for hardware based dynamic translation to operate without

adversely affecting performance. A carefully designed JITtranslator would likely be able

to meet this 300 cycle target, as well.

Performance Overhead from Translation: Figure 6.6 illustrates the speedup attained

using one Liquid SIMD binary (per benchmark) on machines supporting different width

SIMD accelerators. Speedup reported is relative to the samebenchmark running on a

ARM-926EJ-S processor without a SIMD accelerator and without outlining hot loops.

Compiling with outlined functions would have added a small overhead (less than 1%) to

the baseline results.
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In the ideal case, a SIMD-enabled processor with unlimited resources can achieve a

speedup of 1
S
W

+(1−S)
, whereS is SIMD optimizable fraction of the code andW is the

accelerator vector width. Some of the factors that decreasethe amount of speedup in real

situations are cache miss penalties, branch miss predictions, and trip count of the hot loop.

As expected, speedup generally increases by increasing thevector width supported in

the SIMD hardware. In some of the benchmarks, like MPEG2 Decode, there is virtually

no performance gain by increasing the vector width from 8 to 16. This is because the

hot loop(s) in these benchmarks operate on vectors that are only 8 elements. Supporting

larger vector widths is not beneficial for these applications. 179.art shows the least speedup

of any of the benchmarks run. In this case, speedup is limitedbecause 179.art has many

cache misses in its hot loops. FIR showed the highest speedupof any benchmark because

approximately 94% of its runtime is taken by the hot loop, theloop is fully vectorizable,

and there are very few cache misses.

Figure 6.6 shows that SIMD acceleration is very effective for certain benchmarks. How-

ever, this fact has been well established and is not the purpose of this chapter. The main

purpose of Figure 6.6 is to demonstrate the performance overhead of using dynamic transla-

tion in a Liquid SIMD system. Overhead stems from executing SIMD loops in their scalar

representation whenever the SIMD version does not reside inthe microcode cache. To

evaluate the overhead, the simulator was modified to eliminate control generation. That is,

whenever an outlined function was encountered, the simulator treated it like native SIMD

code.

The performance improvement from using native instructions was measured for all fif-

teen benchmarks. Of these benchmarks, the largest performance difference occurred in

FIR, illustrated in the callout of Figure 6.6. Native SIMD code provided 0.001 speedup

above the Liquid SIMD binary. This demonstrates that the performance overhead from

virtualization is negligible.

Code Size Overhead:Compilation for Liquid SIMD does increase the code size of

applications. Code size overhead comes from additional branch-and-link and return in-

structions used in function outlining, converting SIMD instructions to scalar idioms, and

also from aligning memory references to a maximum vectorizable length (discussed in
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Section 6.3). Obviously, too much code size expansion will be problematic, creating in-

struction cache misses, which may affect performance.

To evaluate code size overhead, the binary sizes of unmodified benchmarks were com-

pared with Liquid SIMD versions. The maximum difference observed occurred in hydro2d,

and was less than 1%. The reason behind this is that the amountof SIMD code in the bench-

marks is very small compared to the overall program size. Code size overhead is essentially

negligible in Liquid SIMD.

6.6 Related Work

Many different types of accelerators have been proposed to make computation faster

and more efficient in microprocessors. Typically, these accelerators are utilized by chang-

ing the instruction set; that is, statically placing accelerator control in the application binary.

This means that the binary will not run on systems without that accelerator, or even systems

where the accelerator has changed slightly.

To allow more flexibility in the instruction set, some previous work [28, 30, 60, 94,

112, 130] has recognized the benefits of dynamically bindinginstructions to an accelerator.

Many different methods have been proposed to generate microcode for the various targeted

accelerators at runtime. For example, work by Hu [59, 60] demonstrated the effectiveness

of using binary translation software to dynamically generate control for one type of acceler-

ator, a 3-1 ALU. The rest of these techniques utilize trace cache based hardware structures,

to perform translation. Our method evolves this approach for SIMD accelerators.

There is a great deal more related work if the scope of dynamicbinding is expanded to

include benefits other than accelerator utilization. Dynamic binding has long been used to

support modern microarchitectures in the context of legacyISAs, such as the use of micro-

ops (including micro-op fusing) in Intel processors [47]. Another motivation for dynamic

binding has been to enable runtime optimizations. Several standard compiler optimizations,

such as dead code elimination and constant propagation, benefit from runtime information

available to dynamic translators [51].

Continuous Optimization [41] and RENO [100] are both examples of dynamic transla-
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tors that perform traditional compiler optimizations by translating instructions during the

decode stage of pipelines. The rePLay [99] project similarly optimized code, but oper-

ated on instructions post-retirement. Post-retirement translation is attractive because there

is usually a long latency between instruction retirement and its next use [45], effectively

taking translation off the critical path.

Just in time compilers (JITs) and virtual machines, such as Dynamo [10], DAISY [39],

and the Transmeta Code Morpher [38], are all examples software-only dynamic transla-

tors. Software dynamic translators have been proposed bothfor code optimizations and to

translate one ISA to another.

Virtualizing a SIMD ISA is similar to the way modern graphicsrelated shader appli-

cations [19] are executed. In these applications, pixel andvertex shaders are distributed in

an assembly-like virtual language such as DirectX, which has support for SIMD. At run-

time, the shaders rely on a virtual machine to translate the virtual SIMD instructions into

architecture-specific SIMD instructions. The benefits of using scalar instructions to virtu-

alize SIMD instructions, as opposed a virtual language, is that a translator is not necessary

to run the application.

The hardware translator proposed in this chapter is closelyrelated to two other works [97,

123]. These papers developed methods to utilize SIMD hardware dynamically, without

software support for identifying the instructions. That is, these works (often speculatively)

create SIMD instructions from an arbitrary scalar binary. The hardware support required

to perform this translation is generally more complicated than our proposed design, which

merely recognizes and translates a set of predetermined instruction patterns.

The proposed hardware translator is also similar to work by Brooks [21] and Loh [84].

