CUSTOMIZING THE COMPUTATION CAPABILITIES
OF MICROPROCESSORS

by

Nathan T. Clark

A dissertation submitted in partial fulfillment
of the requirements for the degree of
Doctor of Philosophy
(Computer Science and Engineering)
in The University of Michigan
2007

Doctoral Committee:
Associate Professor Scott Mahlke, Chair
Professor Trevor N. Mudge
Associate Professor Todd M. Austin
Associate Professor Serap Savari
Krisztian Flautner, ARM Limited

(© Nathan T. Clark 2007
All Rights Reserved

ACKNOWLEDGEMENTS

First, I'd like to express sincerest gratitude to my adviSeptt Mahlke. | consider
myself truly lucky to have worked with him these past yearse s shown incredible
patience, served as an excellent mentor, and provided nmg egportunity to succeed in
this field.

| also owe thanks to the remaining members of my dissertabommittee, Prof. Austin,
Prof. Mudge, Kris Flautner, and Prof. Savari. They all dedaheir time to help shape this
research into what it has become today. | would particulisklyto thank Prof. Austin for
convincing me to go to graduate school in the first place, ansl Rautner for giving me
several opportunities to apply this research in industry.

All of the research in this dissertation utilizes a softwiafeastructure too large for any
one person to manage; none of this work would have been pesgithout the technical
support of everyone in the CCCP research group. HongtaogWoote the firstincarnation
of the pattern matching code used in Chapter 2. Mike Chu ap@liane spent significant
effort with me porting our compiler to the ARM instructiontséll of our porting efforts
were based upon code generation work done by Rajiv Ravindvamjunath Kudlur and
Hyunchul Park assisted me in getting a simulator with tramehe working, and more
recently, Amir Hormati spent many hours on simulator hagkamd developing compiler
analysis tools for cyclic computation. Kevin Fan also hdlpg innumerable times, fixing
the really hard bugs no one else wanted to touch. | feel vatyriate to have worked with
a group of people so willing to help one another out, and smgilo engage in technical
discussions to help flesh-out ideas.

More importantly than the technical assistance, I'd likehank all the members of

the CCCP research group who I've ever shared an office withttreeyears for the social

support: Jay Blome, Mike Chu, Kevin Fan, Manjunath Kudltevg Lieberman, Mojtaba
Mehrara, Pracheeti Nagarkar, Hyunchul Park, Rajiv RaandMisha Smelyanskiy, and
Hongtao Zhong. You folks made coming to work a lot more furg Beh never have made
it through without you. You can be certain that I'll be momitmy the “quote of the day”

web page in anticipation of your future shenanigans.

Along that note, | really appreciate all the time spent wittiee other friends I've made
in grad. school here at Michigan. CSEG Drunks, you guys kepsane.

Finally and most importantly, my family deserves major guate. My parents, Tom
and Deb, and my sister, Beth, provided their unconditiooe¢ land support through this
whole process, even though they found it a bit odd that | wssschool as a 21st grader.
And | really appreciate the love and support of my wife, Jen8he showed incredible
patience to stick around Ann Arbor for four years while | fimesl my Ph.D., and only
rarely asked when | would finish :) Jenny is as responsiblé¢hfigrdissertation as | am (in

a good way).

TABLE OF CONTENTS

ACKNOWLEDGEMENTS e e e e e i
LISTOFFIGURES e e e Vil
LISTOFTABLES e e e e s e e X
LISTOFALGORITHMS e e e e Xi
ABSTRACT . . . e Xii
CHAPTERS
1 Introduction 1
1.1 Design of Computation Accelerators 2
1.2 Architectural Integration of Computation Accelerator. 4
1.3 Compilation for Computation Accelerators 5
1.4 Organization e e e 6
2 Automatic Design of Domain-Specific Acyclic Accelerators 7
2.1 Introduction 7
2.2 RelatedWork 9
2.3 Dataflow Graph Exploration. 13
2.3.1 SubgraphDiscovery 15
2.3.2 GuideFunction 00 16
2.3.3 Candidate Combination and Generalization 0 2
2.3.4 Candidate Selection 22
235 ExampleCFUs 24
2.4 CompilerUtilization. 25
241 PatternMatching 25
2.4.2 Custom Instruction Replacement 27
2.5 ExperimentalResults 28
2.6 Summary ... e 37
3 Generalized Acyclic Accelerators 38
3.1 Introduction 38

3.2 Related Work 39

3.3 Design of a Configurable Compute Accelerator 41
3.3.1 Analysis of Applications 43
3.3.2 Proposed CCADesign 45
3.3.3 Integratingthe CCAintoa Processor 47

3.4 Experimental Evaluation 48

3.5 CCASumMmary i 51

3.6 The Programmable Carry FunctionUnit 51

3.7 PCFU Operationand DesignSpace 52
3.7.1 Principles 53
3.72 PCFUDesignSpace. 56

3.8 Exploring the PCFU DesignSpace 57

3.9 PCRUSUMMary e 69

4 Utilization of Generalized Acyclic Accelerators 71

4.1 Introduction 71

4.2 RelatedWork 72

4.3 Utilization of an Acyclic Compute Accelerator 73
4.3.1 DynamicDiscovery 75
4.3.2 StaticDiscovery 78
4.3.3 Subgraph Replacement in Retirement 80
4.3.4 Subgraph ReplacementinDecode 81

4.4 Experimental Evaluation 81

4.5 Transparent ISA Customization Framework for Embedded P
CESSOIS . . . o vt i e e e e e e 84

4.6 Architectural Framework oL 86
46.1 OVEIVIEW i e 87
4.6.2 Pipeline Organization 88
4.6.3 Dataflow Subgraph Execution 89
4.6.4 Dataflow Subgraph Control Generation. 92

4.7 Compiler Code Generation 96
471 CCACompilerflow 96

4.8 Architecture Framework Experiments. 101

4.9 Architecture Framework Summary 108

4.10 Control Generation for Dynamic Accelerator Targeting. 108

4.11 Dynamically Mapping Architectural to Microarchitacal Instruc-
tONS 109
4.11.1 Structure of a Control Generator 110

4.12 Implementation of Control Generators 113
4.12.1 Arrays of Combinational Logic 114
4.12.2 Control Generation for Sparse Arrays of Combination

Logic e 115
4.12.3 LUT-Based Subgraph Execution 119
4.12.4 PCFU Control Generation 119
4.13 Evaluation of Control Generators 125

4.14 SUMMAIY o o e e e e e 127

5 Compilation Techniques for Acyclic Accelerators 128
5.1 Introduction 128
5.2 Problem Statementand RelatedWork 9 12
5.3 Compilation for Acyclic Accelerators 131
5.3.1 Greedy Enumeration - Immediate Selection 2 13
5.3.2 Full Enumeration - Unate Covering Selection 341
5.4 Experiments 150
55 Summary 154
6 Applying Transparent Customization to SIMD Acceleratars 155
6.1 Introduction 155
6.2 Overviewofthe Approach 157
6.3 Liquid SIMD Compilation 160
6.3.1 Hardware and Software Assumptions. 160
6.3.2 Scalar Representation of SIMD Operations.. 611
6.3.3 Limitations of the Scalar Representation 164
6.3.4 SIMDto ScalarExample 165
6.3.5 FunctionOutlining 169
6.4 Dynamic Translation to SIMD Instructions 170
6.4.1 Dynamic TranslationHardware 170
6.4.2 Dynamic Translation Example 176
6.5 Evaluation 177
6.6 RelatedWork 182
6.7 Summary e e e 184
7 Design and Utilization of Cyclic Accelerators 185
7.1 Introduction 185
7.2 OVEIVIEW o o e e e e 186
7.2.1 Loop Accelerator Architectures 187
7.2.2 Utilizing Loop Accelerators 189
7.2.3 Dynamic Retargeting for Binary Compatibility 191
7.3 Generalized Loop Accelerator 319
7.3.1 Design Space Exploration. 194
7.3.2 LoopAcceleratorControl 199
7.4 Virtualizing the Loop Accelerator 202
7.4.1 Dynamically Mapping using Swing Modulo Scheduling203
742 Evaluation 0o 204
75 RelatedWork 209
7.6 SUMMAIY e e 211
8 Summary e 212
BIBLIOGRAPHY 215

Vi

LIST OF FIGURES

Figure
2.1 Organizational structure of the hardware compiler. 13
2.2 A) Sample DFG from blowfish. Shaded nodes delineate a tBD?Brepro-
cessed C code this DFG came from. C) Excerpt from the hardiimesy.
“Adders” is the die area relative to a 32-bitadder. 14
2.3 A) The number of candidates examined for DFGs in threeypnon bench-
marks. B) The average speedup on those benchmarks usiegpolhential

and heuristic search techniques. 19
2.4 Examples of generalization techniques. 20
2.5 Greedy approachto CFU selection. 22
2.6 A selection of CFUs generated by the exploration system. 24
2.7 Organizational structure of a compiler supporting eosinstructions. . . . 25
2.8 DFGsimilartoonefromsha., 26
2.9 Performance of four application groups as CFU cost budgecreased

from1to1532-bitadders. 31
2.10 Effect of subsumed subgraphs and wildcards in Enawpat the 15-adder

COSLPOINt. o e 32
2.11 Effect of subsumed subgraphs and wildcards in Audibealb-adder cost

POINt. o 33
2.12 Effect of targeting multiple applications 36
3.1 Blockdiagramofthedepth7CCA 45
3.2 Varying the CCA configurations 49
3.3 The effect of CCA latency onspeedups 50
3.4 An example dataflow subgraph and the output expresseduastzon of

theinputs. 52
3.5 Organization of the LUT baséeunctionunit from priorwork. 54
3.6 BaselinePCFUdesign. 55
3.7 PCRUdesignspace. o i v it e 56
3.8 Effectiveness of the baseline 4-input, 2-output PCFsigte 58

3.9 Effectiveness of PCFU designs with varying numbers pfiis and outputs. 60
3.10 Effectiveness of PCFU designs with varying numbergidfteons supported. 65

Vii

3.11 Distribution of shift values within subgraphs. 66

3.12 Effectiveness of PCFU designs with varying types diskupported. . . . 68
3.13 The cost/performance trade off across various PCFigunlesints. 70
4.1 A.DFG from a frame in 164.gzip. B. Slack of the operatio@s Trace of
Algorithm 4.1. D. DFG after subgraph replacement. 74
4.2 Workflow of staticdiscovery 77
4.3 Static accelerator instruction insertion 19
4.4 Percentage of dynamic instructions from the I- cachefmme cache ... 82
4.5 The effect of various discovery/replacement strategie 83

4.6 A high-level overview of the executing with a CCA: (a) gudph identi-
fication and relocation and (b) setting up the CCA subsysterthe first

invocation of a subgraph for futureuses 86
4.7 Transparent instruction set customization architatftamework 88
4.8 Example ofa CCAimplementation. 91
4.9 Example mapping subgraphontoaCCA 93
4.10 Compiler flow diagram. New steps in the compilation psscare shown
INGrAY. . . o e e 96
4.11 The process of downward code motion as (a) the crosstbsarbgraph is
identified and (b) code is replicated inanewblock 98
4.12 BTAC hitrate with various entry sizes 102
4.13 Speedup of basic block and superblock code when ergautih a general
purpose CCA e 103
4.14 Application specific and domain specific CCA designltesu 105

4.15 Application specific and domain specific speedup. FerSRECint do-
main, application specific speedups are generated usirngGedesigned
for 181.mcf, for the audio domain using the design for gsmdec¢and for

encrypt domain using thedesignforRC4. 107
4.16 Structure of acontrolgenerator 110
4.17 Combinational logic arrays (a) with a full cross bamegn rows, (b) with

moderate interconnect, and (c) with sparse interconnect 114
4.18 Example of control generation for a sparse array of d¢oatlonal logic. . . 116
4.19 LUT generationexample 120

4.20 LUT entry generation example. Shown are the processeps of the con-

trol generator that compute the LUT entries to implementftimetion de-

fined by the assembly code sequence ontheleft.121
4.21 Structure of the PCFU configuration update logic 124
5.1 A. An acyclic accelerator from [30] targeted in exampBsThe fII’St step

in a greedy mapping algorithm on a basic block from g721eac@l The

second step and D. final step in the greedy mapping algorithm. 133
5.2 A. Subgraph from Figure 5.1 A to be tested for subgrapm@mphism, B.
hardware accelerator beingtargeted 141

viii

5.3

5.4
5.5
5.6

5.7

6.1

6.2
6.3
6.4

6.5
6.6

7.1
7.2
7.3

7.4

7.5

7.6
1.7
7.8
7.9
7.10
7.11

7.12
7.13

7.14

A. Example unate covering problem used to map subgraphsthe basic
block in Figure 5.1. B. The mapping solution with full-enuraigon and
greedy selection. C. Mapping solution with full-enumesatiand unate
coveringselection.

Compilation runtimes for various aspects of the progdadgorithms

Comparison of subgraph mapping algorithms

The speedup of Full-Enumeration/Unate Covering S|elecc1ver Greedy

while varying the targeted accelerator

Comparison of mapping effectiveness before and afgasim aIIocatlon

using the accelerator from Figure 5.1 A
Pipeline organization for Liquid SIMD. Gray boxes regget additions to
abasicpipeline.
Example FFTIoop.
Vector representation of Figure 6.2. C

(A) SIMD code for Figure 6.2, and (B) scalar representat)f the SIMD

codeinFigure 6.4(A). e
Structure of the proposed translator.

Speedup for different vector widths relative to a preoesmthout SIMD

acceleration. The callout shows the speedup improvemeiat poocessor
with built-in ISA support for SIMD instructions.
An architecture template for loop accelerators
Important concepts in modulo scheduling loops

Percent of execution time spent in various types of ctﬁtaaeculatlon Sup-
port” refers to while-loops and loops with side exits, “Saoibtine” refers to

loops that have a non-inlinable function call, and “Acytliefers to code

notknowntobeinaloop..

Execution resource needs. Each line is the fractionfimiiia-resource loop

accelerator speedup attained when varying the number otiéra units . .

Register file resource needs. Each line is the fractianfofite-resource
loop accelerator speedup attained when varying the nunflvegisters
CCA executionunitfrom([28]
Memory stream resource requirements

Impact of maximum supported Il on potential speedup

Control logic in the loop accelerator
Control logic walkthrough
An example loop body. For illustration purposes, assomltiplies take 3
cycles and all other operations take 1 cycle.

The measured translation overhead per loop. . ..

Speedup attained when varying the translation ovdrpeaalty Each Ilne
represents how frequently the penalty mustbe paid.
Static/dynamic and algorithm tradeoffs for the key piag stages.

. . 166

. 167

Table
3.1
3.2
3.3
3.4
3.5
3.6

3.7
3.8
4.1

4.2
6.1

6.2

6.3

6.4

6.5
6.6

LIST OF TABLES

Cumulative percentage of dynamic subgraphs with vgrglepths 41
Matrix utilization of subgraphs 43
Mix of operations in common subgraphs 44
CCA configurations and synthesisresults 46
Processor configuration L Lo 48
Synthesis results for PCFU designs with varying numbéisiputs and
OULPULS. o e 59
Synthesis results for PCFU designs with varying numbgaslditions sup-

ported. e e 61
Synthesis results for PCFU designs with varying typeshdts supported. . 67
Synthesis results for various CCAdesigns106
Synthesis Results for Dynamic Control Generators 126

Rules for translating SIMD instructions into scalar igglents. Operands
beginning withr are scalars, operands beginning witlare vectors, and

i ndistheloop’sinductionvariable. 621
Synthesis results for the dynamic translator. 171
Rules used to dynamically translate the scalar code Nﬂ)&tode dp

refers to any data processing opcode, aned refers to a vector opcode

that reduces a vector to one scalar result (e.g., min). 173
Example translating scalar representation from FiguB) back into

SIMD INStructions. 175
Number of scalar instructions in outlined function(s). 178

Number of cycles between the first two consecutive callsutlined hot
loops. The first three columns show the number of outlineddmts that
have distance of less than 150, less than 300, and greateB@facycles
between their first two consecutivecalls.179

LIST OF ALGORITHMS

Algorithm

4.1 Dynamic discovery algorithm . . .

5.1 Subgraph isomorphism algorithm

5.2 Unate covering selection algorithm

Xi

ABSTRACT

CUSTOMIZING THE COMPUTATION CAPABILITIES OF MICROPROCE&IRS

by
Nathan T. Clark

Chair: Scott Mahlke

Designers of microprocessor-based systems must constaqttove performance and
increase computational efficiency in their designs to ereatlue. To this end, it is in-
creasingly common to see computation accelerators in geparpose processor designs.
Computation accelerators collapse portions of an apjbieat dataflow graph, reducing
the critical path of computations, easing the burden ongmsar resources, and reducing
energy consumption in systems. There are many problemsiasst with adding accel-
erators to microprocessors, though. Design of accelexaswchitectural integration, and
software support all present major challenges.

This dissertation tackles these challenges in the contexdaelerators targeting acyclic
and cyclic patterns of computation. First, a technique &ntdy critical computation sub-
graphs within an application set is presented. This teclenig hardware-cognizant and
effectively generates a set of instruction set extensiawvenga domain of target applica-
tions. Next, several general-purpose accelerator strestre quantitatively designed using

critical subgraph analysis for a broad application set.

Xii

The next challenge is architectural integration of acegtes. Traditionally, software
invokes accelerators by statically encoding new instangiinto the application binary.
This is incredibly costly, though, requiring many portiasfshardware and software to be
redesigned. This dissertation develops strategies taeitiiccelerators, without changing
the instruction set. In the proposed approach, the michii@acture translates applica-
tions at run-time, replacing computation subgraphs witbrogode to utilize accelerators.
We explore the tradeoffs in performing difficult aspectshad translation at compile-time,
while retaining run-time replacement. This culminates isiraple microarchitectural in-
terface that supports a plug-and-play model for integgadiccelerators into a pre-designed
microprocessor.

Software support is the last challenge in dealing with cotation accelerators. The
primary issue is difficulty in generating high-quality cod#lizing accelerators. Hand-
written assembly code is standard in industry, and if coerglpport does exist, simple
greedy algorithms are common. In this work, we investigabeatthorough techniques for
compiling for computation accelerators. Where greedy iséias only explore one possible
solution, the techniques in this dissertation explore tite@edesign space, when possible.

Intelligent pruning methods ensure that compilation isdcdctable and scalable.

Xiii

CHAPTER 1

Introduction

For decades industry has produced, and consumers hawt oeli@xponential perfor-
mance improvements from microprocessor systems. Thisraaitperformance improve-
ment has enabled many applications, such as real-timeaainty, that would have been
computationally infeasible only a few years ago. Despiéséhadvances, many very com-
pelling application domains remain beyond the scope ofyelar computer systems, so
the quest for improving performance remains an importasgaech goal.

The traditional method of performance improvement, thtoungreased clock frequency,
has fallen by the wayside as the increased power consumpbieroutweighs any perfor-
mance benefits. This development has spurned a great dealoiftresearch in the area of
multicore systems: trying to provide efficient performamo@rovement through increased
parallelism.

Not all applications are well suited for multicore enviroents, though. In these sit-
uations, an increasingly popular way to efficiently providere performance is through
customized hardware, also known as computation accetsrafalding accelerators to a
general-purpose design not only provides significant perémce improvements, but also
major reductions in power consumption as well [120]. Thaeraany examples of cus-
tomized hardware being effectively used as part of a systerahip (SoC) in industry, for
example the encryption coprocessor in Sun’s UltraSPARCIB2. |

There are three major challenges in utilizing hardware lacators: design of the ac-

celerators, cost effective architectural integratiord aampilation support.

1.1 Design of Computation Accelerators

Efficiency versus programmability is the central tradeoffdlved in designing hard-
ware accelerators. Accelerators improve efficiency bygrenfng larger amounts of com-
putation in hardware than general-purpose designs. Hawtwe more computation an
accelerator performs in hardware, the less likely it is fattaccelerator to be useful across
multiple applications.

At present, the most popular strategy for exploiting comapioh accelerators is to build
a system consisting of a number of special-purpose apigitapecific integrated circuits,
or ASICs, coupled with a general purpose processor. The ASI€ specially designed
hardware accelerators to execute large portions of theagtign that would run too slowly
if implemented on the processor. While this approach iscéffe, ASICs are costly to
design and offer only a hardwired solution that permits atmm postprogrammability.

An alternative design strategy is to augment the core pemrewith small, acyclic
special-purpose hardware to increase its computatiopaluhties in a cost-effective man-
ner. The instruction set of the core processor is extendddaiure an additional set of
operations, and hardware support is added to execute tipesations in the form of new
function units. The Tensilica Xtensa is an example comnaégffort in this area [49].

There are a number of benefits to augmenting the instrucéitof & core processor with
small acyclic accelerators. First, the system is postnognable and can tolerate changes
to the application. Though the degree of application chasget arbitrary, the intent is that
the customized processor should achieve similar perfocaévels with modest changes
to the application, such as bug fixes or incremental modi@inatto a standard. Second,
the computation intensive portions of applications from$ame domain (e.g., encryption)
are often similar in structure. Thus, the customized irdtoms can often be generalized
in small ways to make them more useful across a set of apjoiisat Last, some or all
of the ASICs become unnecessary if the augmented core c@&vadhe desired level of
performance. This lowers the cost of the system and the bdesign time.

The central question with this approach is the degree of meffart required to design

an efficient set of instruction set extensions. This effart often be more time consuming

and expensive than the design of an ASIC. The current Xteystara places much of this
burden on the user to define, implement, and exploit the migax processor.

Automation is the key to making instruction set custommasuccessful. To this end,
this dissertation presents the design of a system that atésnmardware selection of the
acyclic custom instructions. Hardware design is accorhplisvia intelligent dataflow
graph exploration. The exploration focuses on efficientalery and selection of com-
putation subgraphs from which custom hardware is congtdicThe major challenge is
navigating through an almost limitless design space witlaotificially constraining the
size and shape of the subgraphs. This dissertation dematassthat the technique is high
quality, and provides a valuable tool for identifying atéil computations in a target appli-
cation set.

Once the acyclic accelerator design technique is in pl&tework leverages it to fur-
ther explore the programmability-efficiency tradeoff iffeient accelerator designs. Three
novel, more general-purpose acyclic accelerators areepted: a configurable compute
accelerator (CCA), a programmable carry function unit (BEFand a cyclic computa-
tion accelerator for loop bodies. The CCA and PCFU proviageftmctionality of a wide
range of acyclic application-specific instruction set esfens in a single hardware unit.
The CCA consists of an array of function units that can effitieimplement many com-
mon dataflow subgraphs. The PCFU implements these subgraigslookup-table based
structures similar to a field-programmable gate array (FRP@W®th of these structures
are more programmable than application- or domain-speicifituction set extensions;
however, they are less efficient. At the other end of the spetis the loop accelera-
tor. The loop accelerator only targets the innermost lodpspplications, making it less
programmable. However, since loops constitute largergsiexd computation than simple

acyclic subgraphs, the loop accelerator is much more efticie

1.2 Architectural Integration of Computation Accelera-

tors

Hardware accelerators efficiently improve the performanfdeir targeted application
domains, but they have problems associated with them, ds et main problem is that
there are significant non-recurring engineering costs@atad with implementing accel-
erators. The addition of accelerators to a baseline procéssgs along with it many of
the issues associated with designing a brand new procest8w first place. For example,
a new set of masks must be created to fabricate the chip, theralst be reverified (using
both functional and timing verification), and the new instrans must fit into a previously
established pipeline timing model. Furthermore, appitcet must be re-engineered to in-
corporate support for the new accelerators.

To overcome these problems, this dissertation proposestagy to customize the com-
putation capabilities of a processor within the context geaeral-purpose instruction set,
referred to agransparent instruction set customizatiorhe goal is to extract many of the
benefits of traditional hardware accelerators without hgwio break open the processor
design and application binary each time. The fundamenga id that subgraphs to be ac-
celerated are identified and then dynamically replaced mitiroarchitectural instructions
that configure and utilize whatever accelerators are ptesehe system.

Several different strategies are proposed for using thesel@ators without changing
the instruction set. One strategy, a fully dynamic schenegfopms subgraph identifi-
cation and instruction replacement in hardware. This tephis effective for preexist-
ing program binaries. To reduce hardware complexity, a idystatic-dynamic strategy is
proposed, which performs subgraph identification offlinertyithe compilation process.
Subgraphs that are to be mapped onto the accelerator aredniarihe program binary
to facilitate simple configuration and replacement at riametby a hardware translator or
dynamic compiler.

These utilization techniques culminate as an architelchuaework to efficiently sup-
port transparent instruction set customization in a gdfnmrgpose processor. The frame-

work utilizes a hybrid approach of statically-identified;némically-realized custom in-

structions. Subgraphs targeted for acceleration are iftehtduring compilation or as a
post-link optimization and are marked in the program exalclgt. At run time, subgraphs
are discovered, mapped, and executed on hardware acoeterahe hybrid approach en-
ables the combination of sophisticated offline subgrapldein algorithms with the flex-
ibility of online realization of the customized instruati®. The key idea is that in order to
facilitate efficient dynamic realization, the most difficabpects of the translation problem
should be performed statically.

Transparent instruction set customization is techniqgu@dle enough to enable binary-
compatible accelerator utilization for a wide range of de@dor designs. This disserta-
tion demonstrates its application for the CCA, PCFU, loopeterator, as well as single-

instruction multiple-data (SIMD) accelerators.

1.3 Compilation for Computation Accelerators

An overlooked challenge with exploiting computation aecators, and another focus
of this dissertation, is the associated compiler supparatzelerators. The compiler has
two major tasks. First, it must identify candidate subgsaphthe target application that
are functionally executable on the accelerator. This is®tsslly a subgraph isomorphism
problem. The second task is to select which candidate sphgta actually execute on the
computation accelerator. Candidates often overlap, thei€dmpiler must select a subset
to maximize performance gain. This task is essentially aly@vering problem.

Most prior solutions employ a greedy compiler approach fothbsubgraph identifi-
cation and selection to make the problem tractable. As witQraedy approaches, this
approach can achieve sub-optimal solutions in both ideatibn and selection. This dis-
sertation proposes an new approach for compiler subgragipimg that combines much
more thorough methods with a set of intelligent pruning teghes. Pruning ensures the
proposed algorithms are scalable in both application andlaator size to provide practi-

cal compilation times.

1.4 Organization

The remainder of this dissertation is organized as follo@sapter 2 develops an au-
tomated technique for designing high quality acyclic instion set extensions for one or
more target applications. This provides a useful tool fdpenatically extracting the criti-
cal computation subgraphs from a set of applications. Gmeputilizes this technique to
determine functionality requirements for a general-pggacyclic subgraph accelerator.
These requirements lead to the design of two novel famifiescelerators based on arrays
of combinational logic and lookup-tables. Following th@hapter 4 investigates transpar-
ent instruction set customization: methods for utiliziegelerators without costly changes
to a processor’s instruction set. Chapter 4 introducestid=as in the context of acyclic
computation accelerators, and Chapter 6 extends tramgparstomization for SIMD ac-
celerators. Turning attention to the compiler side, Chapteevelops automated methods
for identifying computation subgraphs to map onto accébesa The design and utilization
of cyclic accelerators is covered in Chapter 7. Finally, @tba8 summarizes the results

presented in this dissertation.

CHAPTER 2

Automatic Design of Domain-Specific Acyclic Accelerators

2.1 Introduction

In recent years, the markets for cellular phones, digitel@as, network routers, and
other high performance but special purpose devices hawergeaplosively. In these sys-
tems, application-specific hardware design is used to nieethallenging cost, perfor-
mance, and power demands. The most popular strategy is i dowystem consisting
of a number of highly specialized application specific imé&tgd circuits (ASICs) coupled
with a low cost core processor, such as an ARM [115]. The ASI€sspecially designed
hardware accelerators to execute the computationally ddim@ portions of the applica-
tion that would run too slowly if implemented on the core mssor. While this approach
is effective, ASICs are costly to design and offer only a ared solution that permits
almost no postprogrammability.

An alternative design strategy is to augment the core psmresith special-purpose
hardware to increase its computational capabilities in st-effective manner. The in-
struction set of the core processor is extended to featurdditional set of operations.
Hardware support is added to execute these operations ifoititmeof new function units
or co-processor subsystems. The Tensilica Xtensa is ang&ammmercial effort in this
area [49].

There are a number of benefits to augmenting the instrucgbofsa core processor.

First, the system is postprogrammable and can tolerategelsaio the application. Though

the degree of application change is not arbitrary, the intetinat the customized processor
should achieve similar performance levels with modest gharo the application, such as
bug fixes or incremental modifications to a standard. Sedbed;omputationally intensive
portions of applications from the same domain (e.g., ertagpare often similar in struc-
ture. Thus, the customized instructions can often be gépedain small ways to make
their use have applicability across a set of applicationastLsome or all of the ASICs
become unnecessary if the augmented core can achieve iheddesel of performance.
This lowers the cost of the system and the overall design.time

One central question with this approach is the degree of hweffart required to iden-
tify and implement an efficient set of instruction set extens. In addition, the effort
required to modify the software development tool chain featively understand the ex-
tended instruction set is substantial. This effort canrotte more time consuming and
expensive than the design of an ASIC.

We believe automation is the key to making instruction set@mization successful.
To this end, this chapter presents the design of a systersdhatines automatic hardware
selection and seamless compiler exploitation of the cust@tnuctions. Hardware design
is accomplished via intelligent dataflow graph exploratiofhe exploration subsystem
focuses on efficient discovery and selection of computagidigraphs from which custom
hardware is constructed. The major challenge is navigatingugh an almost limitless
design space without artificially constraining the size ahdpe of the subgraphs.

Once the custom instructions are discovered, several gieion techniques are ap-
plied to allow for quality mapping of subgraphs to each hadkwnit. This ensures that
custom instructions are useful across an entire domain gifcgions. These generaliza-
tion techniques are unique to the field of instruction setamgzation.

Compiler exploitation of the custom instructions is acctisfyed through a flexible
subgraph matching engine. Applications are analyzed ta@imedmputation subgraphs
that can be replaced by custom instructions. This allowscttstomized hardware to be
effectively utilized no matter what application is run on fthe compiler work presented
here is later extended and more fully evaluated in Chapter 5.

Many other researchers have proposed systems to accornti@isdisk of automated in-

struction set generation. The contributions of this chapte four fold. First, we present a
novel technique for efficient dataflow graph exploration aatiction. Second, we present
the design and demonstrate the implementation of a completiem, including retar-
getable compiler. Most previous work neglects the problérnompiling to a processor
with custom instructions. Third, and most importantly, wee uhe system to analyze how
effectively instruction set extensions designed for ongliagtion can be applied to other
applications in the same domain. Several techniques teaserthe cross-application util-
ity are explored. Lastly, we provide some analysis on howarusnstructions differ when

designed with multiple applications in mind.

2.2 Related Work

A large body of research has gone into instruction set cugiion. Work in [8], [109],
[125], [54], [52], and [126] all showed possible gains frosing this technique. While
these works show the potential utility of instruction sestaumization, they do not pro-
vide methods to automate the process. Many other systenestiegn proposed to auto-
mate this process, though. These systems can be categbaged on how they solve two
sub-problems: identification of custom instruction caatiés and how to make use of the
candidates.

Candidate Discovery -Informally stated, candidate discovery is determiningsaib
of an application’s dataflow graph, @G, that would be amenable for implementation
in hardware. In the most general sense, each node of the DF@itteer be included or
excluded from a candidate, yielding {mtero/nodes) potential candidates. Several tech-
niques have been proposed to handle the intractabilityisftoblem.

Early work [4] side-stepped the candidate discovery pnolddtogether by predefining
a set of candidates. This strategy requires a designer tmenate a superset of useful
candidates to select from, and utilizes design automatitime selection phase. While some
advantages of customization are realized, this approalimited by the large amount of
work necessary to define an appropriate superset of caedidatl the poor results obtained

when an appropriate superset is not available.

Work by Bennett [13] proposes iterative combination of ptives that occur in subse-
guent lines of code to reduce static code size. This methathaess that a base instruction
set is given corresponding to a high level language. Siegiate gathered on the frequency
of operations occurring near each other and the highesimgrombination is chosen as a
new instruction. This technique is irrespective of the latagraph and is primarily used
as a code size reduction technique.

Bennett’s work is similar to candidate discovery algorithim [104], [103], [128], [11],
[20], and [64], in that all of these papers propose iteratimmbination of primitives. Iter-
ative solutions typically combine two nodes, replace atlihsaccurrences in the DFG, and
repeat until some constraints are met. These solutions thavbenefit of very good run
times (typicallyO(NN?)) when compared to more thorough strategies, but risk betingks
in local maxima. Each edge is combined in a locally optimahn&, reminiscent of greedy
heuristics.

Holmer proposed a more global technique [56], which wag kteended by [61]. This
technique discovered candidates by performing an initialging of nodes based on the
schedule time in the DFG, then iteratively breaking and mazioing these groups. Work
by Bose [16], is similar to this, except that this work opethbn a syntax tree, instead
of a DFG, and used many more candidate transformations treking and combining.
Another major difference is that Holmer guided use of thagfarmations using simulated
annealing, attempting to maximize the worth of the insinrcset, where Bose performed
transformations unguided with the expected goal of impmoset. The application of these
two algorithms was mainly for designing entire instructeets, as opposed to just ISA
extensions.

Choi [24] generated initial candidates in a similar manodrdblmer. This work advo-
cated combining instructions that could be executed inlighi@nd then combining those
parallel sets to create custom instructions that were bade &@nd deep. In order to cut
down on the number of potential candidates explored, Chexl as artificial limit on how
deep the combined instructions can be. The main contribati¢24] is a new formulation
of the candidate discovery problem: they discovered catd&using a modification of

the subset-sum problem, and attempted to find the minimadfsiestruction extensions

10

to meet a certain performance requirement (as opposed faysarscovering the optimal
instruction extensions for a given cost). The main weakeee$this work are the artificial
limit on custom instruction length and the initial phase ofmbining parallel instructions
performed when it is not clear that parallel combinationastb

Other work proposes dealing with intractability by limigrihe size of the problem.
The algorithm proposed in [7] and [34] searches a full birteag, where each step decides
whether or not to include a node of the DFG into a candidateyswa prune the tree are
proposed, helping avoid the worst cas@®) runtime, but the size of the DFG must still
be relatively constrained in order for the algorithm to cdet@ in a timely manner. This
limits its usefulness for very large basic blocks.

Some researches have proposed heuristic ways to limit #retsepace without artifi-
cially constraining it. In [6], the least used half of all chaates are removed after each
iteration of candidate discovery. While this techniqud waltch all important candidates in
hot portions of the code, it potentially misses useful cdatis that are moderately used in
many portions of the application. Work by Sun [119] perforansimilar pruning, but uses
a more complex priority function to rank the candidatesjrtgknto account the number
of inputs and outputs, as well as dynamic occurrences. IrsSuork, candidates that do
not meet a certain percentage of the best discovered cdadiddar are removed. Work
in reconfigurable computing [98] initially partitions theFG into small pieces based on
heuristics. Candidates are then selected for these pagitHeuristic based methods such
as this have the benefit of not artificially constraining tlebtem by potentially getting
stuck in local minima or limiting the types of candidatescdigered.

Utilization - The problem of how to make use of the candidates is the oth@rma
issue to solve for instruction set customization. The vagonity of automated systems in
this field have neglected this problem. Most systems comthi@eliscovery and selection
phases so that whenever candidates are selected, theyraegliately replaced in the code,
e.g. [61]. These systems typically do not provide methodsuige the new instructions in
other applications. As such, it is necessary to look at woithe compiler community.

Automated utilization of custom instructions generallyppans during the code gen-

eration phase of compilation. Traditional code generatimthods use a tree covering

11

approach [3] to map the DFG to an instruction set. The DFG li$ isypo several trees,
where each instruction in the ISA covers one or more nodekartree. The tree is cov-
ered using as few instructions as possible. The purposadesbiitting the DFG into trees
is that there are linear time algorithms to optimally coweles, making the process very
quick.

One problem with this method, though, is that DFGs are nastrelt is shown in
[77] that tree covering methods can yield suboptimal resydarticularly in the presence
of irregular subgraphs common in custom instructions. Terocame this, [77] proposes
splitting all instructions into “register-transfer” pritives and recombining the primitives
in an optimal manner using integer programming. Work by Lji@a0] attacked the same
problem, and developed an optimal solution for DFG covebyggaugmenting a binate
covering formulation. While both of these solutions aremyald, they also have exponential
runtime, and must be selectively used.

Research in [101] describes a new way to look at the code geoerproblem. In
this work, computationally complex algorithms are usedngert custom instructions and
an algebraic polynomial expression which is functionaliyiealent to the original appli-
cation. Next, the polynomial is manipulated symbolicaftyain attempt to use custom in-
structions as best as possible. For example, a polynomiéd &@ expanded using function
identities (e.g. adding 0 to a value) to better fit an existingtom instruction. Custom in-
structions are inserted as intrinsic function calls in tbé/pomial, and functionally equiv-
alent high level language is output once all of this is conglérhe high level language
can then be used as input to a standard compiler. The maintadrdn of this work is the
method of algebraically modifying of code to better make ofsavailable instructions.

Our System -The candidate discovery technique proposed in this ch&pgémilar to
the work in [7] in that a full exponential search is used whegspropriate. The technique in
this chapter differs in that it incorporates a heuristicdtion, similar to [119] and [98], to
help divide the problem when exponential search is too sldvis is discussed in detail in
Section 2.3. In Section 2.4, the custom instruction utilaframework is described. This

framework ties together several ideas from other work imte system, and addresses some

12

External Constraints Aop |
HWLib - 1/0, Total cost PP j

(opcodexwidthxfreq) ‘ Hardware Compiler
Appi Dataflow Graph Cand]dat_e CFU selector » MDES printer Compiler
- Space Explorer . Combination ’ o
Optimized, unscheduled, Candidate ICandidate Prioritized MDEStfile
unallocated assembly code: Subgraphs CFUs ist of CFU:

Figure 2.1: Organizational structure of the hardware compiler.

runtime issues with previously proposed solutions. Thenneantribution in this work is

presented in Section 2.5: the custom instructions geregetateour system are applied to
benchmarks across several domains, and the results of ¢éxgseiments are analyzed.
Techniques to improve the effectiveness of cross domatruictsons and the issue of how
to design instructions for multiple applications are alackted. Domain-wide discovery

and analysis of custom instructions has not been previaxsynined.

2.3 Dataflow Graph Exploration

The purpose of the dataflow graph (DFG) explorer is to deteernandidate subgraphs
for instruction set extensions. Implementing subsets ef @G in hardware typically
allows for better performance, lower power consumptiorg eeduced code size than the
corresponding implementation as a sequence of primitieFaijpns. Determining which
parts of a DFG would make the best custom instructions isfiedlif problem, though. The
most glaring difficulty is that the number of potential casaties for a given DFG increases
exponentially in the number of operations. Explorationrstics must be developed to
overcome this problem.

The overall structure of our DFG exploration engine is showirigure 2.1. One or
more applications are fed into the system as profiled asseodsle. The code has not
been scheduled and has not passed through register adlocatiich is important so that
false dependencies within the DFG are not created. Injtiile application passes through
a DFG space explorer, which determines candidate subgfappstential instruction set
extensions. The space explorer selects subgraphs subjgotte externally defined con-

straints such as the maximum die area allowed for any custioctibn unit (CFU), or the

13

m "=p [0];
1 2 r°=p[1];
7= (((s[(m>>24L)] +
4 @ 5 @ s[0x0100+((m>>16L)&0xft)]) *
Bold = s[0x0200 + ((m>> 8L)&0xff)]) +

Critical Path s[0x0300+((m)&Oxff)]) & OxFFFFFEE:

m "= p[2];
m "= (((s[(r>>24L)] +
s[0x0100+((r>>16L)&0xff)]) »
7 9 (<< s[0x0200+((r>> 8L)&0xff)]) +
s[0x0300+((r)&0xff)]) & OxfFFFffff;

(b)

Opcode | Adders| Cycles
+ 1.0 0.30

@ @ AND | 012 | 006
18 19 <<, >>*| 001 | ~0
/S X/ 3/

XOR 0.16 0.09

* These are shifts by compile time constants

(a) (c)

Figure 2.2: A) Sample DFG from blowfish. Shaded nodes delineate a CFUrdprBcessed
C code this DFG came from. C) Excerpt from the hardware librékdders” is
the die area relative to a 32-bit adder.

maximum allowable register read and write ports. A hardwidrary provides timing and
area estimates to the DFG explorer so that it can accuraselgaythe cycle time and area
requirements of combined primitive operations.

A list of subgraphs, annotated with area and timing estigjasepassed to a candidate
combination stage. This stage groups subgraphs that weudctdcuted on the same piece
of hardware. Grouping the subgraphs creates a set of cardidfidJs and enables calcula-
tion of an estimated performance gain by using the profilegtmsi of all the set members.
The combination stage also performs some generalizateps $0 enable more subgraphs
to map onto the same potential hardware implementation®f &lis information is passed
to a selection mechanism that determines which CFUs bedttireeaeeds of the applica-
tion(s). Finally, the prioritized list of CFUs is convertado a machine description (MDES)
form that can be fed to the compiler.

Throughout this section, the DFG shown in Figure 2.2 from bewfish applica-

14

tion [53] is used for illustrative purposes. For simpli¢ci@ach operation or node is assumed

to take 1 cycle to execute on the baseline processor.

2.3.1 Subgraph Discovery

The exploration strategy employed in this work starts byneixéng each node in the
DFG and using it as a seed for a candidate subgraph. This sgeown downward along
dataflow edges to create a new candidate. For example, iédtkvgas node 6 in Figure 2.2,
it would be grown to nodes 7, 8, 9, and 12. When candidatedagveiith each other (such
as the candidates with nodes 6-7 and 6-8 in the example), zaegidate is created with
the union of their nodes (6-7-8). During growth, each intednate candidate is recorded for
potential implementation as a CFU. Growing the candidabesicues until some external
constraints are met, such as the candidate crossing a tiatwdooundary or exceeding
the number of register read ports available.

Initially, this system used a naive implementation thakkxd at all possible dataflow
edges to grow the seed nodes. Using this approach guaradesgsication of the best
possible set of connected candidates, since all possibtidates are generated. However,
the number of candidates quickly grows out of control for pnapplications.

The key observation gained from experimenting with thisreapproach is that grow-
ing along the majority of dataflow edges examined by expaakgtowth simply do not
make sense. For example, assuming the goal is maximizirigrpence on the DFG in
Figure 2.2, growing along the edge between nodes 6 and Sttlawéilue, because node 9
is not on the critical path (i.e., the longest dependende(ppin the DFG).

Previous work [7] [34] has shown that using an exponentikltsmn, such as growing
along all edges is sufficiently fast for some applicationsewintelligent pruning is used.
There are many applications that have too many nodes fornexyial search, though.
For these large DFGs, we propose usinguéde functionto determine which edges are
directions that do not need to be grown toward. By heurijia@moving unimportant
edges, the DFG is effectively partitioned into smaller mexs, which can then be used by

the exponential growth algorithm described above. Thetstyy allows us to maintain the

15

quality of the resultant candidates without taking expaia¢time or resources.

Our previous work [32] proposed using a guide function as ¢howe for inclusion,
which is to say that only edges which were determined to beitapt were grown along.
This effectively avoided the exponential search assatiatith subgraph discovery, but
in some instances overcompensated for the problem. Usengulde function to remove
edges takes the opposite approach and only prunes the sgacdwhen necessary.

One important characteristic of this technique is that taifioning step can be tuned
to more efficiently explore the design space. Partitionimg DFG into just a few larger
sections will ensure better coverage of the design spacie partitioning the DFG into
many smaller sections will result in reduced run times ananory consumption of the
exploration algorithm. An example of exploiting this tradffiewould be using larger parti-
tions in parts of the DFG that have higher profile weight, aytare more likely to yield
important candidates. All previously proposed solutioss a single exploration strategy
for all parts of the DFG, where as this technique can modghsitategy to effectively use

the computational resources available.

2.3.2 Guide Function

The purpose of the guide function is to intelligently rankigrhdataflow edges would
most likely be involved in unimportant candidates. The guanction essentially tries to
replace the architect by determining these unimportanégdus its decisions must reflect
the same properties the architect would use. The guideiimptoposed here uses three
categories to rank the desirability of edges: criticalig¢ency, and area. In the candidate
discovery system, each of the guide function categoriekatted 10 points of weight, and
the sum of these categories determines the total destyabileach edge. The edges with
the lowest desirability are more likely to be cut if the DFGeds to be partitioned.

Criticality - This category ranks edges highly when they appear on thes&irae-
pendence path(s) of a DFG. CFUs that occur on the criticdl peg likely to give the
application performance improvement, because they slinakeight of the DFG. Since

performance improvement is typically the most desiredltes\CFUs, cutting edges along

16

these paths is undesirable. An example of this from Figuzeauld be the edges from
node 6. The edges toward nodes 7 or 8 would rank higher in tefergicality than would

the direction toward nodes 9 or 12, because the aforemeattiondes are on the critical

slack+1"
operation can be delayed without lengthening the critiedhp Thus, the edge from node

path. Points are awarded using the equa where slack is the number of cycles an

6 to 7 would get;; = 10 points and the edge from node 6 to 9 would géf = 3.33
points. Note that it is important to give candidate edgediteven when they are slightly
off the critical path as the heuristic provides becausel@uyipaths often become critical
after several CFUs are formed.

Latency - Combining operations that require fewer cycles to exeauteoinjunction
than they do individually will lead to high quality CFU caddites. The largest performance
gains are possible by combining several low latency opamatisuch as bit-wise logicals,
where many can be executed in a single cycle. Converselypifibdes on an edge cannot
be executed in fewer cycles when combined, then the reswitenidate is less beneficial.

The latency category models this trend. Latency points eteilclited using the equation

old latency
new latency

the two atomic operations (see Figure 2.2c) connected tedge. For example, node 10

x 10. The latency of a CFU is calculated by summing up the fractidelays of

can be executed in 0.06 cycles as indicated by the ‘Cycldsy éor the AND opcode in
Figure 2.2c. Exploring the edge toward node 13, which haseaty of 0.3 cycles, would

0.06

get 0.06+0.30

x 10 = 1.67 points. In contrast, growing from node 6 toward node 9, would
get nearly all % * 10 = 10) the points allotted for latency.

Area - Since cost is a major constraint in the design of embeddezkpsors, area is an
important factor in the choice of CFUs. The guide functionsiders the area to be the sum
of the areas required to implement each primitive operadioran edge (see Figure 2.2c).
Note that register file ports are a design constraint, thag tho not factor into the area
calculation. Further, CFUs do require additional decodgc@nd interconnect, but we
assume that primitive operation area is the dominant terhe drea category gives more
points to directions that least increase the total area efcdndidate. Area points are
calculated the same way as Iaten% x 10. As an example, growing from node 19

to node 23 would yield%- * 10 = 0.1 points and growing from 9 to 19 would yield

17

Soreor * 10 = 5 points.

The guide function gives a weight to each edge in the DFG.AfDRFG proves to be
too large for the exponential exploration algorithm, a msore bisection is performed on
the DFG until the partitions are small enough (typically 30ewer nodes). For example,
if the DFG in Figure 2.2 was too large, then it would have to pi snito smaller pieces.
To do that, at least one edge would have to be cut. In this figheeedge from node 18
to node 22 is the first choice to cut, because it has the smatkight according to the
guide function. Cutting that edge creates two new partitiand eliminates all candidates
that contain that edge from being explored. If the two newipans are still two large,
the process is repeated until they are small enough. Théigairig is performed using
hMetis [63], a high-quality multi-level partitioner. Edgeeights from the guide function
lead hMetis toward cutting edges which will not lead to goeshdidates. In practice,
partitioning the DFG greatly reduces the design space tpdid where most applications
can be fully explored in under 5 minutes on a Pentium 4 system.

With the guide function/partitioning heuristic in placé,is important to verify two
points: that the heuristic does indeed prune the searclespad that good candidates are
not missed because the partitioner incorrectly precludemt Figure 2.3a demonstrates
the first point. Each dot on this graph represents the nunfteralidates examined when
exploring one basic block from three encryption applicasithat are characterized by large
loop bodies. This figure shows that the partitioner is ableftectively curve the exponen-
tial growth associated with the DFG exploration problemisTdigorithm can be used on
very large DFGs and without artificially constraining theaé&g of candidates generated,
which are both weaknesses of some previously proposed thlgs:

To ensure that good candidates are not dismissed, the tiewrds compared against a
full exponential search using strict external constrajoésdidates were only allowed 3 in-
put and 1 output port). Figure 2.3B shows the speetlattained from using the candidates
generated by both algorithms. As shown in the figure, the twwees track identically due
to the fact that the partitioning heuristic did not prune anportant candidates during its

search. DFGs can be constructed where the heuristic wil mgortant candidates, but

1The experimental setup used to obtain this data is explameetail in Section 2.5.

18

6T

Candidates

Figure 2.3: A) The number of candidates examined for DFGs in three etionyfpenchmarks. B) The average speedup on those benchmarks
using full exponential and heuristic search techniques.

1E+13

1E+12

1E+11

1E+10

¢ Heuristic| |

2N
N73

1E+09

1E+08

1E+07

** o

1E+06
1E+05

1E+04

1E+03 +—

1E+02 -

1E+01

1E+00 -

50

100
DFG Size

A.

150

200

Speedup

ol |t Expontential HK—
— -X%~ - -Heuristic *‘-
—*'I*’
O
18 S
/*_—
"/*
X
16 .
X
K4
x*
14 £
J
/
7/
X
1.2
0 2 4 6 8 10 12 14
Cost (Adders)

@ @ @ AND, OR, XOR, etc.

@ @ @ AND, OR, XOR, etc.
(wn) Gon) (oo

& ® @

Original Subsumed Wildcard Preemptive
CFU subgraphs CFUs Wildcarding

Figure 2.4: Examples of generalization techniques.

this was not observed in any of the test cases.

2.3.3 Candidate Combination and Generalization

After discovery, it is a straightforward process to groupntcal candidate subgraphs
together into candidate CFUs. A simple test that checkshgemivalence, while taking
into account commutativity, accomplishes this. For examiplsubgraphs 7-10-13-16 and
8-11-14-17 were discovered in Figure 2.2, the graphs woeldhecked for equivalence
and then combined into the candidate CRJ<-AND-ADD->>". The profile weights
are then used to get an estimate of the number of cycles eddhmfroves performance.
In the case that CFUs are being designed for multiple apmics, the cycle estimates
are scaled to ensure that one application does not domimapdysbecause it has a longer
execution profile. Using a compiler to get an exact measuneimescheduling with each
instruction is possible, but the complexity makes this gofuundesirable. In practice, the
profile-based estimates proved reasonably accurate.

After candidate grouping, a generalization process takiesedo make the candidates
more useful across a domain of applications. Two technigeegmployed to accomplish
this. The first issubsumed subgraphSubsumed subgraphs take advantage of the fact that
most atomic operations have an associated identity inflatyiag values to pass through
a node without changing. Using Figure 2.4 as an example,f @ZND-XOR-ADD” was

discovered, CFU “AND-ADD” can be executed on the same hareWacause one input

20

of the XOR operation could be set to 0. CFUs “AND-XOR” and “X@®D” could also
be subsumed by “AND-XOR-ADD”. The cost of implementing tessibsumed subgraphs
is simply a MUX on one input of every node being bypassed;,tftarsery little additional
cost the number of subgraphs that map onto a CFU is increased.

The second generalization technique is calieldicarding Wildcards are subgraphs
that are a similar shape as the original CFU, but operatibns@node may differ. Com-
bining two CFUs with similar structure allows us to sharedveasire and map multiple
subgraphs onto the same CFU. Two examples of wildcards aengn Figure 2.4. |If
the original CFU implements “AND-XOR-ADD”, then both “OROR-ADD” and “AND-
XOR-SUB” would be recorded as potential wildcards, if th@peaared in the input DFG,
since they only differ by one node from the original CFU.

A stronger version of wildcarding, termgufeemptive wildcardingn this work, gener-
alizes a CFU to have many potential operations at each noaléketegular wildcarding,
the preemptive subgraphs do not necessarily have to appéhe input DFG. The idea
behind preemptive wildcarding is that many operations harg similar hardware imple-
mentations, e.g. ADD and SUB, or can be added to a node forli#gycost. Additionally,
we have observed that applications within a domain havdaisihaped DFGs, even if the
operations at individual nodes do not match. Preemptivedirag this functionality allows
many more subgraphs to map to a single CFUs and makes themmureluseful across
a domain of applications. Again, an example of preemptiMdagirding is given in Figure
2.4. Here logical operations were added to the AND and XORespand SUB was added
to the ADD node.

It is important to note that in this phase of the exploratimnfework, no binding de-
cisions are made with regards to subsumed subgraphs anchwdidg. The generalization
phase simply creates new, generalized candidates withtegh@@ea and cycle estimates
to reflect what the potential cost and benefit of generaligach original candidate. The
selection algorithm can then weigh the costs and benefiterémlizing and make an ap-
propriate decision. Since preemptive wildcarding ofteesloot improve the estimated
cycle savings for an input DFG, it is always performed if tlustcrequired is less than a

predefined threshold.

21

Greedily select CFU 2 — the one Update the values of each CFU

with the best value/cost that depended on ops that are
now attributed to CFU 2
CFU Value Cost Ops CFU Value Cost Ops
Number Number

1 20 4 3,4,8,6,9

5 6 1 13,7 / 2 6 1 13,7
N 8 5 17 \1 N 0 5

Add CFU 2 to the final list, remove
CFUs with no value, and repeat until
we exceed our area budget

1 16 4 4,8,6,9

Figure 2.5: Greedy approach to CFU selection.

2.3.4 Candidate Selection

Selecting CFUs with a given area constraint is similar to @He knapsack problem.
There is a set of resources (the CFUs) that all have a valeee@timated cycle savings)
and a cost (die area), and the goal is to maximize the totaéval a given cost. Itis widely
known that the 0/1 knapsack problem is NP-complete, althaus solvable in pseudo-
polynomial time using dynamic programming. Strategieseded to avoid intractability
in this stage of design automation as well.

It is important to mention that CFU selection has one cavesding in the 0/1 knapsack
problem: the values of all the other CFUs change once a CFélexted for inclusion.
Individual operations can appear in multiple CFU candisa@nce a CFU is selected, it is
necessary to update the estimated cycle savings of the ©figs so that double counting
does not occur. Using an example from Figure 2.2 again, asshentwo highest ranked
CFUs were 7-10-13-16, and 7-10-13. If 7-10-13-16 was setkfitst and did not update
the value of 7-10-13 to reflect the fact that it can no longerarsy of its operations, then 7-
10-13 would be selected also, even though it would providgaio above what 7-10-13-16
already provided.

One strategy used for CFU selection is a simple greedy meitostrated in Figure

22

2.5. Given a list of CFU candidates, the one with the best mfti’jo% is greedily selected.
Once CFU 2 is selected, the heuristic iterates through shefiremaining candidates and
removes operations that were claimed by it. In Figure 2.Brafons 1 and 7 were removed
from CFU N and its value was updated to 0, as it had no more tpeseft. Operation
3 was removed from CFU 1 and its value was likewise updateditddce all CFUs are
updated, the selection process is repeated until the ackgebis exhausted.

Because the selection heuristic is greedy, it is not guaeahiio give an optimal solution,
and frequently does not. For example, when the greedy #fgorselects based only on
estimated cycle savings, performance does poorly at thetstvbudget points compared
to when it selects based éﬁ% However, the opposite is true at high cost points.

In an attempt to improve the selection heuristic, a versiaseld on dynamic program-
ming was implemented as well. This is a straightforward esi@n of the algorithms pre-
sented in [58]. The problem with the dynamic programminghudtis that it requires
candidates to update their estimated value many more tinaesthe greedy method. This
computational overhead is quite significant, and in ordealkeviate it, a simplifying as-
sumption is made. Prior to the selection, each operatiossgjaed to the candidate with
the largest estimated speedup. This eliminates the neeeldoently update candidate val-
ues, but potentially misleads the selector. Despite thesdiynamic programming method
typically provides better results than the greedy method.

Dealing with wildcards and subsumed subgraphs adds andiabenge to the selection
process. The main issue is the possibility that implemgnéirsubsumed subgraph as a
separate CFU is more desirable than implementing it oniagissubsuming hardware. As
an example consider the large gray CFU from Figure 2.2. If BXO<<” were to be run
on custom hardware, it could be done for a minimal area owetloa the large, gray CFU,;
however, there would be a latency penalty of going througbethmore operations (there
are no early exits from operations 7 or 8). It may be that angaa special “XOR <<”
unit is the better solution. Subsumed CFUs are not remowad the selection pool, so
that the option to include both the subsumed and subsummdjdate is available.

Another issue is whether to count all the subsumed subgrapthsvildcards when de-

termining the estimated value of a CFU. If they are countedntin addition to updating

23

®
D
®

®>-0-0-OO®

« /

(o)

O--®
O

E-0-®
e

g%

3des Blowfish Crc Djpeg Gsmdecode Gsmencode

O-O-&-®
- O-O-®

Figure 2.6: A selection of CFUs generated by the exploration system.

the estimated value of other CFUs based on the operatiohsg iceindidate subgraphs, it is
also necessary to update the values based on all the operatithe subsumed or wildcard
candidate subgraphs. This creates a large computatioediead for every subgraph selec-
tion. Additionally, this means frequently attributing spgons to small subsumed portions
of a large CFU, when more performance could have been gayedtfibuting them to a
separate CFU (like the example in the previous paragragig.cése just described occurs
quite frequently, so CFUs are selected as if they had no sabdisubgraphs or wildcards.
When a selection is made, the costs of the subsumed subgraghgldcards are updated

to reflect that they can now be added for very little cost ogath

2.3.5 Example CFUs

The types of CFUs generated by this system are quite varegaeraling on the input
DFGs. Some examples of selected CFUs across six applisai@shown in Figure 2.6.
Often, the system generates instructions that an architeatd expect to see, such as
the multiply-accumulate selected for djpeg and the sahgeadd selected for gsmencode.
This provides some empirical evidence that the system isngaktelligent decisions. The
system also frequently generates custom instructionsyzar very unusual, too, such as

the ones for 3des, blowfish, crc, and gsmdecode.

24

<] Compiler Backend

vflib
o 11 | Assembly Code
) Dataflow Pattern Prioritization Scheduling| | o
APP] | Compiler |——#{ Analysis [~ Matching [| &Filtering [*[XePACCMENt—g Reg Allod > Utiizing Custom
—Front-end| e | vy 5] 5 : unction Units
Dataflow Graph All matched subgraphs Non-overlapping patterns
Appi
— Hardwgre Machine Description Database (MDES)
Compiler MDES files with
CFU description

Figure 2.7: Organizational structure of a compiler supporting custostructions.

2.4 Compiler Utilization

The purpose of the compiler is to automatically exploit CRWailable for any given
application. The basic structure of the retargetable cteng shown in Figure 2.7. Ap-
plications are run through a front-end, producing a genBli8C assembly code. The
assembly code is unscheduled and uses virtual registeescdrmpiler uses a machine de-
scription, or MDES, to determine what CFUs are availableuse. Given the assembly
code and MDES, the compiler performs dataflow analysis tegga a DFG, discovers
all subgraphs in the DFG that match available CFUs, primm#tithese matches, replaces
the matches with custom instructions, and finally perforhestypical tasks of register al-
location and scheduling. The steps that differ from tradiél compilation techniques are
described in detail below. Again, the compilation stratpggsented in this section is more

fully described and evaluated in Chapter 5.

2.4.1 Pattern Matching

Pattern matching is the most critical step in CFU utilizatioThe first step in this
process is determining all available CFUs from the MDESniebhigh level, the MDES
describes what resources a CFU consumes, the latency op#ratmn, the number and
type of inputs and outputs, and the structure of the subgitzgatthe CFU implements.

Discovering the subgraphs in the DFG can be viewed as therapibvgsomorphism

problem, which is known to be NP-complete. To perform supgralentification, the

25

s 10U) afoD)
2 8 @\50
5

#2 #30

Figure 2.8: DFG similar to one from sha.

vflib graph matching library [35] is employed. While the afiglom used in vflib is still
exponential worst case, the best case is only polynomial,tla@ overhead added to the
compile time found in practice is minimal.

The vflib algorithm finds matching subgraphs by starting ehirdual nodes that occur
both in the DFG and the CFU. These nodes are ternpadtéal match The partial matches
are then expanded along DFG edges to create new partial @satch manner that is similar
to DFG space exploration.

Figure 2.8 shows part of a DFG that is similar to one in the sihechmark [53]. Given
a CFU to implement the operations in subgraph 2-5-6, thepathatcher would begin by
looking at all left shift &<) nodes: 2, 14, and 16. These partial matches would then be
grown toward all consumers, since node 2 has a consumer i@Rhe This would create
partial matches 2-3, 2-6, 14-18, and 16-19. 2-3 and 14-1&ngdr match the CFU, so
only 2-6 and 16-19 are considered. These two partial matareethen grown toward the
producers of 6 and 19, since the original CFU had two produeeding the OR node. This

process continues until all the partial matches either d@ty match or do not. Subgraph

26

matching is repeated for all CFUs, so that all potential saply matches in the DFG are
discovered.

At this stage, the same operation may appear in multiplerspigmnatches. Deciding
which match an operation should be placed in is an NP-haiolgmg though. The optimal
solution proposed in [80] was prohibitively slow when implented in our compiler. To
overcome this, a partitioning technique was again employed

The traditional solution mentioned previously uses a l@catvering formulation which
optimally maps CFUs onto a DFG. Typically an entire DFG is pegpat one time in
this method. However, there are usually very few nodes thpéar in multiple matches,
meaning that the matches do not frequently overlap. Thisdtows the problem to be
separated into several, independent binate coverings lwsewiof the DFG. To illustrate
this, consider a mapping was being performed on the DFG inrEig@.8. If no matches
contained both nodes 13 and 15, then the graph could thenrbegop&d along the edge
that connects them. Binate covering could be done indepeyden the left nodes and
the right partitions without sacrificing optimality. A brelmand bound algorithm was used
to solve the binate covering formulation. Once the sub-emis are solved, an optimal
solution to the entire DFG can be constructed from the ogtgub-solutions, much more
quickly than when looking at the entire DFG at once. Whileesasan be constructed to
make this technique prohibitively slow as well, in practic@as very fast, typically taking

no more time than the scheduling phase of compilation.

2.4.2 Custom Instruction Replacement

On the surface, replacing the matched subgraph with a custtnuction is fairly sim-
ple. There are some important issues that must be considei@der to guarantee the
correctness of the resultant program, however. Using thé Brown in Figure 2.8, sub-
graph 2-5-6 will be replaced with a custom instruction. Thesfion that arises is, “Where
should the custom instruction be placed in relation to othy@rations in the assembly
code?” To ensure correctness of the program, the customuatistn must be placed after

all the predecessors of the operations in the subgraph (edtkes 1 and 4 in this example),

27

and also before all the successors (nodes 3 and 15 here) miggsthe node identifiers

define the sequential order of the assembly code for this pbaithere is a potential prob-
lem with where to place the custom instruction. Replacindgen® is incorrect because the
custom instruction would be placed before node 4. Similadplacing nodes 5 or 6 is

incorrect because it would be placed after node 3.

To prevent this from occurring, the assembly code is reamgahprior to subgraph re-
placement. For subgraph 2-5-6, the last scheduled prestacissnode 4 and the earliest
scheduled successor is hode 3. As long as the custom instrisinserted between these
operations, program semantics will be maintained. Foryesabgraph match, if the last
predecessor comes after any successors, then those suscasd any operations depen-
dent them are moved after the last predecessor. In this dgeamp would move node 3
after node 4, and then safely insert the custom instrucfitem the last predecessor.

Once the subgraphs are replaced and the code is reorderedrfectness, scheduling
and register allocation take place, leaving us with an appibn that intelligently utilizes

the available CFUs.

2.5 Experimental Results

The system proposed was constructed as part of the Trimassarch infrastructure
[121]. The DFG exploration engine was implemented as a astand module, and the
compiler backend was modified to facilitate subgraph matghnd replacement. The cycle
time and area estimates in the hardware library were catilasing Synopsis design tools
and an Artisan 0.18standard cell library.

For this evaluation, two simplifying assumptions are magiest, no memory instruc-
tions were included in CFUs. Having custom instructiong #itaess memory creates CFUs
with non-deterministic latency as well as requires consitien of cache ports during DFG
exploration. Memory disambiguation within a custom instron must also be factored
when doing pattern replacement in the compiler. The secesdmption was that cus-
tom instructions were not allowed to contain branches ossrmontrol flow boundaries

(if-conversion of the code is allowed, however). Theseriggins were put in place so

28

that custom instructions can remain stateless and atoroit &sumptions are due to lim-
itations in the DFG explorer and compiler, and do not reflaterent limitations of the
approach.

Sixteen full benchmarks were run through the CFU generatymtem and fifteen sets
of CFUs for each benchmark were created. Each set corresporach area budget allotted
to the CFUs (relative to one 32-bit ripple-carry adder, twiders, etc.). The sixteen bench-
marks can be divided into four domains: encryption, netwardio, and image. The en-
cryption category contains 5 benchmarks (blowfish, rijadaed sha) from MiBench [53]
and two other encryption applications (3des and Rc4). Thwor& category consists of
three benchmarks (crc, ipchains, and url) from NetBench, [@@d the audio (gsmdecode,
gsmencode, rawcaudio, and rawdaudio) and image (cjpeeg dgpic, and mpeg2dec) do-
mains are from MediaBench [75].

The baseline processor for the experiments is a four-wid&Wihat can issue one inte-
ger, one floating-point, one memory, and one branch instmeiach cycle. The instruction
set and latencies of each instruction are similar to thogeeARM-7 [115]. In all of our
studies, the custom instructions require an integer iskliésexecute, thus an integer op-
eration and a custom instruction cannot execute in the sguie.cThis was done so that
any speedups observed are due to custom instructions aricbnoadding parallelism to
the processor. A 300 MHz system clock was assumed for timimgtcaints, and custom
instructions that require more than one clock cycle to eteeaue pipelined so as not to
affect cycle time. A maximum of four input and two output Eontas placed as an external
limit on all CFUs generated. Generally speaking, approxatyd 0-20 custom instructions
were needed to attain the maximum speedups presented ialheing figures. It is im-
portant that this number is small, in order to keep the impacinstruction set encoding
minimal.

Although not presented in this work, a prototype of this sgsthas been built in the
ARM OptimoDE framework [28]. This prototype allowed us to asere the actual die area
overhead for adding custom instructions to a processor.lé\the prototype implemen-
tation was fairly naive, we found that custom instructioosild be added to a processor

for roughly 20% additional die area. The majority of this dwead was due to additional

29

control bits that resulted from adding an issue slot for@omsinstructions. Note that in our
simulations, no issue slot is added, and thus the overhedlddonodel used in this chapter
will likely be much less than the 20% reported in [28].

Performance Versus Area: The four graphs in Figure 2.9 compare the performance
gain in each of the four benchmark domains as the total codgdtufor CFUs is var-
ied. Each line in the graphs represents the speedup of aitatpmh with CFUs designed
specifically for it compared to the baseline processor. Grtleeninteresting trends in these
graphs is that speedups seen in benchmarks vary greatlyyfion benchmarks tend to
benefit quite a bit from CFUs, with 3des, rijndael, and shaxshg speedups of 2.39, 2.08,
and 1.91, respectively, at the higher cost points. On therann some applications in
other domains show very little speedup (e.g. mpeg2dec, apitipchains). Investigation
into this revealed that these benchmarks had a significambeuof branches and mem-
ory operations, which hindered the combinable operatioagable for the DFG explorer.
Conversely, the encryption benchmarks contained larggraphs dominated by simple
arithmetic and logical operations, which are ideally sdiiier custom hardware.

Another very noticeable trend in Figure 2.9 (blowfish andedjpn particular) is that
at some higher cost points there is a dip in speedup. Thisasditectly to the greedy
node assignment in the dynamic programming selection $teuriRecall that in the pro-
posed selection algorithm (see Section 2.3.4), when a ngaesas in multiple candidates,
a pre-selection pass removes that node from all candidateptthe one with the largest
estimated latency decrease. This assignment saves a gedaifecomputation during se-
lection, but is just a heuristic, and can make bad decisidiws. blowfish, a speedup of
approximately 1.7 is attained at cost point 4, by assign@wgsal nodes to small and gen-
erally useful CFUs. At cost point 5 the heuristic assignedritbdes that used to be in small
CFUs to a very large CFU, artificially inflating its value inraparison to the smaller ones.
In reality, the compiler was not able to make use of the larg&) @s well as the smaller
ones, and thus performance suffered.

Cross Compilation and Generalization: Figures 2.10 and 2.11 show the performance
of applications when run with CFUs designed for other agpions within the same do-

main. Two benchmarks are listed for each set of bars; thedimstis the application being

30

T€

22

Encryption Net
26
3 s [——— N * * * * *
i B | o fish 24 il | o chalins I
| - A- R4 T |- A= un
X-Rijndael
= X- Sha
x 22
X /
2 ' 4 * * g
. /
5
3 18
Q.
o ,
16
/ , /
. 14
.
4 A--A--A--A--A--A--A--A--A--A--A--A
W] A--A--A--4A - -
124 =
A
1
1 2 3 4 5 6 7 8 9 10 1 12 13 14 15 1 2 3 6 7 8 9 10 11 12 13 14 15
Cost (Adders) Cost (Adders)
Audio Image
1.5
A--A--A
G smdecode " (e Cjpeg
il Gsmencode . il Djpeg
- A= i . - A= Epic
X~ Rawdaudio . 1.4 1= %—Mpeg2d
A--A _—/-
1.3
o
Ey
T°
o
3
-3
»
1.2

Cost (Adders)

Figure 2.9: Performance of four application groups as CFU cost budgatreased from 1 to 15 32-bit adders.

Cost (Adders)

uiod 1s09 Jappe-greypndAIou3 ul spreap|im pue sydelbgns pawnsgns Jo 19913 0T ¢ 24nbi4

4 N
/Y@ /Y& //1V @00. //IV @O/V‘ //JV O:V O:W /&
6 L o L AL LA » S &
PO G A AN g P g s 5 S8
& &8 9@/,.% RS @@o £ %%% A RN RO i

pawinsgng pue spieop|ip) eAldwssid |
pawnsqng pue spJesplip O
BUON O

uondAiouz - uonezijesauas N49

dnpoadg

32

€e

CFU Generalization - Audio

2
N ONone
OWildcards and Subsumed
18 1 B Preemptive Wildcards and Subsumed [—
1.6
o
=]
3 1.4
o
2] |
1.2 —
1,,
0.8
& & WO \@ & & O $b & RS RS \Y\b & & O
PSR R R P S D R R A O P P
)) o o 2) J ¢ 2 2 1 9 [CNCY & &
< < ¥ ¥ & & & & <t <t > > & & > »
< & & < 2 % > <& <& > »® <& <
X < ¢ ¥ & ¥ <&

Figure 2.11: Effect of subsumed subgraphs and wildcards in Audio at thadder cost point.

run, and the second one is the application the hardware wagrdel for. For example,
the second set of bars from the left in Figure 2.10, 3des-Bé&bwshows the speedup ob-
tained when running 3des on CFUs designed for blowfish. Eaclinlthese figures uses
the CFUs designed at a cost point of 15 adders. The white ls&<&Us that have no
generalization, the gray bars utilize wildcarding and subsd subgraphs, and the black
bars have preemptive wildcarding in addition to the subsiisubgraphs. Although only
the encryption and audio domains are shown here, the trenttese two figures hold in
both the network and image domains.

One interesting pattern in these figures is that when onecapioin does well using
another application’s CFUs, it does not necessarily meahttie opposite is true. For
example, rijndael does well on rc4’s CFUs, but rc4 gets atmosspeedup from using
rijndael's CFUs without generalization.

The most dominant trend in these figures is that without gdization techniques (i.e.
the white bars), most applications do quite poorly when gisiardware designed for an-
other application. Rijndael was able to achieve a 1.85 sgeeding CFUs designed for
rc4, but apart from that, none of the other performance iwg@noents even begin to ap-
proach what was achieved with hardware designed spedffitmlithat application. This
result was surprising, since applications in the same domanerally have similar DFG
structure. The reason this happens is because while the BéGsanilar, they do not match
exactly. This serves as strong motivation for the use of CEblegalization techniques for
domain-specific acceleration.

As CFUs are generalized (moving to the gray and then to theklidars), it becomes
obvious that the critical issue to exploiting CFUs acrosdtiple applications is the ability
to map multiple subgraphs onto the CFU hardware. Using opctakses and subsumed
subgraphs allows several applications to approach thedspseattained with CFUs de-
signed specifically for them, e.g. rijndael on rc4, 3des gmdael, and gsmencode on
gsmdecode. Most cross compiles show significant speedupsa wéing generalization
techniques, which points toward the conclusion that appbas within a domain gener-
ally have similar DFG structure in the computationally imge portions of their DFGs.

An important point in Figures 2.10 and 2.11 is that the gdixtion techniques are

34

typically not very useful for native compiles. For exampismdecode shows little im-
provement from generalization in Figure 2.11 on CFUs de=igor itself. This is because
the CFUs are chosen specifically to handle the most computdly intensive portions of
the code, leaving few nodes in important parts of the codéadola to be utilized by wild-
card or subsumed subgraphs. The fact that generalizaties wot help native compiles
provides further evidence that the DFG exploration toolslaegood job at finding and
selecting appropriate CFUs.

Designing CFUs for multiple applications: An alternative strategy to preemptively
generalizing CFUs from one application is to design thenhwiultiple applications in
mind. This allows for more certainty that the CFUs designdbwork across a domain.

Figure 2.12 shows the results of designing CFUs for certabssts of the encryption
domain. The horizontal axis shows which applications th&J€®ere designed to target.
For example, the middle set of six bars in the left graph shibwspeedups of six applica-
tions when using CFUs designed for Blowfish, Rc4, and Shalsameously, at a cost point
of 15 adders. Moving from left to right along the horizontalsain each graph effectively
generalizes the CFUs for the encryption domain, since artiaddl application is used as
input at each step. The left and right graphs show two diffepaths for generalizing the
CFUs.

There are three important trends to note in Figure 2.12t,FAdding applications gen-
erally improves average performance. For example, movimg the first set of bars to the
second set in the left graph, 3des, blowfish, sha, and md&alave performance. Rc4
loses a little performance because in the first set, the CFbte designed specifically for
that application and in the second set, part of the area busigkevoted to sha as well.
Regardless, the average speedup of the six applicationstoraoally increases as more
applications are taken into account when designing theouststructions. This is true on
the right graph as well.

Second, speedups achieved from the rightmost (domainy\s&teof bars are close to
speedups achieved by designing specifically for that agidic. For example, the speedup
for 3des on CFUs designed specifically for it is 2.39 comp#oe2l32 on the domain-wide
CFUs (rightmost set of bars), and blowfish has a speedup &fift.6oth the application

35

9€

24

24

22

0.8 4

Rc4

Rc4, Sha

Blowfish, Rc4, Sha

Applications Targeted

22 —
5 1]
_ Wl L]
O3des
Qo
OBlowfish| 3
T
] 7 |ERc4 9 1.6 1
BRijndael | &
OSha
N IS 4T
= - 1.2 4+
. | 11
. 0.8 .
3des, Blowfish, 3des, Blowfish, Sha 3des, Sha

Rc4, Sha Rc4, Rijndael, Sha

Figure 2.12: Effect of targeting multiple applications

3des, Rijndael, Sha

Applications Targeted

3des, Re4, Rijndael,
Sha

3des, Blowfish, Rc4,
Rijndael, Sha

specific and domain-wide CFUs are used. The reason that speselups are attainable
in the domain-wide CFUs is that the DFGs of these applicatame quite similar and the
generalization techniques that we have proposed allowrgating hardware that maps to
the core computational needs of each application.

The last important trend to note in Figure 2.12 is that the rmpplication generally
improves speedup as the CFUs become more general. Md5 iggeaprdor computing
checksums to detect data transmission errors, and is simitructure to encryption al-
gorithms. Since md5 shows good speedups on the domain-viAtls Gand they were not
designed with this application in mind, it seems likely ttregse CFUs will be effective on

next generation encryption applications.

2.6 Summary

Application-specific instruction set extensions are arcigffit way to meet the growing
performance and power demands of embedded applicationsigideg these extensions
has traditionally been very user intensive, as an archierst determine what would make
a good extension and manually insert intrinsics into theedmdmake use of these exten-
sions. In this chapter, we have presented a system that atégerthis process. Using an
efficient dataflow graph exploration heuristic, we are abl@liscover and automatically
select custom function units to meet the demands of an atigic We have also demon-
strated how a compiler can make use of these custom funatibsin any application and
how to increase their utility through simple generalizatitechniques.

Our system has demonstrated significant speedups for semphcations, with as
much as 2.39 for 3des and an average of 1.69, while utiliziodest additional die area.
We have shown that typically exact subgraph matches do rmoir@cross applications in
a domain, but by using simple generalization techniquetd¢ards and subsumed sub-
graphs) cross-application utilization can be substdwgtialproved. Additionally, we have
shown that designing custom instructions with severaliagpbns in mind at one time is
an effective way to achieve the goals of generalization tanksign with future algorithms

in mind.

37

CHAPTER 3

Generalized Acyclic Accelerators

3.1 Introduction

As covered in the previous chapter, instruction set custatian is one method for effi-
ciently providing enhanced performance in processors.rBgting application-specific ex-
tensions to an instruction set, the critical portions of ppleation’s dataflow graph (DFG)
can be accelerated by mapping them to specialized hardwé@ugh not as effective as
ASICs, instruction set extensions improve performance raadice energy consumption
of processors. Instruction set extensions also maintaiegaeg of system programmabil-
ity, which enables them to be utilized with more flexibilithn additional benefit is that
automation techniques, such as the ones used by ARM Optimd®&tsilica, and ARC,
have been developed to allow the use of instruction set sikies without undue burden
on hardware and software designers.

The main problem with application specific instruction setasions is that there are
significant non-recurring engineering costs associatel wiplementing them. The addi-
tion of instruction set extensions to a baseline processng$® along with it many of the
issues associated with designing a brand new processoe ifirsh place. For example, a
new set of masks must be created to fabricate the chip, tipenctist be reverified (using
both functional and timing verification), and the new instrans must fit into a previously
established pipeline timing model. Furthermore, extamsidesigned for one domain are

often not useful in another, due to the diversity of compatatausing the extensions to

38

have only limited applicability.

To overcome these problems, the next two chapters focusategies to customize the
computation capabilities of a processor within the contéx general-purpose instruction
set, referred to agansparent instruction set customizatiorhe goal is to extract many of
the benefits of traditional instruction set customizatiathaut having to break open the
processor design each time. This is achieved in two stepst, B compute accelerator
is added to the baseline processor design to provide theidmadity of a wide range of
application-specific instruction set extensions in a gingkce of hardware. Next tech-
niques are developed to invoke the accelerators, withaymauating the instruction set.

The focus of this chapter is on design of more general purpagelic computation
accelerators. An effective design must be capable of exeratwide variety of domain-
specific instruction subgraphs faster and more efficieritgnta conventional processor
pipeline. It must also be both cost effective and power eiffitko make its use feasible
in an embedded computing environments, and be amenablédiemf run-time control
generation. The final issue is the most difficult to quantiyt implies a programmable
substrate that is configured with a modest number of conigokds.