These papers propose using dynamic translation to detect when operations do not use the

entire data path (e.g., only 8-bits of a 32-bit ALU), and thenpack multiple narrow opera-

tions onto a single function unit.

Somewhat related to this chapter are the decades of researchthat have gone into auto-

mated compiler-based SIMDization. Many of these techniques are summarized by Krall [69]

for the UltraSparc VIS instruction set, and by Bik [14] for Intel’s SSE instructions. Re-

cent work [40, 127] has investigated techniques to vectorize misaligned memory references
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through data reorganization in registers. Other recent work [73] introduced techniques to

extract vector operations within basic blocks and selective vectorization of instructions.

Automatic SIMDization is completely orthogonal to the workin this chapter; the SIMD

virtualization scheme proposed here can be used in conjunction with or in the absence of

any automated SIMD techniques.

The main contribution of this chapter is the development of amethod for virtualizing

SIMD instructions in a way amenable to dynamic translation.No previous work has done

this. To demonstrate that our virtualization schema is easily translated, the design of a post-

retirement hardware translator was presented in Section 6.4. Any other style of dynamic

translator could have been used to prove this point, though.

6.7 Summary

Liquid SIMD is a combination of compiler support and dynamictranslation used to

decouple the instruction set of a processor from the implementation of a SIMD accelerator.

SIMD instructions are identified and expressed in a virtualized SIMD schema using the

scalar instruction set of a processor. A light-weight dynamic translation engine binds these

scalar instructions for execution on an arbitrary SIMD accelerator during program execu-

tion. This eliminates the problems of binary compatibilityand software migration that are

inherent to instruction set modification.

This chapter presented a software schema powerful enough tovirtualize nearly all

SIMD instructions in the ARM Neon ISA using the scalar ARM instruction set. The de-

sign of a hardware dynamic translator was presented, proving that the software schema is

translatable and that this translation can be incorporatedinto modern processor pipelines.

Synthesis results show that the design has a critical path length of 16 gates and the area is

less than 0.2mm2 in a 90nm process. Experiments showed that Liquid SIMD caused code

size overhead of less than 1%, and performance overhead of less that 0.001% in the worst

case. This data clearly demonstrates that Liquid SIMD is both practical and effective at

solving the compatibility and migration issues associatedwith supporting multiple SIMD

accelerators in a modern instruction set.
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CHAPTER 7

Design and Utilization of Cyclic Accelerators

7.1 Introduction

Previous chapters in this dissertation describe the designand utilization of acyclic and

SIMD accelerators. The purpose of this chapter is to extend those ideas to accelerators tar-

geting computation in the form of innermost loop bodies. Thebenefit of accelerating entire

loop bodies, instead of just acyclic portions, is that more work is done in hardware, making

the resultant execution more efficient. The downside of doing more work in hardware is that

the accelerator is less programmable; that is, fewer applications are able to take advantage

of the accelerator because the class of computation accelerated is more specialized.

Accelerators targeting innermost loops present a good design point in the efficiency

versus programmability spectrum. Many applications spendthe majority of their time

executing in innermost loops, meaning that accelerators targeting this type of computa-

tion can potentially be broadly applicable. Additionally,there are several characteristics

of innermost loops (discussed in Section 7.2.1) that make hardware implementations par-

ticularly efficient. The accelerators described in this chapter are more efficient, but less

programmable, than the acyclic accelerators discussed in previous chapters.

The first part of this chapter presents the architectural exploration and design of a

hardware accelerator that targets a class of loop bodies fora wide range of applications.

By defining a single architecture to accelerate loops, the recurring costs of designing an

application-specific accelerator are eliminated. The goalis to cost-effectively generalize
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an ASIC design to make it useful for a wider range of loops (i.e., increase the programma-

bility), without generalizing it to the point where it begins to look like a general purpose

processor.

The second step is to attack the software costs of targeting acyclic accelerator. As with

acyclic and SIMD accelerators, software costs result from re-engineering the application

once the underlying hardware has changed. To avoid these costs we develop a software ab-

straction that virtualizes the salient architectural features of loop accelerators. An applica-

tion that uses this abstraction is dynamically retargeted to take advantage of the accelerator

if it is available in the system; however, the application will still execute correctly without

any accelerator in the system. The tradeoff is to abstract away as many architecture-specific

features as possible without requiring a significant overhead to dynamically retarget the ap-

plication.

There are two primary contributions of this chapter:

• It presents the design a novel loop accelerator architecture. Design space exploration

ensures that the accelerator design is broad enough to accelerate many different ap-

plications, yet very efficient at executing the targeted style of computation.

• It describes an dynamic algorithm for mapping loops onto loop accelerators. The

algorithm is analyzed to determine the runtime overheads introduced by this dynam-

ically mapping loops, and static/dynamic tradeoffs are investigated to mitigate the

overhead.

7.2 Overview

It is widely acknowledged that the vast majority of execution time for most applications

is spent in loops. Applying this fact, along with Ahmdal’s Law, generally leads system

designers to construct hardware implementing loop bodies whenever ASICs are needed to

meet performance or power consumption goals. For example, special purpose loop acceler-

ators for Fast Fourier Transforms and Viterbi decoding are ubiquitous in modern embedded

SoCs.
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This section begins by describing the general architecturecommon across loop accel-

erators. Next, it gives an overview ofmodulo scheduling, a compilation technique used

to schedule loops so that they effectively use the hardware resources available to them.

The section concludes by introducing the issues surrounding dynamically retargeting ap-

plications to a particular loop accelerator implementation, which are discussed in detail in

Section 7.4.

7.2.1 Loop Accelerator Architectures

In order to determine an appropriate architecture for a broad set of loop bodies, it is first

necessary to identify the general structure of loop accelerators. Figure 7.1 shows the high

level structure of a loop accelerator. At the top of this figure, address generators stream data

into the accelerator. The address patterns typically follow a simple, deterministic pattern

(often based on the loop’s induction variable(s)) that enables them to be decoupled from the

computation performed on the data. When data is streamed in from the memory system,

it is placed in FIFOs that are accessed by function units (FUs). Address generators can be

time multiplexed to fetch multiple streams, which enables them to hide any stalls due to

bursty memory behavior amongst the different streams. Input data that is not streamed into

the accelerator, such as constants or scalar inputs, are written into a register file. Typically,

this register file is memory mapped and must be initialized before invoking the accelerator.

Once all the data is available, FUs begin processing it, reading values from the FIFOs

or register file and writing results to either the output memory buffers or registers. The

register file that stores results from the FUs, need not be a monolithic standard SRAM;

many loop accelerators utilize distributed SRAMs [29] or more efficient structures such

as FIFOs [43] or ShiftQs [1]. Additionally, the functionality provided by the FUs is often

highly customized, executing several RISC equivalent operations back-to-back in the name

of improved efficiency [116].

Once computation has completed, another set of address generators stream the results

back to memory. It is assumed that the input and output memorystreams are mutually

exclusive, so that the accelerator does not need to perform memory dependence analysis.
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This abstract architecture encapsulates the structure of most loop-targeting ASICs [114] as

well as previously proposed generalized loop accelerators[26, 29, 88].

There are several reasons why this architecture is more efficient at executing loops than

general purpose processors. First, the control flow in loopsis very simple, removing the

need for control flow speculation such as sophisticated branch predictors. Second, the

repeating control sequence (instructions) used to configure the accelerator can be stored

in a circular buffer, which is much more efficient to access than a large instruction cache.

Third, the memory accesses are not data dependent and are implicitly independent from

each other, enabling memory accesses to be decoupled from the computation and obviating

the need for dependence analysis. Lastly, the interconnect, FUs, and register files can be

customized to fit the needs of the application or domain that is being targeted.

7.2.2 Utilizing Loop Accelerators

Assuming that there is an effective piece of hardware for executing loops, it is also

necessary to have a capable compilation strategy to make useof the hardware. Modulo

scheduling is a state-of-the-art software pipelining heuristic for scheduling loops, and pro-

vides the basis for the software techniques presented in this chapter. Previous work on

modulo scheduling is extensive [33, 72, 74, 82, 83, 105–108,110], and the purpose of this

section is only to introduce fundamental concepts.

Figure 7.2 shows a sample modulo schedule. In this example, each iteration of the loop

has six instructions (represented by grayed boxes), and there are three different FUs that

can execute the instructions. The instructions are assigned to FUs so that new iterations

can begin executing at a constant rate, called theinitiation interval, or simplyII .

Walking through the example in Figure 7.2, iteration 1 begins executing at cycle 0, and

a new iteration begins every 2 cycles (the II) until all the FUs become fully utilized in

cycles 4 through 7. After cycle 7, there are no more iterations to begin and so the software

pipeline begins to drain until execution completes. The periods where the software pipeline

is ramping up and ramping down are called theprologueandepilogue, respectively, and

the steady state (when an iteration is starting and completing every II cycles) is called the
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Figure 7.2: Important concepts in modulo scheduling loops

kernel.

A single loop iteration can be broken down into multiplestagesbased on how many

times II cycles has passed since it began executing. For example, during cycle 6, iteration 2

is executing stage 3 instructions, iteration 3 is executingstage 2 instructions, and iteration

4 is executing stage 1 instructions. The different time steps in each stage are referred to as

the stagecycles, which range from 0 to II-1. The goal of modulo scheduling heuristics is

generally to make II as low as possible, so that kernel execution is reached and completed

as soon as possible. A secondary goal is to make the number of stages (often abbreviated

SCfor stage count) as small as possible. To rephrase using standard pipeline terminology,

lower II equates to higher iteration throughput and lower SCequates to lower latency.

Modulo scheduling has proven to be a very effective technique for software pipelin-

ing, however there are some limitations with the process. One limitation is that loops with

function calls cannot be modulo scheduled. This problem canmitigated through intelli-

gent function inlining, and is not a major drawback. A more important limitation is that

while-loops and loops with side exits require special hardware support, such as speculative
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memory accesses [91, 105]. Although it is feasible to support while-loops and loops with

side exits, we chose to preclude them from this study, to minimize the architectural impact

outside the accelerator itself.

Figure 7.3 demonstrates the implication of this decision. Each bar in this figure rep-

resents the entire execution time for a given benchmark fromMediaBench or SPEC. The

black bars on the bottom are the fraction of time spent executing in modulo schedulable

loops. The bars labeled “Speculation Support” refer to the time spent in while-loops that

would be modulo schedulable, provided the appropriate hardware support existed. Bars

labeled “Subroutine” are loops with function calls that could not be inlined (e.g., calls into

the math library that were not visible to the compiler).

Media processing and floating point applications (the left portion of Figure 7.3) tend

to spend the vast majority of their execution time in modulo schedulable loops. Lack of

support for loops requiring speculation will limit the utility of the loop accelerator for some

applications (e.g., the applications on the right portion of Figure 7.3); however, modulo

schedulable loops clearly represent an important class of computation worthy of hardware

acceleration.

7.2.3 Dynamic Retargeting for Binary Compatibility

Using specialized hardware to execute loops has many performance and power bene-

fits, but hardware and software design costs prevent widespread deployment in many cases.

Designing one architecture for a broad set of loops tackles the hardware design costs. How-

ever, the software design costs remain a difficult problem.

Software costs arise from the fact that the control that invokes a loop accelerator is

statically encoded in the binary. An application that utilizes an accelerator typically has

no forward or backward compatibility. This means that whenever the underlying hardware

platform changes, the application must completely re-engineered.

The method proposed to avoid these software costs is to virtualize the accelerator inter-

face. That is, we will analyze the steps used during compilation to map applications onto

loop accelerators, and perform as much of it dynamically as possible. This enables the
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binary to be flexible, not tying it to any one specific accelerator architecture.

The challenge in virtualization is to determine the appropriate static/dynamic tradeoffs

to make in the binary. High quality modulo scheduling heuristics can be sophisticated,

taking too long to fully perform dynamically. If the translation takes too long, it can com-

pletely erode all the efficiency benefits from using the accelerator in the first place. At the

other end of the spectrum, performing the mapping entirely statically ties the binary to a

single accelerator implementation, which has significant non-recurring engineering costs if

the underlying hardware changes.