Two families of designs are presented in this chapter. JFastonfigurable compute
accelerator, or CCA, consists of an array of combinatiomatfion units that can efficiently
implement many common dataflow subgraphs. The second i@anpéerized lookup table
(LUT) based accelerator. LUTs are the basis of FPGAs, andematsupport any bit-
wise function. This power comes at the cost of efficiency,lsltUT-based accelerator
presented is tailored to more efficiently target importaritgraphs.

A detailed analysis of the CCA and PCFU designs show thatithplement the most

common subgraphs while keeping control cost, delay, aral@rerhead to a minimum.

3.2 Related Work

Utilizing instruction set extensions to improve the congtianal efficiency of applica-
tions is a well studied field. Domain specific instruction eetensions have been used in

industry for many years, for example Intel's SSE or AMD’s 3@M multimedia instruc-

39

tions. Techniques for generating domain specific exterssioa typically ad-hoc, where an
architect examines a family of target applications andrdetees what is appropriate.

In contrast to domain specific extensions, a great deal ok\was been done on the
design of a reconfigurable computation accelerators. Elesnipclude PRISM [8], PRISC
[109], OneChip [23], DISC [125], GARP [54], and Chimaera8)2All of these designs
are based on a tightly integrated FPGA, which allows for f&xible computations. How-
ever, there are several drawbacks to using FPGAs. One pnosl¢hat the flexibility of
FPGAs comes at the cost of long latency. While some work [@8]&ddressed the issue,
implementing functions in FPGAs remains inefficient whempared to ASICs that per-
form the same function. Second, FPGA reconfiguration tinmebeeslow and the amount of
memory to store the control bits can be large. To overcomedngputational inefficiency
and configuration latency, the focus of most prior work deglvith configurable computa-
tion units was on very large subgraphs, which allows the &zadion of these costs. This
work differs in that we focus on acceleration at a finer granty.

Recent research [130] has proposed using a finer granutanitypute accelerator based
on slightly specialized FPGA-like elements. By restrigtthe interconnect of the FPGA-
like elements, they reduce the delay of a accelerator wittamlically affecting the number
of subgraphs that can be mapped onto it. While the flexibibitynap many subgraphs
onto configurable hardware is appealing, there are stiltithevbacks of a large number of
control bits and the substantial delay of FPGA-like eleraent

A key observation we have made is that when collapsing datafidographs for cus-
tomized instruction set extensions, the flexibility of anG&is generally more than is
necessary. FPGAs are designed to handle random comput@tiercomputation in appli-
cations is structured using a relatively small number of patational primitives (e.g. add,
subtract, shift). Thus, the types of computation perforhgdnstruction set extensions
can be implemented much more efficiently by designing a @elitcircuit corresponding
to primitives from dataflow graphs. Constructing a circuitdataflow graph primitives
has the additional benefit of keeping the configuration ox@dto a bare minimum. This
is because selecting from a few primitives is far simplentsalecting from all possible

computations. By sacrificing some generality, we are abéetoeve a much simpler archi-

40

Encryption MediaBench SPECInt

Depth| crc |blowfish|rijndael]| djpeg g721en¢gsmenc¢unepid| gzip | vpr |parsefvortex||Average
2 11.13 10.37 | 4.17 ||29.79 42.51 | 41.57 | 74.87|/39.1944.3750.39| 38.07|| 47.53
3 11.27 72.29 | 77.75(|38.91 69.38 | 41.57| 95.23||53.4846.07 82.20/ 63.49|| 72.30
4 1|122.37 81.42 | 77.75| 100| 69.38 | 41.57| 100 |/62.2195.4982.54) 100 || 82.61
5 22.37 99.98 100 100 | 84.71 | 45.84| 100 ||73.4099.99 82.54 100 || 88.85
6 100 100 100 100 | 84.71 | 48.77| 100 ||95.46 100 | 100 | 100 || 95.53
7 100 100 100 100 | 87.24 | 100 100 || 100 | 100 | 100 | 100 || 99.47
>8 || 100 100 100 100 100 100 100 || 100 | 100 | 100 | 100 100

Table 3.1: Cumulative percentage of dynamic subgraphs with varyimjtde

tecture that still captures the majority of subgraphs.

REMARC [93] and MorphoSys [86] are two designs that also psagl computation
architectures more suited for computation of DFG primgitviean an FPGA. These copro-
cessors were geared toward large blocks in multimedia egipdins, as compared to our
design, which executes smaller blocks of computation. BEMARC and MorphoSys
must be programmed by hand to be effectively utilized, sihey target large blocks of
very regular computation.

Other work [17, 62,102,111, 113] proposed subgraph exacstiructures specifically
optimized for linear chains of execution. That is to say ¢éhsigsuctures only execute sub-
graphs that have two inputs, one output, and a small numbeteymediate nodes. Con-
straining the subgraphs in this way has been shown to efédgtincrease the bandwidth
of execution resources; however, it restricts the perforceancrease from dataflow graph
compaction [131]. In this work, we develop a more generihéecture, to support the
execution of more arbitrary acyclic dataflow subgraphs. seheubgraphs are larger than
simple linear subgraphs, and attack the computation ltraita of processors more than

the resource limitations.

3.3 Design of a Configurable Compute Accelerator

The main goal of a CCA is to execute many varied dataflow sydbgras quickly as
possible. A matrix of function units (FUs) is a natural wayasfanging a CCA, since it

allows for both the exploitation of parallelism in the suéygh and also for the sequential

41

propagation of data between FUs. In order to be effectivHls need to have adequate
functionality to support the types of operations that aegfrently mapped onto them.

A set of experiments were performed to determine the deptimfer of rows) and the
width (number of columns) of the matrix of FUs, as well as thpabilities of each FU.
Using the SimpleScalar toolset [9] for the ARM instructiat,draces were collected for a
set of 29 applications. The application set consisted of émeryption related algorithms
and selected MediaBench and SPECint benchmarks. The gdakdfienchmark set was
to represent a wide variety of integer computational betravi

Traces from these benchmarks were analyzed offline usinggtimal discovery al-
gorithm (described in section 4.3.2) to determine the irtgursubgraphs a CCA should
support. The characteristics of these subgraphs were gethin determining the configu-
ration of our proposed CCA. The subgraphs were weighteddoasexecution frequency
to ensure that heavily utilized subgraphs influenced thisttas more. Because dynamic
traces are used as the basis for analysis, conservativeagss have to be made with re-
gards to which operation results must be written to the tegfge. That is, unless a register
is overwritten within the trace, it must be written to theistgr file, because it may be used
elsewhere in the program. This potentially restricts ttze sif subgraphs available to of-
fline replacement schemes, however it accurately reflectd ismecessary for supporting
runtime replacement techniques.

The subgraphs considered in this study were limited to hawveost four inputs and
two outputs. Further, memory, branch, and complex aritiorogierations were excluded
from the subgraphs as will be discussed later in the seddoguious work [131] has shown
that allowing more than four input or two output operandsultssin very modest perfor-
mance gains when memory operations are not allowed in spbgrghus the input/output
restriction is considered reasonable.

A similar characterization of subgraphs within traces wasqgrmed previously [117].
This differs from the analysis here in that we gear experitmepecifically toward the de-
sign of a CCA. The previous work proposed many additionas digsefrequently occurring

subgraphs, for example cache compression and more effingniction dispersal.

42

1 | 2 [3 [4 [5[]6]7]
59.02 22.89 13.14 6.48 4.20 0.25
50.57 993 4.10 059 0.15 0.01
5/7.39 17.79 6.25 2.89 0.09 0.02 0.01
1853 8.27 158 0.11 0.02 0.01 0.00
865 206 0.14 0.04 0.01 0.01 0.00
213 123 0.09 0.01 0.01 0.00 0.00
123 0.10 0.07 0.01 0.00 0.00 0.00
0.11 0.0/ 0.01 0.00 0.00 0.00 0.00

O NO O B|W N

Table 3.2: Matrix utilization of subgraphs

3.3.1 Analysis of Applications

The matrix of FUs comprising a CCA can be characterized bydéyh, width, and
operation capabilities. Depth is the maximum length depand chain that a CCA will
support. This corresponds to the potential vertical cosgioe of a dataflow subgraph.
Width is the number of FUs that are allowed to go in parallélisTepresents the maximum
instruction-level parallelism (ILP) available to a suljgina The operation capabilities are
simply which operations are permitted in each cell of thermat

Depth of Subgraphs: Table 3.1 shows the percentage of subgraphs with varyintpdep
across a representative subset of the three groups of banksinfror example, the 81.42%
in blowfish at depth 4 means that 81.42% of dynamic subgraphdowfish had depth
less than or equal to 4. Although only 11 benchmarks are aysol in this table, the final
column displays the average of all 29 applications run thlothe system. On average
about 99.47% of the dynamic subgraphs have depth 7 or lesse 8ie depth of the CCA
directly affects the latency through it, depth becomestécatidesign parameter. It can be
seen that a CCA with depth 4 can be used to implement more @®f#nd8 the subgraphs
in this diverse group of applications. Going below depth eédously affects the coverage
of subgraphs implementable by the CCA. Therefore, only C@Ak maximum depth of
4 to 7 are considered.

Width of Subgraphs: Table 3.2 shows the average width statistics of the subgraph
for the 29 applications. A value in the table indicates the@etage of dynamic subgraphs

that had an operation in that cell of the matrix layout (high&lized cells have a darker

43

Uop | Opcode Semantics | Percentage|

ADD | addition 28.69
AND | logical AND 12.51
CMP | comparison 0.38
LSL | logical left shift 9.81
LSR | logical right shift 2.37
MOV | move 11.66
OR logical OR 8.66
SEXT | sign extension 10.38
SUB | subtract 4.82
XOR | logical exclusive OR 5.09

Table 3.3: Mix of operations in common subgraphs

background). For example, 4.2% of dynamic subgraphs hathvédr more in row 1.
Only 0.25% of subgraphs had width 7 of more, though. Similaoffs can be seen in the
other rows of the matrix, such as between widths 4 and 5 in rohhs data suggests that
a CCA should be triangular shaped to maximize the numberlafrsyphs supported while
not needlessly wasting resources.

FU Capabilities: Table 3.3 shows the percentage of various operations frastdre
frequent subgraphs discovered in above set of benchmark&ra@ons involving more
expensive multiplier/divider circuits were not allowed sabgraphs, because of latency
considerations. Additionally, memory operations werealsallowed. Load operations
have non-uniform latencies, due to cache effects, and spostipg them would entail
incorporating stall circuitry into the CCA. This would irease the delay of the CCA and
make integration into the processor more difficult.

Table 3.3 shows that 48.3% of operations involve only wikeg.(SEXT and MOV)
or a single level of logic (e.g. AND and OR). Another 33.9% pktaations (ADD, CMP,
and SUB) can be handled by an adder/subtracter. Thus, the add the wire/logic units
were the main categories of FUs considered for the designG&A. Although shifts did
constitute a significant portion of the operation mix, bhsgkifters were too large and

incurred too much delay for a viable CCA.

44

INPUT 1 INPUT2 INPUT3 INPUT4

S

L1 L1 L1 L1 L1 L1
[| | | | [
| | | |
[LZ [L2 L2 LZ]
| | | |
| | | |
ERERnEnE
| I |
| | |
(we] (L] [e
| | |

|
L5 L5
| |

OUTPUT 1 OUTPUT 2

Figure 3.1: Block diagram of the depth 7 CCA

3.3.2 Proposed CCA Design

The proposed CCA is implemented as a matrix of heterogenedss There are two
types of FUs in this design, referred to as type A and B for $icitp. Type A FUs perform
32-bit addition/subtraction as well as logical operatioffype B FUs perform only the
logical operations, which include and/or/xor/not, sigtesmsion, bit extraction, and moves.
To ease the mapping of subgraphs onto the CCA, each row isasedpof either type A
FUs or type B FUs.

Figure 3.1 shows the block diagram of a CCA with depth 7. Is flgure, type A FUs
are represented with white squares and type B FUs with gragreg. The CCA has 4
inputs and 2 outputs. Any of 4 inputs can drive the FUs in tret fevel. The first output
delivers the result from the bottom FU in the CCA, and the sdcoutput is optionally
driven from an intermediate result from one of the other FUs.

The outputs of the FUs are fully connected to the inputs ofRtis in the subsequent

45

Depth | Configuration Control | Delay | Cell area | FPGA delay
4 6A-4B-3A-2B 172 bits | 3.19 ns| 0.38 mm? 18.84 ns
5 6A-4B-4A-2B-1B 197 bits | 3.50 ns| 0.40 mm? 19.97 ns
6 6A-4B-4A-3B-2A-1B 229 bits | 4.56 ns| 0.45 mm? 24.86 ns
7 6A-4B-4A-3B-2A-2B-1B| 245 bits| 5.62 ns| 0.48 mm? 25.39 ns

Table 3.4: CCA configurations and synthesis results

row. The decision to only allow units to talk to the next rowsaraade to keep the amount
of control to a minimum. As the outputs of one row and the ispitthe next are fully
connected, the interconnect network is expensive in tefrdglay. This delay was neces-
sary, however, to reduce the complexity of the dynamic disgpand selection algorithms
described in the next section.

The critical path of adder/subtracter circuits is much lengpan any of the other oper-
ations supported by the CCA. To control the overall delag,itbmber of rows with adders
is restricted. More than 99.7% of dynamic subgraphs can beutgd on a CCA with 3
adders in serial, and so the depth 7 CCA in Figure 3.1 is m#ettito having 3 rows of
type A FUs. Further, restricting the CCA to only 2 rows of typé&Us allows it to support
only 91.3% of the subgraphs, but significantly improving tledéay of the CCA. The type
A and type B rows were interspersed within the CCA, becausgirezal analysis shows
many of the subgraphs perform a few logic operations betwabsequent additions. This
is particularly true in the encryption applications.

Four CCA models were synthesized using Synopsys CAD todlsaypopular standard
cell library in 0.13; technology. Each model has different depth and row configurs,
shown in Table 3.4. The configurations in this table indi¢heenumber and type of FUs
in each row, from top to bottom. For example, the depth 4 CCA &dype A FUs in
row 1 and 4 type B FUs in row 2. Delay of the CCA and the die areaadso listed in
this table. The depth 4 CCA had a latency of 3.19ns from inpuiutput and occupied
0.38mm? of die area. The last column of Table 3.4 contains the delaaoh CCA design

when synthesized on an FP&At suggests that FPGAs may not be a suitable device for

IXilinx Virtex-11 Pro family, based on 0.13 technology

46

an efficient implementation of the CCA at this granularitysafbgraph, though we did
not perform any measurements of direct realization of th@ieg@tions’ subgraphs via the
FPGA.

The control bits needed for each model are also shown in Ta#lleEach FU has four
opcode bits that define its functionality. Since the outgwarh FU is connected to every
input port of the FUs in the next level, signals to control bus are required. The number
of those signals corresponds to twice the number of FUs inéixélevel, considering there
are two input ports for each FU and each output could feed agmit. Control bits for
which FU provides the second output are also needed. THentateber of control bits was

a critical factor in the design of these CCAs.

3.3.3 Integrating the CCA into a Processor

In the context of a processor, the CCA is essentially justteard-U, making integration
into the pipeline fairly straightforward. The only datapaiverhead consists of additional
steering logic from reservation stations and bypass patins the CCA outputs. The CCA
itself is not pipelined, removing the complexity of havirmgmtroduce latches in the matrix
of FUs or having to forward intermediate results from intdmportions of the matrix.

Accommodating a 4 input, 2 output instruction into the pipelis slightly more com-
plicated. One potential way to accomplish this is to splévCCA operation into 2 uops,
each having 2 inputs and 1 output. By steering the 2 uops catigely to a single CCA,
a 4 input, 2 output instruction can be constructed withotdradg register renaming, the
reservation stations, the re-order buffer, or the registad stage. The downside to this
approach is that the scheduling logic is complicated byrgato guide the two uops to the
same CCA.

Interrupts are another issue that must be considered d@®§ integration. The
proposed CCA was intentionally designed using simple Flds ¢hnnot cause interrupts.
However, splitting the CCA operation into 2 uops means tha¢xernal interrupt could
cause only half of the operation to be committed. To avoid fiioblem, the 2 uops must

be committed atomically.

47

Pipeline 4 wide
RUU size 128
Fetch Queue Size 128
Execution Units 4 simple ALUs,
2 multipliers,
2 memory ports
Branch Predictor 12-bit gshare
Frame Cache 32k uops, 256 inst traces
L1 I-cache 32k, 2 way, 2 cycle hit
L1 D-cache 32k, 4 way, 2 cycle hit
Unified L2 1M, 8 way, 12 cycle hit
Memory 100 cycle hit
Frame Cache Discovery 5000 cycles
and Replacement Latencgy

Table 3.5: Processor configuration

Control bits for the CCA can be carried along with the 2 uopisic&there is at most
245 bits of control necessary in the proposed CCAs, this sidaat each uop would carry

around 130 bits, which is roughly the size of a uop in the IR@Imicroarchitecture.

3.4 Experimental Evaluation

The proposed accelerators were modeled in the SimpleSsiataiator [9] using the
ARM instruction set. Within SimpleScalar, some ARM instioos are broken into micro-
operations, e.g., load multiple, which performs severatito a continuous sequence of
addresses. Many ARM instructions allow for an optional tsbifone operand, and it is
important to note that these shifts are also broken into udisce our CCA does not
support shifts, it would otherwise not be possible to exetliese operations on the CCA.

The simulated processor model is a 4-issue superscalar3@khnstruction and data
caches. More details of the configuration are shown in Talle 8onsistent with Sec-
tion 3.3, the benchmarks used in this study consist of 29 egtpns from SPECint, Me-
diaBench, and four encryption algorithms. We select a sgr&tive subset of the appli-
cations to show in our graphs, consisting of four SPECintiegpons (175.vpr, 181.mcf,
186.crafty, and 255.vortex), six MediaBench applicati¢ijpeg, cjpeg, epic, mpeg2enc,

48

ODepth 4
1.6 EDepth 5| |
ODepth 6
1.5 B Depth 7| |
214
-l
[]
8
n 1.3
1.2
1.1 m
1 ,
& 4 S Y < < 2> o 2 N > @
< O & @)) N N 5 N @) o
AP G S A AN R O S Y
A N & @Qe &\$ N ¢ ¥

Figure 3.2: Varying the CCA configurations

rasta, and rawdaudio) and four popular encryption apptinat(3des, blowfish, rijndael
and rc4). Each benchmark was run for 200 million instructicor until completion. The
initial 50 million instructions of each SPEC benchmark wekgped to allow the initial-
ization phase of the benchmark to complete. All of the berarksiwere compiled using
gcc with full optimizations.

Figure 3.2 compares the performance across varying depths@@Ging an offline
discovery algorithm and retirement-based replacemendcfdeed in the next chapter).
Speedups are calculated as the ratio of execution cyclé®witind with the CCA of the
specified configuration. The configuration of the CCAs mahehdescriptions in Table 4.1
and all have a latency of one. From the graph, the most obvisidt is the flathess of
each set of bars. Little performance is gained as larger C&Agths are utilized. However,
this result could be anticipated as it agrees with the deatiistics observed in Table 3.1.
Generally, adding depth to the subgraph beyond 4 providgsmodest gains in coverage
(depth 4 covers 82%). Further, the large, important subdggdpat would have been exe-
cuted on the 7-deep CCA can simply be broken into two subgrapécuted on the smaller
CCAs. As long as there is enough ILP and the large subgrapdt mthe critical path, this

additional reduction of latency achieved with a larger CCH mot significantly improve

49

1.7
06 Cycles
1.6 W5 Cycles|!
| 004 Cycles
1.5 O3 Cycles !
E2 Cycles
244 M1 Cycle |
T
[
Q
o 13
1.2
1.1
1 m
$ & S i+)) © © @ «©
\“@Q o @9"% A @5&0 & o
N NG 3 N &
Figure 3.3: The effect of CCA latency on speedups
performance.

There are a number of notable exceptions to the flat behawor. example, some
benchmarks show a performance jump at one particular CCA $iar instance, blowfish
from depth 4 to depth 5. This is because a critical subgraphadanitted at that point. In-
terestingly, sometimes adding depth actually hurts theopmiance, as in the case of cjpeg.
This is because of second order effects involved with suyidgdiscovery. Sometimes cre-
ating a CCA operation out of a large 7-deep subgraph, whiter@ from the coverage
standpoint, is not as effective as creating two smaller safits.

Figure 3.3 shows the affect of CCA latency on overall perfance. This graph reflects
static discovery, retirement-based replacement and a Gdépih 4. Speedup is calculated
in the same manner as in the previous graph. This figure shoatshe effect of CCA
latency is highly dependent on the application. For exampies speedup rapidly declines
when the latency is increased, reaching zero for latencyddagond. This is because rc4
has one dominant critical path on which all the subgraph®appSince the subgraphs
are all on the critical path, the performance is highly se&resito the number of cycles to
execute each one.

On the other hand, 186.crafty suffers little penalty frora #uded latency of the CCA.

This behavior is generally attributed to one of two reaséinst, the critical path is memory

50

bound, thus CCA latency is a second order effect. Secondappécation has enough
ILP so that longer CCA latencies are effectively hidden. ISapplications benefit from
more efficient execution provided by the CCA, but are lessisigr to latency. Other
applications, such as 3des and rawdaudio, degrade slightynall latencies (e.g., 1-3
cycles), then fall off sharply at larger latencies (e.g.r 8 oycles). This reflects the point at
which the CCA instructions become the critical path becadisleeir added latency. As the
latency increases, benefits from vertically compressiegddtaflow graph disappear. The

speedups that remain are solely due to the additional pasafi provided by the CCA.

3.5 CCA Summary

So far in this chapter, we have presented a novel mechanisitclerate application
performance through the use of a configurable compute aeteteor CCA. A CCAis a
group of function units connected in a matrix-like configiom, added to a general-purpose
core to implement dataflow subgraphs. Subgraphs from anstoé@rocessor instructions
are identified and mapped onto this CCA.

Our experiments reveal that significant speedups are pgedsiba variety of appli-
cations, both from the embedded and general-purpose camgpdimains. The speedup
was up to 66% for a 4-deep CCA (26% on average), and the arebheackis reasonably
small. The CCA has a moderate degree of latency tolerancethars can be more easily

integrated into any modern processor pipeline.

3.6 The Programmable Carry Function Unit

The remainder of this chapter presents the programmalig farction unit, or PCFU,
an alternate design for acyclic computation acceleraifidne.PCFU is a lookup table (LUT)
based accelerator. LUT based accelerators were previoisbguced in [130], where ev-
ery bit was given a separate LUT configuration. Here, a gdzaten of the prior tech-
nique is used. The PCFU leverages the design of carry loekéladders to break the

cascaded tree of LUTs in the original design, creating afastd more efficient design.

51

r1 r2

r3 r1,=r6,®rd4, ®cin2,
rl, = (rSi /\r3,)(-B r4, ®cin2,
r4 1, =((r1, ®r2, ® cinl,)Ar3,)®rd, ®cin2,

ADD r5,r1,r2

AND r6,r5,r3

ADD r7,r6,r4 @
r7(out)

Figure 3.4: An example dataflow subgraph and the output expressed asctofurof the
inputs.

The PCFU is not a single design, but rather specifies a paesized design space
that offers complex tradeoffs between subgraph execu@palailities (programmability)
with the cost and worst-case delay (efficiency) of the sabstrThus, we will now present
a systematic exploration of the PCFU design space. We exathm critical tradeoffs
associated with designing LUT based arrays including LUE shumber of carry signals
that are propagated, and support for non-LUT operatordy siscshift. To perform this
exploration, a complete compilation and simulation sysfenPCFUs based on the ARM-
9 processor are used. PCFU designs are developed in Ventbgyathesized to measure

area and delay.

3.7 PCFU Operation and Design Space

The design of a generalized accelerator substrate on whieilow subgraphs are exe-
cuted is a major challenge. The accelerator should be progable enough to cover most
of the recurrent subgraphs, and at the same time be easyfiguwenand have low latency
to execute subgraphs efficiently.

In this section, we describe a LUT-based accelerator, tagrBmmable Carry Function
Unit (PCFU). The PCFU can execute subgraphs of any numbegafdl operations and a
predefined number of additions/subtractions. The PCFUwffee advantage of being suf-

ficiently programmable to cover a wide variety of subgraptisile maintaining a relative

52

low interconnect complexity and latency compared to FPGads.

3.7.1 Principles

The PCFU approach builds on the principles introduced i®[1®ith the basic idea
being to extract a logical expression of each output bit asnatfon of the inputs to the
subgraph. Given this logical expression, a LUT stores thin ttable corresponding to this
expression, which is used later to directly compute the wiugpven the inputs.

Consider the example of Figure 3.4. Each bit of the outpuistegr 7, can be ex-
pressed as a logical function ofi, r 2, r 3, r 4 and the carry bits from any additions in
the subgraph. For example, the output function foi baf the output of the subgraph can
be expressed a7, = r6; © r4; ® cin2;_1, since this is the definition of a bit-wise add.
Next, r6; can be re-expressed &s; A r3;), yielding the second equation in Figure 3.4.
Likewise,r5; can be expressed as a function-af 2, and the carry signal generated by
the first addition in the subgraph. Once this is done, eacbfbil is expressed as a logical
function of only the inputs and the carry signals, shown atitbttom of Figure 3.4. Using
this process allows for expressing any sequence of logitager instructions as a func-
tion of the input registers of the subgraph. This enablesctlimapping of subgraphs into
lookup tables, with the only difficulty being the need to céddte the carry signals.

Figure 3.5 shows the accelerator proposed in [130], caledrtinctionunit. In this
design, each carry bit is calculated and forwarded to thbdrigignificant bit. The LUTs
fri; LUT, cinl;, LUT, andcin2; LUT implement the functionkr 7, ci n1, andci n2 re-
spectively. Therunctionunit provides fine grain programmability and flexibility bpesc-
ifying different LUT configurations for each output and gabit. This high flexibility
comes at the cost of high latency because of the ripple schempmpagate the carry to
upper significant bits. Also, this accelerator requires rgdaamount of control data to
configure each bit and their associated carries.

The PCFU is also a LUT-based accelerator, but avoids botlatge configuration and
the high latency of the ripple carry propagation by defining @UT (and associated carry

LUTSs) for all output bits. Aside from saving on-chip spaceistapproach allows us to

53

rd, r3, r2,r1, e rdy r3, r2,r1, rd, r3, r2,r1,

| = | E E | = | E ==
) -] 2 -] -]) R e B
- - — - —l - RN R R |
5 o > o | = | N o= S
AN - r~ c c = c|lc| &
c c = — 5 = =
l l l))) | l l
cin2,, cin1y, fr7;, fr7, fr7,

Figure 3.5: Organization of the LUT basdeaunctionunit from prior work.

leverage fast carry propagation schemes, such as Kogge-$ad] or Brent-Kung [18]
parallel prefix adders.

Most of the existing fast carry propagation techniques agel on first calculating
a (g:;, p;) pair [68], where given inputs bits; andb;, g; = a; A b; (generate), ang; =
a; @ b; (propagate). If subtraction is done instead of additigris replaced by);. This
p-g pair of values is then fed to a carry propagation networkdlculate the carry bits.
The PCFU design generalizes the calculation of(tgp;) pair by creating a pair of LUT
configurations (gi LUT - pi LUT) for each addition/subtramti. For example, in Figure 3.4
the (g,p) pairs of the 2 additions can be expressedlas= r1; A r2;, pl; = rl; ® r2;,
92; = ((rl; &r2; ®cinl;_1) Ar3;) Ard;, andp2; = ((rl; ®r2; ®cinl;_1) Ar3;) &rd;. By
separately computing the carry signal using these LUTs any propagation networks,
the PCFU breaks the dependence of output bits on the valukesvef order input bits.
That is, bit 31 of the output is not a function of bit O of the inpalues as long as we
have the carry signal precomputed. This enables the PCFavi® & much lower latency
than most FPGA-based accelerator designs, which need pagate the carry signal from

lower order bits.

Figure 3.6 shows the design of a PCFU that can collapse a isegud dependent

54

g1 LUT —p1LUT |
16 16

A »

A

——<>2 in1
‘a2 in2
Hinii
-t ind4
g2 LUT - p2 LUT | y
32 32
\i Y Iy
<<% in Generator
-, in2
4——in3
‘Aﬁ;in4 32/}_/
Y
Carry
Generator
cin2
OutLUT
64
y -2 in1
f 32 in2
b 32 in3
in4

Figure 3.6: Baseline PCFU design.

instructions with up to two additions or subtractions, ary number of logical opera-
tions, given a fixed number of inputs. Note that, althoughuFeg3.6 may suggest that
the two additions/subtractions need to be dependent, tk&JR@n collapse any two addi-
tion/subtraction regardless of their position in the sapiyr. That is, they may be in parallel,
dependent or even interleaved with other logical operation

For a given subgraph, the basic idea of the PCFU is to genaratdT (OutLUT)
configuration for the output function and appropriate camiigions (gi LUT and pi LUT)
to generate the carries for each individual addition/adtion in the subgraph. The purpose

of the cini;, signal is to implement subtractions. The primary benefitshg the PCFU

55

N Inputs

2 Add, 2 o/ps
PCFU, shifts at i/ps

_— e = = e e e = lmm e om e e e e e e

i i

! i

i !

; i

i !

! :

. .

: I i

z I H = E = H B =N = I :

i 1 1 :

; I .I " E B R I L} III " B B BN " &N I III I. I :

i | = Carry " !

i L] | Generator I = | :

i o I I

! . 1 P = | E

- | = Carry = :

g E Generator /I I . | 2 Add, 1 o/p PCFU
i : : ' 5

E : .I LI B L I I L] I :

! =2 o1 ol i

i Carry " I | !

! Generator } " : ;

i | :i 1 . ' 0Add, 10/pPCFU
i N S . P - | i (logic only)
i g " | !

: | i \ 1 ;

L - S CE I

! Output2 "1 Output1 L :

- L] 1

i I " 1 !

! I " I " = BN III L] ’ i

! L] ll " E B EjE ®m N ' I :
R Attt o, U

I Shifters a 1 Add, 1 o/p PCFU
- 1

1 1

3 Add, 2 o/p PCFU, shifts at i/ps, shifts at o/ps

Figure 3.7: PCFU design space.

over previous work [130] is the use of more advanced carreggion networks and fewer

configuration bits in the accelerator.

3.7.2 PCFU Design Space

Figure 3.7 shows basic building blocks of a generalized P@#t can support N in-
puts, 3 additions/subtractions, 2 outputs, and shift dmeraat the inputs and outputs of the
dataflow subgraph. The basic building blocks of the PCFUlagearry generator for each

56

addition/subtraction supported and an output LUT for eatdgsaph output supported.

Increasing the number of outputs supported by the PCFU iglg fraight forward
process, which only requires adding an output LUT in pafraii¢h the already existing
output LUTs. None of the other structures in the PCFU arectdfi

Supporting additional inputs is more complicated, sinagavblves increasing the size
of the LUTSs for the carry generators and the output LUTs. Tikibecause the logical
function for each bit depends on another Boolean variable rfew input), which doubles
the size of each truth table used to compute results.

Similar to increasing the number of inputs, increasing themhber of adds that are sup-
ported doubles the size of the output LUTS, since the ougmateiow a function of another
carry-in signal. Beyond this, supporting more adds reguame additional set of carry prop-
agate LUTs, which are dependent on the inputs and all prewtawry-in signals. This
means that the added carry-propagate LUT is larger thamalptevious carry propagate
LUTs combined. A new carry generation tree lies directlylom ¢ritical path of the PCFU,
as well.

Supporting shift operations within subgraphs is desiratlg infeasible on the PCFU.
Allowing shifts would make each output bit a function of ev@mput bit, instead of the
small number of input bits in the proposed design. This wouoéke the LUTs very large.
However, separate shifters may be added at the inputs at@/@utputs of the PCFU to
support shift operations at the inputs and outputs of thaef&t subgraphs. This would
not change the size of the LUTSs, but would lengthen the atipath of the PCFU.

Each of these vectors in the design space is explored indBeg13.

3.8 Exploring the PCFU Design Space

The purpose of this section is to evaluate the differenttoéid involved in designing a
PCFU for subgraph acceleration. The designs are evaluated latency of the PCFU, die
area consumed by the PCFU, as well as performance improveritbe PCFU-augmented
processor.

Evaluation of the performance improvement achieved usi@§Ws was done using

57

SPEC MediaBench Encryption
2.8 =
2.6
24
a 2.2]
S
8
g 2
o
& - _
1.8 T B
1.6 — — — - n
14 | - T 1]] H
IR) il
1 B T 1 | B T T T T T 1
Q & & 4 X 0 @ @ @ &L L L0 O X >
b‘&%\gﬁ\ QQ’@@ °1>QQ\$O Q’Q\&C’Oé C’Obb 3 0006 &66 &eos@e\é{@o&o&@p og\\6 v '\“Sb o
CHEN O O & & 2?35 95 O N
A 2 A A &fi\ SESXEL \’0& «$ ©

Figure 3.8: Effectiveness of the baseline 4-input, 2-output PCFU desig

a version of the Trimaran compiler [121] ported to the ARMtrastion set. The com-

piler was augmented with a parameterized subgraph mat@rgme, which allowed us

to easily change the types of subgraphs selected based ohateeteristics of the under-
lying hardware. After subgraphs selection, binaries weeated using the GNU assem-
bler/linker, and simulated using SimpleScalar ARM [9]. ®umulator was configured to

model an ARM 926EJ-S processor [5], a popular single-issuigeelded core with a five

stage pipeline.

In order to determine the latency and area properties of @d B, several designs were
synthesized, including place-and-route. The designs wepéemented using Synopsys
tools with a standard cell library in 0.1L3 The critical path latencies are reported, as well
as the die areas given bothqimn? and as the percentage area of an ARM926EJ-S core

without caches. Note that not every design simulated, waghsgized, since creating and

58

| Design | Latency (ns) | Area (mm?) | Area (% of ARM926EJ-S) |
2 In, 1 Out, 2 Adds, No Shift 3.03 0.052 2.3
2 In, 2 Out, 2 Adds, No Shift 2.66 0.056 2.5
31In, 1 Out, 2 Adds, No Shift 3.24 0.068 3.1
31n, 2 Out, 2 Adds, No Shift 3.32 0.100 4.5
4 In, 1 Out, 2 Adds, No Shift 3.79 0.134 6.1
4 In, 2 Out, 2 Adds, No Shift 4.20 0.171 7.7
4 In, 3 Out, 2 Adds, No Shift 4.57 0.230 10.4
51n, 1 Out, 2 Adds, No Shift 5.25 0.214 9.7
51n, 2 Out, 2 Adds, No Shift 5.30 0.306 13.9
51n, 3 Out, 2 Adds, No Shift 5.40 0.397 18.0
6 In, 1 Out, 2 Adds, No Shift 5.47 0.465 21.1
6 In, 2 Out, 2 Adds, No Shift 5.27 0.600 27.2
6 In, 3 Out, 2 Adds, No Shift 5.87 0.787 35.8

Table 3.6: Synthesis results for PCFU designs with varying numbergadiis and outputs.

verifying HDL for the PCFUs is a very time consuming process.

We chose to evaluate our designs using benchmarks from tB€I88R2000 and Me-
diaBench [75] benchmark suites, as well as several enonypernels. Full runs of each
benchmark using the training input set were performed. &pgibns from the two bench-
mark suites that do not appear were omitted either due toleagyruntime (in the case of
254.gap), or limitations in the compiler infrastructure.

Baseline Designlin order to explore the various dimensions of the PCFU desigite,
we first define a starting point. Previous work [28] has sholat &t subgraph execution
unit with 4 inputs and 2 outputs, supporting two adds is ageakle design choice. As
such, this is baseline for our evaluation. The design ofRIG&U can be seen in Figure 3.6.

The speedups attained using this baseline design are pedsenFigure 3.8 for the
three groups of benchmarks. Unless otherwise noted, stionleas done assuming that
the PCFU requires one cycle to execute the subgraph and d¢oedfect the cycle time
of the processor. The main point to take from this figure isritegnitude of the bars.
On average, a speedup of 1.62 over the baseline procesdosasved, with a maximum
of 2.79. This shows that transparent instruction set cugtaton using a PCFU is an

effective way to improve the performance of embedded psumss Also note that the

59

1.8

1.6

Speedup 14

1.3

1.2

1.1

1.0

Outputs
5

Inputs

Figure 3.9: Effectiveness of PCFU designs with varying numbers of ia@utd outputs.

speedup varies a great deal from application to applicafidns is correlated to the size
of the computation subgraphs available for execution orPGEU. Since subgraphs are
bounded by memory operations, applications that perforargelamount of computation
(especially logic operations) between memory accessesfibdre most.

Design Space ParametersThe PCFU design space is evaluated along three indepen-
dent axes: number of inputs/outputs, number of additioms smpport for shift operations.
The number of additions specifies the number of carry ch&iasthe PCFU implements.
In varying the number of additions, it is also possible to &telPCFUs with larger number
of additions by connecting smaller PCFUs in series, e.g:adder PCFU can be emulated
by connecting two 1-adder PCFUs in series. Shift operatwasot supported directly by
the PCFU, but by creating hybrid accelerator substratesisting of PCFUs and shifters.

Number of Inputs/Outputs. The first design space parameter is the effect that the

60

| Design | Latency (ns) | Area (mm?) | Area (% ARM926EJ-S) |

4 In, 2 Out, 0 Adds, No Shifts 0.62 0.042 1.9
4 In, 2 Out, 1 Adds, No Shifts 2.44 0.095 4.3
4 In, 2 Out, 2 Adds, No Shifts 4.20 0.171 7.7
4 In, 2 Out, 3 Adds, No Shifts 5.78 0.361 16.4
4 In, 1 Out, 2 Adds, No Shifts 3.79 0.134 6.1
41n, 1 Out, 2 (1-1) Adds, No Shifts | 3.77 0.116 5.3
4 In, 1 Out, 3 Adds, No Shifts 5.82 0.274 12.4
4 1n, 1 Out, 3 (2-1) Adds, No Shifts | 6.50 0.212 9.6
41n, 1 Out, 3 (1-1-1) Adds, No Shifts 6.10 0.180 8.1

Table 3.7: Synthesis results for PCFU designs with varying numbersiditens supported.

number of inputs and outputs has on the system. These paanaeé very important, as
they have a strong impact on the types of graphs that can lweitexton the PCFU. The
number of inputs/outputs in the PCFU also has an effect onetfister file since each of
the inputs/outputs must be read from or written to it. Thisamethat a large number of
inputs or outputs requires a larger register file, multipleles to read and write results, or
“shadow register files” to increase the operand bandwidthaut increasing the latency.
All of these options carry overheads.

From the perspective of PCFU design, the number of inputst imeicarefully con-
trolled. Increasing the number of inputs by one means thet eatput bit is the function
of another binary variable. This essentially doubles tlze sif each LUT in the design.
Aside from the exponential increase in area, this LUT sizeaase also causes the overall
latency of the PCFU to increase as well.

The number of inputs and outputs also plays a role in congnégation for the PCFUSs.
Recall that in the PCFU control generator, the meta-regiieis responsible for generat-
ing the LUT entries. For every additional input, the sizels#f t UTs double, meaning that
the size of the meta-register file also doubles. Increasiagntimber of outputs is less crit-
ical for control generation, as all the LUT configurationstleé live-out values are stored
in the meta-register file. That is, the baseline design diresaipports multiple outputs, so
very little additional complexity is needed to support them

The effects of adding inputs and outputs to a PCFU can be sdble synthesis results

61

in Table 3.6. In this table, each PCFU design is represenyeal &tuple specifying the
number of inputs, the number of outputs, the number of supd@dditions, and what shift
values (if any) are supported. Initially increasing the tuemof inputs has a small effect
on the total PCFU area and latency; moving from two to threeits increases the area
by 0.016mm? and the latency by 0.2ds. However, the exponential increase in LUT size
quickly begins to dominate. For example, moving from fiveLitgto Six causes an increase
in latency of 0.22:s, and the die area more than doubles, going from 0.214 to 01465.
This demonstrates that the number of inputs must be caydfalanced in the design of a
PCFU.