The remainder of this chapter is organized as follows: Section 7.3 performs a design

space exploration for a generalized loop accelerator for a range of media and floating point

applications. This design provides the basis for our work onvirtualization, which is covered

in Section 7.4. Section 7.4 walks through the details of one particular modulo scheduling

heuristic and analyzes the tradeoffs involved in performing each step statically versus dy-

namically.

7.3 Generalized Loop Accelerator

To mitigate the costs of customized hardware, it often makessense to extend the pro-

grammability of ASICs, making them more useful across a broader set of applications. The

goal of this section is to do just that: design an architecture that effectively supports the set

of modulo schedulable loops from the MediaBench and SPECFP applications on the left

portion of Figure 7.3. Designing this architecture has two purposes. First, we provide

a quantitative analysis of the tradeoffs involved with adding each execution resource to

the accelerator. Previous work [26, 88] designing generalized loop accelerators presented

designs without this analysis. Second, this design helps usgauge the static/dynamic trade-

offs in modulo scheduling to target a loop accelerator. It has been reported that the time

needed to modulo schedule a loop strongly correlates to the number of resources in the

target machine [33], and so a representative architecture is necessary to accurately measure

translation overheads.

The loop accelerator architecture template shown in Figure7.1 will serve as the basis
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for our generalized design. Customizing the template for the targeted application set now

requires identifying how many resources of each type these applications require. To deter-

mine this, we modified the Trimaran toolset [121] to compile for and simulate a processor

with attached loop accelerator. The accelerator connects to the processor through a system

bus using a memory mapped interface.

7.3.1 Design Space Exploration

The baseline architecture in our design space exploration assumes a hypothetical loop

accelerator with infinite resources. That is, we modulo schedule loops onto a machine with

unlimited registers, execution units, memory ports, etc. Architectural parameters were

then individually varied to determine what fraction of the infinite-resources speedup was

attainable using finite resources. The Swing modulo scheduling heuristic [82] was used to

target each application to the accelerators. More details about the Swing modulo scheduler

are presented in section 7.4.1. As previously mentioned, only the benchmarks on the left

portion of Figure 7.3 were used in this analysis.

Figures 7.4 and 7.5 show the results of the design space exploration for execution units

and register requirements. The x-axis in these graphs represents the number of resources

available in the system and the y-axis is the fraction of infinite-resource speedup attained.

For example, the gray line in Figure 7.5 shows that when thereis only one floating point

register, the average speedup across the targeted application suite is 60% of what is attain-

able with infinite floating point registers.

Figure 7.4 explores the function units available in the accelerator, where IEx and FEx

represent integer and floating point execution units, respectively. One interesting result

from this experiment was that very few floating point units (FEx in the right graph) were

needed to attain the a significant amount of speedup in the application set. This is partially

due to the significant number of integer-only applications in our target suite, but the long

latency of floating point operations also contributes to this result. If a floating point unit is

fully pipelined (which was assumed) modulo scheduling doesa very good job utilizing the

unit every possible cycle.

194



0 

0.2 

0.4 

0.6 

0.8 

1 

0 4 8 12 16 20 24 28 32 36 

Number of Resources 

P
e
rc

e
n

t 
S

p
e
e
d

u
p

 A
tt

a
in

e
d

 

CCA IEx with CCA IEx no CCA FEx 

Figure 7.4: Execution resource needs. Each line is the fraction of infinite-resource loop
accelerator speedup attained when varying the number of execution units

One surprising result from Figure 7.4 is that the point of diminishing returns for integer

execution units is very high, on the order of 24 units. Due to this result, we chose to

experiment with another type of function unit, a CCA [28]. The CCA (shown in Figure 7.6)

is a logic structure specifically designed to efficiently implement the most common types

of integer computations. It supports 4 inputs, 2 outputs, and can execute as many as 15

standard RISC operations atomically in 2 clock cycles. The primary benefits of the CCA

result because it executes much larger pieces of computation as a group, reducing storage

and interconnect requirements, as well as squeezing more work out of each clock cycle.

The top line in Figure 7.4 shows that when one CCA is added to the loop accelerator, the

required number of integer execution units drops dramatically.

Figure 7.5 shows the required number of registers needed to store live-ins, live-outs,

constants, and temporary values for the loop. Overall, few registers are needed to support
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Figure 7.5: Register file resource needs. Each line is the fraction of infinite-resource loop
accelerator speedup attained when varying the number of registers

the majority of important loops. As would be expected, adding a CCA to the system reduces

the register requirements, since fewer temporaries are needed to communicate between

separate execution units.

Similar to Figures 7.4 and 7.4, Figure 7.7 shows the the fraction of infinite-resource

speedup attained when varying a particular resource. This graph varies the number of

load/store streams supported in the accelerator. As would be expected, loads are more

important than stores. Surprisingly, many loops can be supported without any address

generators streaming data out to memory; these loops only have scalar outputs, which are

read directly from the memory mapped register file upon loop completion.

Another surprising result from the memory stream analysis is that a very large num-

ber of memory streams were needed to support several important loops in the examined

benchmarks. For comparison purposes, previously proposedgeneral loop accelerators only
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Figure 7.6: CCA execution unit from [28]

supported 3 load/1 store [26] stream or 6 total load/store streams [88] per loop. Supporting

fewer memory streams is desirable, since it requires less hardware.

Empirically speaking, the loops that required a large number of memory streams tended

to be very large. One potential way to reduce the hardware overhead of supporting these

loops is to time-multiplex the address generators. Large loops tend to have larger IIs,

giving the address generators time to process several different streams. Another potential

solution is to break the large loops up into smaller loops using a technique such as decou-

pled software pipelining [96]. This would reduce the required number of streams for each

individual loop but increase memory traffic, as dividing theloop up would likely create

communication streams between the smaller loops.

The graph in Figure 7.8 shows the maximum supported II by the loop accelerator (i.e.,

loops that cannot be scheduled in at the maximum II will not beaccelerated). This is

an important consideration in the accelerator design, because the size of the loop control

is directly proportional to the maximum supported II. Recall from Figure 7.2 that, in the

steady-state, the kernel of the loop simply repeats over andover. Since the kernel is II cycles
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Figure 7.7: Memory stream resource requirements

long, II determines the size of the control structure, assuming there is support to selectively

disable stages for the prologue and epilogue. As with the memory stream limitation, if a

particular loop is too large to be supported by an II, often times using the compiler to split

the loop into multiple smaller loops will enable the loop to utilize an accelerator.

Using the analysis in this section as a guide, we propose a generalized loop accelerator

design consisting of 1 CCA, 2 integer units (including multipliers), 4 floating point units,

16 floating point and integer registers, 16 load memory streams (time-multiplexed among

4 address generators), 8 store memory streams (multiplexedamong 2 address generators),

and a maximum II of 16. This is sufficient for attaining 83% of the speedup possible using

a hypothetical loop accelerator with infinite resources.

The design space exploration presented here has omitted twomajor portions of the

data path: the register file structure and interconnect customizations that often occur in
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Figure 7.8: Impact of maximum supported II on potential speedup

customized hardware accelerators. The primary reason for this omission is that there are

currently few modulo scheduling algorithms that take thesecustomizations into considera-

tion. Without software support to analyze the costs of architectural customization (in terms

of reduced performance) it is difficult to make intelligent design decisions, and so we leave

this exploration for future work.

7.3.2 Loop Accelerator Control

Figure 7.9 shows the control logic used to support modulo scheduled loops in the accel-

erator. This design is very similar to previous work [65, 91]that used this type of control for

modulo scheduling support in digital signal processors (DSPs) and general-purpose VLIW

processors. The bits needed to configure each part of the loopaccelerator are stored in

control stores shown in the top right of Figure 7.9. One of these control stores is necessary
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Figure 7.9: Control logic in the loop accelerator

for each architectural element (e.g., FU) that can be scheduled individually. Each row in

the control store corresponds to a particular stage cycle. The instructions are tagged with

each stage they belong to. For example, if this memory storedthe control for function unit

C in Figure 7.2, then the first entry would have a dark gray instruction tagged stage 0 and

the second entry would have a light gray instruction tagged stage 2.

The gray boxes at the left of Figure 7.9 completely define which instructions execute at

a given time. Every clock cycle, the Current Cycle is incremented. When the Current Cycle

reaches II, 1 stage of the loop has completed, so Current Cycle is reset to 0, and the Current

Iteration is decremented. In order to support prologue and epilogue execution, the Active

Stages bit vector is used to disable instructions whose stage is not supposed to execute.

Using the loop in Figure 7.2 as an example, software configures the loop accelerator

control by writing 3 into Num. Stages, 2 into the Initiation Interval, 4 into Num. Iterations.

Instructions and a bit vector representing each instruction’s stage are also written into the

control stores on a per function unit basis. Figure 7.10 walks through the execution of FU

C from Figure 7.2. Current Cycle starts at 0 and will access the first instruction from the
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Figure 7.10: Control logic walkthrough

control store (shown at the right in Figure 7.10). Active Stages is initialized to 001, since

at the beginning of the loop only stage one is active. The Active Stages bit vector will

be compared with the stage tag from the dark grey instructionaccessed from the control

store and the instruction will be issued, provided its stagebit is enabled. A similar process

will happen when Current Cycle is 1 during the next clock cycle: the light grey instruction

is accessed, the stage tag (100) is compared with the Active Stages bit vector, and the

instruction is not issued, because its stage has not been activated. At the end of this cycle,

Current Cycle is reset to 0, since the cycle iterates between0 and II-1. This also causes

the End of Stage signal to be sent to Current Iteration and Active Stages. Current Iteration

is decremented, and a 1 is shifted into the Active Stages bit vector (011) enabling stage

1, because Current Iteration is non-zero. This process willcontinue until Current Iteration

reaches zero, at which point zeros will start to be shifted into Active Stages (the epilogue).

The loop has completed once Active Stages is all zeros.
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7.4 Virtualizing the Loop Accelerator

The loop accelerator architecture is very effective at executing the modulo scheduled

loops from the wide range of applications studied. However,the tradeoffs made in that

design will not fit all situations. When this is the case, a newaccelerator must be designed

for the system, which creates a burden on the application developer. Traditionally, control

used to invoke an accelerator is statically placed in the binary, meaning the application

will have to be re-engineered to function on a different hardware platform. This software

porting cost often prevents the deployment of specialized hardware in situations where it

otherwise would provide benefits.

The way to eliminate the software cost is to generate the control for the accelerator

dynamically, only after the application knows what accelerators are available in the sys-

tem. Dynamic control generation relies on the assumption that the cost of performing the

translation is low; otherwise the translation cost would outweigh any benefits provided by

the custom hardware. Thus, the key to virtualization of custom hardware is analyzing the

algorithms used to generate control, performing the time consuming parts statically, and

encoding them in the binary in a way that is binary compatiblewith other systems.

Towards this end, this section will analyze the Swing moduloscheduling heuristic [82],

with the goal of using this algorithm dynamically to map loops onto a loop accelerator.

From a system level view, we are proposing that the compiler statically mark modulo

schedulable loops in applications. This can be accomplished either through a new instruc-

tion signaling the beginning of a loop or via a special encoding scheme, such as the proce-

dural abstraction proposed in [31]. Once the loops are marked, a run time software system,

such as Dynamo [10] or DAISY [39], will use the Swing algorithm to retarget the binary

to utilize an available accelerator. The translated loops are stored in a software managed

code cache, and the loop accelerator is used whenever possible. If a particular loop is not

supported by the target accelerator (for example, if the II required was too high), then the

translation simply aborts and the loop can execute on the general-purpose processor.
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Figure 7.11: An example loop body. For illustration purposes, assume multiplies take 3
cycles and all other operations take 1 cycle.