Increasing the number of outputs is not as critical of anaseuerms of PCFU design.
Each additional output from the PCFU requires an additifunadtion LUT to compute the
result using the inputs and the carry-in signal(s). No aol#l LUTs are needed beyond
that, and none of the other structures change in size. Thenéally means that adding an
output should increase the area of the PCFU in a roughlyfifashion, and have a small
or no effect on the latency. These trends can be seen in Tabl®&®ving from four inputs
and two outputs to four inputs and three outputs increasearda by 0.05%m?, and the
latency by 0.37:s. The non-linearity is due to increased MUX sizes and ceranals
(e.g., the carry-ins) having to drive a larger number ofsell

One confusing trend in Table 3.6, is that not all of the sysitheesults agree with what
was predicted. For example, moving from six inputs and ortpuduto two outputs, and
to three outputs caused the area of the PCFU to grow superhin Adding more outputs
also caused the latency to change a great deal, despitecthibdathe critical path has the
same number of logic levels in all three designs. These whens are an unfortunate
side-effect of heuristics used in the synthesis tools, aedba@yond our control.

Figure 3.9 shows the average speedup across our benchni@kviien varying the
number of inputs and outputs allowed in the PCFU. When adulipgts and outputs for
this experiment, we assumed that reading the inputs andhgtibe results back to the
register file each took one cycle regardless of the numbermfts/outputs. This was done
to determine how well the compiler can take advantage ofrthets/outputs available to it,

independent of other hardware restrictions.

62

The main point to take away from Figure 3.9 is that four inpand two outputs seems
to be the point of diminishing return. That is, increasing ttumber of inputs beyond four
or the number of outputs beyond two does not substantialprane the resulting perfor-
mance. Four inputs and two outputs are necessary to sup@onost important compu-
tation subgraphs in our set of applications. Conversetjyceng the number of inputs to
three or two drops the speedup to 1.55 and 1.49, respecti®dgucing the number of
outputs to one drops the speedup to 1.45. While these dropsiatadeem significant, the
average is hiding the fact that the speedup of some benckndaok significantly, while
other benchmarks are relatively unaffected. For example,speedup of MD5 dropped
78% moving from four inputs to two, and the speedup of EPIC58% moving from two
to one output.

Number of Additions. As with the number of inputs, the number of additions sup-
ported by the PCFU must also be carefully constrained. Stipgoan additional add
operation would necessitate creating two new LUTs and a K«gfgne tree to calculate
the Propagate and Generate signals for that add. These @iMPFs will be a function of
each input and all previous carry-in signals, meaning their tsize will be twice as large
as the previous largest P-G LUTs. Beyond the additional L WHe size of each function
LUT doubles, since each output is also a function of this naxycsignal. This increases
the area of the PCFU and lengthens the critical path much qckly than simply adding
inputs or outputs.

Adding the new P-G LUTs means that control will have to be gateel for them as
well. This entails adding three new registers to the meggster file for the new P-LUT,
G-LUT, and carry LUT. Space for the added control of these EWiust be added to the
configuration cache as well as the meta-register file; howeverall latency of the control
generation is not affected, and area increases lineartytiwé number of adds.

The top portion of Table 3.7 shows the synthesis results wlagying the number of
adds supported. Note how increasing the number of adds geplpoore than doubles the
die area of the PCFU in most cases. The latency of the PCFUOsmalieases a great deal,
since the critical path now runs through an additional cgeyerator and larger function

LUTs. For these reasons, it is important to limit the numideadditions supported in the

63

PCFU.

One trick that can be played to reduce the area overhead pbsiiy many additions,
is to compose a larger PCFU out of smaller ones. For exampleo-@adder PCFU could
be created by serially merging two one-adder PCFUs with a MThe MUX is used to
select a subset input values from the result of the first PQ#Ltlae subgraph inputs. Using
a MUX to control the number of inputs prevents the exponégtiewth of the LUTSs, at
the cost of potentially supporting fewer subgraphs. Oureexpents have shown that the
subgraphs not supported never occur in any of the applitatiested, though, making this
a good trade off.

The lower portion of Table 3.7 shows the synthesis resulttege composite PCFUs.
Next to the number of adds in the design column, parenthesas andicating the forma-
tion of the composite PCFU. For example, “(1-1-1)” indicasethree-add PCFU designed
as three one-add PCFUs chained together serially. Thie tdéarly shows how creating
PCFUs as a composite of smaller PCFUs is an effective waydiaeethe area incurred by
supporting more add operations. The variations in lateefigct the trade off of the criti-
cal path traveling though fewer large LUTs (when the PCFUasaomposite) versus the
critical path traveling through more small LUTs (when theFRCis composed of 1-adder
PCFUSs).

Figure 3.10 shows the effect the number of adds supportesdimdbe speedups at-
tainable by the PCFU system. This figure shows that signifisppedup gains can be
achieved by moving from zero to one to two adds. This trentiligbts the prevalence of
add instructions in our applications. Moving beyond twosgieélds quite limited results,
though. This is mainly because computation subgraphsraretl by memory operations.
The amount of computation done between memory accessesiltypgloes not encompass
more than two add instructions. This is not as true in the ygimn-style applications
which contain a relatively large amount of computation E#wmemory accesses.

Support for Shifts. Another design parameter explored was the addition of spidir-
ations in subgraphs supported by the PCFU. In the genera] itas impossible to support
shifts at arbitrary places within subgraphs. Doing so waonéke each output bit a function

of each input bit creating function LUTSs the sizeifie! invut bits However, it is feasible to

64

1.9
= & SPEC Avg.
1.8 77 |—& - MediaBench Avg. % A
=—#—Encryption Avg.
1.7 /
—— — W — —
16 — .
7
% 1.5 7
g -
S 14 [&
o IEREE oo .
4
1.3 / o
/7 L’
1.2 v o
- - i
1.4 .
1 T T T
0 1 2 3 4 5

Number of ADDs Supported

Figure 3.10: Effectiveness of PCFU designs with varying numbers of &afust supported.

place a shifter at the inputs or outputs of the PCFU. This dallow support for shifts in
subgraphs provided there was no computation before the(shdfter the shift, in the case
of shifts at the outputs) performed on the PCFU. Adding tisésieers would not affect the
size of the LUTSs or the internal PCFU structure, but woulduiiegisome additional MUXes
at the inputs (and/or outputs). The downside is that theeskifvould appear on the critical
path.

In terms of control generation, allowing shift capabikti@ the PCFU involves adding
few bits in the configuration to specify the shift value ancediion for each input and/or
output. Though this does increase the critical path of abrggeneration slightly, it is a
trivial extension. Allowing shift operations increaseeg tize of the configuration size as
thelog of the number of shift values supported, thus the area oaerimereases at that rate
as well.

To analyze the effectiveness of allowing shifts within stapds, we first examined
the types of shifts that could potentially be used. Figuld 3hows the types of shifts that
appeared in important subgraphs. That is, if the compilenadd shifts to appear anywhere

65

2.5

(7)) 4 |
2 2
Q
©
I
(=2
e}
3
0
c
<15 1 =
7]
c
(]
=]
3]
=]
S
e
7] -
£ 14H
L
S
]
c
>
a
X 0.5 | [
0 T HDDD:‘ T T \I:I\ T T \D\ T \I:I\ T T T T H T \D\:I\ DI:IH
CFTANNDNT D ONDNDO T ANNDITOONDODDIOT-TNNITWONDDO — 2
rrrrrrrrrr NN(\I(\I(\I(\I(\INNNC’)(")%
=
©
>

Shift value

Figure 3.11: Distribution of shift values within subgraphs.

in subgraphs, this graph shows the types of shifts that wedeet®d for subgraph inclusion;
the shifts that would be useful to support in the PCFU. Theézbotal axis in this figure
is the constant value of the shift instruction (or varialrig¢he case that the operation did
not use a compile time constant), and the vertical axis stibevpercentage of dynamic
instructions averaged across the benchmarks. As an exaarmplend 1.5% of dynamic
instructions in our benchmarks were shifts by the consténwhich would have appeared
in subgraphs provided the PCFU supported them.

Figure 3.11 shows that the shifts useful in subgraphs arergdsed by a relatively small
number of constants. As would be expected, two is the mostremmshift value, since it
is frequently used for address calculation in the 32-bit ARMhitecture. One key trend
in this figure is that variable shifts (the far right bar) wepdte infrequent. This is a good

sign, as supporting variable shifts in the PCFU generaliyimes larger area. Conversely,

66

| Design | Latency (ns) | Area (mm?) | Area (% ARM926EJS) |

4 In, 2 Out, 2 Adds, No Shifts 4.20 0.171 7.7
4 1n, 2 Out, 2 Adds, 2 at Inputs 4.64 0.213 9.6
41n, 2 Out, 2 Adds, 1, 2, 16 at Inputs4.86 0.224 10.1
4 1n, 2 Out, 2 Adds, Any at Inputs | 5.22 0.224 10.1
4 In, 2 Out, 2 Adds, Any at Outputs| 5.15 0.201 9.1

Table 3.8: Synthesis results for PCFU designs with varying types dtskupported.

supporting shifts by a small number of constants merelyiregua small bit of wiring and
an additional MUX.

Using this information, several designs supporting shiftse synthesized; the results
are in Table 3.8. In order to limit the area overhead assediaith barrel shifters, we used
logarithmic shifter in the synthesized designs. The chaoirs using logarithmic shifters
generally caused the latency to increase a great deal wippoding additional constants,
however, it did not incur a substantial area gain. For examgalpporting any shift value
was nearly the same area as supporting the three most friecuestants. Also note that
supporting shift values at the tail of subgraphs was lesiyctizan at the head; this is
intuitive, as there are only two outputs compared with foyauts.

Speedup results for these designs are in Figure 3.12. Farssaof shift values sup-
ported, there are three bars displayed: one for when shidtsupported only at the inputs
(or head of the subgraph), one for shifts only supported abthtputs, and one for shifts
supported anywhere within the subgraph. Although the lasti$not supported by the
PCFU, it provides a comparison as to how well shifts at thelisr outputs meet the
overall need for shifts in subgraphs.

In general, providing capabilities for a small number offshalues does provide a
substantial amount of speedup. For example, allowingsshiftl, 2, or 16 at the outputs
improved speedups by 7% over the baseline design. Prowstiiifitg at the end of subgraphs
is slightly more beneficial than at the head of subgraphsnabacause many shift-by-two
ops are used for address calculation. The address catmulieds memory operations,

which must appear outside the subgraph. Allowing shiftswdrgre in subgraphs does

67

1.85
OHead
1.80 — O Tail
B Anywhere
1.75
e 1.70
>
S
[]
]
o
9N 165
1.60 T
1.55 T
1.50
None 2 2,16 1,2,16 Any

Shift Values Supported

Figure 3.12: Effectiveness of PCFU designs with varying types of shifiigported.

offer significant benefit over restricting shifts to the fygs, but most of the gains from
adding shifts can be attained by only adding them at the gn@ioidl outputs.

Costvs. Performance for all DesignsTo summarize the trade offs of the design space,
we combined the synthesis and simulation results in Figuk8.3The horizontal axis has
the cost of a design, and the vertical axis shows speedupexdtasing that design. The
speedup numbers in this figure were scaled to reflect cyckeitisreases. The ARM926EJ-
S typically runs at 250 MHz using a standard synthesis flow.30technology [5]. In
the left portion of Figure 3.13, if a PCFU design could not btee 4.s cycle time, then
the entire processor was slowed to the frequency of the PEBkkxample, if a PCFU had
a critical path of &s, then we assumed two cycles of the baseline machine could otc
the same time as one cycle of the machine using that PCFU idltegraph in Figure 3.13
performs the same scaling, but assumes that the PCFU taieytles to execute (e.g., the
PCFU is pipelined). This allows us to compare the cycle timesws subgraphs supported

trade offs for PCFUs in the context of processors with higiheck frequencies.

68

The main observation to take from the 1-cycle PCFU graphas tit offset increas-
ing the clock cycle, it is imperative to support many moregraphs. Only one of the
Pareto-optimal design points (41, 20, 2A, None) increaseddock cycle, and that was
only by 0.2us. Figure 3.9 shows the increased number of subgraphs, bynmawgifour
inputs/two outputs, needed to justify slowing the clockleydVhen clock cycle is taken
into account, there generally are not enough large dataflingraphs to justify the PCFU
designs targeting them.

Under the assumption of a two cycle PCFU, it is a differentystoowever. Assuming
the PCFU takes two cycles to execute implies that none of @f&lPdesigns extend the
clock cycle. This enables the benefits of supporting theelasgibgraphs to show them-
selves. For example, the 51, 30, 2A, None design point istBamgtimal under the two-
cycle assumption. Despite this, using two cycles to sugpayer subgraphs did not out-

perform the one-cycle PCFU designs that target smallerrsyihg.

3.9 PCFU Summary

In the past few sections, we have explored the design of Bnograble Carry Func-
tion Units, a hardware substrate for executing acyclicfttatesubgraphs. Several different
design parameters were examined, ranging from the numbsulzfraph inputs/outputs
supported, to the number of addition/subtractions sugpoto the the types of shifts al-
lowed. Evaluation of these designs was done with simulagwell as synthesis, to fully
evaluate the hardware tradeoffs in the context of the ARMERRE embedded processor.
Overall, we have shown that implementing a carefully desthRCFU can provide sub-
stantial speedups (1.47 on average) over a baseline embpdutessor for relatively little
area overhead. We also demonstrated that non-pipelinet) RIEsigns that support more
subgraphs, but increase the cycle time of the processageaerally not wise design points.

However, that conclusion is reversed in the case of pipelP€FU designs.

69

1 Cycle PCFU

0.7

1.6
3l, 20, 2A, None
1.5 A
\ @ 41, 20, 2A, None
@ 41, 10, 2A, None
b 41,30, 2A, None
41,10, 2A, 21
1.4 "
@ 41,20, 2A,1,2,16In
° ©41,20,1A,None @
== @ 41, 20, 2A, *In
=]
e
1.3
()] 21, 20, 2A, None 41, 20, 2. *Out
o , 20, 2A,*0u
0
@ 51, 20, 2A, None
@ 5l, 30, 2A, None
121 @ 41, 20, 0A, None
41, 20, 3A, None @ 61, 20, 2A, None
1.1 A
1 T T T
0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7
Area (mm~2)
2 Cycle PCFU
1.6
154
1.4 4
41, 20, 2A, *Out
o
> / 41,30, 2A, None @ 51, 30, 2A, None
8 1.3 d @ 5!, 20, 2A, None @ 6!, 20, 2A, None
[} 3. 20, 2A, None /
o @ ©41,20,2A,%In .4|, 20, 3A, None
0 @ 41,20, 2A,1,2,16In
[)
41, 20, 2A, Nol
1.2 A
21, 20, 2A, None T 10, 2A, 2In
@ 41, 20, 1A, None
114 .4I, 20, 0A, None
@ 41, 10, 2A, None
1 T T T T T
0.0 0.1 0.2 0.3 0.4 0.5 0.6

Area (mm~2)

Figure 3.13: The cost/performance trade off across various PCFU desigrsp

70

CHAPTER 4

Utilization of Generalized Acyclic Accelerators

4.1 Introduction

In the previous chapter, acyclic computation acceleratere proposed that are general
enough to use in a wide range of applications. In this chapéedevelop ways to utilize
those accelerators.

At present, specialized hardware is typically exploitegtiyh the use of customized
instructions or instruction set extensions, as an appdicapecific instruction set processor
(ASIP). The central problems with an ASIP approach are théviare design and software
migration time/costs. ASIP designs incur substantial remuring engineering costs. For
example, each new ASIP must be verified both from the funatitgnand timing perspec-
tives. Additionally, a new mask set must be created to falbeithe chip. On the software
side, the compiler must be retargeted to each new procesdargy hand-written libraries
must be migrated to the new platform. Automation of some e$sétasks may be possible;
however, the majority of this work is still a manual procesd.of these challenges make
it difficult to adopt a new ASIP despite the potential advgeta

This chapter develops two methods to utilize compute acateles that do not alter the
instruction set, thus avoiding the pitfalls of ASIPs. Wemethese methodsansparent
instruction set customization

The first method proposed, a fully dynamic scheme, perfoubhgph identification

and instruction replacement in hardware. This techniquedfective for preexisting pro-

71

gram binaries. The second method reduces hardware cornyplesthg a static subgraph
identification offline during the compilation process. Stamhs that are to be mapped onto
the accelerator are marked in the program binary to fat#lismple accelerator configura-
tion and replacement at run-time by the hardware.

In the remainder of this chapter, we describe the hardwatesaftiware algorithms nec-
essary to facilitate dynamic customization of a microaesttural instruction stream. The
tradeoffs of these algorithms are discussed and the eféeass of each is experimentally

determined.

4.2 Related Work

Once an accelerator has been designed, it becomes necessaap portions of an
application onto the accelerator. Two examples of usingctirapiler to statically map
dataflow subgraphs onto a CCA are [32] and [101]. Both of theskniques target fixed
hardware, and it is not clear if the algorithms extend to c@aczelerators not exposed to
the instruction set.

Several software frameworks have been proposed which wenttithemselves to dy-
namically mapping dataflow subgraphs onto acceleratorsiaby [10], Daisy [39], and
Transmeta’s Code Morphing Software [38] are all schemelsapamize and/or translate
binaries to better suit the underlying hardware. Theseesystcan potentially do a bet-
ter job of mapping an application to accelerators than cteriphe systems, since they
can take advantage of runtime information, such as tragadton. Using these systems
has the additional benefits that algorithms proposed ticatlyt map computation to an
accelerator would be effective, and full binary compatipils provided.

Many hardware based frameworks exist for this process,Nmst of these arose from
the observation that in systems with a trace cache, thedgatarihe fill unit has a negligible
performance impact until it becomes very large (on the oaddr0,000 cycles [45]). That
is, once instructions retire from the pipeline and a traceisstructed, there is ample time
before that trace will be needed again. Three recently mepschemes [28,111, 130]

used this latency to perform the mapping of dataflow subgrapito specialized execution

72

hardware. Instruction Path Coprocessors [25] and rePLa}/Hdve also propose taking
advantage of this latency for other instruction streamroations.

A simplified dynamic subgraph mapping system was describ¢e, 113]. These pa-
pers used the design proposed in [102] as the baseline ofsygtem, which greatly sim-
plifies the mapping problem. Because our goal was to allowfore flexibility than their
CCA design allowed for, our presented identification altyon is much more complex.

Other recent work [17] proposes using the DISE [37] framdwtordynamically replace
subgraphs in the instruction stream. A special instruasarsed to signal the DISE engine,
which then inserts the appropriate control logic into thpetine. This model requires
a DISE aware operating system and processor, since theaplimyare specified in the
binary at load time, and must be replaced to execute theybatauntime. Conversely, the
framework proposed in this work does not affect the opegasiystem, nor does it require

any special replacement engine to run the binary.

4.3 Utilization of an Acyclic Compute Accelerator

Once an accelerator is integrated into a processor, it isgsaey to provide subgraphs
for the accelerator to execute. Feeding an acceleratoiviesdwo steps:discoveryof
which subgraphs will be run on an accelerator agyglacemenbf the subgraphs with uops
in the instruction stream. In this section, two alternatipproaches for each of these tasks
are presented.

The two proposed approaches for subgraph discovery cantbgarezed as static and
dynamic. Dynamic discovery assumes the use of a trace cachgesforms subgraph dis-
covery on the retiring instruction stream that becomes @etrdVhen the instructions are
later fetched from the trace cache, the subgraphs will beesied. The main advantage
of a dynamic discovery technique is that the use of an acateleis completely transparent
to the ISA. Static discovery finds subgraphs for an accaleettcompile time. These sub-
graphs are marked in the machine code using two new subgpaggifisation instructions,
so that a replacement mechanism can insert the appropdegéegator uops dynamically.

Using these instructions to mark patterns allows for bifarward compatibility, meaning

73

172

Step current_match priority_queue
1 13
2 13 12
3 12,13 11,10
4 11,12, 13 9,6, 10
5 11,12, 13 6, 10
6 11,12, 13 10
7 11,12, 13
8 9
9 9 8,7
10 8,9 5,7
11

Operation Slack
1 0
2 1
3 0
4 1
5 0
6 4
7 1
8 0
9 0
10 5
11 0
12 0
13 0

Figure 4.1: A. DFG from a frame in 164.gzip. B. Slack of the operationsTface of Algorithm 4.1. D. DFG after subgraph replacement.

that as long as future generations of accelerators suppl@ast the same functionality of
the one compiled for, the subgraphs marked in the binarytdkraseful. The static discov-
ery technigque can be much more complex than the dynamicorersince it is performed
offline; thus, it does a better job of finding subgraphs.

The two proposed schemes for replacing subgraphs are bo#ndyg, but performed at
different locations in the pipeline. Replacing subgraphthie fill unit of a trace cache is
the most intuitive place for this task. As mentioned befpreyious work [42] has shown
that delays in the fill unit of up to 10,000 cycles have a nellegimpact on overall sys-
tem performance. This delay provides ample time for augmgrhe instruction stream.
The second proposal is to replace subgraphs during decdaeimpetus behind this idea
was that many microarchitectures (like the Intel PentiumjdWeady perform complicated
program translations during decode, so subgraph replagewmuld be a natural exten-
sion. The biggest advantage of a decode-based replacestbat it makes the trace cache
unnecessary when used in concert with static discovery.dvam the trace cache makes
accelerators more attractive for embedded processorgewviteee caches are considered
too inefficient and power hungry.

The primary reason for using dynamic replacement for acatle instructions is that
complete binary compatibility is provided: a processorwiit an accelerator could sim-
ply ignore the subgraph specification instructions and etesihe instructions directly. This
idea extends to future processors as well. As long as any&volof an accelerator pro-
vides at least the functionality of the previous generatibwe statically discovered sub-
graphs will still be effective. Essentially, this allows feinary compatible customization

of the instruction set.

4.3.1 Dynamic Discovery

The purpose of dynamic discovery is to determine which datasubgraphs should be
executed on an accelerator at runtime. To minimize the itnpaperformance, we propose
to use the rePLay framework [99] in order to implement dyradiscovery.

The rePLay framework is similar to a trace cache, in that eages of retired instruc-

75

=

w

© 00 N o o s

11

12

13
14

15

16

17

fori=Nto1do
if op; is in a matchthen
‘ Continue
end
Initialize current_match
priority_queue.pushpp;)
while priority_queue not emptydo
candidate_op < priority_queue.pop()
Add candidate_op to current_match
if current_match does not meet constrainisen
Removecandidate_op from current_match
Continue
end
oreach parent ofcandidate_op do
if parentis not in a matckhen
priority_queue.push(parent)
end
end
end
if accelerator implementation efurrent_match is better than native implementation
then
‘ Mark current_match in instruction stream
end
current_match.clear()

end

—h

Algorithm 4.1: Dynamic discovery algorithm

tions are stored consecutively and later fetched. RePLifgrslibecause instead of traces,
it uses frames, where highly biased branches are converted¢ontrol flow assertions. A
frame can be thought of as a large basic block, with one emidyacme exit point. If any
of the control flow assertions are triggered, the entire #amdiscarded. This property
of rePLay provides an excellent opportunity for subgraptadvery, since subgraphs are
allowed to cross control flow boundaries without compeisatiode. A frame cache also
allows for ample time between retirement and when the istitya stream will be needed
again.
The algorithm proposed for dynamic subgraph discovery atettion is shown in Al-

gorithm 4.1. The basic idea underlying this algorithm istirtsat an operation not already

76

Profiling and Micro—op Optimal subgraph Code

> i i discover G i
Original Trace formation| Most frequent Generation Micro ops y Most beneficial eneration | appjication with
application traces subgraphs CCA instruction:

Figure 4.2: Workflow of static discovery

in a match, and then grow that seed operation toward its inategarent operations.
When parent operations are added to the seed operation, sulgraph is created for re-
placement, provided that the subgraph meets the archiggctunstraints of an accelerator.
These constraints include number of inputs/outputs,allegcodes, and subgraph outputs
cannot feed subgraph inputs (necessary to avoid deadlaok)peration’s slack (i.e., how
critical each operation is to the total dependence heigth®@DFG) is used to determine
the priority of adding operations to the match when multipégents exist. This heuris-
tic is reminiscent of both Dijkstra’s shortest path algomit or the 'maximal munch’ code
generation algorithm.

To betterillustrate Algorithm 4.1, Figure 4.1C shows a skmpn on the DFG in Figure
4.1A targeting the height-four CCA from from Table 3.4. Theabvery algorithm starts at
the bottom operation of the frame with operation 13. Nodeslj8opped and added to the
match at step 2. Next 13’s parent, node 12, is added to theecuedi subsequently to the
current match. When 12’s parents are added to the queueprBstete how 11 is ahead
of 10 in the queue because it has a slack of 0 as compared t@&sSbr all operations
are given in Figure 4.1B. At step 5, node 9 would be added tarthteh; however, the
resulting subgraph would require 5 inputs, which violates architectural constraints of
the accelerator. Node 9 is simply discarded and its paramtsgaored. This process
continues until the priority queue is empty at step 7 and @syih is delineated. After the
subgraphs are replaced, Figure 4.1D shows the resulting DFG

This heuristic guides growth of subgraphs toward the @itoath in order to reduce the
dependence height of the DFG. The reason subgraphs areromiy ¢gpward the parents of
operations is because this reduces the complexity of tloewasy algorithm, and it guides

the shape of the subgraphs to match the triangular shapeegirtposed CCA design.

77

Note that this algorithm is just a greedy heuristic, and wdt perform as well as offline

discovery algorithms that have been developed.

4.3.2 Static Discovery

In order to reduce the complexity of the hardware custororagngine, a method for
offline customization of applications is also proposed.sTdpproach builds on traditional
compiler-based techniques for instruction set custongna@and is shown in Figure 4.2.
Initially, the application is profiled to identify frequdptexecuted frames. If the execution
engine uses microcode, the compiler converts the frames §&quences of architectural
instructions to sequences of uops to match what would belsetre replacement engine.
The most frequently executed frames are then analyzed dytaphs that can be benefi-
cially executed on an accelerator are selected. Then, tn@iter generates machine code
for the application, with the subgraphs explicitly iderdito facilitate simple dynamic
replacement.

Trace formation: A trace is a sequence of basic blocks that are highly likebetexecuted
sequentially [85]. Traces are identified by profiling the laggiion on a sample input. The
trace structure is very similar to the frames that are idieatiand optimized by rePLay,
thus the compiler uses traces as a surrogate for the frammagdioby the hardware.
Micro-operation generation: In order to identify subgraphs that can be replaced at run-
time, the compiler must convert its internal representatgomatch the run-time instruction
stream. For instruction sets such as x86, this implies atingeinstructions into micro-
operations, thereby creating a uop trace. The compilerkasps track of mapping between
instructions and uops to facilitate later code generatWhen targeting microarchitectures
without uops, this step is unnecessary.

Subgraph discovery: The subgraph discovery algorithm used for this chapter sebta
on previous two works [32] and [7]. As described in [32], thébgraph discovery can
be logically separated into two phases: (a) candidate eratioe, that is enumerating the
candidate subgraphs that can be potentially become areaatmelinstruction, and (b) can-

didate selection, that is selecting the beneficial candgdathe branch and bound technique

78

CCA_END

LD r1 = [input 1] LD r1 = [input 1]

LD r2 =[input 2] LD r2 = [input 2]

LD r3 = [input 3] LD r3 =[input 3]

ADD r4 = input 4, input 5 ADD r4 = input 4, input 5

ADDr5=r1,r12 ADDr5=r1,r12

= AND r6 =r4 .
AND 16 = r4 _ CCA_START instr#, 4
SHL r7 = input 6, 0x8 SHL r7 = input 6, 0x8
i LEA 110 = 16, 17

MRG r8 = input 7) ,
x86 Code XOR 9 =r5 pr3 ADD r12 =r2,r3 x86 Code

LEA 10 = 6, 17 CCA_START 3,4

MRG r11 = r8, r9 MRG 8 = input 7

ADD r12 = r2,r3 XORr9=r5,r3 CCA_END

MRG r13 = r11, r12 MRG r11=r8, r9

AND r14 =r3, 0x20 MRG r13 =r11, r12

MRG r15 = r13, r14 AND r14 =r3, 0x20

JZr15 ' MRG r15 = r13, r14

JZr15

Figure 4.3: Static accelerator instruction insertion

similar to [7] was used to solve the first phase. One additiomastraint was added so that
all micro-operations for a particular instruction shoulel included in the subgraph. The
selection phase was modeled as an instance of the unaténgppesblem. All nodes in the
DFG corresponding to the trace under consideration have tcolbered by the candidate
subgraphs so that the overall performance is maximized.radt@ of number of nodes in
the original DFG to the number of nodes in the DFG with candidaibgraphs replaced
with accelerator instructions was used as the performareteian An additional weight
was given to nodes based on their slack so that subgraphsaritital paths are more
likely to be selected.

Code generation: After the best subgraphs to execute on an accelerator hareiden-
tified, the compiler must generate machine code for the eajpdin. The objective of this
process is to organize the machine code in a manner thatdses simple dynamic replace-
ment of the uops by accelerator control signals. To accahpiiis two new instructions are
introduced into the ISAACCEL_START (liveout, height) and ACCEL_END. AC-
CEL_START and ACCELEND serve as markers for the instructions that comprise a sub
graph to be mapped onto an accelerator. ACCEHIART has two operands: liveout is the

number of the uop that produces an externally consumedteegialue, and height is the

79

maximum depth of the micro-operation subgraph. Note thatdht uop of the subgraph is
assumed liveout, creating a maximum of two outputs. Heiglased as a quick feasibility
test to efficiently support multiple accelerator variagon

For each uop subgraph, the code generator groups the condisg macro-instructions
together. The assembly instructions are topologicallyesbbased on the structure of the
subgraph and placed sequentially in memory. an ACGHIART instruction is pre-pended
to the list and an ACCELEND is post-pended, thereby isolating the subgraph andmgaki
it simple for the hardware to discover. For any case wherecalaator enabled binary
needs to run on a processor without an accelerator, the ACEEART and ACCELEND
instructions are converted to NOPs.

The code generation process is illustrated in Figure 4.3¢hwis the x86 instruction /
micro-operation view of a DFG from the SPECInt benchmarKtgrarhe initial trace of
x86 code is shown on the left, which is then converted intoroagperations as shown in
the second box. A subgraph to be mapped onto an acceleratanified as shown by
the darker uops. The code generation process groups the operations contiguously,
topologically sorts them and inserts the ACCBTART and ACCELEND operations as
shown in the third box. The sequence of micro-operationseés tmapped back to aug-
mented x86 instructions that contain the sorted instrastimgether with the accelerator

instructions, thereby identifying the micro-operatiobgtaph at the instruction level.

4.3.3 Subgraph Replacement in Retirement

Replacement is the final step in making use of an accelexansisting of generating
the encoding bits for a given subgraph and substituting théanthe instruction stream.
As mentioned in Section 3.3, the encoding of acceleratdriosons specifies the opcodes
for each node of an accelerator and the communication beteaeh of the nodes. De-
termining the communication of nodes requires one top-dpass over the operations to
determine producer/consumer relationships. Placingsiddal operations at nodes in an
accelerator can also be done with one pass over the opesdiioplacing each node in

the highest row that can support the operation while hogodiata dependencies. In the

80

case where back-to-back additions are needed, but not dedday an accelerator, move
operations are inserted to pass data from the first addididimet second.

As mentioned previously, the rePLay pipeline is an exceéliarce to perform subgraph
replacement for an accelerator. Taking advantage of fraafiew's the replacer to create
subgraphs that cross control flow boundaries. Additiortaiéylatency tolerance of a frame

cache allows ample time for replacement to take place.

4.3.4 Subgraph Replacement in Decode

The other alternative is to replace subgraphs during dechiie technique has smaller
hardware overhead - as the frame cache is unnecessary - dadedbased schemes are
more sensitive to latency and do not allow subgraphs to d¢rasi& block boundaries.

One possible solution to the latency issue is to take thedosuod generating control
bits for accelerator instructions out of the decode stageadcomplish this, we propose
allowing a certain number of subgraphs to be predefined irbthary and saved into a
translation table when an application loads. The ACCEIART instructions could then
just store a pointer into this table for the encoding bitskimg replacement trivial. The
obvious benefit is that this scheme has very low hardwarehexaetr. However, there is an
additional constraint that the number of subgraphs thateansed for the entire program

is limited by the size of the translation table.

4.4 Experimental Evaluation

The proposed discovery and replacement schemes were iraptechin SimpleScalar
[9] using the ARM instruction set. The machine configurationthese experiments was
identical to the 4-issue processor with CCAs used in Se@idn Within SimpleScalar,
some ARM instructions are broken into micro-operationg,,doad multiple, which per-
forms several loads to a contiguous sequence of addresses, AMRM instructions allow
for an optional shift of one operand, and it is important tterthat these shifts are also bro-

ken into uops. Since our CCA does not support shifts, it watliebrwise not be possible

81

‘l CCA Instructions B From Frame Cache O From I-cache ‘

100%

90%

80%

70%

60%

50%

40%

Dynamic Instruction Count

30%

Figure 4.4: Percentage of dynamic instructions from the I-cache anddraache

to execute these operations on the CCA.

Figure 4.4 shows the breakdown of instructions executedbyptocessor. The com-
bined gray and black portions of the bars represent the peatelynamic instructions that
were provided by the frame cache. The black portion of the bepresents the fraction
of dynamic instructions that were executed on the CCA. Whenguretirement based re-
placement schemes, it is very important to achieve highrages since CCA instructions
only appear in the instruction stream from the frame cache.a@rage, 91% of instruc-
tions came from the frame cache in our simulations. Thecstisicovery/retirement based
replacement scheme was able to replace 35% percent of tme ftache instructions (or
32% of the total dynamic stream) with CCA operations.

As expected, a larger fraction of replaced instructionsegaity leads to better attained

speedups. For example, 3des and rawdaudio both have a higgnfege of their instruc-

82

O Static-Translation Table EDynamic-Retirement B Static-Retirement

1.7

1.6

1.5

Speedup

Figure 4.5: The effect of various discovery/replacement strategies

tions executed on the CCA, and they are among the applicatth the highest speedups
in Figure 3.2. However, there is not a one-to-one corresponoe between CCA coverage
and speedup. Since many replaced subgraphs may not app#ae ontical path, their
acceleration will only have a small impact on program exiecutime.

A second experiment is presented in Figure 4.5, comparmghiee different discovery
and replacement strategies on processor performance. fBhestfiategy employs static
offline pattern discovery and relies on a translation tabldecode to replace instances in
the instruction stream. The second strategy performs dimdiscovery and replacement
in the fill unit of the frame cache. The third strategy is staliscovery with replacement
done in the fill unit of the frame cache. All three of thesetsigées were run using the depth
4 CCA. A translation table size of 32 was chosen for the statiaslation table strategy,
because previous work [117] showed that only marginal emes £0.5%) in dynamic
coverage are possible beyond 20 patterns.

The most apparent trend in the graph is that the staticlaios table strategy typically
does rather poorly when compared against the other two tggbs. Investigation showed

that this was not because of a limited number of availablgsaghs. Rather, this method

83

lacks a rePLay-style mechanism to roll back the processte sivhich effectively allows
subgraphs to span control flow boundaries. When any branahfriame is mispredicted,
an assertion occurs and the frame is discarded. Theretoedrame can be treated as a
large basic block for subgraph replacement. Without the_agRmechanism, it is more
difficult to allow subgraphs that execute on the CCA to spamtrob flow boundaries. For
this study, we conservatively do not allow any CCA subgraplspan a branch. While this
approach is correct, a large number of potential CCA subdggape lost with this method.
Future work includes relaxing this constraint which wikély increase the effectiveness of
the static-translation table.

The graph also shows that, as expected, the static discougpgrforms dynamic dis-
covery with the frame cache. This is because the static sehismsing a much more
powerful discovery technique than the simple dynamic Istiati However, the dynamic
heuristic does do quite well in a number of cases: 175.vpeg;jand rc4. One reason for
this is the underlying ISA. Since the ARM ISA has only 16 atebiurally visible registers
(and several are reserved), the compiler often insertsge laumber of loads and stores
into the code for spilling. Since the CCA cannot execute mgnoperations, the spill
code atrtificially limits the amount of computation in the afédw graph. Larger amounts
of computation generally results in more options duringgaph discovery, implying that
the dynamic discovery algorithm is more likely to have itb-gptimality exposed. The
difference between static and dynamic discovery strasagikkely to be more pronounced
with an ISA that supports a larger number of registers and #xposes more of the true

data dependencies.

4.5 Transparent ISA Customization Framework for Em-
bedded Processors

The beginning of this chapter looked at three different téghes for transparent in-
struction set customization. The first, a dynamic method praposed to identify and

remap subgraphs to accelerators in a trace cache fill urjit J9% second, a static strategy

84

identifies subgraphs offline during compilation and reptabe subgraphs with accelerator
instructions at run-time using a decode time translatitwetarovided in the binary. Both
solutions have major drawbacks. The dynamic approachsreliea trace cache and its
associated hardware optimization system. Such hardwayenisrally not appropriate for
embedded processors due to cost and energy consumptidhefuun-time identification
of patterns is inherently constrained to simple approaelsasis performed during appli-
cation execution. The static approach offers no flexibilitgerms of supporting multiple
accelerators, as a fixed mapping to the CCA is assumed. Furtiggster encoding limi-
tations in the general purpose processor (GPP) instrusgbiseverely restrict the size of
subgraphs that can map to the CCA.

The next few sections go into detail of the third approacétisselection of subgraphs
with replacement at retirement time. We present how thidwprovides a@architectural
frameworkto efficiently support transparent instruction set custation in an embedded
general purpose processor, such as an ARM. Subgraphsadigetacceleration are iden-
tified during compilation or as a post-link optimization aace marked in the program
executable. At run time, subgraphs are discovered, maetiexecuted on specialized
hardware blocks. The hybrid approach enables the combmati sophisticated offline
subgraph detection algorithms with the flexibility of ordinealization of the customized
instructions.

Several important challenges are addressed in the prof@sadwork. First, a plug-
and-play accelerator model is defined that consists of amanted GPP pipeline with a
predefined interface to an optional hardware acceleratmekbl The augmented GPP is
designed and verified once. Second, the framework supposisi@range of accelera-
tor designs including standard predefined acceleratoxsh(as a CCA) and user-defined
hardware accelerators. Regardless of the specific actmidm@ lack thereof), a single
application binary is created and executed on all platforiimérd, the acceleration of com-
plex acyclic computation subgraphs is supported. Priorkwadten limits subgraphs to
linear chains, thereby precluding many of the performarereekits achieved with custom
instructions in ASIPs. Fourth, the limited expressibilifijthe target instruction set archi-

tecture in terms of register names does not limit contenthefselected subgraphs. For

85

Program Program Execution 1 Execution 2—N
se1 .. Lo,

JE— e C—) : : -
’ e BRL — | S e — ' CCA Configure ' CCA .

S A o 1| Subsystem CCA g | Subsystem —;—}
_______ I ~—~— H v i Subgraph /3 Y ' Results
Py — o — | SG2 ' : ‘ :

se2 |[i—— N—k' _______ v ! T ! :

—_) ' [l Core . Core H
\ PE——
Tooo--—7 AN 91 ' Subgrapht ! Results ' .
_ _ w“" Hapap———— Hapap————
(@) (b)

Figure 4.6: A high-level overview of the executing with a CCA: (a) subgadentification
and relocation and (b) setting up the CCA subsystem on therfuccation of a
subgraph for future uses

GPP instruction sets such as ARM with only 16 registers,stegispills often limit sub-
graphs to small sizes, thus its important to overcome thgdition. Finally, a low-cost
and energy-efficient solution is selected to make the agbre@propriate for embedded
computing.

The key benefit of this framework is that it provides a cleariiface between a proces-
sor pipeline and an accelerator, enabling easy custoroizafiaccelerators for an expected
system workload. We demonstrate how the framework can psogelataflow subgraph to
generate accelerator instruction on the fly, without théscassociated with a trace cache.
Beyond the architecture framework, we also describe thepdation process, by which

subgraphs are identified in applications and communicatétet architecture framework.

4.6 Architectural Framework

The primary contribution of this work is a configurable atelstural framework to facil-
itate transparent instruction set customization. Thismaork allows architects to design
hardware accelerators tuned for an expected workload asitly @acorporate them into
a general purpose processor via a well-defined interface. uBle of a workload-specific
accelerator allows manufacturers to build machines tadygaward many domains at the
cost of designing and verifying only a single general pugposre and a set of applicable

accelerators.

86

This section begins with an operational overview of the #amark. The remaining
subsections present a description of the proposed pipelic®architecture, the stages of
execution of dataflow subgraphs within this pipeline, arel gistem interface to support

subgraph execution on the system.

46.1 Overview

The objective of a framework for transparent instructioincsstomization is the support
of a hybrid form of execution where subgraphs are statidaigntified and dynamically
realized. Static identification refers to offline compiléentification of potential subgraphs
for execution on custom hardware. Dynamic realizationreefe hardware synthesizing
the custom instructions at run-time and offloading theirceion to the CCA.

The high-level process is illustrated in Figure 4.6. Idiyiaa program is analyzed by
the compiler to identify critical computation graphs thanhcbe mapped onto the CCA.
The operations that comprise the subgraphs are pulled aimeoforiginal locations and
placed into a separate function body as illustrated in lEigu6(a). The BRL, or branch
and link, instruction is used to denote a function call irsthigure. Dynamic realization
is accomplished in two phases. Initially, the subgraph ecated on the hardware of the
uncustomized core, denoted as Execution 1 in Figure 4.B({ming this execution, a hard-
ware engine determines the CCA configuration necessarydoutx the entire subgraph
as an atomic unit. In essence, a complex opcode is syntidesizthe fly. On subsequent
executions of the subgraph, the new complex opcode is sutiestifor the invocation of the
subgraph function. Thus, as shown in Figure 4.6(b), thedstahhardware must execute
the first occurrence of the subgraph, while all subsequestigions will be relegated to
the CCA.

The combination of static identification and dynamic reatian enables powerful of-
fline algorithms to optimize code for subgraph extractiomurtker, a well-defined archi-
tectural interface introduces a layer of flexibility so tipaeviously designed and verified
cores can be easily integrated with multiple CCA designse fi@dmainder of this section

expands the details of the architectural framework to agimimthis model of execution.

87

' cca Live Ins, CCA Config Cache Index

1

SUBSYSTEM '
CCA Control, Live Out Values \ .

1

1

CCA R Control 1
” Generator :

1

1

1

1

1

1

Config CCA
Cache
Results
4 to write
Config Cache Live In back Instructions
Index Values
CcPU © @ ® ®
BTAC

] ¥ ccamndex Fecha
Config B »

Branch Cache Live In BTAC 7
Target Entry Registers

A
@ 1 [riRe || [+4 PN BT

YY

EX

Y

Y

MEM »| WB

Instruction
Cache

Figure 4.7: Transparent instruction set customization architectineathework

4.6.2 Pipeline Organization

Figure 4.7 presents a block diagram of the proposed arcbhreramework. The base-
line processor, at the bottom of the figure, is augmented thelCCA subsystem at the top
of the figure. The CCA subsystem consists of three major pmesCCA itself, a configu-
ration cache, and a control generator. The control geneisatesponsible for examining a
sequence of retiring instructions and determining theiregicontrol signals for the CCA.
Each entry of the configuration cache specifies the necessatyol signals for configuring
the CCA, including the opcode implemented on each CCA fonatinit, the interconnect
between function units, and any literal values used by thegsph.

The core processor is augmented in several places to ihteilcthe CCA. Changes
primarily occur in the instruction fetch stage of the pipelj where instruction stream sub-
stitution occurs. The branch target address cache, or Bsa@étimes called BTB in other
literature), is extended to store additional informatiordecide when it is possible to sub-
stitute a CCA instruction for an invocation of a subgraphclion. To accomplish this, a

CCA configuration cache entry and register indexes for \@bemsumed by the subgraph

88

are included in the BTAC. The decode and writeback stagealacemodified to provide
register inputs and accept register results from the CCA.

Central to the framework is a well-defined interface betwiecore and the CCA sub-
system. The interface is designed so that the core can uspla@CA designs. Since any
hardware placed on the CCA subsystem increases the coststohaization, the necessary
structures were integrated into the main pipeline as mugboasible while maintaining
the flexibility of the interface. The numbered arrows in Figd.7 denote the five interface
points between the CCA subsystem and the CPU. These poarttssaonly communication
required between the CPU and the CCA subsystem:

1. The CCA subsystem generates entry information for the @TFhis includes sub-
graph live-in register indexes and a configuration cachexmnhere the control bits

are stored.

2. During instruction decode, the configuration cache indesent to the CCA subsys-

tem.

3. As previously mentioned, the decode stage also provite£CA with values for

registers that are inputs to the subgraph.

4. The output values from the subgraph are relayed from tha &@system back to

the CPU for register writeback.

5. After retirement, completed instructions are providethte control generator so that

it can synthesize the CCA instructions from dataflow sublgsap

4.6.3 Dataflow Subgraph Execution

A single instruction is added to the baseline instructiontseallow the compiler to
delineate patterns for execution on the CCA hardware. Augision of how the compiler
uses these instructions follows in Section 4.7. The inteedunstruction is dubbed BRL’
because its semantics are very similar to a branch-andslugkation commonly used for
subroutine calls. BRL' is treated just like a normal braraetd-link instruction in processors

without a CCA subsystem: the current program counter (P&tpised to a link register and

89

control branches to the branch target address. The pracegbout a CCA will execute
the instructions in the target subroutine and return to edksite, just as it would for any
other subroutine. To a processor with a CCA subsystem, thie &Bnifies the start of a
subgraph to execute on the CCA.

When the BRL is fetched from the instruction cache, its @ddris used to index into
the BTAC. The BTAC is a standard component of modern branetiption schemes used
to hold the destination of a taken branch. In this framewthlk, BTAC is augmented to
contain two additional pieces of information for each BRiSiruction. Register numbers
for the inputs to CCA instructions are one of the additionatps of information. These
values are fed to the instruction decode stage for registats. An index into the CCA
configuration cache is the second additional piece of in&tiom stored in the BTAC. The
configuration cache on the CCA subsystem contains the ddnitsdor the CCA execution
unit. If a BRL hits in the BTAC, the configuration cache indexpassed through the
pipeline with other control bits and the PC simply incrensetat the next instruction (i.e.,
the branch is not taken because the BRL was recognized abgaagah). This prevents
pipeline bubbles that would form if the branch target wa®talf the BRL misses in the
BTAC, then it is executed as a normal BRL and control brantbéise procedure.

Recall that control bits from the BTAC provide the registdrat are read during the
decode stage of execution. Since we assume only two regéstds are supported in one
cycle, it may be necessary to use multiple cycles to readf dleoperands necessary for
the CCA instruction. Extra communication is provided aliogvthe decode stage to stall
the fetch unit in order to facilitate this multi-cycle retgsread. As the registers are read,
they are passed to the CCA system, keeping the width of tlesface connection to a
minimum.

The BTAC also passes a configuration cache index throughabeds stage and into
the CCA system. The configuration cache contains informatiertaining to the routing
of the signals on the CCA, as well as the operations to perfdreach node in the CCA
grid. This information is separated from the BTAC for two magasons. First, the number
of control bits is highly dependent on the structure of theAC@utting the configuration

cache in the core, as part of the BTAC, effectively restribtssize and organization of the

90

Y YV VY
soooee
| | L) U]
XX
L))
e B VA

Output 1 Output 2

Figure 4.8: Example of a CCA implementation

CCA, since the number of control bits is set a priori. Secgndting the control bits in a
separate configuration cache allows reuse of the same toitgdor different subgraphs.
For example, if two separate subgraphs were identical éxoeghe registers that provide
their inputs, they could share an entry in the configuratiache.

Once the registers and configuration data are passed alen@,GA executes the sub-
graph as a single operation and feeds the results to thebadkestage of the core. The
CCA operates like any other function unit in this regard. Aample of a potential CCA
implementation can be seen in Figure 4.8. The CCA here isemphted as a grid-like
grouping of function units with full interconnect betweedjacent rows. Because of de-
lay constraints, the two rows have slightly different opesdvailable for execution, the
white nodes support add, subtract, compare, sign extendalalogical operations, while
the gray nodes only support sign extend and logical opersitidhe design in this figure
was taken directly from our previous work [28], and a morerthugh discussion of the
design rationale is described there. After execution ord64\, results are written to the

register file and instructions are fed the the CCA controlegator, which is responsible for

91

mapping subgraphs onto the CCA.

4.6.4 Dataflow Subgraph Control Generation

Dynamically determining the control signals for the CCAhg imost complex portion
of the CCA subsystem, and is best illustrated through an pigras shown in Figure 4.9.
In this example, the subgraph in the top left corner will bgoped to the CCA in the bottom
left corner. The nodes of this CCA are labeled A-O for easgnagice. The assembly code
and subgraph in this example were taken from the Rijndaelption algorithm.

Instructions are fed through the control generator oneiat@after the writeback stage.
The two loads at the top of the example are fed through andéghsince they are not part
of a subgraph. When the third instruction, a BRL, is retjrégignals the beginning of a
subgraph and that the CCA subsystem should generate corfoohation for it. The PC
of the BRL is recorded so that it can be used to update the BWCthe appropriate data
when the subgraph has been fully processed.

After the BRL, instructions are mapped to the CCA grid asyteater the control gen-
erator. Determining where to map the instructions requsegeral pieces of state, shown
in the right portion of Figure 4.9. The table at the top of eatdp is a content addressable
memory, or CAM, that maps a stack offset to a node that praitiee value. The CAM
is used to determine which node in the CCA produced the sipiidue when a different
operation in the gets its input from the stack. This allowes tlontrol flow generator to
eliminate spill code of transient values within the subgraphe size of this CAM equals
the number of nodes in the CCA, since each node could poligrgmll its produced value.

Since the proposed CCA subsystem does not support memagsaoperations, if the
compiler is unable to allocate registers to all of the transvariables in a subgraph, then
spill code would effectively partition the subgraph. Thestricts performance improve-
ment simply because of register pressure and is our ragdioalperforming spill code
elimination.

The second piece of state in Figure 4.9 is the current pradabée. For each register

in the machine, this table contains the node of the CCA thatlywed the most recent

92

€6

Subgraph Code
LD R1, []
LD R2, [1]
BRL’ SUBGRAPH CCA
Node
CMP R5, #1 Number
Y
SUBGRAPH:
AND R3, R1, #-4
, R .
ST [SP+20] 3 Register
SEXT R3, R2 Number
AND R2, R3, #3 E
LD R3, [SP+20]
OR R4, R2, R3 .
A\ 4
AND RO, R4, #3
RET
CCA Structure

(2] [e][e][=][=][<]
[][] []
(][]]
(][]

Step 1 Step 2 Step 3 Step 4 Step 5 Step 6 Step 7
AND R3, R1, #-4 ST [SP+20], R3 SEXT R3, R2 AND R2, R3, #3 LD R3, [SP+20] OR R4, R2, R3 AND RO, R4, #3
SP SP SP SP SP sP SP
Offset Node Offset Node Offset Node Offset Node Offset Node Offset Node Offset Node
0 20 A 20 A 20 A 20 A 20 A 20 A
2
Current Current Current Current Current Current Current
Producer Live-Out Producer Live-Out | Producer Live-Out Producer Live-Out Producer Live-Out Producer Lijve-Out | Producer Live-Out
False False False False False False N True
1 False False False False False False False
2 False False False True G True G True G True
3| A True A True B True B True A True True A True
4 False False False False False K True K True
Live-in Live-In Live-In Live-In Live-In Live-In Live-In
0| RrR1 R1 R1 R1 R1 R1 R1
1 R2 R2 R2 R2 R2
2
3
EOO000O | RO0dOO | EROoon | ERdodo | Emcogod | ERdood | Emoood
(]| (I Qo [[[[] [||
(] ol (| (| o [] []
[o o o | o m

Figure 4.9: Example mapping subgraph onto a CCA

value computed for that register. The control generatoo &keps two tables marking
live-in and live-out values of the current subgraph. Thdeaif live-out values records
every time a value is produced by a CCA node. It is necessaagsame that all register
values created are live-out, and must be written to the texgide, until proven otherwise.
The live-in registers record which registers are neededhjpsts to the subgraph and are
communicated to the BTAC after control generation is cotgpld he live-in table is the
size of the maximum number of inputs allowed on the CCA exeoutinit, in this case
four. At the bottom of each step is a running count of the nadeéke CCA (marked in
dark gray) which have been allocated an operation by the@agegnerator.

When the first instruction, AND R3, R1, #-4, enters the cdrgemerator, that instruc-
tion looks up each source operand in the current producés.t&ince R1 has no current
producer, it is added to the list of live-ins. No other nodethie subgraph create results that
this operation consumes, so the AND instruction can be asditp node A in the first row
of the CCA. The current producer table is updated to reflemt BB is generated by CCA
node A, and R3 is marked as potentially live-out. The opcotidrand constant -4 are
stored as the function executed by node A. The state afteepsing the AND instruction
is reflected as Step 1 in Figure 4.9.

Spill code for R3 is the next instruction entering the cohgenerator. The compiler
guarantees that any spill code within the subgraph is onlytremsient values, and thus
can be optimized away without affecting the correctnes$efgrogram. In this example
the spill code stores R3 to stack offset 20. Since R3 is prediiny node A, that node
value is stored with an index of the stack offset in the CAMtuFe instructions that use
values spilled on the stack, use the CAM to determine whiakerio the CCA generates
the instruction’s inputs. Step 2 in Figure 4.9 shows the mdronfiguration state after
mapping the store instruction.

Following the spill instruction, the SEXT instruction ergehe control generator. Since
this instruction uses R2, and R2 has no producer in the dysreducer table, R2 is marked
as live-in and the instruction is placed at node B in the foat of the CCA. This instruction
produces a value for the spilled register R3, so the curresdycer of R3 is changed to

node B, and the live-out bit of R3 remains set. When the nexDAMstruction is mapped,

94

a look up of its source operand R3 shows that node B producekhis means that the
AND operation must be placed in the row below node B, in theeaaode G. The current
producer table is then updated to reflect that R2 is now predlby node G.

The next retired instruction is the spill code load for R3eTwontrol generator looks up
the spill offset in the CAM and finds that node A generated thiee being loaded. Thus,
the LD instruction resets the current producer of R3 to nogdarl it remains marked as
live-out. After the spill code load, an OR instruction withhsces R2 and R3 is processed.
Both of these sources are produced by other nodes in theaplingSince it is dependent
on node G, this operation must execute in the third row. Itas@d at node K and updates
the current producer table accordingly. In addition, bseaihe operation requires a source
from the first row (R3), a move must be inserted in row 2. Movesraecessary because
only adjacent rows in this CCA architecture are directlyemabnnected. This move is
marked in light gray at the bottom of step 6. Similar to premanstructions, the AND is
inserted in the last row of the CCA. The final instruction, a@gTRmarks the end of this
pattern.

Once the end of the subroutine is reached, the control datat iget ready to be writ-
ten to the BTAC and CCA configuration cache, since there en@st live-outs than are
supported by the execution system. The compiler is respngr proving that only a
limited number of live-outs exist in each pattern. Therefdo determine which ones are
not actually live-out, it is necessary to monitor the reiirinstruction stream and unset the
live-out bit for any register that is defined before used.

Determining true live-outs can either be done by waitingdtirer instructions to natu-
rally kill potential live-outs, or by having the compilersart artificial instructions to ensure
that false live-outs are killed quickly. Regardless of ttrategy, the latency of killing live-
outs should prove irrelevant to system speedup as prior Waijkhas shown that moderate
latencies are likely between trace retirement and recaeen

If at any point the control generator cannot map a subgrap thve underlying CCA
execution unit, then it simply aborts control generationtf@t pattern. This allows appli-
cations compiled for CCA subsystem 1 to run on CCA subsystewe when the second

may not support all the subgraphs that the first supportsviting the dynamic control

95

- Ftrmction -
Outlining

Code Prepass Subgraph Reg Subgraph
Motion - Sched g Expansion =>| Allocate = Compaction =

Posty
Sched

Assembly
File

DFG Subgraph
Identification

Figure 4.10: Compiler flow diagram. New steps in the compilation procagssaown in
gray.

generator as part of the CCA subsystem is key to the retdntjetaf the system.
The specific hardware structure and overhead of controlrgéors is discussed in Sec-
tion 4.12.

4.7 Compiler Code Generation

In order to exploit the specialized CCA hardware, a CCA cegni compiler requires
several new steps in the code generation process. The lsteuature of the compiler flow
is shown in Figure 4.10; steps added for CCA compilation aes ¢n this figure. Nor-
mal code compilation has three major steps: schedulingstexgallocation, and postpass
scheduling of spill code. At the beginning of compilationC&A compiler must deter-
mine which dataflow subgraphs should execute on the CCA. @inaining complexity of
compiling for a CCA stems from the fact that some phases ofptlation need to treat the
subgraphs as atomic units and other phases need to undkeesiaimconstituent node of the

subgraph. Each of these phases is explained in detail irethainder of this section.

4.7.1 CCA Compiler flow

Subgraph Identification: Given a dataflow graph as input, subgraph identification
determines which portions should be executed on the CCAs iBhvery similar to the
problem of technology mapping in VLSI design. In the geneeale, where the subgraphs
are not necessarily trees, the problem is NP-complete [BlicDity of the problem is the

primary reason subgraph identification is performed at aterippne instead of runtime.

96

Heuristics for solving subgraph identification have been shbject of much related
work [3, 80, 87]. This is a very complicated issue, discudsetther in Chapter 5.

From a high level, subgraph identification is performed i steps. First, subgraphs
are enumerated within a basic block or superblock, usingaadir and bound algorithm.
This algorithm generates the set of all subgraphs capalbeiofy executed on the target
CCA. In the case that a block is too large for full enumeratit@ block is intelligently
split into smaller pieces, each of which is fully enumerated

After enumeration, the second step of subgraph identifinas selecting which of the
enumerated subgraphs to execute on the CCA. At issue isgblabperation in the dataflow
graph may appear in multiple subgraphs, yet each operatiorooly be mapped onto the
CCA as a member of one subgraph. Thus, it is necessary ta edplecate operations or
a subset of subgraphs must be selected to maximize perfoansatject to the constraint
that each operation appear in only one subgraph. Beyondithsitalso necessary to de-
termine if the target CCA is capable of executing the subgmapre efficiently than the
constituent operations on the baseline processor. For @earnfi a subgraph consists of
two dependent ADD operations, and the latency of the targ & three cycles, then
executing that subgraph on the CCA is not worth the overhéadhis work, subgraph
selection is accomplished using a dynamic programmingisteuidescribed in [32].

It is important note that subgraph identification is perfedrbefore register alloca-
tion. Performing subgraph identification after registdoedtion introduces many false
dependencies within the dataflow graph, and hinders theosittee subgraph that can be
discovered. Indirect evidence of these dependenciessearighe effectiveness of regis-
ter renaming logic in superscalar processors. Even thoalgk flependencies are a major
problem, most related work performed subgraph identifticaéfter register allocation, so
it could be done at link-time or run-time.

Code Motion: After subgraph identification, the selected subgraphs altepgsed into
a single instruction. In order to effectively mark subgra@s a special procedure calls
for the hardware, it is essential that the scheduler mairttes instruction order such that
the subgraphs appear contiguously in the code. Collapkagubgraph into a single node

cleanly prevents operation reordering without altering $kkheduler internals.

97

Branch Target Block

(a) (b)

Figure 4.11: The process of downward code motion as (a) the cross brarmjraqnh is
identified and (b) code is replicated in a new block

When collapsing the subgraph, a problem arises if the spbgreosses branch bound-
aries. Previous work has shown that preventing subgraphsdrossing branch boundaries
greatly constrains the size of the subgraphs [131]. Thugcsin must be made as to
where to insert the CCA node relative to the crossed brane@hcaMsider the two extreme
possibilities: before the first branch and after the lashbina Both choices have ramifica-
tions which must be corrected in the code. The process offfgaec CCA operation after
the last branch boundary is termédwnward code motioand placing the CCA operation
before the first branch boundary is termgalvard code motianwithout loss of generality,
each form of code motion is considered for a single branchatjos.

In downward code motion, the subgraph is assumed to sparothtaken direction of
the branch. The problem that arises is there could poté&nbal portions of the collapsed
subgraph which need to be executed before the code at thehaianget is executed. Con-

sider the example in Figure 4.11(a), which is a portion ofda&aflow graph from the Ri-

98

jndael encryption benchmark. The subgraph identified fdlapsing is encircled in gray.
If the collapsed node is executed after the branch bountiayapplication will execute
correctly as long as the branch is not taken. However, if thadh is taken, then there are
operations within the collapsed subgraph that did not ebeelbut should have. These are
the operations from Figure 4.11(a) that are within the exhet gray subgraph and above
the dotted branch line.

After placing the collapsed subgraph below the branch bagndhe portion above
the branch must be replicated. Figure 4.11(b) shows thisga®when the branch target
is a block of code with a multiple entries. A new block is ceshwith the code region
from the collapsed node. This code region then uncondiliph@anches to the original
branch target. In the case where the target block has onlga@mteol flow entry point, this
new block is simply collapsed into the beginning of the bratarget block. This process
is essentially the same as the bookkeeping code inducedgihmownward code motion
used during trace scheduling [44].

Downward code motion easily extends to patterns which arag$iple branch bound-
aries. Generally speaking, executing subgraphs that braseh boundaries increases the
size of the computation subgraphs executed on the CCA, whipihoves performance.
The trade off is increased code size from operation repdinat

The alternative to downward code motion is to place the pska subgraph above the
branch boundary, or upward code motion. In this case, the €&Ad potentially execute
code that should never have been executed, and therefarelates that the branch will
not be taken. If the branch is taken, then code must be ims&stespair the incorrectly
executed instructions. Additionally, operations that Idopotentially cause exceptions,
such as a divide or load operations, must not be specukatixelcuted to guarantee correct
execution.

The CCA compiler system implemented in this work exclugiveses the downward
code motion process, placing the CCA operation after thedira This method always
produces functionally correct code regardless of excgptiatructions.

One potential area where downward code motion has diffigsltfya value produced

by a CCA instruction is consumed by the branch. For examplEigure 4.11(a), if the live

99

out from the OR operation was used to determine whether othedbranch is taken, then
this subgraph cannot be moved below the branch. In this tase€CCA compiler rejects
this potential subgraph as a target for collapsing.

Prepass/Postpass Schedulingfhese two phases of compilation are unchanged from
the standard compiler. Later in compilation, the subgragiesturned into special func-
tion calls using the BRL' instructions, and thus, it is im{zort to keep all of the subgraph
instructions contiguous in the schedule. This is the maisaa why subgraphs are com-
pressed into atomic instructions.

Subgraph Expansion: While scheduling considers the subgraphs as atomic uads, r
ister allocation needs to consider each instruction séglstrien order to properly assign the
registers to the internal values. Recall that processadisowt CCA subsystems must still
be able to execute the code generated for processors witts CTlAis mandates that the
subgraph must be register allocated. Without expandingubgraphs, it is difficult for the
register allocator to correctly construct live ranges assi@gn registers.

Register Allocation: Expanding the subgraphs before the register allocatiomalthis
phase of compilation to be relatively unchanged. Registersimultaneously assigned to
all instructions, including the expanded subgraphs, jashay would normally be. The
only change has to do with the addition of some caller save éodthe subgraph. Recall
that the subgraph will be implemented as a subroutine cadfjuke BRL' instruction. The
BRL' will overwrite the link register, if it is not saved to &hstack. Thus, a save and restore
of the link register are added on either side of the subgrijohadditional caller save code
IS necessary, since we know exactly which registers will f&dun the subgraph and have
already allocated appropriately. In calling conventiorigeve the link register is already
callee saved in the function prologue, this additional cdgdet necessary.

An optional optimization to register allocation is to ifigéntly prioritize the variables
to be allocated. Since the CCA control generator is capablapsing spill code of
transient values within subgraphs, there is no need toatkoa register for those values at
the expense of other variables. Giving these transienegatary low priorities, guarantees
that register allocation will spill them if necessary, affii@etively increases the number of

registers available to the machine.

100

Subgraph Compaction: After register allocation, the full subgraph is again com-
pressed to an atomic node in preparation for postpass skigd his process is com-
plicated slightly by spill code that is introduced in retatito the subgraph. If a transient
value in the subgraph is spilled, e.g. R3 in Figure 4.9, thes hust be combined into
the subgraph. By placing this spill code in the subgraphgctimapiler guarantees that the
results are not needed outside of the subgraph and thes#dtmds can be optimized away
by the CCA subsystem. If a value that is live-out of the suplria spilled and also con-
sumed in the subgraph, then the store that spills the livasorgplicated outside of the
subgraph. A copy of the store must remain in the subgraphatathie control generator
can determine which node produced the spill value. Onceubgraphs are compacted,
postpass scheduling is performed.

Function Outlining: After postpass scheduling, the subgraphs are again exgamde
their constituent nodes. Each subgraph is moved to a sepaoation of the code and a
BRL' is inserted at the former location of the subgraph. Tiscess is referred to as
function outlining

The technique of function outlining (sometimes called pagre abstraction) has been
used in previous work [71, 79] for code size reduction. Sigomups of instructions are
often repeated at several different places within an appéia, function outlining can com-
bine these instances into one procedure. While the primamygse of our function outlin-
ing is to delineate subgraphs for the hardware, it also pies/ius with code compression
to help offset some of the code replication from subgraphsdioss branch boundaries. It
should also be noted that the code size reduction could beirag by making the register
allocator more proactive in assigning the same registeragio isomorphic subgraphs.

With function outlining complete, an assembly file is outplat can be run on any

processor which recognizes the BRL' instruction.

4.8 Architecture Framework Experiments

Our experimental system was built on top of the Trimaran dtenmfrastructure [121].

Trimaran was retargeted for the ARM instruction set and aergped with a parameterized

101

- ’—/—7?!2‘ ————
;O

Y

wl A S

0.5 { ! 7
0.4

NWZ

Hit Rate

0.2 =—&— SPECint2000 |
=—e&— Mediabench

01 =& Encryption B

0.0

4 8 16 32 64 128 256 512 1K 2K 4K 8K 16K 32K 64K
BTAC Size (entries)

Figure 4.12: BTAC hit rate with various entry sizes

subgraph matcher to recognize dataflow subgraphs that ntagleunderlying CCA in-
frastructure. Once the subgraphs are identified, code maaheduling, and the rest of the
steps described in Section 4.7 are performed. For evaluagimpleScalar [9] ARM was
modified to implement the CCA interface and configured to imabe ARM-926EJ [5].
The ARM-926EJ is a fairly simple, in-order, five-stage pipetl processor with 16K, 64-
way associative instruction and data caches.

For our experiments, we evaluated a set of embedded andajignepose benchmarks
consisting of five encryption related applications (Blowfi$D5, RC4, Rijndael, and
SHA), and a subset of the MediaBench [75] and SPECint2000cagipns. The range
of our application set was limited by the current capaletitof the ARM port of the Tri-
maran compiler suite.

BTAC Size Study: Before evaluating the effectiveness of the CCA, we inveséd

several possible configurations for the BTAC, which holdshihanch addresses and live-in

102

SPECint2000 Mediabench Encryption

6.49 5.25

5.0 T

M Basicblock w/CCA
O Superblock CCA w/o Code Motion
4.0 1 |E Superblock CCA w/ Code Motion

4.5 1

3.5

3.0

2.5

Speedup

2.0

1.5 1

1.0

0.5

0.0 -

256.bzip2
300.twolf
pegwitenc
rawdaudio f———1
Blowfish
MD5
RC4
Rijndael
SHA

164.gzip
181.mcf
g721decode [T

g72lencode [T

197.parser
gsmencode
gsmdecode

Figure 4.13: Speedup of basic block and superblock code when executitigargeneral
purpose CCA

information for the CCA subsystem. Figure 4.12 shows the BTAt rate given several
different BTAC sizes. The three lines indicate the averaijeates of the BTAC for the
encryption, MediaBench, and SPECint2000 applicationgerdstingly, even with only 4
entries, the BTAC was able to capture a fairly large numbehefmarked subgraphs. For
example, in the encryption domain, 45% of the subgraphs eagpeured. In the remaining
experiments, we used to use a 512 entry, four-way assceiBHAC, which achieved a hit
rate average d¥8.5% across all benchmarks.

Performance Study: Figure 4.13 shows the relative speedups that were achieved f
code compiled using both basic blocks and superblocks [B8}.each benchmark, three
bars are shown. The first bar is the speedup of basic blockwiti@ CCA relative to basic
block code compiled without CCA subgraphs. Both of the next bars are superblock
code with a CCA relative to superblock code compiled witHoGA subgraphs. The first of
the two superblock bars is for code without code motion aahvhich limits the subgraphs

by not allowing them to cross branch boundaries. The secaperblock bar was generated

103

by allowing the compiler to perform code motion.

All of the results in Figure 4.13 used the general purpose @€gigned in our previous
work [28] and shown in Figure 4.8. Synthesis results showatithis CCA used 0.6&m?
of die area, and gave average speedups for the basic bloekofdd60 for SPECint2000,
1.91 for MediaBench, and 2.79 for encryption applicatioibe encryption applications
showed the most improvement because they tend to have gjestarmount of computation
between memory accesses, thereby creating larger sulsgtaphap onto the CCA. The
results show that substantial performance gains acrossla renge of applications are
realized with a relatively inexpensive compute accelerttat is tightly integrated into a
processor. The CCA provides a more efficient hardware satiestio execute the subgraphs,
which translates into performance gain.

One trend to note in this graph is that in many cases, usingrblqrk code had a
smaller relative speedup than basic block code. Intuigjaiperblock code should result
in the identification of larger patterns, which should dilgtranslate into improved perfor-
mance over the basic block code. However, register pressaeimportant performance
issue in the ARM processor. Forming superblocks causedaeadsed size in register live
ranges. This increase in live range size dramatically sdfithe amount of register spill
code which the compiler was unable to optimize using the CCA.

Applying the code motion techniques discussed in 4.7 to tipeidlock code resulted
in improved performance in most cases since adding the cadiemoptimization allowed
the compiler to find patterns which cross branch boundaliesome cases, such as cjpeg
and g72lencode, the performance improvement was as mudbPasvihile a few other
cases suffered slight performance degradation. This peéoce degradation is a result of
code motion enlarging register live ranges as operatiompashed down below branches
and new code is inserted in the target blocks. Again thisemees register pressure and
may lead to increased spill code.

Custom CCA Designs: Though a general purpose CCA design provides impressive
performance gains across a diverse set of applicationeritej a CCA to either a single
application or a domain of applications can yield a more -@ffiaient design. In order

to explore the design of application and domain specific CGAs compilation process

104

rc4 Specific CCA gsmdecode Specific CCA 181.mcf Specific CCA

YYYY YYYY

00 03 O3 N

®®

RODD
v v v

(a) (b) (c)
Encryption Domain CCA Audio Domain CCA SPECInt Domain CCA

YY Y'Y YY Y'Y YYVYY
RO OOOOY OOOOOD
PODD PO D
POOD PP
A :

):7 vV Y,

(d () ()

[AddMovershift @D Add/Logical/Move @ Logical
[Addmove (@ AddiLogicalMove/shift © LogicalMove/Shift
[Addrsnitt () AddiLogical/shit O shitt

Figure 4.14. Application specific and domain specific CCA design results

was augmented so that when subgraphs are identified, thatmper which comprise the

subgraph and their profile weights are passed to a schedlerscheduler then incremen-

tally builds a reservation table for each subgraph. Aftésabgraphs in the application

have been identified, the scheduler then builds the apjicapecific CCA structure as

the union of all of the necessary reservations for each sydtgmeeting a minimal profile

weight requirement. Lastly, domain specific CCA structwmesbuilt as the union of all ap-

plication specific CCAs synthesized for a particular domainis approach is not intended

to produce optimal CCAs, but rather illustrate the flexilyilof the proposed architectural

framework to support a wide variety of CCA designs.
Figure 4.14 demonstrates the structure of a set of autoallgtigenerated application

and domain specific CCAs. The top row of Figure 4.14 consist&ie application specific

105

Description Design Control | Delay | Cell area
Application specific CCA for RC4 Figure 4.14(a)| 73 bits | 4.10 ns| 0.25 mm?
Application specific CCA for gsmdecodeFigure 4.14(b)| 84 bits | 6.04 ns| 0.33 mm?
Application specific CCA for 181.mcf | Figure 4.14(c)| 55 bits | 5.68 ns| 0.26 mm?
Domain specific CCA for encryption Figure 4.14(d)| 181 bits | 5.69 ns| 0.45 mm?
2
2
2

Domain specific CCA for audio Figure 4.14(e)| 140 bits | 5.86 ns| 0.46 mm
Domain specific CCA for SPECint Figure 4.14(f) | 171 bits | 6.05 ns| 0.56 mm
General purpose CCA from [28] Figure 4.8 | 172 bits | 3.19 ns| 0.61 mm

Table 4.1: Synthesis results for various CCA designs

CCA designed for an application in each of the presented dwpencryption, audio, and
SPECint, respectively, while the bottom row consists of¢éeof domain specific CCAs.

Table 4.1 presents an analysis of the design costs for edtie @CAs shown in Fig-
ure 4.14. The table includes the number of control bits resmggo configure the CCA, the
delay through the CCA, and the area of the CCA. Each of thesigme was synthesized
with Synopsys design tools using a 130 Artisan library. In order to provide insight into
the cost of adding a CCA to an actual ARM core, we note that theeharea of an ARM-
926EJ is5.0 mm?. Also important to note is that the design for the generappse CCA
from [28] was hand-tuned to minimize the number of leveldudmng adders in the CCA
thus significantly reducing delay through the CCA. A moresiigent automated design
process for our application and domain specific CCAs wolklelyi provide improvements
in terms of both area and delay.

Figure 4.15 demonstrates the performance improvemerdgeeafby the designs shown
in Figure 4.14. In this graph, the first bar indicates the @anance of the general purpose
CCA relative to the baseline processor with no CCA. The sddmer demonstrates the
speedup achieved by using the domain specific CCA desigmeddalomain that the ap-
plication belongs to, assuming a 1-cycle delay through & O he third bar demonstrates
the performance of the same CCA as the second, but assumegcéedelay through the
CCA. The fourth bar shows the speedup of using the applicatpecific design shown
in Figure 4.14 for each application in the same domain. Theams that for applications

within the SPECint domain, all application specific speetugalculated using the CCA

106

SPECint Domain Audio Domain Encryption Domain
6.49 6.75

5.0 T
4.5 | |MGeneral Purpose CCA
O Domain Specific CCA (1-cycle)
4.0 1| Domain Specific CCA (2-cycle)
[JApplication Specific CCA (1-cycle)
3.5 1] [Application Specific CCA (2-cycle)
Q 3.0
3
o
o 2.5
Q
=3
0 2.0
1.5
1.0
0.5 1
0.0 -

164.gzip
181.mcf
197.parser
256.bzip2
300.twolf
g721encode
g721decode
gsmencode
gsmdecode
rawcaudio
rawdaudio
Blowfish
MD5

RC4

Rijndael
SHA

Figure 4.15: Application specific and domain specific speedup. For the GRtEdo-
main, application specific speedups are generated using@#edesigned for
181.mcf, for the audio domain using the design for gsmdecauaie for encrypt
domain using the design for RCA4.

designed for 181.mcf, for the audio domain using the CCAgtesil for gsmdecode, and
for the encryption domain using the CCA designed for rc4. deeision to use the appli-
cation specific design for a variety of different benchmavks to show the applicability of
these designs across a set similar benchmarks. The ladilb@sthe same CCA structure
as the fourth, but assumes a 2-cycle delay through the CCA.

From Figure 4.15, it is clear that a domain specific CCA desigm closely match the
performance of the general purpose design at lower cosvjged that it can fit into the
1-cycle delay constraint. Further, the application spe€fCA designs tend to closely track
the performance of their respective domain specific desidmie still proving beneficial to
a variety of other applications within their domain at ngdlf the area overhead. It is im-
portant to note that the domain specific designs tend to geaviarginal performance gains
over their application specific counter parts due to thellitgtio catch the few subgraphs

that had been pruned from the application specific CCA design

107

4.9 Architecture Framework Summary

In the previous sections, we presented the design and ingpition of a flexible ar-
chitectural framework for supportingansparent instruction set customizatiosingcon-
figurable compute acceleratarsThe use of this framework reduces both system design
and verification costs. A general purpose core implemerttiegore-defined CCA inter-
face need only be designed and verified once. The core maybheugmented with
several different styles of compute accelerators offedangde range of systems with per-
formance characteristics tailored to an application or dionof applications. In addition
to the architecture framework, we also demonstrate the datigm process used to target
an application toward a particular CCA architecture.

Synthesis results demonstrate the feasibility of the psedarchitecture framework in
terms of meeting the timing and area constraints of commolegitled processors. Fur-
ther, experimental results demonstrate average perfarengains of 2.21x for domain spe-
cific CCA designs, with modest cost overhead beyond thermalgirocessor design. The
range of applicability of these designs may be restrictegikpanded in order to both meet
area constraints and satisfy performance goals for a speaiinge of applications. The
proposed architectural framework provides system dessgwéh a low-cost solution for
designing a wide variety of high-performance systems byrearging a single core with

multiple implementations of an accelerator subsystem.

4.10 Control Generation for Dynamic Accelerator Target-
ing
The previous sections of this chapter discussed the systemitexture and software
side of a statically identified - dynamically realized trpagent instruction set customiza-
tion framework. In the remainder of this chapter we focus loa last step: efficiently
performing run-time control generation in hardware. Wewlhbat it is indeed possible

to generate the control quickly with low overhead for a dyest set of accelerators using

a single, abstract control generation model. To demorsttas model, we give imple-

108

mentation details showing how to generate control for theedacomputation accelerators
previously proposed: a sparsely-connected array of coatioimal logic elements (CCA),
and a lookup-table based accelerator (PCFU).

The contributions of these sections are threefold:

e We describe a generalized framework for dynamic controbgators, and show how

this framework can target varied types of computation azegbrs.

e We provide characterizations of the hardware propertigb@se control generators,

showing that they have limited overhead over a baselinegssur.

e We introduce novel algorithms for control generation targgsparse arrays of com-

binational logic, and LUT-based accelerators.