7.4.1 Dynamically Mapping using Swing Modulo Scheduling

Swing modulo scheduling is a heuristic for software pipelining loops [82]. This algo-

rithm is used as the basis for dynamic loop mapping because previous work [33] demon-

strated that it produces high quality schedules and is significantly faster than other modulo

scheduling algorithms, particularly when the machine has alarge number of resources.

There are many steps in mapping a loop onto a loop accelerator. First, if a CCA is

present in the system, the translator tries to collapse multiple RISC instructions into a sin-

gle CCA instruction. The CCA is designed to efficiently execute larger pieces of integer

computation, and so moving computation to this resource improves the loop schedule. Op-

timally utilizing the CCA is an NP-complete problem [57], sothis work uses a greedy

algorithm to keep runtime overheads low.

After CCA mapping, modulo scheduling begins. The first step is to compute the min-

imum II that the loop could potentially be scheduled at. The minimum II is a function of

both the recurrences in the loop and the resources availablein the accelerator. As an ex-

ample, consider the loop in Figure 7.11. This loop has two recurrences, ops 3-6-9 which

is 5 cycles long and ops 4-7 which is 2 cycles long. Since the longest recurrence is 5 cy-

cles long, II must be at least 5, since it is impossible to start future iterations before the

recurrence completes execution. Resources may also affectthe minimum II for the loop in

Figure 7.11. For example, assume the target loop accelerator had only one multiplier. Since
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there are 3 multiply instructions in the loop, II must be at least 3 because an iterations worth

of computation must be issued every II cycles. The minimum IIfor a loop is the maximum

of the recurrence and resource constrained IIs. A more thorough discussion of algorithms

to compute II is covered in [105].

Now that II is computed, Swing prioritizes operations to determine the order in which

to schedule them. Simplifying a bit, the Swing priority function tries to schedule the most

critical recurrence first, moving through less critical recurrences, and then finally to oper-

ations that do not appear on a recurrence path. The intuitionbehind this is that scheduling

the recurrences is a more constrained problem since operations have a min and max sched-

ule time. Additionally, failing to schedule a recurrence ata given II will make the schedule

fail, forcing the scheduler to increase II (lowering performance) in order to map the loop.

Using Figure 7.11 as an example again, the Swing priority will try to schedule the most

critical recurrence, 3-6-9, followed by the next most critical recurrence, 4-7, followed by

the remaining acyclic operations. Once the operations are prioritized, Swing uses a slightly

modified list scheduling algorithm to assign each operationto a slot in the modulo schedule.

Full details of the Swing prioritization and scheduling algorithms are found in [82].

After a loop schedule is generated, a postpass maps operandsfrom the virtual loop en-

coding to the register files/memory buffers in the loop accelerator. If there are not enough

registers to support the translated loop, translation aborts, and the loop is executed on the

baseline processor. In addition to operand mapping, the translator must also generate in-

structions to move scalar inputs/outputs between the loop accelerator and the scalar pro-

cessor.

7.4.2 Evaluation

In order to gauge the overheads associated with dynamicallymapping loops onto an

accelerator, the Swing algorithm was implemented as a post-pass to compilation in the

Trimaran toolset. The number of instructions needed to retarget each loop was recorded

using OProfile [78], which reads on-chip performance counters; the average penalty per

loop is reported in Figure 7.12.
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Figure 7.12: The measured translation overhead per loop.

There are a few important trends to take away from this graph.First, the average loop

translation time varies widely from benchmark to benchmark. The primary reason for this

is that the number and size of the loops also varies by a large factor, and larger loops require

more work to translate. A secondary reason for the high variance is that the algorithm used

in Swing’s priority calculation takes significantly more time if there are many recurrences

in the loop. Applications that took the longest time to translate did not necessarily have the

largest loops.

The most important take-away from Figure 7.12 is the distribution of time spent in vari-

ous phases of the Swing algorithm. On average, it took approximately 110,000 instructions

to map each loop onto the targeted loop accelerator. 70% of those instructions were devoted

to calculating the priority used in scheduling, and 18% of the instructions were spent map-

ping subgraphs onto the CCA. The vast majority of translation time was spent performing
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these two tasks, which motivates us to perform these steps statically.

One potential, non-static solution to reducing the priority run time is to use a simpler

priority function. A promising candidate is to use the height-based priority function pro-

posed in [105]. The simpler priority function was previously found to be effective in [105],

because of the more exhaustive backtracking scheduler usedin the algorithm. However,

using the simpler priority function in conjunction with thesingle-pass scheduler in Swing

often yielded sub-optimal schedules.

Statically encoding the Swing priority for each operation in the binary is another solu-

tion. One of the fortunate characteristics of the Swing priority function is that it focuses on

scheduling the most critical recurrences in the loop first, and recurrences are architecture

independent1. Statically encoding priority in the binary enables a high quality schedule,

while at the same time reducing the average loop translationtime from 110,000 down to

36,000 instructions. One potential way to encode this is by creating a data section in the

binary immediately before the loop. One number is encoded for each instruction in the

loop, and once the size of the loop is known the priorities areeasily recoverable. Statically

encoding the instructions that map onto the CCA has been covered in previous work [28],

and further reduces the translation overhead from 36,000 down to an average of 17,000

instructions per loop.

Figure 7.13 demonstrates the importance of driving the translation overhead as low

as possible. This graph shows the average speedup attained when varying the translation

cost per loop. The various lines reflect how frequently the translation penalty must be

paid. For example, the top line assumes that each modulo schedulable loop need only be

translated once during benchmark execution, and the bottomline assumes each loop must

be translated 10% of the time when it is invoked, due to eviction from a code cache.

If translation costs average 110,000 instructions per loop(as shown in Figure 7.12)

and each instruction takes one cycle, even a 1% miss rate severely impacts the speedup

provided from the loop accelerator: moving from an idealized speedup of 2.63 down to

1.47. Driving the translation penalty down to 17,000 instructions, by performing the CCA

1It should be noted that the criticality of recurrences are only architecture independent if execution laten-
cies of the function units remain consistent across the architectures.
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Figure 7.13: Speedup attained when varying the translation overhead penalty. Each line
represents how frequently the penalty must be paid.

selection and priority computation offline, would push the average speedup up to almost 2.

An alternate way to view Figure 7.13, is that it stresses the importance of providing enough

space in the code cache so that loops do not need to be repeatedly translated.

Figure 7.14 shows the speedup over a single-issue processormeasured per application

using a realistic code cache. It was assumed the code cache provided enough space to store

the previous 16 translated loops using an LRU eviction policy. Using the target architecture

proposed in Section 7.3, this works out to approximately 48 KB of storage, which is small

compared with typical code cache sizes [55]. The hit rates for each application varied

slightly, but all were very close to 100%.

The left-most bar for each application shows the speedup from using the loop accel-

erator, assuming no translation penalty. This is equivalent to the speedup of a statically

compiled binary. The next bar, labeled “Swing Real Cache”, shows the speedup when as-
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Figure 7.14: Static/dynamic and algorithm tradeoffs for the key mappingstages.

suming a realistic translation cache and the penalties measured from preforming the entire

Swing algorithm dynamically. The “Height Priority” bar is also fully dynamic, but instead

uses the simpler height-based priority function. The final bar represents the speedups when

CCA mapping and Swing priority calculation are performed offline and encoded in the

binary.

Several interesting patterns emerge from Figure 7.14. First, for many benchmarks,

such as rawcaudio, the translation overhead of performing Swing entirely dynamically has

a negligible impact on the loop accelerator’s speedup (comparing the first two bars). In

the case of rawcaudio, there is only one critical loop in the application and so the trans-

lation cost is easily amortized. Other applications showedlittle performance degradation

because their most critical loops were quite small, making the translation costs negligible.

The translation overhead for many other loops was quite significant, however. Mpeg2dec

notably went from a speedup of 2.1 down to 1.15, and pegwitencand 172.mgrid lost all

performance benefits from the loop accelerator. On average,factoring the translation costs

brought the speedup from 2.63 down to 2.17.
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The middle two bars for each application show the tradeoff involved in using the Swing

priority function in comparison with the simpler height-based priority. The less sophisti-

cated height-based priority function sometimes generatesschedules with higher IIs (and

thus, worse performance), but the translation times are significantly faster. On average, the

benefits of faster translation time outweighed the benefits of better schedules, providing a

speedup of 2.3 compared with 2.17.

The final bar in Figure 7.14 shows that by moving the particularly difficult portions of

mapping loops offline, the speedups can approach that of natively compiled code. On av-

erage, performing CCA mapping and Swing priority calculation offline reduced translation

penalties to the point where the average speedup was 2.54 as compared with 2.63 for na-

tively compiled code. This hybrid static/dynamic mapping strategy provides a significant

24% and 37% more speedup up over fully dynamic solutions utilizing height-based and

Swing priority functions, respectively.

7.5 Related Work

As mentioned in previous chapters, accelerators are a popular method to increase the

performance and efficiency of microprocessor designs. Several people have proposed ac-

celerators specifically targeting loop nests, because the regular control structure in loops

provides significant efficiency gains over processors designed for general purpose control

structures. The Reconfigurable Streaming Vector Processor(RSVP) [26] is a vector-based

accelerator designed for loops in multimedia applicationsrunning in an embedded environ-

ment. The architecture is similar to what we have proposed; however, RSVP uses SIMD

execution units, and a single SRAM to buffer memory accesses. Mathew et al. propose

another loop accelerator architecture in [88], which is very similar to the architecture pro-

posed here. The main difference is the memory buffering structure and type of execution

resources provided. This chapter goes beyond these two previous works by providing a

quantitative analysis of accelerator resource needs usingloops from a diverse application

set. Other work, such as [91, 107], proposed adding hardwareto a standard pipeline to

efficiently support the control structure of loops. The control in our proposed accelerator is
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very similar to [91], but our work extends this by additionally customizing execution and

memory resources. The loop accelerator architecture presented in this chapter was primar-

ily developed to provide a realistic target for evaluating dynamic mapping algorithms.

Statically generating efficient code for loops is also an area of much related work. Soft-

ware pipelining [72] has proven to be an excellent way to improve the resource utilization

of loop execution. Lam [72] showed that developing an optimal software pipelining is an

NP-complete problem, and so many heuristics have been developed to produce high-quality

schedules in a reasonable amount of time [33, 50, 74, 82, 83, 105, 106, 110, 118]. Most per-

tinent related work is the Swing Modulo Scheduling algorithm, originally proposed in [82].

Later work [33] demonstrated that this algorithm produces high quality schedules in much

shorter runtimes than other modulo scheduling algorithms,making it a good starting point

for dynamically retargeting loops. While the work in this chapter did not exploit this fact,

Swing has been extended to support loops with complex control flow, such as side ex-

its [74]. The contribution of this chapter is evaluating Swing Modulo Scheduling in the

context of dynamically targeting a loop accelerator. The relative runtime of each mod-

ulo scheduling stage is measured, and we explore the tradeoffs associated with statically

encoding the results of each stage in the binary.

Abstracting the underlying hardware structure to improve efficiency without affecting

binary compatibility has much related work, as well. Perhaps the best known example of

this is the Transmeta Code Morphing Software [38], which dynamically converts x86 ap-

plication into VLIW programs. Dynamo [10], Daisy [39], and DIF [94] are all examples

that dynamically translate applications to target entirely different microarchitectures. Sev-

eral proposals exist to only translate select portions of anapplication to target accelerators.

For example, [30, 59, 112] all explored the benefits of dynamically binding applications to

acyclic accelerators. Other work [31] looked at dynamically binding for SIMD accelera-

tors. This chapter is the first proposal for dynamically binding to cyclic accelerators.
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7.6 Summary

Adding customized hardware to a processor is an effective way to improve the per-

formance and efficiency of the system. However, significant hardware and software non-

recurring engineering costs prevent customized hardware from being adopted in many sit-

uations. This chapter addresses those costs in the context of cyclic computation. Cyclic

computation accelerators are a compelling design point, because they encompass a larger

fraction of many applications’ execution time than acyclicaccelerators, even though cyclic

accelerators are not as broadly applicable as acyclic ones.