4.11 Dynamically Mapping Architectural to Microarchi-
tectural Instructions

The objective of control generation is to dynamically ceeabmplex instructions by
mapping subsets of an application onto a set of hardwardeaat@'s. In essence, this can
be thought of as the inverse to the micro-operation germratiat is performed on Pentium
processors, wherein CISC instructions are broken downRi&C-like micro-operations
for execution on the hardware. In contrast to micro-op gatien, CISC-on-demand is only
applied selectively to those subgraphs that can be exeoméke hardware accelerators
provided in the processor implementation. To accomplishadyic control generation,
the pipeline needs to be extended to support subgraph fidatibpn and CISC operation
generation. Issues related to this process are descrilibeé ikmainder of this section in
the context of a generalized accelerator. Section 4.12itbescdetailed control generator

implementations of two very different accelerator classes

109

Input
Instructions

Legality
Checks

Computation State
of Named Variables

Source Opcode
Operands Configuration

Update

Configuration State o
of Accelerator Destination
Operand Named State
Update

Output
Configuration

Figure 4.16: Structure of a control generator

4.11.1 Structure of a Control Generator

The cornerstone of transparently mapping instructionstelkerator subsystems is the
ability to generate control for the accelerators usingringtons from the baseline instruc-
tion set. In essence, control generativesislate computation specified using the baseline
instruction set into an equivalent computation to be untberd by the acceleratorSince
all hardware-based control generators perform this tdsky share many common prop-
erties. This section describes those general propertederd several accelerator-specific
control generator designs are described in Section 4.12.

Figure 4.16 shows the structure of an accelerator contnoéigor. Instructions enter
the control generator after retiring from the baseline e The instructions undergo
some legality checks to make sure that they are capable of lesiecuted on the targeted
accelerator, and in parallel access some state based orstiece operands. If the oper-
ation is legal, then the state from the source operands,uitert configuration state, and
the instruction itself are used to generate an updated aoatign. Updates to the config-
uration are used to modify the named state associated véttighktination operands. Once
the entire computation is mapped instruction-by-instaugtthis configuration will be sent

to the control cache, enabling the subgraph to execute orc@lemator. Details on the

110

purpose and general structure of these components aralsban the remainder of this
section.

Configuration State: The configuration state of a control generator essentiadiges
the control, i.e., a description of the dataflow subgraphet@xecuted in a microcode lan-
guage the accelerator understands. As instructions drgerantrol generator, the config-
uration state is updated to reflect the computation of thgsydh that has been processed
up to that point.

The data stored within the configuration state is highly aejeat on the structure of
the accelerator being targeted. For example, configuraiate might include lookup-
table (LUT) values in an FPGA style accelerator, MUX seledties in an accelerator that
requires routing data to various computation units, or éuétimstructions if the accelerator
is instruction driven, such as SIMD engines.

Computation State for Named Variables: In addition to the current configuration
state of the accelerator, state is needed to correspondntech&ariables within the in-
structions. In most cases, named variables refer to regispeecified in the incoming in-
structions. Intuitively, it makes sense that some statedsiired per register to generate
control for a computation, since registers provide theestatcommunicate data between
instructions in the baseline pipeline. Similar to the bagelne, this named variable state
is used to determine the relationship and communicatiofigrdnt instructions within the
dataflow subgraph to be accelerated.

As previously mentioned, the named variables typicallgmefd to in computation are
register numbers. This is not necessarily the case, thodgimed variables can also in-
clude variables stored at any memory location that is comstéthin a subgraph invoca-
tion. For example, consider an instruction set that plapéked variables on the stack us-
ing stack-pointer-plus-displacement memory operatitdintkie stack pointer only changes
at function entry and exit (a common ABI convention), thee ttontrol generator can
guarantee every load or store to a particular stack offseesponds to the same variable.
Using this knowledge, the control generator can recognimédd forms of communica-
tion through memory, which allows it to take advantage of adglitional communication

bandwidth the accelerator may have over the baseline pipeli

111

Legality Checks: Legality checks simply determine if the incoming instroctican
be mapped onto the targeted accelerator. Since one binargeased with any system,
subgraphs identified in the binary can may not be executabthis particular accelerator.
The legality checks ensures that the control is not gengiigeparticular subgraph is not
executable on its target accelerator.

Checking for functionality is a good example of a legalityeck. Suppose a control
generator was trying to map a subgraph with a divide insitwa¢but this particular accel-
erator did not have a divider. The legality check would eagbat no control was generated
for this subgraph, leaving the subgraph to execute on thelibagipeline.

Configuration Update: Configuration update simply refers to the logic used to updat
the configuration state of the control generator. This igédue of the control generator that
does the translation from instructions in the baselingims$ion set to one or more instruc-
tions fed to the accelerator. Configuration update prodageswy accelerator configuration
based on the current configuration, the computation peddrby the incoming instruction
(i.e., its opcode), and the relationship that this instarchas with the previous computa-
tion (i.e., state from named variables). If at any point tpdate logic cannot translate an
instruction, control generation for this subgraph is abdrtand nothing is written to the
control cache.

As would be expected, the function of the configuration updagic varies a great
deal with the structure of the targeted accelerator. Fomge, if targeting an array of
computation units, the configuration update would needédatifly which node in the array
to map the incoming instruction onto, and set routing cdntadues appropriately. If the
update logic was targeting an FPGA, it would need to generate LUT entries for that
computation substrate.

It is important to keep in mind that mapping computation ami@ny accelerator styles
(e.g., placement and routing in FPGAS) is a computatiorddiypanding task. We are not
proposing to push this burden onto the configuration updagie It is the responsibility of
the compiler that identifies the subgraphs to express thmapatation in a way that enables
the configuration logic to remain relatively simple.

Named State Update: After the updated configuration state has been generated, it

112

is necessary to compute the new state for the named variables named state update
logic generates information about the computation useddate the destinations of the
incoming instruction. That is, given that the input instran has been mapped onto the
accelerator, this logic describes what information needsetknown about the destination
register to continue mapping. Using the example of an arlepsd accelerator again,
this information might include which node of the array thestilgation can be found at.
State keeping track of where data values are produced enfaltiere instructions to route
that data to the inputs of their respective computationis (thexplained in more detail in
Section 4.12).

Optionally, the named state update unit can also perfornpe of register renaming.
For example, if the control generator was targeting an acatir that had 32 internal reg-
isters, but the baseline instruction set only had 16 addsgegisters, the named state
update logic could perform renaming to take advantage ofattditional internal state,
despite the limitation of describing computation usingyoh6 registers in the baseline
instruction set.

Once the end of a subgraph is identified, the initial PC of thiegsaph and configu-
ration state of the control generator is sent to the conohe ensuring that subsequent

encounters of the BRL-to-subgraph will be executed on tlcelacator.

4.12 Implementation of Control Generators

To more firmly illustrate control generation techniquess section details control gen-
erators for two styles of previously proposed hardware lacators: (1) an array of combi-
national logic units proposed in [28], and (2) a lookup-tabéased accelerator introduced
in [129]. These accelerator styles were chosen becausestipport a wide range of com-
putational patterns (often a superset of previous workg, they represent very different
substrates for execution (e.g., LUT vs. fixed logic basetipsE factors make it likely that
the control generation techniques presented here are ywrleralizable to many other

types of accelerators.

113

Inputt Input2 Input3 Input4

@ VVYVY
'TTIIIT,

Input1 Input2 Input3 Input4 Inputt Input2 Input3 Input4

v

©VVVV

<

|:| Add/Logical
[:] Logical

Output1 Output2 Output! Output2 Output1 Output2

Figure 4.17: Combinational logic arrays (a) with a full cross bar betweews, (b) with
moderate interconnect, and (c) with sparse interconnect

4.12.1 Arrays of Combinational Logic

When designing hardware to execute dataflow subgraphysasf@ombinational logic
are a fairly intuitive solution. The height of the array alt®@for compression of operations
and reduces the need to write transient values back to thsteedile, while the width
of the array allows for exploitation of natural parallelighmat exists in the computation.
Using combinational logic as the building block also allaw to exploit highly optimized
macrocells, as designing circuits for these functions heenlthe subject of decades of
research.

Based on these observations, previous work [28] analyzedrttical computation sub-
graphs in many common applications and proposed the cotntrialogic array in Fig-
ure 4.17 (a). This array has four inputs, two outputs, andfows of logic. Each row has a
number of nodes that can execute operations, for exam@édirsh row can execute ADD,
SUB, AND, and several other simple logic operations. Th@sdaow in Figure 4.17 (a)
can only execute bit-wise logic operations. In this des&pch of the rows is connected
with a full crossbar. This design was found to execute moas B0% of the critical sub-
graphs across a wide range of applications.

While this design was shown to be effective from a softwanespective, the crossbar

between rows of the array is a substantial problem. Therfitdrconnect has several detri-

114

mental effects. First, it implies several long wires in thesigin, which increases latency
through the array dramatically. As technology scaling cars, the affects of long wires
will only be exacerbated, meaning that combinational arnayust be restricted to local
communication in order to remain feasible. Second, eachitiwpiting to the interconnect

must drive a much higher capacitance. Third, high fan-intipkeixers are needed at the
input of each node. All of these factors either increasentatef the combinational array

or increase the die area and power consumption.

From a control generation perspective, the full crossbamish easier to handle than an
incomplete interconnect. With a full crossbar in the aceete, determining which node of
the array to map an instruction onto is simply a matter of mheitl@ng the correct row, since
all nodes within a row are logically equivalent. A high-léaégorithm for control gener-
ation with a full crossbar is illustrated in [30]. We exteridat algorithm here, providing
more low level details, and enabling it to work without futbssbars between rows.

In this chapter, two new combinational logic arrays wereigiesd, as shown in Fig-
ures 4.17 (b) and (c). The purpose of these designs is not sb taypropose new acceler-
ator designs, as it is to demonstrate control generati@ategfies that are effective on array
based accelerators with sparse interconnect. Note thse tthesigns support a superset of
the subgraphs targeted by some previous work [17, 102, 1didgsimilar execution sub-
strates, meaning that the control generation techniquesepted here are applicable for

those accelerators as well.

4.12.2 Control Generation for Sparse Arrays of Combinatioral Logic

Generating control for sparse arrays of combinationaldegiia challenging problem.
Essentially, the goal is to map the dataflow graph identiftectceleration onto the com-
putation array such that data values flow correctly from apen to operation. This can be
viewed as a simpler form of a place-and-route problem.

The control generator described here uses the templatgind=#.16. For this type of
accelerator, the configuration state includes the operaf@rformed at each node in the

array and the MUX values which select the inputs for each ndl@mputation state for

115

9TT

ADD r3=r1,r2
OR rd =r2,r5
SUB ré =r3, r4

Input1 Input2 Input3 Input4

[a]le][e [e][F]
SSestes(es

:

Output! Output2

-
<«

Figure 4.18: Example of control generation for a sparse array of comhnat logic.

named variables is a table with an entry for each named \arshting which node in the
array currently generates its value. The method in whichstate is used is best described
using an example.

Suppose the code segment in the upper left of Figure 4.1&is toapped to the combi-
national array in the bottom left of that figure. First, the Bnstruction enters the control
generator. The two sources, rl and r2, are accessed in thednhamable table to determine
which array nodes are currently generating their valueshBbthese operands are not be-
ing produced, so they are mapped to the first two inputs. NletADD operation is placed
using the configuration update logic. This instruction reeedcommunicate with both of
its inputs, and so it must be placed such that there is a coneation path between it and
the first two input nodes. Determining the available comroation patterns within the
subgraph is accomplished through a communication tablés table is indexed by node
ID and returns a bit vector of the nodes that it can potegt@dmmunicate with. In order
to determine which array cells an operation could be mappgthé communication table
values for the producers of the operation’s sources are ANDgether . For example, the
ADD operation has sources produced by Input 1 and Input 2utlhgommunicates with
node A and B, while Input 2 communicates with nodes A, B, C, Bnd hus, the ADD
operation can be placed on nodes A or B. In this example, wedgyeselect node A, and
update the configuration state to reflect that node A exeautesDD, and gets its inputs
from nodes input 1 and input 2. With the configuration updatked named variable state
is updated to reflect that rl and r2 are produced by nodesirgnd input 2, and r3 is now
produced by node A.

The use of the communication table in configuration updatas mot necessary for
combinational arrays with full interconnect since any nedald communicate with any
other node in the previous row. Interestingly enough, us¢éhefcommunication table
actually simplifies control generation somewhat, despieeadded layer of indirection in
the mapping process. Since all the communication infoilona available statically, the
logic in the control generator can be optimized to take athgaof the reduced possibilities
in mapping. This benefit is similar to an instruction schedwith two possibilities being

faster than a scheduler with four possibilities, since theiglon chain is shorter with only

117

two choices.

Returning to the example, once the ADD is mapped to the coatibmal array, the OR
now needs to be mapped. First, the sources are looked uptrathed variable table and r5
is mapped to Input 3. Next, the producers of the two sourcesised to determine which
nodes the OR can execute on; in this case those are C and Doiitnelgenerator greedily
selects C and updates the configuration. Subsequentlyathedhstate table is updated to
show that r5 is produced by input 3, and r4 is produced by naodeod@trol generation then
continues with the SUB instruction. At this point, a problanses during configuration
update because the producers for the SUB instruction (nddesl C) have no successors
in common. To remedy this, two MOV instructions for the sas@are placed at the front
of the instruction mapping queue with the SUB behind them.\MM®) r3 is then mapped
to node G, since r3 is produced by node A. Similarly the MOW#is mapped to node H.
When, the SUB comes to the head of the instruction mappingejtineés time, the producers
of r3 and r4 have node K in common, and the SUB is mapped ontmtiuge. After all the
subgraph operations are mapped onto the array, additiooatsmare inserted for the live
out values. Live outs are determined by observing the io8tm trace after the subgraph
and keeping track of which operands generated in the subgrepused before they are
killed. Once move insertion is complete for live outs, thafiguration data is written to
the control cache, enabling execution of the accelerator.

The actual hardware implementation of the control geneiiatquite simple. The le-
gality check is merely a comparison to ensure that the opoddegiven instruction is
supported. The configuration update logic requires a looktgothe communication table,
an AND of those table entries, and then a priority encodemid & one (if any) bit that is
set in the result. If no bits are set (i.e., no nodes are aMaijathe configuration update
generates one or more MOVE instructions based on which ngelesrate the sources. If
at any time the configuration logic cannot map an instructma adding MOVES does not
help, control generation is simply aborted.

It is important to note that because of the greedy mappingistey it is possible to
create patterns which can be executed on the combinatiogl &dut cannot be mapped

by the control generator. This is a fundamental problem wigtpping to arrays with sparse

118

interconnect, since determining the mapping requires eemge search, which is much too

complicated to do in hardware.

4.12.3 LUT-Based Subgraph Execution

Lookup-tables are another attractive structure for dgyelp hardware accelerators.
Because LUTs behave like truth tables, they have the catyatioilexecute any number of
bit-wise operations as one simple table lookup. The Prograbbe Carry Functional Unit
(PCFU) [129] is an example of a hardware accelerator thastaklvantage of this fact. The
PCFU is capable of executing subgraphs with any number afisi operations and a pre-
defined number of additions/subtractions. While this mayriet the number of subgraphs
that can be executed compared to the combinational arraysithple interconnect of the

PCFU allows for lower latency, and lower hardware cost.

4.12.4 PCFU Control Generation

From a control generation standpoint, the key observatidake away from the PCFU
design is that mapping subgraph onto this type of acceleratpires translating compu-
tation into several lookup-table entries. Using the cdngenerator from Figure 4.16 as
a template again, the named state for this control geneiatoLUT value used to gener-
ate that register as a function of the input registers. Thaliy check for this accelerator
ensures that opcodes in the subgraph are supported anthéhaiaiximum number of ad-
ditions is not exceeded (recall carry generators are a figedurce and a separate one is
required for each addition). The configuration update Idgies the LUT entries for the
source registers of an incoming instruction, and createsvaltUT entry describing how
to compute the destination of that instruction as a functibthe subgraph inputs. The p
and g LUT values comprise the configuration state of thislacatr.

Figure 4.20 shows a high-level example of generating LUTiesfor a dataflow sub-
graph. At the left of the figure is the subgraph to be mapped the bottom of the figure
shows the named state at various stages of the LUT generdienPCFU being targeted

in this example can support two inputs and one addition ajperathus each output bit is

119

inst1: EORr6,r1,r2
inst2: AND r7,r4,r5

ORRr12,r6,r7

r5 r4 r2 r1 (ré) r5 r4 r2 r1 (r7) r5 r4 r2 rl (r12)

in3 in2 | in1 in0 in0 Ain1 in3 | in2 | inl in0 in3& in2 in3 | in2 | inl in0 | (in0 Ain1)|(in3& in2)

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 1 1 0 0 0 1 0 0 0 0 1 1

0 0 1 0 1 0 0 1 0 0 0 0 1 0 1

0 0 1 1 0 0 0 1 1 0 0 0 1 1 0

0 1 0 0 0 0 1 0 0 0 0 1 0 0 0

0 1 0 1 1 0 1 0 1 0 0 1 0 1 1

0 1 1 0 1 0 1 1 0 0 0 1 1 0 1

0 1 1 1 0 0 1 1 1 0 0 1 1 1 0

1 0 0 0 0 1 0 0 0 0 1 0 0 0 0

1 0 0 1 1 1 0 0 1 0 1 0 0 1 1

1 0 1 0 1 1 0 1 0 0 1 0 1 0 1

1 0 1 1 0 1 0 1 1 0 1 0 1 1 0

1 1 0 0 0 1 1 0 0 1 1 1 0 0 1

1 1 0 1 1 1 1 0 1 1 1 1 0 1 1

1 1 1 0 1 1 1 1 0 1 1 1 1 0 1

1 1 1 1 0 1 1 1 1 1 1 1 1 1 1

Named Variable State Configuration Update Logic
IsLivein Liveinldx IsOutput Out LUT A4
r0 \ I
» 1010101010101010 | .I 1100110011001-1-90—'—
rl yes 0 no \ 1
r2 yes 1 no :
E \ | & ah
4 yes P ho \ » 1111000011110 000 & 1111111100000000
r5 €5 3 no \ d
|

r8
o | e Pl 0110011001100110 | &;"P|11111000000000000
ro i
r11 \
rn3
r4
r5

Configuration State

g1LUT [

p1LUT |

| cinly

g2LUT [

p2LUT |

| cin2p

Figure 4.19: LUT generation example

120

1T

Input3 |Input2 |Input 1| p | g | Outputl
1 1 1 o1 0
1 1 o [1]o 0 Output LUT 5
1 0 1 [1]o 0 pLUT P
1 0 o [ofo 1 e
0 1 1 0 1 1 Generation
0 1 o [1]o 1 ¢ LUT .
0 0 1 1o 1
0 0 o [ofo 0 \
And r3,r1,r2 L
rl, 12
Add r4,r1,r2
Xor r5,r3,r4
10101010 r1 [10101010 11 | 10101010 11 [10101010 t1 | 10101010
2| 11001100 2 [11001100 2| 11001100 2| 11001100 2| 11001100
13 13 | 10001000 3 [10001000 | ™ =11®12®cin 310001000 13 | 10001000
p=r1®r2
4 Bernn 4 4 oorine 4 | 10010110 S_;3@p T[10010110
15 15 15 5 :> 15| 00011110
p :l p :l p :l p | 01100110 p | 01100110
g :l g :l g I:l ¢ | 10001000 ¢ | 10001000
cin:| cinIIl cin| 11110000 cin| 11110000 cin | 11110000
(a) (b) (c) (d) (e)

Figure 4.20: LUT entry generation example. Shown are the processing stéphe control generator that compute the LUT entries to
implement the function defined by the assembly code sequantiee left.

a function of three input bits (the two inputs, and the cargnal from the addition). The
three input bits imply that each LUT entry is eight bits inesias2® = 8.

Subgraph mapping begins by looking at the And instructioRigure 4.20. Initially,
the two sources, rl and r2, have no LUT value in the named. sSittee we are interested
in computing the output given all possible values for thauispnamed state rl and r2 are
assigned LUT entries which ensure that all possible contilmins.of one and zero interact
(basically, the corresponding input columns of a regulathttable). This step essentially
begins to construct a truth table. Since rl and r2 are liggdime LUT entries assigned to
them correspond to the input columns of a hypothetical ttalthe that outputs to named
state r3.

Now that rl and r2 have values in the named state, r3 is compateonfiguration
update as the And of those two values, and is shown in Figa@ #). To reiterate, the
value of r3 in the named state table defines how to computevehginy values of r1 and
r2, exactly like a truth table.

The subgraph mapping then moves onto the Add instructioa.oliput of this instruc-
tion is dependent on rl, r2, and also on the carry signal géeeiduring addition. Recall
that the carry-in signal is treated as an input to the comjmuitao that we can leverage
fast carry generation hardware, and so that each outpid batidependent on the value of
lower order input bits. Since the carry signal of this Add msiaput, we assign it a value
in the named state table that corresponds to a third inputwolof the hypothetical truth
table. This step is shown in Figure 4.20 (c).

Now that the inputs are defined, the LUT entries for outputthefAdd operation must
be computed. Recall that a bit-wise add operationlisp r2; ® cin;_;. Using the LUT
entries for rl, r2, and cin, the configuration update logimpates this and places the
result in named state r4. Note that because cin is defined agpat) the configuration
update logic did not need to perform an addition, only twolesize-ors, which makes the
hardware very fast and simple.

Unlike the registers, the carry signal is generated usingrey @ropagation network.
Thus, itis necessary to defipeandg, the inputs to the carry network. Recall that a© b

andg = a A b. Using the values in the named state table for r1 and r2, thégroration

122

update logic simply computes the LUT values faandg, and stores them into the named
state table. The named state table after this step is shokigume 4.20 (d).

Mapping continues with the Xor instruction. As with the pimys two instructions,
we first check that all the inputs are defined. In this case,nBrd already have valid
values in the named state table and this instruction doegararate a carry signal. Next,
the configuration update logic computes the LUT value of ¥5simply Xor-ing the LUT
values of r3 and r4. This is shown in Figure 4.20 (e). Now thatdutput, r5, is defined
as a function of r1, r2, and carry, we store the named stateesadf r5, p, and g as the
configuration of this subgraph. This example shows how therobgenerator is able to
perform logic mapping of a dataflow subgraph onto the PCF$tsate without the typical
complexity associated with FPGA mapping.

Figure 4.19 shows a more detailed example of generating Lidiies for a subgraph
of 3 instructions. The right portion of this figure shows theylcomponents of a control
generator for the PCFU. Note that since LUTs are simply thelaare equivalent of a
truth table, LUT entries argnwmberofinputs hitg in size. In the example shown, the LUT
entries are 16 bits wide, because the accelerator suppaontsiputs (corresponding to r1,
r2, r4 and r5). The left portion of Figure 4.19 shows the triables that are conceptually
constructed during control generation. These are shownfonklarity and are not part of
the named or configuration state.

Each entry of the named state table has the following fields:
IsLivein Thisfield is set to true when a register is live-in (rl, r2, a5 in this example).

Liveinldx Each live-in register is given a unique live-in identifiehis identifier is used

to determine the initial value of the LUT for this register.

IsOutput This field is marked true if the register is an output operaha @reviously

decoded instruction in the subgraph.

OutLUT Contains the LUT entry which computes the current value oégister as a

function of the inputs.

123

OP1 NumAdds
IsOutput

OP1 Liveln OplsSub | OplsAdd

index

Cin 1 LUT CINLUT

OP1 Cin 2 LUT

OP1

in 0 LUT —p»] Function
LUT LuT
in1LUT —p] Function
in 2 LUT —p»] LuT
in 3 LUT —p»]
i
Ly
OP
oP2 >
IsOutput
OP2 Liveln L
index / XOR GLUT
OoP2
: Function OoP2
in 0 LUT —p»
LUT —p LuT I N —
in1LUT —p» OR PLUT
in2 LUT —p»]
in 3 LUT —»
OplsSub > CINO
inOLUT = 101010101010101010..... 1010101010
inlLUT = 110011001100110011..... 0011001100
in2LUT = 111100001111000011..... 0011110000
in3LUT = 111111110000000011..... 1100000000
CinlLUT = 111111111111111100..... 0000000000
Cin2LUT = 111111111111111111..... 0000000000

Figure 4.21: Structure of the PCFU configuration update logic

In the example in Figure 4.19, when the instructionst 1 enters control genera-
tion, the correspondingsQut put field is checked to see if a previous instruction pro-
duces an output in rl, becaussQut put is false, thel sLi vei n entry is set to true
andLi vei nl dx is given the index 0. Because this operand is live-in, theesponding
operand LUT entry is assigned a predefined value correspgridithe rightmost column
of the truth table (column in0); similarly the second oper@assigned a LUT entry cor-
responding to the second column of the truth table (in1).eNbat if a register operand
is found to be already marked as live-in, the column giverLbyei nl dx is assigned to
the operand’s LUT entry. The two operands’ LUT entries aentfed to the configuration
update logic. The resulting LUT entry, which correspondsh® XOR of the two input

LUT entries, is stored in the output operand (r6) entry in tlaened state table, and the

124

corresponding sQut put entry is marked as true. The LUT entry calculated correspond
to column r6, computed as the XOR of column rl and r2. Sinyijanistructioni nst 2 is
decoded and columns in3 and in4 of the truth tables are ANDBd.resulting LUT entry

is stored in the (r7) entry of the named state table. Finallyen processing instruction

i nst 3, the corresponding LUT entries are read from the named tdate (because the

| sQut put entry of the operands are marked as true) and sent to the oaatiign update
logic to calculate the LUT entry for r12. Once all the instions are processed, the live-out
LUT entries and the p and g LUT entries are stored as the ddotrthis subgraph.

As with the array of combinational logic, the hardware nektiegenerate control for
the PCFU is quite simple. The legality check ensures thabfiexations to be mapped
are bit-wise, or that the maximum number of addition/sutitcen operations in a subgraph
are not exceeded. The configuration update logic is for thigrol generator is shown in
Figure 4.21. Note that the each operation performed on thE étdries is bit-wise, making
the critical path of this unit only 8 gates long. The namedalde state table is the largest
portion of this control generator. Since each register gessed as a function of the inputs,
it need2us bits per register for LUT entries. Beyond this, additionés$Iper register are
needed to determine whether or not each register is an i output to the subgraph.
The input bits are needed to ensure that subgraph inputsatexrto their appropriate LUT
selection slot, and the output bits are needed to selectmitilT entries are used in the

PCFU configuration.

4.13 Evaluation of Control Generators

To perform this evaluation, we use a version of the Trimam@mgiler [121] ported to
the ARM instruction set. During compilation, selected sapdps were outlined as function
calls and assembled/linked using the GNU tool chain. Thaltast binaries were then run
on a version of SimpleScalar [9] configured to model an ARME2& processor [5].

Table 4.2 shows the results from synthesizing various syfigaccelerator designs, and
there associated control generators. These designs watleesyzed (including place-and-

route) using Synopsys tools with an Artisan standard defhlly in 0.13.. The latencies

125

Latency | Area Area (% of
(ns) (mm?) | ARM926EJ-S)
Comb. Array - Full Interconnect [28] (Figure 4.17 (a))$.52 0.225 | 10.26

Comb. Array - Medium Interconnect (Figure 4.17 (b)6.34 0.189 | 8.62

Comb. Array - Sparse Interconnect (Figure 4.17 (c)) 5.18 0.173 | 7.88

PCFU (4 inputs -2 outputs) 5.02 0.089 | 4.08
PCFU (4 inputs) 4.78 0.068 | 3.11
PCFU (3 inputs) 4.32 0.057 | 2.59
Array Control Gen. - Full Interconnect 5.03 0.045 | 2.08
Array Control Gen. - Sparse 4.50 0.038 | 1.75
LUT-based Control Gen. 4.07 0.162 | 7.36

Table 4.2: Synthesis Results for Dynamic Control Generators

shown are critical path of the design. Areas are given bothsin® and as the percentage
area of an ARM926EJ-S core.

There are several interesting trends in the synthesisteegulnotice. First, pruning
the interconnect did not reduce the latency of the comlonati arrays as much as we
had expected. Moving from full interconnect to sparse taganect only resulted in 6.6%
reduction in latency. However, pruning the interconnect misult in a 30% reduction in
die area. As discussed earlier, pruning the interconneotralsulted in reduced latency and
area of the control generator.

When comparing with the combinational arrays with LUT-shss&ecution units, the
first thing that jumps out is the relative size difference.isTWwas to be expected, as the
combinational arrays replicate function units many timekile the LUT-based unit only
has a few lookup tables and two relatively simple carry-pgagion networks. The price
for simplicity in the execution unit is payed for with the aéive complexity in control
generation in terms of hardware cost, though. We found th&-blksed control generator
to be almost four times the size of the combinational arraytrob generator. The primary
reason for this is the significant amount of additional steteessary to generate to LUT
entries in the named state table. Despite the larger ared,fi-based control generator
had a shorter critical path than the combinational array dihés is because the LUT-based

unit does not have the long decision networks associatdu seiteduling operations to

126

various nodes in the combinational array.
Overall, the synthesis results show that control genesatonsume very little area over-
head, and are fast enough to fit into existing embedded mworesvithout affecting the

clock cycle.

4.14 Summary

The drive to improve the performance and efficiency of preoeswill inevitably lead
to the use of more and more computation accelerators. Howlewé¢raditional methods for
utilizing these accelerators, by changing the instructiery are very costly. In this chap-
ter we have presented a generalized framework to dynamyigaherate control for these
accelerators using dataflow subgraphs expressed in thragtieh set of the baseline pro-
cessor. Using these systems enables processors withelgi@tors to run the applications,
and processors with accelerators to run more efficiently.

Through the use of hardware synthesis, this chapter demadedithe feasibility of the
proposed control generation framework on a variety of d#fé computation accelerators,
including arrays of combinational logic and lookup-tabésed accelerators. The overhead
of dynamic mapping systems is typically less than 10%, evesimple embedded cores.
Transparent instruction set customization is an effectigg to improve computation effi-

ciency without the overheads typically associated witlruttion set modification.

127

CHAPTER 5

Compilation Techniques for Acyclic Accelerators

5.1 Introduction

Previous chapters have discussed the design and utihzatiseveral types of acyclic
accelerators. The utilization techniques rely on staiiddentifying subgraphs to execute
on an accelerator, and then dynamically mapping those aphgito the micro-architecture.
An often overlooked challenge in this area, and the focusisfchapter, is the compiler
support that underlies static identification. The comgilgs two major tasks when compil-
ing toward accelerators. First, it must identify candidaibgraphs in the target application
that are functionally executable on the accelerator. Thiessentially a subgraph isomor-
phism problem. The second task is to select which candidéigraphs to actually execute
on the computation accelerator. Candidates often ovethag,the compiler must select a
subset to maximize performance gain. This task is essraigraph covering problem.

Most prior solutions employ a greedy compiler approach fathisubgraph identifica-
tion and selection [17, 60]. With this approach, a seed djerss selected and a subgraph
compatible with the accelerator is grown by iterativelyluting connected operations. As
with all greedy approaches, this approach can achieve ptitnal solutions in both iden-
tification and selection. Further, disjoint subgraphs carbe identified. However, for
small accelerators, such as 3-1 ALUSs, this approach is giiticlue to the simple nature
of compatible subgraphs. The greedy approach breaks dawarfr accelerators where

correspondingly larger subgraphs must be identified. Asalteothers have proposed us-

128

ing exact methods for subgraph isomorphism and coveringgU6L01]. These methods
grow exponentially in subgraph size, region size (the uhibmerations analyzed by the
compiler), or both. As a result, exact methods can suffenfexcessive compilation times
for moderate to large applications and hence may not beipadigtdeployable.

In this chapter, we propose an approach for compiler sulbhgnagpping that combines
exact methods with a set of intelligent pruning technigqu@sining ensures the proposed
algorithms are scalable in both application and accelesite to provide practical compi-
lation times. The approach has three distinct phases., pogtntial subgraphs are identi-
fied using bounded enumeration. Subgraph isomorphismmsubed to remove candidates
that are not compatible with the computation acceleratiénally, unate covering is used
to select subgraphs that will be executed on the accelerator

This chapter makes the following three contributions:
e We collect and describe state of the art algorithms for acaébr compilation.

e New algorithms for identifying and mapping subgraphs optlgnwith intelligent

pruning mechanisms are proposed.

e The new algorithms are evaluated for both performance antpdation time across
a variety of accelerator designs, and the results are cadpara traditional greedy

approach.

5.2 Problem Statement and Related Work

Compiling an application to make use of computation acesbes boils down to two
steps:enumeratingportions of the application’s dataflow graph (DFG) that carekecuted
on the accelerator, argklectingwhich portions to accelerate.

Enumeration consists of generating a set of subgraphs figiwea DFG, and determin-
ing if they can run on an accelerator. Generating a set ofraqbg is difficult, because the
number of subgraphs grows exponentially with the size ofEXR&. Determining if the sub-
graphs can run on an accelerator, i.e., determining if trefopm the same computation,

is essentially equivalence checking, which is NP-compl&kee problem is further compli-

129

cated if the accelerators perform a superset of the desmexgbatation (e.g., an accelerator
for dot-products could also accelerate multiply-accurtedan an application).

Selecting which subgraphs to accelerate is also difficylpically, the selection prob-
lem is formulated to push as much computation as possible thet accelerators, while
minimizing overlap between subgraphs. That is, given afsehomerated subgraphs, find
the group which covers the largest portion of the DFG whil@imizing the number of
nodes appearing in multiple subgraphs. This problem is BBecomplete and is quite
similar to the well known technology mapping problem in Vid&sign. Clearly, mapping
applications to subgraphs is a challenging compilatioriemm.

To side step the problem, the vast majority of previous wetles on hand coding or
greedy heuristics. Work on automated accelerator desjgndify does not discuss strate-
gies for utilizing the accelerators with compilers. WorkHy [60] is typical of the greedy
solutions: a seed node is selected in the DFG, and is grows alataflow edges. The
compiler then replaces that subgraph and repeats the grddese enumeration consists of
finding a seed and growing it, while selection is implicityaubgraph that is enumerated is
automatically selected). Other previous work [112] perfsrmore thorough enumeration,
but still utilizes greedy selection.

More thorough, traditional code generation methods fokltag subgraph mapping
use a tree covering approach [3]. In this approach, all caatjmun subgraphs potentially
supported by the accelerator must be constructed a priomin® compilation, the DFG is
split into several trees. The trees are then covered by thpuatation subgraphs using an
algorithm that minimizes the number of computation sublysagsed. The purpose behind
splitting the DFG into trees first is that there are lineardiaigorithms to optimally cover
trees, making the process very quick.

The major problem with this method is that many DFGs and acatrs are not trees.
It is shown in [76] that tree covering methods can yield suim@l results, particularly
in the presence of irregular computation commonly targdteembedded systems. To
overcome this, [76] proposes splitting all instructiongoifiregister-transfer” primitives
and recombining the primitives in an optimal manner usirigger programming. Work by

Liao [80] attacked the same problem, and developed an ojsiohation for DFG covering

130

by augmenting a binate covering formulation. While bothledde solutions are optimal,
they also have worst case exponential runtime, and do nottrepw long their algorithms
take.

Another major problem with previously mentioned approacisehat they also require
permissible accelerator subgraphs to be enumerated a. ptHioain accelerator supports
a wide range of computations, such as an ALU pipeline, thisgause an explosion in
runtime.

Research in [101] describes a different way to look at thelacator mapping problem.
In this work, an application is initially decomposed intoagebraic polynomial expression
that is functionally equivalent to the original applicatioNext, the polynomial is manip-
ulated symbolically in an attempt to use accelerators asdsepossible. For example, a
polynomial could be expanded using function identitieg.(eadding O to a value) to better
fit an accelerator. This enables the algorithm in [101] tbagisubgraphs where the accel-
erator performs a superset of the desired computation. Asprevious solutions, though,
this technique also has exponential worst-case runtimeditdadally, handling bit-wise
operations, e.g. XOR, using polynomials is difficult.

In this work, we present compilation techniques to exploytcdic computation acceler-
ators. These techniques produce higher quality code theadgrheuristics, do not require
a priori enumeration of permissible accelerator subgraphd are scalable to large appli-

cations.

5.3 Compilation for Acyclic Accelerators

In this section, we present two different approaches formbng to acyclic accelera-
tors. The first approaclyreedy enumeration - immediate selectimthe most commonly
used approach today. This method generates a set of susdrppineedily adding vertices
to a seed vertex from the dataflow graph. Once the subgraplgawn, they are immedi-
ately replaced in the application, thus the name immed&é&eson. The second approach,
full enumeration - unate covering selectjas our contribution. This approach generates

all possible dataflow subgraphs subject to certain comggraif the targeted accelerator.

131

The set of subgraphs is then pruned down using subgraph retinsm, and finally unate

covering selects which subgraphs end up being executeceacttelerator.

5.3.1 Greedy Enumeration - Immediate Selection

Greedy enumeration - immediate selection, or greedy algos for short, is the stan-
dard method used to target acyclic accelerators, e.g. in5H]7 The greedy algorithm
consists of two phases: seed selection and subgraph grosthg a basic block as input,
the greedy algorithm selects an operation as a seed antbtegpand that seed by iterating
over dataflow edges. After growing one seed as much as pestiblsubgraph is replaced.
Next, another seed is selected, and the same steps will bategp The algorithm finishes
when no more seeds are available for growing.

The first step in the greedy algorithm, seed selection, cgeldermed in several differ-
ent ways. For example, operations closer to the criticdl pah be chosen as seeds before
less critical operations. Alternately, long latency opieras can be selected before shorter
operations. In our experimentshanging seed selection order made very little difference
in the results of the greedy algorithnn the results presented in this chapter, seeds were
chosen in topological order from the dataflow graph.

After choosing a seed, a subgraph consisting only of thatatijo® is formed. The
algorithm then enters its second phase, subgraph growthgtto expand this subgraph.
Neighbors of the seed operation will be temporarily addeithéosubgraph one at the time.
If this temporary subgraph is executable on the accelerétten the new node perma-
nently becomes part of the subgraph. If the temporary sybgsanot executable, then the
newly added node will be removed. When it is no longer posdibladd neighbors to the
subgraph, it is immediately replaced in the applicatiord amew seed is selected from
operations not already appearing in a subgraph.

An example of the greedy algorithm is shown in Figure 5.1.ufeg5.1 B is a DFG
from the g721encode benchmark, used in examples throughewhapter. Figure 5.1 A
shows the acyclic accelerator targeted in all of the exampléis accelerator, similar to

one proposed in [30], has 4 inputs, 2 outputs, and 15 funatiots organized in 4 rows.

132

eeT

Input1 Input2 Input3 Input4

Output1 Output2

A.

Figure 5.1: A. An acyclic accelerator from [30] targeted in examples.TBe first step in a greedy mapping algorithm on a basic bloakfr
g72lencode. C. The second step and D. final step in the greaplping algorithm.

The function units in each row can communicate with functioiits in subsequent rows,
meaning computations with dependence heights of up to 4ugmeosted. These function
units support the complete set of addition, subtractiod anRwise operators on two inputs.
Figure 5.1 B highlights the first subgraph enumerated usiegyteedy method. Oper-
ation 1 is chosen as the first seed. The subgraph then gresltiy neighbor operations
3, 6, and 11. After adding operation 11, 13 can not be addex g¢hmt would create a
subgraph with dependence height 5, which is not supporteétddéogccelerator. Operations
11's neighbors 10 and 8 can be added, though, resulting ifirtbesubgraph shown in
Figure 5.1 B. The process then repeats with operation 2 ascarssle. This subgraph is
grown along dataflow edges until it reaches operation 7, diphylwhich is not supported
by the accelerator. The final greedy mapping of the DFG is showigure 5.1 D. Assum-
ing each operation and the accelerator each take one cyeletate, this mapping would
yield a speedup o% = 2.43, since there are 3 unaccelerated operations and 4 aceelerat

subgraphs.

5.3.2 Full Enumeration - Unate Covering Selection

Greedy subgraph mappers have proven reasonably effentiveany previous works.
Certain combinations of greedy algorithms with more thgptoatrategies have also proven
effective [112]. In this section, we describe the full enuati®n - unate covering selection,
or FEU, algorithm, which solves the mapping problem usingcgéxXormulations. This
effectively avoids local minima that inherently cause grealgorithms to fail. When the
exact formulations are intractable, the FEU algorithmlliigently reduces the search space
to workable levels.

There are three main phases to the FEU algorithm: Enumara®@uning, and Cov-
ering. Enumeration generates a set of all subgraphs witBiR@ subject to input/output
constraints of the targeted accelerator. Pruning takeseh®f subgraphs and performs
additional checks based on functionality and interconteatetermine if the subgraphs
actually can be executed on the targeted accelerator. Qnusahble subgraphs are pruned,

unate covering is used to select the best set of subgrances for the application being

134

compiled.

Individually, each of these steps either grows expondptigith the size of the input
(enumeration) or is NP-Complete [46, 48] (pruning and cmggr This has lead most re-
searchers to opt for (typically) linear-time greedy saus. In the remainder of this section,
we will demonstrate that with careful design, each of thesblpms can be made tractable
for most practical cases in accelerator compilation. Addally, we demonstrate in Sec-
tion 5.4 that using more powerful algorithms yields notigegperformance improvements

in code generated over the standard greedy approaches.

5.3.2.1 Full Enumeration

The first step of our compilation algorithm, enumeratiomerates a set of dataflow
subgraphs that can potentially be run on a targeted acteler&he primary reason for
enumerating subgraphs and then later pruning them is tisanitich faster than performing
both steps at once. Very fast techniques for finding highityusubgraphs for acceleration
have been widely developed in the past few years, e.g. [2/7]5and this strategy allows
us to take advantage of them.

Tractable subgraph enumeration is clearly a difficult peoll In the most general
sense, each operation in a DFG could either be included tuaed in a potential subgraph
instance, yieldin@”" potential candidates. Because of space restrictionsathe body of
previous work, and the relative complexity of pruning teicfues, we will only describe
how to efficiently enumerate subgraphs at a high level.

Dataflow subgraph enumeration, as described in [7], candaggtiit of as a binary tree,
where each level of the tree represents an operation (ofhft)sand each branch in the
tree represents whether or not to include that op in a subgrdphe leaves of the tree
represent all possible subgraphs for a DFG. There are marsytkanake full exploration
of this tree tractable.

The most important pruning technique is based on input(duggstrictions of the ac-
celerator. Using the DFG from Figure 5.1 B as an example, #irgetted accelerator only
supported 2 inputs, then any candidate subgraph inclugisd.p2, and 5 would be infea-

sible. Enumeration can be bounded for each branch of thahetancludes all of those

135

ops. Likewise, pruning for outputs greatly reduces thedeapace. Care must be taken to
avoid prematurely pruning the search space, though. Fanpbea a subgraph with ops 6
and 10 would appear to have 2 outputs; however, if op 11 isidedd, then subgraph 6, 10,
11 only has 1 output, perhaps making it feasible.

Another important pruning technique is excluding candidatith values that leave and
then reenter the subgraph. Using Figure 5.1 B as an examaie, dlis filter would prune
the search space of any subgraph that included ops 1 and &dbuded op 3. Subgraph 1,
6 could not be run on an accelerator since the output of 1 id tesealculate an input to 6.

These techniques make subgraph enumeration practicdddorast majority of blocks
within applications; there are some instances where anhditisteps are needed. In these
cases, the DFG is heuristically partitioned into severhtslocks, which are then enumer-
ated. The implication of partitioning is that no candidaibgraphs can cross the boundary
(i.e., it cannot have ops in multiple partitions). Edgeslzearistically weighted to guide
the partitioner so that is does not unnecessarily cut edgesniportant subgraphs. For
example, if the targeted accelerator did not support migagon, then all the edges to and
from op 7 in Figure 5.1 B would be given weight 0, since the opseither side of the
edges could never be in a feasible candidate. Edges bogdeemory operations are also
given weight 0 whenever the accelerator does not supportaneatcess. All other edges
are given weights based on characteristics such as whetimat they are on the critical
path. Previous work [27] demonstrated that this heurisditifioning is an effective way to

prune the enumeration space without unnecessarily rergagaful subgraph candidates.

5.3.2.2 Pruning through Subgraph Isomorphism

Pruning is the next step after enumeration generates patenbgraphs to execute on
the accelerator. The purpose of pruning is to ensure thalidates can actually be executed
on the accelerator. This takes into account functionakhiy @onnectivity issues that were
ignored during enumeration. Pruning occurs after enunmrdiecause these checks are
either not possible to perform on partial candidates or &aviy weight to test in the middle
of filling in the enumeration search tree.

The method employed to determine that subgraphs can exenous® accelerator is

136

based on subgraphisomorphism. Loosely stated, subgramplorphism determines whether
or not a subset of the nodes in a particular graph are equitvedea separate graph. In this
case, a graph representing the hardware structure is cotedy and we attempt to find a
subset of hardware vertices that can create a computatiomadent to the subgraph cre-
ated in enumeration. If we find such a subset, then the dataflingraph is capable of
being executed on the accelerator.

There are several pros and cons to pruning based on subg@ploiiphism. One ben-
efit is that, as with enumeration, a great deal of related werds. [70, 122]) has looked at
developing heuristics to efficiently solve subgraph isgohgsm the problem. We leverage
and improve upon these prior techniques in this work. An taldial benefit is that pre-
vious work [124] has shown it is possible to automaticallypgmte hardware subgraphs
from a microarchitectural specification. This means thabmgiler targeting accelerators
could potentially be retargeted by simply feeding it a haadwdescription of the targeted
accelerator(s).

The main weakness of isomorphism-based pruning is thatibisa true equivalence
check. That is, the algorithm only checks that nodes usedpesent computation form
equivalent graphs, not that they are equivalent computstiBor instance, if a DFG repre-
sented a multiplication by 10 as a left-shift by 3 bits, a-Kftft by 1 bit, and an addition
of those two results, then this would not match an acceleveitb a multiplier. In order to
recognize multiple graphs that perform the same computatinuning would have to per-
form a full equivalence check, typically using BDDs [22] betr relatives (ADDs, BMDs,
etc.). This is far more computationally demanding than isghism for accelerators of
practical size, although an interesting avenue for futuoekw

The implications of this drawback are twofold. First, therguler is at the mercy of
the software writer to a certain extent. If the algorithm ésdribed in software differently
than it is represented in the hardware graph, then the cempill be unable to accelerate
it. Second, accelerator hardware structures that do notdiraptly to a single node in
the DFG are difficult to utilize. For example, a lookup-taldecapable of executing any
number of consecutive bit-wise operations from a dataflaapgr Because of this, there is

no equivalent (finite) hardware graph that can represesthmputational structure.

137

This drawback affects both full-enumeration-based anedyéased compilation al-
gorithms, and leaves room for improvement. However egaiveg-based algorithms have
proven intractable to this point.

Subgraph Isomorphism Algorithm: The algorithm used to determine isomorphism,
Algorithm 5.1, is based on the backtracking search strategpgribed in [70], which was
itself adapted from [122]. The basic idea is to recursivedgign one vertex frony’, the
dataflow subgraph, to a corresponding verteX'jihe hardware graph, and check to ensure
that the corresponding edges exist in both graphs whenevewaode is assigned. In order
for this algorithm to be computationally feasible, a numbksteps are taken to prune the
search space.

Algorithm 5.1 takes the two graphs = (V/, E’) andT = (W, F') as input. In this
formulation, V"’ represents operations in the subgraphdataflow edges in the subgraph,
W FUs in the accelerator, anl wires connecting those FUs. Initially, a group of sets,
M, are calculated such thaf; contains all vertices iml” that are of the same computation
type asv;. Essentially this step creates a set of candidate nodé&stivat each node in
S’ can be mapped to. For examplepifwas an ADD node); would contain all hard-
ware nodes with addition capabilities Y. This process corresponds to lines 2 - 6 of
Algorithm 5.1. This information is passed to the proceddsgignV ertex, along with the
mapping functiong(), and the vertex number to be mapped.

The AssignVertex() procedure iterates over the set of possible nodes (line 23-in
gorithm 5.1) testing that every edge il has a corresponding edge i for the nodes
that have already been mapped (lines 15 - 17). Assumingtibadges match;() is up-
dated and the sets of potential match¥s,is updated to reflect the new information. This
pruning of the search space is critical to avoiding an exptakexplosion of runtime.

Two techniques are used to remove nodes fladhafter a node assignment. The first,
lines 25 - 26, looks at all vertices Vi’ not yet assigned and checks to see if there is an
edge inE’ connected to the node just assignéd,,.... If such an edge exists, any nodes in
M that do not have a corresponding edgeiconnected with:(v,_,,...) can be removed
from the search space. The second pruning technique (IBe22) leverages the fact that

that we are dealing with directed acyclic graphs. When argat’ and7’, we impose the

138

oOUh WNPE

11
12

13
14
15
16

17

18
19
20
21

23
24
25

26
27

28
29

30
31

36

Input: " = (V' E"), T = (W, F)
foreachv) € V'’ do
foreachw; € W do
if v/ is equivalent tav; then
if dependencéieight;) < dependencéeighttw;) then
M; = M; +w;
end
end
end
end
Call AssignVertex(M,z,1)

ProceduredssignVertex(M, x, vertex)
if vertex > |S’| then
if Subgraph outputs mahen
| return ISOMORPHIC
end
else
| return NOT ISOMORPHIC
end
end
foreachm,; € Myerteq dO
edges-match = true
for j = 1..vertex do
if o Ve € E’ andew(vjl_),mi ¢ F then
| edges_match = false
end
end
edges_match then
SEtx(v'ize'rtez) =my
M =M
assignment_works = true
for j = vertex + 1..|V’| do
MJ’ = MJ’ —m;
foreachmy, € MJ’. do
if €y’ = andex

vertexVj (U;ertez)’mk
1 /o
‘ M} = M} —my
end
else
if e,/ o € E"andk < ithen
vertexVj
I _ I
‘ M} = M} —my
end
end

=

¢ Fthen

end
if |[M7}]| == 0then
| assignment_works = false
end
end
assignment_works then
result = callAssignVertex(M', x, vertex + 1)
if result == ISOMORPHICthen
| return ISOMORPHIC
end

=

end

end
end
return NOT ISOMORPHIC

Algorithm 5.1: Subgraph isomorphism algorithm

139

restriction that the vertices must be topologically someéthin the setd/’ and1/. That is

to say,V verticesi, j such that > j,e;; ¢ E. In other words, there are no edges from
vertices with higher order numbers to vertices with loweternumbers. This restriction
allows us to remove any vertex froid which has a lower order number than the currently
assigned order number, since no such backward edge camrekistf at any point during
pruning, the size of the candidate set falls to zero (line 8®n it is no longer necessary
to examine this part of the search tree. These simple pruetighiques turn an intractable
problem into one that is solved much faster than instructidmeduling in our compiler
infrastructure.

After pruning the search spacégssignVertex is recursively called to assign the next
vertex using the reduced search spadé, This is continued until all nodes i’ map to
corresponding nodes ifi though the function:(), or it is proven that no such mapping
exists. Once a mapping is found, it is still necessary to enthat the subgraph outputs
map onto the targeted accelerator (line 9). This is donegusia Dijkstra’s algorithm to
find the shortest path between nodes producing the outpdtsaput ports. If this final
check passes, then the subgraph can indeed execute ongitedaaccelerator.

Improvements Over Previous Work: There are three main algorithmic improvements
over previous proposed subgraph isomorphism algorithnnst, &s previously mentioned,
vertex numbers are assigned topologically to ensure tlaat ddge exists, then the source
number is less than the destination number. This drambtieaduces the sets of potential
candidates)/, shown in lines 28 and 29. A second improvement prunes theidaie sets
by using dependence height of the candidates (line 5 of Algar5.1). Dependence height
refers to the maximum sized chain of operations that musigle a particular operation in
a graph. For example, in Figure 5.1 B, node 10 has a depentieigig of 1 since 8 must
precede it, and node 11 has a dependence height of 3, sinchdhel-3-6 must precede
it. When creating a set of candidates for node 11 in the reptasive hardware graph, we
know that skipping any nodes with dependence height less3haill not affect the solu-
tion. This optimization also relies on the acyclic naturehef graphs we are matching, and
has a dramatic impact on the overall algorithm runtime. Tds¢ bptimization developed

relates to the order in which nodes are assigned. Note thatitynVertex, pruning of

140

<< (A * |8 | Logic |¢

>> |p >> [| #/- |F

N

Figure 5.2: A. Subgraph from Figure 5.1 A to be tested for subgraph is@msm, B. hard-
ware accelerator being targeted

M occurs when edges do not match up in the current assignThus, itis in our interest
to make these comparisons as high in the search tree as lpoS3iks is accomplished by
assigning vertices in order determined by a depth first $g@at shown in Algorithm 5.1).
Unlike the previous two optimizations, this technique iplagable for any style graph,
not just directed-acyclic graphs. These three optimizaticontribute to make subgraph
isomorphism a tractable way to determine whether a datafldwgreph can execute on a
hardware accelerator.

Subgraph Isomorphism Example: Algorithm 5.1 is complicated and we will hope-
fully clarify it through the example in Figure 5.2. Here, thataflow subgraph in Fig-
ure 5.2 A (from Figure 5.1 B) is checked for subgraph isomaphon the accelerator
graph in Figure 5.2 B. First, a set of candidates in FigureBi8 constructed for each
vertex in Figure 5.2 A. This corresponds ié in the algorithm. Examining vertex 3, we
see that only hardware vertex C can execute logic operatemd/; = {C'}. Likewise,
Mg = {F,G, H}, since any of those hardware vertices could execute theasiion. The
candidate set of vertex 11/;; = {G, H} demonstrates the dependence height pruning;
F can not be in the solution space because there is only onevagdertex preceding it.
The remaining two sets\/s = { A} andM;, = {D, E'} are as would be expected.

After the candidate sets are computed, a depth first seamérigsrmed (irrelevant of

edge directions) to determine the order in which to assigticas. In this example, the

141

assignment order will be 3, 6, 11, 10, and 8, although thiging is irrelevant for cor-
rectnessAssignVertex() is then called for node 3. The algorithm iterates over theoget
candidates)/s, and updateg/ for neighbor vertices. In this case, since vertex 6 neigbhbor
vertex 3,Ms can remove candidaté€s and H from its set, since neither of those vertices
are neighbors of’. Next, AssignVertex() is recursively called to map vertex 6. The
algorithm maps vertex 6 té', since that is the only possibility if/s. lines 15-17 check to
make sure that since there is an edge from vertices 3 to 6thbed is also an edge from
C to F. Vertex (G is removed fromM/y,, since there is no edge froti to G, and again
AssignVertex() is called for vertex 11. Vertex 11 is mappedhQ and 10 is mapped t&
similarly to the previous two nodes. However, once 10 is nealip £, then the candidate
set My becomes empty, since there is no edge fréto £. This bounds the recursion of
AssignVertex() which then tries another assignment for vertex L0, Using this map-
ping, vertex 8 can be assigned4gowhich will complete the mapping, and prove that there

is a subgraph of Figure 5.2 B that is isomorphic to Figure 5.2 A

5.3.2.3 Selection using Unate Covering

Now that we have a set of subgraphs tbah execute on the accelerator, it is neces-
sary to select which onds execute on the accelerator. In standard greedy solutiosis th
step is implicit within enumeration: each enumerated saplgiis automatically selected.
However, greedy selection can also be performed in conjmetith full enumeration al-
gorithms, e.g., in [112]. Greedy selection algorithms,icgly map the largest subgraph
onto the application, remove all overlapping subgraphmftbe consideration, and then
repeat this process until no more candidates remain. Thaerowith this technique is
that it will provide suboptimal results whenever the latgasgograph is not part of the best
solution.

Instead of a greedy heuristic, we propose solving the selegrroblem by convert-
ing it to a unate covering. Informally speaking, unate cowgiproblems operate on a
Boolean matrix M/, where the rows represent vertices in a DFG, and the coluepresent
subgraphs; if the value a¥/; ; is true, this means that operatioroccurs in subgraplj.

Traditionally, the goal of unate covering is to find a set ofucons (or subgraphs) with

142

1 Input: boolean matrix\/, wherel; ; = true if op i is in subgraply
2 Output: A vectorr, z; € {0,1}", whereMz = (1,1,1,...,1)T and> ", z; is minimized

3 Sort columns of\/ in order of decreasing size
4 Call Cover(1,true, M, x)

Call Cover(1, false, M, x)

Procedure”over (subgraph, add_subgraph, M,)

6 if add_subgraph then

10
11
12
13

14

15

16

17

18

19
20

if (Mx&&(Ml,subgrapha M2,subgraph> -'-Mm,subgraph)T) 7£ (07 0, OO)T then
/I Subgraph overlaps with the partial solution.
‘ return
end
L subgraph = 1
if Mz ==(1,1,1,..1)T then
if Y @i < fewest_subgraphs then
fewest_subgraphs = > | x;
‘ best_solution = x
end
// Found a complete cover.
return

end

nd

subgraph + 1 > n then
/I Did not find a complete cover after examining all subgraphs
return

= @

nd
~S (M),
Yo+ % > fewest_subgraphs then

/I The current solution cannot possibly be the best.
return

= @

end
Call Cover(subgraph + 1, true, M, x)
Call Cover(subgraph + 1, false, M, x)

Algorithm 5.2: Unate covering selection algorithm

minimal cost, such that each operation is covered at least.dn this formulation, the cost
of a subgraph could be a variety of things, such as the nunflugictes needed to execute
on a particular accelerator, or the power consumed by a apbgis with using subgraph-
isomorphism for the pruning algorithm, unate covering wassen for selection because

there is much prior work [36, 48] that can be leveraged to nialeproblem tractable.

143

Before discussing the details of our unate covering algorjtAlgorithm 5.2, it is im-
portant to point out one difference between this and stahdaate covering formulations.
Traditionally, unate covering allows an operation to appeanultiple subgraphs in the
final code. However, we have made the decision to disallosvgbssibility. Allowing an
operation to appear in multiple subgraphs essentiallyigaigs the computation and will
unnecessarily increase power consumption. The downsithaiglisallowing overlapping
subgraphs can hurt application performance in multi-iggoeessors, and actually makes
the covering search space much larger. Performance lossocan because the first oper-
ation in a subgraph has to wait for all subgraph inputs to bheydefore being executed.
The covering search space becomes larger, because manygteehto prune the space,
such as row and column dominance, no longer work if overlaptsallowed. Despite the
changes resulting in a large search space, the runtimesr afnate covering formulation
are quite reasonable for practical inputs, and the reguttode will be more suitable for
embedded systems.

Unate Covering Algorithm: The algorithm used to perform unate covering based se-
lection is shown in Algorithm 5.2. As previously mentionadput to the algorithm is a
m by n Boolean matrix, where rows correspond to operations anaheos to subgraphs.
The output of this algorithm (line 2) is a vectar, wherez; = 1 means that subgraph 5 is
in the optimal cover. The constraiffz = (1,1,1, ..., 1)T ensures that each operation is
covered by exactly one subgraph. Note that the standare woatring constraint, which
allows overlap, isMz > (1,1,1,....,1)T. To ensure that a solution is feasible, each indi-
vidual node is inserted intd/ as a subgraph which covers only one operation. Qvicis
constructed, the columns are sorted in decreasing ordera atandard branch-and-bound
algorithm,Cover(), is called.

Inside the functionC'over(), one subgraph is considered for addition to the current
cover,z. Line 7 in Algorithm 5.2 tests to see if there is any overlapasen the current
cover and the candidate subgraph. Tie matrix multiplication creates a column vector of
the current set of ops that are covered, afd, ;44,1 IS the set of ops covered Bybgraph.
Assuming there is no overlap, line 9 add&graph to the current cover, and then the cover

is tested to see if all ops are covered (line 10). If a compelation exists, the total number

144

of subgraphs is calculated, and if it is the fewest yet sdwm this cover is recorder as being
the best. Note that if there were multiple accelerators enténgeted processor, the notion
of what constitutes the 'best’ solution (line 11), couldiBese expanded to include column
weights based on which accelerator a subgraph used.

If the C'over() function does not have a complete solution, then two cheskper-
formed to prune the search space before recursing down ¢éinelsteee (lines 15 - 18). The
first check, lines 15 and 16, simply bounds the search treailrens out of subgraphs
to examine: essentially when it hits leaves of the tree. Hoeisd check bounds when the
current solution cannot possibly be better than the besivkrgolution, by computing a
lower bound on the partial cover, The first portion of line 17" | x;, calculates how
many subgraphs are in the current cover. The second pottitre @quation calculates the
number of ops that still need to be covered and divides by timeber of ops covered by
the current subgraph. Since the subgraphs are sorted hyasidehey are always added
in order of decreasing size, the second portion of the eguafives a lower bound on the
number of additional subgraphs that must be added to coenalebver. The check in line
17 is the primary catalyst that makes this unate coveringrétgn practical for subgraph
selection.

Improvement Over Previous Work: As with the isomorphism algorithm, there are
several technigues that make this unate covering algofiéister than previous solutions.
The first of these is sorting the subgraphs in order of deargasize (line 3 of Algo-
rithm 5.2). While this does not directly prune the searck tiedoes enable other pruning
techniques, such as the check in line 17. Another technisjtie always branch toward
adding a subgraph first (lines 4 and 19). Since the subgraghsoated by size, and the
subgraphs are considered in consecutive order, always@dudisures the first complete
cover will be exactly the same as the greedy solution. Thedyesolution provides an
excellent bound to quickly prune bad portions of the seai@. tAdditionally, by reaching
the greedy solution first, if the algorithm runs for an unusuiang time, it can always be
stopped at without fear of a solution worse than greedy.

Unate Covering Example:Figure 5.3 A shows an example of the Boolean mattik,

used in Algorithm 5.2. This matrix shows several subgraphglwwere enumerated from

145

T

Subgraphs
E F G H I J

-

1
1 1
1

N BN N o

DA WN| =

Ops 9

1
12
13
14

-
o

alalalalalalala

- alalalalala

15
16

Figure 5.3: A. Example unate covering problem used to map subgraphs thenbasic block in Figure 5.1. B. The mapping solution with
full-enumeration and greedy selection. C. Mapping sotutigth full-enumeration and unate covering selection.

the basic block from g721encode, shown in Figure 5.1 B (mangsaphs were omitted
for space and clarity reasons). The subgraphs correspoad &xcelerator which has 4
inputs, 2 outputs, and can support any computation with @mldgnce chain of 4 or less,
also pictured in Figure 5.1. Notice how the subgraphs areeddrom largest at the left
(covering 9 operations), to the smallest at right (each atp@r node as a subgraph).

Algorithm 5.2 begins th€'over() function by adding subgraph A, the largest subgraph,
to its current coverg. It will then recurse, and attempt to add B:ito The check at line 7
will prevent this since the two subgraphs overlap, and thasbh of the search space will
be pruned. Eventually, by moving across the matrix in Figuf subgraphs D, then G,
and then H will be added to A to create a complete cover, shawigure 5.3 B. This is
the full-enumeration / greedy-selection solution. Assugna single-issue processor, and
the accelerator and each operation in Figure 5.1 B takesyare t execute, this solution
will yield a speedup o% = 2.83 for this block. The first 3 in the denominator accounts
for the right-shift, branch and the multiply that were notelerated, and the second 3 is
for each of the 3 subgraphs that will be run on the accelerator

After the unate covering algorithm finds the greedy-sebtectolution, it will continue
to explore the search tree and eventually discover the dyeér, E, shown in Figure 5.3
C. This solution uses fewer subgraphs, and will be recordatie@best solution on line 13.
The speedup for this solutioné% = 3.4. This compares quite favorably with the speedup
obtained using the greedy enumeration - immediate setediéscribed in Section 5.3.1,
which is only1—77 = 2.43. Clearly full-enumeration with unate-covering based s@b& can

provide benefits beyond greedy heuristics.

5.3.2.4 Algorithm Runtimes

There are clearly performance benefits to be had over thelatdmreedy algorithms,
if accelerators can be targeted using the NP-Complete flations that we have proposed.
The major concern is that the proposed algorithms are tobetdrigure 5.4 demonstrates
that they are.

Each point in these graphs represents the algorithm rurgiraébasic block from 1 of
23 MediaBench [75] and MiBench [53] applications. The da&s wollected on a 3.06 GHz

147

8T

Full Enumeration Runtime

Subgraph Isomorphism Runtime

1000000 25
. s
° <+ Experimental Data
100000 -
¢ Experimental Data 3
NA2 2 ‘.
10000 N — .
3 $
1000
—~ —~15 -
8 . 8
[[.
2 100 * 2 $. o
£ E ¢ .
£ o £
5 5 .
[- z
*
+ -
- M *
* * o - * .
o - 05 oo, d Py
0 3’ L ¢
. AR Ll
X4 -~ *
*
&=]
0.01 0 T T T T T T T T
100 200 300 400 500 600 700 800 900 1000 0 50 100 150 200 250 300 350 400 450
Block Size (Ops) Number of Patterns
Unate Covering Runtime Total Runtime
14 1000000
100000
12 + * Experimental Data
. * NA2
. —N
. $ 10000
10
.
1000
- . * 5 IS
g 8 - 1 -
2 . 12 -
2 $ ¢ 2 100 *
£ . £ R
£ €
e ° 4 % . M
-
*
4 *
+ Experimental Data
*
. N/50
5 * (Y . ¢
+
*
0 S T T T T T T T
0 100 200 300 400 500 600 700 300 400 500 600 700 800 900 1000
Number of Patterns

Block Size (Ops)

Figure 5.4: Compilation runtimes for various aspects of the proposgdrahms

Pentium 4 machine with 1 GB of RAM. Applications were comgile target an accelerator
with 4 inputs, 2 outputs, and a maximum dependence heigh{sailar to the accelerator
proposed in [30]). Each algorithm was given a maximum timatliof 600 seconds per
block, at which point the algorithm was terminated and regubthe best solution seen up
to that point. Note thabnly one basic block out of 23 applicatioreached the time limit
for any of the proposed algorithms; that was during subgepimeration.

To summarize the results for subgraph enumeration, more38a88% of basic blocks
were fully enumerated in less than 1 second, and more th&5%9of the blocks were
enumerated within 10 seconds. As mentioned previouslywibrst case block timed out
at 600 seconds. This could be prevented by more aggresqaeiyioning the block into
smaller components. Overall, the enumeration algorithmime appeared to grow only
linearly with the size of the basic block, which makes this algorithuttejscalable.

Runtimes for the subgraph isomorphism algorithm were abxy veasonable. More
than 99.7% of blocks had subgraph isomorphism checked fahair enumerated sub-
graphs in less than 1 second. The worst case runtime for athedflocks was only 2.47
seconds.

As with subgraph enumeration, runtime for unate coverirepgroughly linearly with
the size of its input matrix, and the runtime was very fashim tommon case. More than
99.1% of blocks ran unate covering selection in less tharcrsk while 99.8% finished
in less than 10 seconds. The worst case runtime for any bleskd®.25 seconds (this was
the same block that timed out during enumeration).

In terms of total runtime for all three phases (full enumierat isomorphism based
pruning, and unate covering selection), more than 98% afksl@aook less than 1 second
to run. 99.5% of basic blocks took less than 10 seconds tdta worst case block out
of the 23 applications took 11.03 minutes. If the worst casekoproved too slow, the
algorithms were designed so that the timeout could easilsedaced without drastically
affecting solution quality.

These results show that if you are compiling to target anlacater statically, runtime

iS no reason to use a greedy heuristic.

149

5.4 Experiments

In order to evaluate the proposed mapping algorithm, anrexeatal framework was
built using the Trimaran research compiler [121] and SirSplar ARM simulator [9].
Trimaran was retargeted for the ARM instruction set and sablgs to be accelerated were
delineated in the in the binary. After compilation, the siatar recognized the subgraphs
and modeled them as if an accelerator was present. SimpeSess configured to repre-
sent an ARM-926EJ [5], a popular embedded core, with acaieles that took one cycle to
execute.

Twenty three benchmarks from MediaBench [75] and MiBen@] y#ere used to eval-
uate the proposed mapping algorithms. Omitted benchmaéks @ue to issues in the
compiler infrastructure. We tested three different altjoris: greedy enumeration - imme-
diate selection (as described in Section 5.3.1), full ematian - unate covering selection,
or FEU (described in 5.3.2), and a hybrid technique full eatation - greedy selection, or
FEG.

Algorithm Comparison: Figure 5.5 shows the speedups attained when using the three
proposed algorithms to target the 4 input / 2 output accelesnown in Figure 5.1 A. The
figure illustrates that the FEU algorithm consistently @ufprms greedy on nearly every
benchmark. On average, 9% more speedup was achieved bytbsiikgU algorithm in-
stead of greedy heuristics. Sha showed the largest differbatween greedy and FEU, at
32% improvement. The primary reason for this is that full mewation identified a consid-
erable number of disconnected subgraphs in the criticad,ladnich the greedy algorithm
was not capable of finding. Dijkstiarge showed the least improvement when moving
from greedy to FEU mapping. The important subgraphs in tarschmark only consist of
2 back-to-back instructions, thus the subgraphs are easheitify regardless of enumer-
ation algorithm. As would be expected, this shows that cdatpn-bound applications
with very large basic blocks benefit more from the FEU aldwrnitthan applications with
small basic blocks.

One surprising result illustrated in Figure 5.5 is that maygplications did not benefit

from unate covering selection (comparing FEG with FEU). @arage FEU performed

150

B Pre Reg-Alloc Greedy Mediabench MiBench
B Pre Reg-Alloc FEG
OPre Reg-Alloc FEU

O O U L P o ¥ L O 0SS e ® S @ Lo O
& &Qe & QQQ\ <,ob Oob oob Gob F o FF 006\ 006\ o & & & & ¢ & S
TN FFTLES S S & 7 & °
G)
FUIF L S & QT b‘%

Figure 5.5: Comparison of subgraph mapping algorithms

only 1% better than FEG. The main reason for this is that theak computation in most
basic blocks was small enough that very few subgraphs wergéeaukin the cover. If more
subgraphs are used to cover the DFG (for example, when iaggetsmaller accelerator)
then greedy selection is more likely to get stuck in a locahima and perform worse.
However, when targeting the large accelerator from Figute?§ greedy selection is suffi-
cient. In two instances, djpeg and rijndael, unate covesglgction actually caused slight
performance decreases. This is due to second-order eféertis as cache alignment, that
are not modeled by the unate covering formulation.

Sensitivity to Targeted Accelerator: Figure 5.6 shows how much better FEU performs
relative to greedy when varying the targeted acceleratars Breater than one imply FEU
performed better than greedy and bars less than one impgdgreerformed better than
FEU. The rightmost bar for each benchmark represents th@ut in2 output accelerator

used throughout this chapter. The 3 input / 1 output acdaelensists of two back-to-

151

B3 Input / 1 Output Mediabench MiBench

E4 Input /1 Output
04 Input / 2 Output

Speedup over Greedy
—
|

& «Q o o &S & o RS
oF & 0(&\500 \é‘o sbc' Q(\c' Q& Qq'& S\\{\ ‘51& \“o'bo 4@9\) ,0\’6’0‘0\0 &7 {\\Q BN
LIPS S XL EE s o
& eSS ¢ e &

Figure 5.6: The speedup of Full-Enumeration/Unate Covering Seleaii@ar Greedy while
varying the targeted accelerator

back functions units, and is modeled after the acceleraged un [60]. The 4 input/ 1
output accelerator has computation capabilities somesvimebetween those two, with 7
function units and maximum dependence height of 3.

There are several interesting trends illustrated by thisréig First note that FEU out-
performs greedy much more on the 4/2 configuration than orttheor the 3/1. This is
because accelerators with only one output preclude dismiad subgraphs from being
executed. If no disconnected subgraphs are allowed, theadygrcan potentially find the
same subgraphs as full enumeration. This definitely helpswahe gap between the two
algorithms. In general, larger accelerators with multiplputs and outputs place more
importance on high quality subgraph enumeration.

A second important trend in Figure 5.6 is that FEU outperfogneedy more in 3/1

than in 4/1. The reason for this is that the small number o€fiom units in 3/1 (only 2)

152

made the number of subgraphs selected in the final coveiveiahigh, compared with
4/1 which has 7 function units. Since more subgraphs areatkedore emphasis is placed
on the covering algorithm, and unate covering helped quitgt.a The 4/1 accelerator
used relatively few subgraphs, that were all discoveraislgreedy enumeration, therefore
FEU provided little benefit beyond the greedy algorithm. sTélhows that more thorough
strategies, used in FEU, are more important whenever thelsspace is very large.

A last trend to note in Figure 5.6 is that in certain benchreagkich as md5, greedy
actually performed better than FEU. This is due to the partibg used during full enumer-
ation. Recall that in order to make full enumeration traktabery large blocks have to be
partitioned into smaller pieces. Occasionally this piamiing precludes full enumeration
from finding important subgraphs which can be discoveredregdy methods. This prob-
lem is pronounced in accelerators with only one output,esfatt enumeration cannot make
up ground on greedy by using disconnected subgraphs. Fg@mnotivates future work
to develop faster enumeration algorithms and better p@ngts to alleviate the problem in
md>5.

Effect of Register Allocation: Figure 5.7 depicts the result of applying the FEU map-
ping algorithm before and after register allocation. Thiam important result because many
researchers have proposed subgraph mapping in virtualinezchr as a part of binary-to-
binary translation. The drawback of subgraph mapping aéigister allocation is that spill
code essentially breaks dataflow edges by placing valuegsmary. This limits the size of
computation subgraphs that can be identified for accetaraton the other hand, register
allocation does introduce some additional computatiap (&ack adjustments) that could
potentially be accelerated, which is not available whenprapbefore allocation.

On average, we found that performing subgraph mapping priatlocation produced
results with 8% more speedup than post-allocation mappingsome benchmarks, like
rawcaudio, the innermost loop was so small that there wapiticcede, and so there was
no difference in the results. In other benchmarks, such as,3tie amount of spill code
was so large that virtually none of the pre-allocation sapys were discoverable post-
allocation. Only one benchmark, epic, performed bettemfigost-allocation mapping.

Figure 5.7 clearly shows that performing subgraph mappneggiocation in the compiler

153

1.8
OPre Reg-Alloc FEU Mediabench MiBench

M Post Reg-Alloc FEU

1.7

1.6

1.5

Speedup
N
]

13 M —

1.2 L

R T I I 2 2 R RN - BN - BT R S SR S TP, > SR S SR C]
& & o&’g\ be°°b ¢o°b éech ¢o°é &be &°° $¢°° 4;\@0 dyb\ S F & 045‘9 & & ‘°.\b"’ TSP
N\ ¢ &S & & R e
AN W S S ST TP A A A
PSP AR R R R G &

Figure 5.7: Comparison of mapping effectiveness before and aftertexgalocation using
the accelerator from Figure 5.1 A

is much more effective than post compilation techniquesh s binary translation.

5.5 Summary

In this chapter, we addressed the inefficiencies of traggicompiler algorithms used
to identify candidate subgraphs for execution on compamasiccelerators. Several new
algorithms were developed to find better candidates for btall and larger acyclic accel-
erators. Simulation results demonstrate that our propaggatithms achieve, on average
9%, and as much as 32% more speedup than traditional grekdipss.

This work also quantified the effect of register allocatiansubgraph identification.
On average, performing subgraph mapping prior to regidtecation results in 8% more
speedup. This result implies that performing dynamic saplridentification in hardware

or a virtual machine would significantly reduce the effeetiess of mapping algorithms.

154

CHAPTER 6

Applying Transparent Customization to SIMD

Accelerators

6.1 Introduction

Single-instruction multiple-data (SIMD) acceleratore aommonly used in micropro-
cessors to accelerate the execution of media applicatibimsse accelerators perform the
same computation on multiple data items using a singleuostn. To utilize these acceler-
ators, the baseline instruction set of a processor is egtbnith a set of SIMD instructions
to invoke the hardware. Intel's MMX and SSE extensions am@mgdes of two genera-
tions of such instructions for the x86 instruction set aietture (ISA). SIMD accelerators
are popular across desktop and embedded processor fampitesding large performance
gains at low cost and energy overheads.

As with the acyclic accelerators discussed in previous &rapSIMD accelerators are
a proven mechanism to improve performance. However, thedia migration path from
generation to generation is a difficult problem. SIMD hardsvavolves in terms of width
and functionality with each generation. For example, thelIMMX instructions operated
on 64-bit vectors and this was expanded to 128-bit for SSH2e dpcode repertoire is
also commonly enhanced from generation to generation toustdor new functionality
present in the latest applications. For example, the numbepcodes in the ARM SIMD

instruction set went from 60 to more than 120 in the changafvlersion 6 to 7 of the ISA.

155

SIMD evolution in desktop processors has been relativelgrsint recently, with vector
lengths standardizing at 4 to 8 elements. However, thistifeacase in embedded systems.
For example, the ARM Neon SIMD instructions were extendethf¥ to 16 8-bit elements
in 2004 [12]. Other recent research [81] has proposed véstgiths of 32 elements are the
most suitable size for signal processing accelerators oubigdly, SIMD architectures are
still evolving in many domains.

Migration to new generations of SIMD accelerators is veiff§idilt, though. Once an
application is targeted for one set of SIMD instructiongniist be rewritten for the new
set. Hand-coded assembly is commonly used to exploit SIMBlatators; thus, rewriting
applications is time consuming, error prone, and tediousogiRmming with a library
of intrinsics can mitigate the problem to some degree, biitvaoe migration still requires
substantial effort, as code is usually written assumingexdf&MD width and functionality.

To effectively deal with multiple generations of SIMD aceeltors and overcome the
software migration problems, this chapter investigates uke of delayed binding with
SIMD accelerators. Delayed binding is a technique used mymageas of computer science
to improve the flexibility and the efficiency of systems. Frample, dynamic linkers de-
lay the binding of object code to improve portability and epafficiency of applications;
dynamic compilers take advantage of late binding to perfoptimizations that would
otherwise be difficult or impossible without exact knowledyf a program’s runtime envi-
ronment [51]. Examples of delayed binding in processortigethe use of trace caches
and various techniques for virtualization [99]. Just asoftvgare systems, these techniques
aim to improve flexibility and efficiency of programs, but@ftrequire non-trivial amounts
of hardware and complexity to deploy.

Similar to the transparent instruction set customizatimspnted in Chapter 4, delayed
binding of SIMD accelerators is accomplished through cdengupport and a translation
system, collectively referred to dsquid SIMD. The objective is to separate the SIMD
accelerator implementation from the ISA, providing an edudton to overcome ISA mi-
gration problems. Compiler support in Liquid SIMD trang&tSIMD instructions into
a virtualized representation using the processor’s haseafistruction set. The compiler

also isolates portions of the application’s dataflow grapHacilitate translation. The

156

translator dynamically identifies these isolated dataflolagsaphs, and converts them into
architecture-specific SIMD instructions.

Liquid SIMD offers a number of important advantages for fisi of processor im-
plementations. First, SIMD accelerators can be deployedout having to alter the in-
struction set and introduce ISA compatibility problems.e$& problems are prohibitively
expensive for many practical purposes. Second, delayeliigmallows an application to be
developed for one accelerator, but be utilized by comptetéferent accelerators (e.g., an
older or newer generation SIMD accelerator). This easesraomring engineering costs
in evolving SIMD accelerators or enables companies to idiffeate processors based on
acceleration capabilities provided. Finally, SIMDizedledn a Liquid SIMD system can
be run on processors with no SIMD accelerator or translatorply by using native scalar
instructions.

The contributions of this chapter are fourfold:

e It describes an compiler/translation framework to realirguid SIMD, which de-

couples the SIMD hardware implementation from the ISA.

e It develops a simple, ISA-independent mechanism to expregth-independent

SIMDization opportunities to a translator.

e It presents the design and implementation of a light-weilyintamic translator capa-

ble of generating SIMD code at runtime.

e It evaluates the effectiveness of Liquid SIMD in terms of leijng varying SIMD
accelerators, the runtime overhead of SIMD translatiod, the costs incurred from

dynamic translation.