This chapter presented the design of a generalized loop accelerator. Design space ex-

ploration was used to ensure that the accelerator is applicable to a wide range of media and

floating point applications. This generalized design provides a good architecture for execut-

ing common modulo schedulable loops, thus eliminating the engineering costs associated

with designing loop-specific accelerators from scratch.

Software costs were addressed by virtualizing the accelerator interface. Modulo sched-

uled loops are statically marked in the binary and expressedin the baseline instruction set.

At runtime, a dynamic translator attempts to map the loop onto any available accelerators

using modulo scheduling. This work found dynamically modulo scheduling loops has a

significant performance overhead and proposed statically encoding scheduling priority to

be an effective technique for minimizing the overhead. Overall, the loop accelerator and

dynamic compilation system provided a mean speedup of 2.54 over a single-issue proces-

sor, and the resulting binary remains flexible enough to be used by systems with different

(or even no) accelerators.
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CHAPTER 8

Summary

Industry has produced, and consumers rely on, continual exponential performance in-

creases from microprocessor-based systems. The traditional method for improving per-

formance, increasing clock frequency, is no longer effective as sharply rising power con-

sumption has made designs with higher clock frequencies tooexpensive to cool. This trend

has given rise to a new generation of designs with many simpler cores on a single chip.

Multicore chips attempt to improve performance by providing increased parallelism to ap-

plications. This strategy is well suited for some application domains, such as transaction

processing; however, many applications without readily apparent parallelism suffer from

this design decision.

The focus of this dissertation is on an alternate method to improve performance: hard-

ware customization. Hardware customization is an attractive alternative to homogeneous

multicore chips, because customized hardware is far more efficient than general-purpose

hardware, and often applicable when coarse-grained parallelism is difficult or impossible

to find. Technology trends, such as increasing transistor density and alternate manufac-

turing techniques [66], only serve to make hardware customization more likely in future

designs. The aim of this dissertation was to solve many of thearchitectural and compila-

tion challenges that traditionally made customized hardware difficult to implement.

One problem with customized hardware is the effort needed todesign an accelerator

for each target application or domain. Chapter 2 solves thisproblem for acyclic accelera-

tors, by developing an automated technique for identifyingthe critical computation patterns
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given an application (or set of applications). Hardware is synthesized specifically for the

targeted applications without user input. The system demonstrated significant speedups for

several applications, with as much as 2.39 and an average of 1.69, while utilizing modest

additional die area.

Another contribution from Chapter 2 is the observation thatcritical computation sub-

graphs within a domain tend to be very similar, although theydo not exactly match. This

trend can be exploited, by slightly generalizing the functionality in the accelerators proac-

tively. For relatively little additional cost, generalizing accelerators provides a substantial

likelihood of the accelerators being useful even in the context of future algorithms.

Designing execution resources for one application or domain of applications makes

sense in many high volume-markets, but non-recurring engineering costs render this tech-

nique infeasible in many other markets. To increase computational efficiency in these situa-

tions, Chapter 3 uses critical subgraph identification to design two general-purpose acyclic

accelerators, one based on combinational logic and one based on lookup-tables. A wide

range of applications are analyzed to ensure the most commoncomputation patterns are

efficiently supported in the proposed designs. Overall, average speedups of 1.66 for the

combinational logic and 1.47 for the lookup-table based accelerators were achieved.

Another challenge in utilizing custom hardware is the engineering costs associated with

integrating accelerators into existing hardware and software systems. The root of the prob-

lem stems from the typical method software uses to invoke accelerators, by statically en-

coding specialized control sequences into the applicationbinary. This is costly because

adding new accelerators implies that the hardware must understand the new control se-

quences. Software must also be re-engineered to include these control sequences, and if

the underlying accelerator ever changes, the software willno longer be compatible.

Chapters 4 and 6 address this problem in the context of acyclic and SIMD accelera-

tors, respectively. We apply the technique of delayed binding, where computation to be

accelerated is expressed using the baseline instruction set of the processor. At runtime,

a dynamic translator converts these sequences into accelerator-specific control sequences.

This technique eliminates the need for new control sequences to be added to the hard-

ware and software systems when adding customized hardware.To prove the utility of
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dynamic binding, we present the design of several dynamic translators and evaluate the

static/dynamic tradeoffs of performing some translation steps offline. Overall, we found

that using dynamic binding enables accelerator integration in a binary compatible manner,

while incurring negligible overheads in terms of die area, code size, and application slow

down.

Chapter 7 builds on the work in previous chapters by discussing the design and inte-

gration of cyclic accelerators into microprocessor-basedsystems. Designing cyclic accel-

erators is a fundamentally harder problem because it requires handling memory references,

residual state, long latency communication and many other aspects that were not issues

in dealing with acyclic and SIMD accelerators. Additionally, dynamically binding an ap-

plication onto a cyclic accelerator is algorithmically much more difficult. The analysis

in Chapter 7 culminates in a generalized cyclic acceleratordesign and dynamic mapping

algorithm, which is binary compatible, and provides 2.53 speedup in the average case.

A last problem related to customized hardware is how to automatically compile an

application to target a particular accelerator. That is, given an application written in a high-

level language, how do we pick out the portions that would be more effectively run on an

accelerator? Chapter 5 solves this problem in the context ofacyclic accelerators. Automat-

ically generating code to optimally target accelerators isNP-hard, and the typical industry

solution involves either hand coding or simplistic greedy algorithms. This dissertation pre-

sented a graph-based algorithm, which on average provided 50% more speedup than greedy

solutions, while retaining the fast runtimes associated with greedy solutions.

As a whole, this dissertation has developed many solutions that enable customized hard-

ware to be the vehicle for exponential performance growth needed in future processor de-

signs.
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