6.2 Overview of the Approach

SIMD accelerators have become ubiquitous in modern gempengdose processors.
MMX, SSE, 3DNow!, and AltiVec are all examples of instruatiset extensions that are

tightly coupled with specialized processing units to explata parallelism. A SIMD ac-

157

celerator is typically implemented as a hardware copramessmposed of a set of func-
tional units and an independent set of registers conneatibe tprocessor through memory.
SIMD accelerator architectures vary based on the width efviéctor data along with the
number and type of available functional units. This alloasdiversity in two dimensions:
the number of data elements that may be operated on simalialyeand the set of available
operations.

The purpose of this chapter is to decouple the instructiofrem the SIMD accelera-
tor hardware by expressing SIMD optimization opportusitising the processor’s baseline
instruction set. Expressing SIMD instructions using thedbiae instruction set provides
an abstract software interface for the SIMD acceleratotsckvcan be utilized through a
lightweight dynamic translator. This lessens the develepincosts of the SIMD accelera-
tors and provides binary compatibility across hardware softivare generations.

There are two phases necessary in decoupling SIMD acaelefabm the processor’s
instruction set. First, an offline phase takes SIMD instarg and maps them to an equiv-
alent representation. Second, a dynamic translation piuass the scalar representation
back into architecture-specific SIMD equivalents.

Converting SIMD instructions into an equivalent scalarresgntation requires a set
of rules that describe the conversion process, analogotigteyntax of a programming
language. The conversion can either be done at compile tilmgwsing a post-compilation
cross compiler. It is important to note that the SIMD-tofac@onversion is completely
orthogonal to automated SIMDization (i.e., conversion bandone in conjunction with
compiler-automated SIMD code or with hand coded assemisty)jther, no information
is lost during this conversion. The resulting scalar codiigtionally equivalent to the
input SIMD code, and a dynamic translator is able to recdve!RIMD version provided it
understands the conversion rules used.

Dynamic translation converts the virtualized SIMD code.(ithe scalar representation)
into processor-specific SIMD instructions. This can be agugshed using binary transla-
tion, just-in-time compilation (JITs), or hardware. Offlilbinary translation is undesirable
for three reasons. First, there is a lack of transparenayr, asOS intervention is needed

to translate the binary. Second, it requires multiple cejiethe binary to be kept. Lastly,

158

SIMD
Instructions

uCode ' SIMD
Cache

Accelerator
SIMD

Instructions

. Dynamic
Fetch Retire ﬁ Translation
Scalar
Instructions

Decode [l Execute

Figure 6.1: Pipeline organization for Liquid SIMD. Gray boxes represadditions to a ba-
sic pipeline.

there is an accountability issue when applications bresathd application developer or the
translator at fault?

JITs or virtual machines are more viable options for dynatranslation. However,
in this chapter we present the design of a dynamic transiatiorg hardware. The main
benefit of hardware-based translation over JITs is that mase efficient than software
approaches. This chapter shows that the translation haedgaff the processor’s critical
path and takes less than ®i2n? of die area. Additionally, hardware translation does not
require a separate translation process to share the CP@hwimay be unacceptable in
embedded systems. Nothing about our virtualization tepiprecludes software-based
translation, though.

The remainder of this chapter describes a compiler teclenigugenerating code for
an abstracted SIMD interface, coupled with a post-retirenmardware method for dy-
namic translation. Our high level processor architectaqgresented in Figure 6.1. A basic
pipeline is augmented with a SIMD accelerator, post-reteat dynamic translator, and a
microcode cache that stores recently translated SIMDunstms. This system provides
high-performance for data parallel operations withouturggg instruction set modifica-

tions or sacrificing binary compatibility.

159

6.3 Liquid SIMD Compilation

The purpose of the compiler in the Liquid SIMD framework isttanslate SIMD in-
structions into an equivalent scalar representation. iBh#te compiler re-expresses SIMD
instructions using an equivalent set of instructions frdwa processor’s scalar ISA. Since
the scalar ISA is Turing-complete, any SIMD instruction barepresented using the scalar
ISA. The challenge is finding a representation that is eagptwert back to SIMD and is
also relatively efficient in its scalar form.

It is important note that this chapter is not proposing amhiéques that rely on the
compiler to automatically SIMDize a program. While the agguh presented could be
used in conjunction with automatic SIMDization techniq[iek 40, 69, 73, 127], this is not
the main focus of this chapter. Instead, we focus on how tmdesscalar representation of
SIMD code, which executes correctly on a baseline proceasdris amenable to runtime

translation.

6.3.1 Hardware and Software Assumptions

Before describing the actual strategy for abstractiors itiportant to explicitly state
some assumptions about the hardware targeted and applisat be run. First, it is as-
sumed that the targeted SIMD accelerators operate as aasepapeline. That is, the
SIMD accelerator shares an instruction stream and frontvatida baseline pipeline, but
has separate register files and execution units.

Second, it is assumed that the SIMD accelerator uses a meigongmory interface.
That is, when executing SIMD instructions, the basic seqe@hevents is a loop that loads
vectors, operates on them, and finally stores the vectots toamemory. In this model,
there is no register-to-register communication betweersttalar register file and the vec-
tor register file, and intermediate data not stored to mensnpt accessed by successive
loops. The assumption that there is little register-tastey communication is validated
by production SIMD accelerators, which usually have eitiey slow or no direct com-
munication between the two register files. The lack of indiate data communication

between loops is a side-effect of the types of loops beingroptd; typically the ideal

160

size of a vector, from the software perspective, is much &ogd to fit into the hardware
vector size. For example, one of the hot loops in 171.swinmaips on vectors of size 514.
If hardware supported vectors that long, then computedtsesauld be passed between
successive loops in a register. Since the results do nottidiidware, the results have to be
passed through memory.

A last assumption is that the application must be compilesbtne maximum vector-
izable length. That is, even though the binary will be dyreatly adjusted based on the
vector width supported in the hardware, there is some maximector width supported
by the binary. The reason for this assumption is due to meralbigpnment. Most SIMD
systems restrict memory accesses to be aligned based owvétar length. To enforce
such alignment restrictions, the compiler aligns datathasean assumed maximum width.
The binary can be dynamically adjusted to target any widéls than the maximum. The
trade off here is code size may unnecessarily increase iteglerator supports narrower
widths than the assumed vector size.

Implicit in this alignment restriction is the assumptioratiiargeted accelerators only
support execution widths that are a power of 2 (i.e., 2, 4.8,That is, a binary compiled
for maximum vector width of 8 could not (easily) be dynamigatanslated to run on
a 3-wide SIMD accelerator, because data would be aligneded¢r@ent boundaries in
the binary. Assuming SIMD accelerators are power-of-2 gds certainly valid for the

majority of SIMD accelerators in use today.

6.3.2 Scalar Representation of SIMD Operations

With these assumptions in mind, we now discuss how to coBIMD instructions into
an equivalent scalar representation. The conversion ankeshown in Table 6.1. This sec-
tion will walk through the thinking behind these rules, aretfon 6.3.4 will demonstrate
the usage of the rules in a detailed example.

The most natural way to express SIMD operations using sgaauctions is by creat-
ing a scalar loop that processes one element of the SIMD wvpetateration. Since SIMD

accelerators have a memory-memory interface, vector lgadsbe converted to scalar

161

SIMD Category Example SIMD Instruction Scalar Equivalent Comments

(1) Data parallel; operates vl = vadd v2, v3 rl = add r2, r3 Used for any operation which has an equivalent

on two vectors scalar operation. SIMD operations without a scalar
equivalent (e.g., saturating arithmetic) must construct
an idiom using multiple instructions.

(2) Data parallel; operates vl = vand v2, OxFF rl = and rl, OxFF Analogous to category (1)

on a vector and a scalar

supported constant

(3) Data parallel; operates vl = vor v2, OxFFOOFFO00 r3 = 1d [cnst + ind] Compiler inserts a read-only array, cnst, into the

on vector and non-scalar rl = or r2, r3 code, which stores the unsupported constant. The

supported constant array is indexed using the loop’s induction variable to
retrieve the appropriate portions during each scalar
iteration.

(4) Reductions; multiple rl = vmin v2 rl = min rl, r2 Loop-carried dependence (r1) is used to represent

vector elements used to that each element of the vector is used to calculate

compute one result one result.

(5) Memory accesses vl = vldb [addr] rl = 1ldb [addr + ind] [Induction variable is used to select one vector
element to operate on each iteration. Loads are used
to identify width of vector elements (e.g., byte or
halfword).

(6) Base-plus-displacement | [addr + rl] = vstr v2 r3 = add rl, ind Similar to category (5),

memory accesses [addr + r3] = str r2

(7) Permutations; reorders v2 = vld [addr] r3 = 1d [bfly + ind] Compiler inserts a read-only array, bfly, into the

vector elements vl = vbfly v2 r4 = add ind, r3 code, which stores how elements are reordered. This

rl = 1d [addr + rd] is used in conjunction with the induction variable to
bring in vector elements in a different order. Values
stored in b£1y uniquely identify a permutation.

(8) Permutations; reorders | vl = vbfly v2 r3 = 1d [bfly + ind] Analogous to category (7), but writes elements to

vector elements [addr] = vstr vl r4 = add ind, r3 memory in a different order, instead of reading them.

[addr + rd4] = str rl

Table 6.1: Rules for translating SIMD instructions into scalar eqlevas. Operands begin-
ning withr are scalars, operands beginning wittare vectors, andnd is the
loop’s induction variable.

loads using the loop’s induction variable to select a veetement. The size of a vector’s
elements is derived from the type of scalar load used to read/éctor (e.g., load-byte
means the vector is composed of 8-bit elements). Similardmory accesses, data paral-
lel SIMD operations can be represented with one or more sga&#uctions that perform
the same computation on one element of the vector. Esdgn#al data parallel SIMD
instruction can be converted to scalar code by operatingheretement of the SIMD vector
at a time.

If any SIMD operation does not have a scalar equivalent,(exgny SIMD ISAs but
few scalar ISAs support saturating arithmetic), then tladesequivalent can be constructed
using an idiom consisting of multiple scalar instructioRer example, 8-bit saturating ad-
dition could be expressed in the ARM scalar ISArdls = add r2, r3; cnp rl,

OxFF; novgt r1, OxFF, where the move instruction is predicated on the compari-

162

son. Vector masks, or element-specific predication, isteeratommon example of a SIMD

instruction that would likely be constructed using idion#s dynamic translator can rec-

ognize that these sequences of scalar instructions reyrese SIMD instruction, and no

efficiency is lost in the dynamically translated code. Agdhe scalar instruction set is

Turing-complete, so any data parallel SIMD instructican be represented using scalar
instructions. The only downside is potentially less effitiscalar code if no dynamic

translator is present in the system.

More complicated SIMD instructions, which operate on atitee elements to produce
one result (e.g., max, min, and sum), can be represented adimop-carried register in
the scalar loop. For example, category (4) in Table 6.1 shwove a vector min can be
represented. If the result register is used both as a somaelestination operand, and
no other operation definesl in the loop, therr 1 will accumulate the minimum of each
vector element loaded into2. The dynamic translator can easily keep track of which
registers hold loop-carried state, suchrdsin this example, meaning vector operations
that generate a scalar value fit into the Liquid SIMD system.

One difficulty in using a scalar loop representation of SIMi3tructions is handling
operations that change the order of vector elements. Pationtinstructions illustrate this
problem well. Suppose a loop is constructed and begins tipgran the first element
of two SIMD vectors. After several data parallel instruciso a permutation reorders the
vector elements. This means that the scalar data that wag bperated on in one loop
iteration is needed in a different iteration. Likewise, fh@rmutation causes scalar data
from future (or past) iterations to be needed in the curremation.

To overcome this problem, we propose limiting permutatigstiuctions to only occur
at memory boundaries of scalar loops. This allows the rgorgeo occur by using loads
or stores with a combination of the induction variable ancthecstatically defined offset.
Essentially, this loads the correct element for each i@mat

The last two rows of Table 6.1 briefly illustrate how reoraeriat memory boundaries
works. In category (7), a butterfly instruction reorders éhements of/2. In order for the
scalar loop to operate on the correct element each iterat@ninduction variable needs

to be modified by an offset, based on what type of permutatdseing performed. The

163

compiler creates a read-only arréy,| y, that holds these offsets. Once the offset is added
to the induction variable, the scalar load will bring in thgpeopriate vector element. A
dynamic translator uses the offsets to identify what typgestmutation instruction is being
executed in the scalar equivalent. Offsets are used, assedpo absolute numbers, to
ensure vector width independence of the scalar represamtat

The downside of using offsets to represent permutatioaisstiement reordering oper-
ations must occur at scalar loop boundaries using a mememary interface. This makes
the code inherently less efficient than standard SIMD imsibn sets, which can perform
this operation in registers.

Using only the rules in Table 6.1 and simple idiom extensi@areswere able to express
the vast majority of the ARM Neon SIMD instruction [12] seingthe scalar ARM ISA.
Neon is a fairly generic SIMD instruction set, meaning thehtéques developed here are

certainly applicable to a wide variety of other architeetur

6.3.3 Limitations of the Scalar Representation

Although using this scalar representation has many bentfése are some drawbacks
that must be taken into consideration. The most obviousaisvintualized SIMD code will
not be as efficient on scalar processors as code compilectiglifer a scalar processor.
This is primarily because of the memory-to-memory integfathe lack of loop unrolling,
and the use of idioms. Performance overhead is likely to memal, though, since vectors
in the working set will be cache hits, the loop branch is eagyrédict, and the idioms used
are likely to be the most efficient scalar implementation giheen computation. Another
mitigating factor is that the scalar code can be schedulégeatiiom granularity to make
the untranslated code as efficient as possible. As long aditims are intact, the dynamic
translator will be able to recover the SIMD code.

Another drawback of the proposed virtualization technitgecreased register pres-
sure. Register pressure increases because the scalderegiee being used to represent
both scalars and vectors in the virtual format. Additiopamporary registers are needed

for some of the proposed idioms. This could potentially eassill code which degrades

164

performance of both the scalar representation and tratsI&tMD code. Empirically
speaking, register pressure was not a problem in the benkkregaluated in this chap-
ter.

A last limitation is that there are two classes of instruetipfrom ARM’s Neon ISA,
which are not handled by the proposed scalar representafloe such instruction g1
= VTBL v2, v3.IntheVTBL instruction, each element @2 contains as an index for
an element o¥ 3 to write intovl. For example, if the first element o2 was 3, then
the third element o7 3 would be written into the first element ofL. This is difficult to
represent in the proposed scalar representation, bedaw®litiction variable offset, which
defines what vector elements are needed in the current leggtidn, is not known until
runtime. All other permutation instructions in Neon defihgstoffset statically, allowing
the compiler to insert a read-only offset array in the code.

The second class of unsupported instructions is interteavemory accesses. Inter-
leaving provides an efficient way to split one memory accessss multiple destination
registers, or to write one register value into strided mgmocations. This is primar-
ily used to aggregate/disseminate structure fields, whiehhat consecutive in memory.
There is no scalar equivalent for interleaved memory aesssnd equivalent idioms are
quite complex.

The performance of certain applications will undoubtedl§fer from not supporting
these two classes. None of the benchmarks evaluated dtthsse instructions, though,
meaning the most important SIMD instructioaie supported by the proposed scalar rep-

resentation.

6.3.4 SIMD to Scalar Example

To illustrate the process of translating from SIMD to thelaceepresentation, this sec-
tion walks through an example from the Fast Fourier Tramsédion (FFT) kernel, shown
in Figure 6.2. There is a nested loop here, where each arafithe inner loop operates
on eight elements of floating point data stored as arrays imong This is graphically

illustrated in Figure 6.3. The compiler (or engineer) idkes that these operations are

165

for(i = 0; 1 < 128; i += 8) {
for(j = i, n = 0; n < 4; J++, n++) {

tr = ar[i] * RealOut[k] -
ai[i] * ImagOut[k];

RealOut[k] = RealOut[j] - tr;
RealOut[j] += tr;

}
}

Figure 6.2: Example FFT loop.

suitable for SIMD optimization and generates vector loadrirctions for each eight ele-
ment data segment. The compiler then schedules vectortaperdor the loaded data so
that the entire inner loop may be executed as a small sequéisi®D operations, shown
in Figure 6.4(A).

Figure 6.4(B) presents the scalar mapping of the SIMD caute frigures 6.3 and 6.4(A).
Here, the vector operations of the SIMD loop are convertéal anseries of sequential op-
erations, and the increment amount of the induction vagiabldecreased from eight to
one, essentially converting each eight element operatitona single scalar operation. The
vector load and butterfly instructions in lings 5 of the SIMD code are converted into a
set of address calculations and load instructions in IS of the scalar code. As pre-
viously mentioned, SIMD permutation operations are cot@gemto scalar operations by
generating a constant array of offset values added to th#daeduction variable. These
offsets are stored in the static data segment of the progtahedabelbf | y. The value
stored at the addre$s | y plus the induction variable value is the offset of the elehoén
the data array to be loaded in the current iteration.

Most of the vector operations from the SIMD code in lires18 are data parallel,
and simply map to their scalar equivalent operation (etggvirul t on SIMD line 8 is
converted to arul t on scalar line 8). However, there are a few consideratioasribed
to be made for non-parallel operations. Note that the oerain line17 of the SIMD

code requires that all of the valuesvf 3 be computed before ther operation, because

166

ar RealOut ai ImagOut

RealOut tr [TTT1

(LTI [T I
& &

N

I
RealOut [TTT[TTT]

Figure 6.3: Vector representation of Figure 6.2.

thevbf | y operation in linel5 exchanges the position of the first and last vector element.
In order to properly transform this code segment into a seicafar instructions, the loop
body for the scalar code must be terminated early, and theangds to theor operation
must be calculated and stored in a temporary location atrideoéeach loop iteration, as
shown in linesl8- 19 of the scalar code. Then, a second loop is created (24es30)

that performs the serialr operation across each element of data. By separating scalar
equivalents in different loops, the compiler essentialyfprms a loop fission optimization

to ensure that certain SIMD operations are fully completefbtz others in the next loop

are started.

167

89T

1 mov 10, #0 # Initialize i| » 1 mov 0, f0 # Initialize i
Top of loop: Top of loop 1:
2 vld vf0, [RealOut + r0] # Load the vectors :2,; igd ﬁ: r[g,flz; =01 # Load offset for butterfly
3 vld vil, [ImagOut + r0] / 4 1d £0, [RealOut + rl] # Load the shuffled vectors
4 vbfly v£0, vf0 # Butterfly RealOut 5 1d f1, [ImagOut + rl]
5 vbfly vfl, vfl # and ImagOut
6 1d £f2, [ar + r0] # Load ar and ai
6 vld vf2, [ar + r0] # Load ar and ai / ! T a0
7 vid vEs3, [ai + x0] 8 mult £2, £2, f0 # Compute tr
9 mult £3, £3, fl
8 vmult vf2, vf2, vfO0 # Compute tr / 10 sub £6, f£2, £3
9 vmult v£3, vi3, vfl
10 vsub vE6, vi2, vE3 11 1d £5, [RealOut + r0]
12 sub £3, £5, f6 # Add/Sub RealOut and tr
13 add f4, £5, f6
11 vid vE5, [RealOut + r0] 14 1d r2, [mask + rO0] # Load the mask values
12 vsub vEf3, vf5, vfe # Add/Sub RealOut and tr 15 . £3, £3, r2 5 Nask off the sseless chis
13 vadd vfd, vE5, vfe ") 16 and f4, f4, r2
14 vmask vf3, vf3, 0xFO # Mask off the useless data 17 1d r3, [bfly + 0]
15 vbfly vf3, vf3 18 add r3, r0, r3 ;
16 vmask vf4, vf4, O0xFO 19 str [tmp0 + r3], £3 # Store butterflied datr?l
] or E, 5l e TS T T TOeTaE 20 str [tmpl + r0], f4 # Need to store other live data
18 vstr [RealOut + r0], vf0 # Store the result 21 266l r0, r0, #1 % Trerement i
22 cmp r0, #128
19 add r0, r0, #8 # Increment i 23 blt Top_of loop_1
20 cmp r0, #128
b1 blt Top of loop 24 mov r0, #0 # Reset induction variable
Top of loop 2:
25 1d £3, [tmpO0 + r0] # Load the butterflied data
26 1d f4, [tmpl + r0] # Load the other live data
27 or f0, f3, f4 # Combine the two vectors
28 str [RealOut + r0], fO # Store the result
29 add r0, r0, #1
30 cmp r0, #128
31 blt Top_of_ loop_2

A.

B.

Figure 6.4: (A) SIMD code for Figure 6.2, and (B) scalar representatibthe SIMD code in Figure 6.4(A).

6.3.5 Function Outlining

Once the SIMD instructions are translated into scalar ctite compiler needs some
way to identify to the translator that these portions of cade translatable. This is ac-
complished by outlining the code segment as a function |airto the technique proposed
in [30]. The scalar equivalent code is surrounded by a bramzhlink and a return instruc-
tion so that the dynamic translator is notified that a paléictegion of code has potential
for SIMD optimization.

In the proposed hardware-based translation scheme, wheadaa segion is translated
into SIMD instructions, the SIMD code is stored in the miade cache (see Figure 6.1),
and the branch-and-link is marked in a table in the procésBont end. The next time this
branch is encountered, the front end can utilize the SIMCelacator by simply access-
ing the SIMD instructions in the microcode cache and igrgpthre branch. This allows a
processor to take advantage of SIMD accelerators withopliaixinstruction set modifi-
cations.

One potential problem with marking translatable code negioy function calls is false
positives. This happens if the dynamic translator crealigddode for a function that was
not meant to be SIMDized. Typically, this is not a problem. I8Bequire that functions
have a very specific format, which does not match the outlfoadtion format described
for scalarized loops. Therefore, the dynamic translatouldmot be able to convert most
non-translatable functions. Even if the translator was dblconvert a function that it
was not meant to, the SIMD code would be functionally coreectong as there were no
memory dependences between scalar loop iterations. Reemngthb translator is simply
converting between functionally equivalent represeateti The scenario of a false positive
that produces incorrect code is highly unlikely, but theyomay to guarantee correctness is
to mark the outlined functions in some unique way (e.g., albemch-and-link instruction

that is only used for translatable regions).

169

6.4 Dynamic Translation to SIMD Instructions

Once a software abstraction is defined for describing SIMdIrirctions using a scalar
ISA, there needs to be a runtime method for translating theck lmto SIMD instructions.
As mentioned in Section 6.2, there are many valid ways to @o th hardware at decode
time, in hardware after instruction retirement, or throughiual machines or JITs. The
software abstraction presented in the previous sectiondspgendent of the translation
scheme.

Here, the design of a post-retirement hardware translatprasented. Hardware was
chosen because the implementation is simple, it addsdittéehead to the baseline proces-
sor, and hardware is more efficient than software. Posteragnt hardware was chosen,
instead of decode time, because post-retirement is fahefttitical path of the proces-
sor. Our experiments in Section 6.5 and previous work [45histiow that post-retirement
optimizations can be hundreds of cycles long without sigaittly affecting performance.
The biggest downside to a post-retirement dynamic mapgititat the modified microcode

needs to be stored in a cache and inserted into the contealnstin the pipeline frontend.

6.4.1 Dynamic Translation Hardware

From a high level, the translator is essentialjpardware realization of a determinis-
tic finite automaton that recognizes patterns of scalarringdions to be transformed into
SIMD equivalentsDeveloping automata (or state machines) to recognizerpattsuch as
the patterns in Table 6.1, is a mature area of compiler rekead thorough discussion of
how to construct such an automata is described in [2].

The structure of the proposed post-retirement dynamistator is shown in Figure 6.5.
To prove the practicality of this structure, it was implertezhin HDL (targeting the ARM
ISA with Neon SIMD extensions) and synthesized using a®0IBM standard cell pro-
cess. The results of the synthesis are shown in Table 6.2cé\ibtat the control generator
runs at over 650 MHz, and takes up only 174,000 cells (less@tanm? in 90 nm), with-
out using any custom logic. This shows that the hardware atnplethe control generator

is well within the reach of many modern architectures.

170

Dynamic Translation Hardware

Data . !
1 1
1 1
1 1
1 v 1
' | Legality [fe—T* i !
Abort—L»| gality [eng - Register i
i | Checks > State i
1 4 1
: 3 7y uCode .| UCode _:_>UCOde
1 Dst_veg update —L i
: Opcode Src1_ved > Buffer : Valid
1 Src2_yed 1
: \A :
! . Dst N !
! | Partial sy Opcode | !
|nSt—|’ Decoder Src2 Gen. "uodate |
| | Logic |
1 1

Figure 6.5: Structure of the proposed translator.

Description Crit. Path | Delay Area
8-wide Translator] 16 gates | 1.51 ns| 174,117 cells

Table 6.2: Synthesis results for the dynamic translator.

Partial Decoder: The dynamic translator has three inputs from retirementefiiase-
line pipeline: the instruction that retirekr{st in the figure), the data value that instruction
generated@at a), and an abort signalfpor t). Initially, the retired instruction is fed into
a partial decoder to determine the source/destinatioramgisrand the opcode. Itis only a
partial decoder, because it only needs to recognize opdbdeare translatable; any other
opcodes simply cause translation to abort mapping of tHeedtfunction. This portion of
the control generator is potentially redundant, dependmthe microarchitecture, because
the retiring instruction will likely have the opcode and ogred information stored in its
pipeline latch. Overall, the partial decoder only takesvatteousand cells of die area, so it
does not contribute significantly to the area overhead;résponsible for 5 of the 16 gates

in the critical path, though.

171

Legality Checks: The purpose of the legality checker in the dynamic translistto
monitor the incoming instructions to ensure that they catrdneslated. Scalar instructions
that do not map to a SIMD equivalent generate an abort sigaaflushes stateful portions
of dynamic translator. In addition to an instruction gemedaabort signal, there is an abort
signal from the base pipeline to stop translation in the eeém context switch or other
interrupt. The legality checker also signals when a suldghes finished mapping, enabling
the microcode buffer to write the translated SIMD instrans into the microcode cache.
The legality checks only comprise a few hundred cells andad@ocur on the critical path.

Register State: After the instruction is decoded, the operands/opcodesacseme
state, which is indexed based on the register numbers. €bister state determines the
translation strategy for this instruction. Register stds® includes whether or not a register
represents a scalar or vector, the size of the data currassigned to the register (e.g., 16
or 32 bit), and previous values stored in the register. Trewdp and register state comprise
the data used to transition between states in the automata.

Overall, there are 56 bits of state per register and a largebeu of MUXes in the
register state module, making this structure comprise 55%h® control generator die
area. Since the ARM ISA only has 16 architectural integeistegs, 55% of the die area
is likely proportionally smaller than dynamic translatéasgeting architectures with more
registers. Additionally, this structure will increase irea linearly with the vector lengths
of the targeted accelerator.

The previous values assigned to each register are storbe negister state in order to
identify operations that are defined using offsets in mentery., the butterfly instruction
discussed in Section 6.3). Recall that instructions thatder elements within a vector
are encoded by loading an offset vector, adding the offgetd induction variable, and
using that result for a memory access. In the dynamic trémslad instructions cause
the data to be written to the destination register’s statbel\a data processing instruction
uses that destination register as a source operand, @ addtthose values to the induc-
tion variable), then the previous values of the address apéed to the data processing
instruction’s destination register state. When a memogess instruction uses a source

that has previous values recorded in the register state stgnals that a shuffle may be

172

Scalar Instruction

Current Register State

Updated Register State

Instruction(s) Generated

(1) rl = mov #const

rl is marked as the induction
variable

rl = mov #const

(2) rl = 1d [r2 + r3]

r2 is a scalar; r3 is the induction
variable

r1 is a vector; size of r1 is
recorded (i.e., byte, halfword,
etc.); value loaded is stored in r1

vl = vld [r2 + r3]

has values loaded into it from an
offset array

(3) rl = 1d [r2 + r3] r2 is a scalar; r3 is a vector; r3 r1is a vector; size of r1 is vl = vld [r2 + ind]
has values loaded into it from an | recorded vl = vpermute vl
offset array

(4) [rl + r2] = str r3 r1is a scalar; r2 is the induction [rl + r2] = vstr v3
variable

(5) [rl + r2] = str r3 r1 is a scalar; r2 is a vector; r2 v3 = vpermute v3

[rl + r2] = vstr v3

(6) rl = dp r2, r3

r2 is a vector; r3 is a vector

r1 is a vector; size of r1 is
recorded

vl = vdp v2, v3

(7) rl = dp r2, r3

r2 is a vector; r3 is a vector; r3
has values loaded into it

r1is a vector; size of r1 is
recorded

vl = vdp v2, #const

(8) rl = dp r2, r3

r2 is a vector; r3 is the induction
variable (or vice-versa); r2 has
values loaded into it

r1is a vector; values loaded into
r2 are copied to r1

None: this format is
only used to update the
induction variable for
permutations.

(9) rl =dp rl, r2

r1is a scalar; r2 is a vector

r1is a scalar

rl = vred v2

(10) rl = add rl, #1

r1 is the induction variable

rl = add rl, SIMD_width

(11) any other instruction

all source operands are scalar

The input instruction is
passed unmodified

Table 6.3: Rules used to dynamically translate the scalar code to Sibd2.odp refers to
any data processing opcode, anded refers to a vector opcode that reduces a
vector to one scalar result (e.g., min).

occurring. Those previous values (i.e., the offset vechoe) used to index a content ad-
dressable memory (CAM), and if there is a hit, the approprsituffle is inserted into the
SIMD instruction stream. If the CAM misses, then the offseihly loaded is a shuffle not
supported in the SIMD accelerator and translation is aboftite that storing the entire 32
bits of previous values is unnecessary, because the valeesly used to determine valid
constants, masks, and permutation offsets; numbers taabarbig to represent simply
abort the translation process. The process of reading asaagister’s previous values,
and conditionally writing them to the destination regissacounts for 11 of the 16 gates
on the critical path.
Opcode Generation Logic:Once register state for an instruction’s source operansis ha

been accessed, it is passed to the opcode generation logand® generation logic uses

simple combinational logic to determine how to modify an @ge based on the operands.

173

This essentially performs the reverse of the mapping desdrin Section 6.3, using rules
defined in Table 6.3. For example, if the incoming instructi® a scalar load, then the
opcode logic will write a vector load into the microcode tarfaind tell the register state
to mark the destination as a vector. Likewise, if the incagnimstruction is an add, and
the register state says both source registers are vectmsgde generation logic will write

a vector add into the microcode buffer and mark the destnategister as a vector. A
small amount of state is kept alongside this logic to recogidioms of scalar instructions.
Whenever an idiom is detected, this logic has the abilitywaiidate previously generated
instructions in the microcode buffer.

Opcode generation logic is fairly simple provided the SIMiStruction format is simi-
lar to the equivalent scalar instructions, since the saakdructions require little modifica-
tion before insertion into the microcode buffer. This is tase with our implementation,
and thus the logic only takes up approximately 9000 cellsit@bgeneration is not on the
critical path in the current implementation, but it is vetpse to being critical. It likely
would be on the critical path if there was not good correlabetween baseline and SIMD
instruction formats.

Microcode Buffer: The final component of the dynamic translator is the micrecod
buffer. This is primarily just a register array used to sttiie SIMD instructions until
a region of scalar code has completed mapping. The maximogtHeof a microcode
sequence was limited to 64 instructions in this implemémtatSection 6.5 shows that this
is sufficient for the benchmarks examined. At 32 bits perution, the microcode buffer
contains 256 bytes of memory, which accounts for a little enttran half of its 77,000
cells of die area. The rest of the area is consumed by an atighnetwork for collapsing
instructions when idioms or permutations invalidate poesly generated instructions.

Recall that the register state is used to detect when menmmaabons are indexed
using a previously loaded offsets from constant arraysd@ates (7) and (8) in Table 6.1).
When this situation is detected, the opcode generatiort laji insert the appropriate
permutation and memory instructions. At this point, thevprasly generated vector load of
the offset vector can safely be removed. Removing thisuestyn while inserting multiple

other instructions requires an alignment network. It sHdag noted that removing the

174

Scalar Instruction SIMD Generated
1 mov r0, #0 mov r0, #0
2 1d rl, [bfly + 0] vl = vld [bfly + r0]
3 add rl, r0, rl
4 1d £f0, [RealOut + rl] vE0 = vfld [RealOut + r0]
vi0 = vbfly vi0
5 1d f1l, [ImagOut + rl] vifl = vfld [ImagOut + rO0]
vil = vbfly vfl
6 1d f2, [ar + 0] vf2 = vfld [ar + rO0]
7 1d £3, [ai + rO0] vE3 = vfld [ai + 0]
8 mult f£2, f£2, f0 vf2 = vmult vf2, v£0
9 mult f£3, £3, f1l vEf3 = vmult v£3, vfl
10 sub fe, f2, £3 vf6 = vsub vf2, vf3
11 1d £5, [RealOut + r0] vE5 = vld [RealOut + r0]
12 sub £f3, f5, f6 vE3 = vsub vf5, vfe6
13 add f4, £5, fo vfd4d = vadd vf5, vfe
14 1d r2, [mask + r0] v2 = vld [mask + r0]
15 and £3, £3, r2 vf3 = vmask vf3, #const
16 and f4, f4, r2 vf4d = vmask vf4, #const
17 1d r3, [bfly + r0] v3 = vld [bfly + r0]
18 add r3, r0, r3
19 str [tmpO + r3], £3 vi3 = vbfly viE3
[tmpO + r0] = vstr v£3
20 str [tmpl + r0], f4 vid = vbfly vid
[tmpl + r0] = vstr vf4
21 add r0, r0, #1 r0 = add r0, #8
22 cmp r0, #128 cmp r0, #128
23 blt Top_of loop_ 1 blt Top_of loop_ 1

Table 6.4: Example translating scalar representation from FiguréBj.#ack into SIMD
instructions.

offset load is not strictly necessary for correctness, dimtigating this functionality would
greatly simplify the microcode buffer.
After the microcode buffer receives the End signal from tbgality checker, SIMD

instructions are written into the microcode cache. SIMDewdll then be inserted into the

pipeline upon subsequent executions of the outlined fancti

175

6.4.2 Dynamic Translation Example

To better illustrate how the dynamic translation hardwanections, Table 6.4 shows
an example, translating the scalar loop in Figure 6.4(Bkbat SIMD instructions for
an 8-wide SIMD accelerator. The second loop from FigureH).4¢ould be translated
in a similar manner, and not refused with the original fisstoop. Translation is very
straight-forward for the vast majority of opcodes in the rapde, making the design of a
hardware dynamic translator simple.

Instruction 1, the move, is the first instruction to enter dy@amic translator. As per
the rules in Table 6.3,0 is marked as the induction variable in the register statd,tha
instruction is inserted into the microcode buffer unmodifie

Next, instruction 2 is translated. This is a load based onatasthe addresbf | y)
and the induction variable Q). Table 6.3 shows this is translated into a standard vector
load. R1 is marked as a vector and the value loaded is stored as a psevadue ofr 1 in
the register state. After that, instruction 3 is translat&éte register state shows thad
is the induction variable andl is a vector with previous values associated with it. This
instruction generates no instruction.

Now instruction 4 needs to be translated. Since one of thecesyr 1, has previous
values associated with it, this load may correspond to aflghiafstruction. The register
state will look at the previous values, use them to CAM into@MRand see that these
offsets correspond to a known permutation instruction.drapel, the load is being turned
into a vector load by the opcode generation logic. Both o$¢hi@structions are inserted
into the microcode buffer. Additionally, a pointer from thegister state is used to remove
the vector load created for instruction 2; a load of the dffsenot necessary once the
butterfly is inserted. This process of creating a load andflehis repeated for instruction
5.

Translating the remaining instructions in this exampleuist ja matter of applying the
rules presented in Table 6.3. Any instruction that does ratcimthe rules defined in that
table does not meet the proposed scalar virtualization dorand causes translation to

abort. Once all scalar instructions have been translabedoutlined function returns, and

176

the microcode buffer writes the SIMD instructions into theeracode cache. This enables
the SIMD code to be inserted into the instruction stream wgudrsequent encounters of the

outlined function.

6.5 Evaluation

To evaluate the Liquid SIMD system, an experimental frant&weas built using the
Trimaran research compiler [121] and the SimpleScalar ARNu&tor [9]. Trimaran was
retargeted for the ARM instruction set, and was used to ctengmalar ARM assembly
code. The ARM assembly code was then hand-modified to incBIED optimizations
and conversion to the proposed scalar representation asimgximum targeted SIMD
width of 16. Automatic SIMDization would have been used haoeen implemented in
our compiler. Again, automatic SIMDization is an orthogbisaue to abstracting SIMD
instruction sets.

In our evaluation, SimpleScalar was configured to model aMARRGEJ-S [5], which
is an in-order, five stage pipelined processor with 16K, @4rassociative instruction and
data caches. A parameterized SIMD accelerator, executebjéon ISA, was added to the
ARM-926EJ-S SimpleScalar model to evaluate the performaiSIMD accelerators for
various vector widths. Simulations assumed dynamic tediosi took one cycle per scalar
instruction in an outlined function. However, we demonsréhat dynamic translation
could have taken tens of cycles per scalar instruction witlhdfecting performance.

Liquid SIMD was evaluated using fifteen benchmarks from S2Q00 (171.swim,
179.art, 172.mgrid), SPECfp95 (101.tomcatv, 104.hydyo@BECfp92 (052.alvinn, 056.ear,
093.nasa7), MediaBench (GSM Decode and Encode, MPEG2 Peuudi Encode), and
common signal processing kernels (FFT, LU, FIR). The setesichmarks evaluated was
limited by applicability for SIMD optimization and the cemt capability of the ARM port
of our compiler. None of these limitations were a result & thquid SIMD technique.

Dynamic Translation Requirements: In order to further understand the costs of Lig-
uid SIMD, we first studied characteristics of benchmarks timpact design of a dynamic

translator. One such characteristic is the required sizh®imicrocode cache. The mi-

177

Benchmark | Mean | Max
052.alvinn 12.5 13
056.ear 34.5 36
093.nasa7 45.5 59
101.tomcatv | 35.5 61
104.hydro2d | 27.2 | 40

171.swim 37.8 | 51
172.mgrid 46.2 62
179.art 12.8 | 19

MPEG2 Dec.| 12.5 13
MPEG2 Enc.| 14.5 19

GSM Dec. 25 25
GSM Enc. 195 | 28
LU 11 11
FIR 11 11
FFT 31.3 | 38

Table 6.5: Number of scalar instructions in outlined function(s).

crocode cache is used to store the SIMD instructions afteruglimed procedure call has
been translated. This characteristic is also importansédtware-based translators, as it
affects the size of code cache needed for the application.

We found that supporting eight or more SIMD code sequences [iot loops) in the
control cache is sufficient to capture the working set in the benchmarks investigated.
One guestion remaining then is how many instructions areired for each of these loops.
With a larger control cache entry size, larger loops may aediated, ultimately providing
better application performance. The downside is increased, energy consumption, and
latency of the translator. However, large loops that do riahfo a single control cache
entry may be broken up into a series of smaller loops, whicfitdieto control cache. The
downside of breaking loops is that there will be increasext@dure call overhead in the
scalarized representation. This section later demomestiaiat procedure call overhead is
negligible when using an 8-entry control cache.

Table 6.5 presents the average and maximum number of itistnggoer hot loop in
the benchmarks. In some benchmarks, like 172.mgrid anddr@tatv, hot loops in the
Trimaran-generated assembly code consisted of more thaxs#dctions, and were broken

into two or more loops. This decreased the number of ingtrnstin each loop dramatically

178

Benchmark | <150 | <300| >300| Mean
052.alvinn 0 0 2 19984
056.ear 0 0 3 96488
093.nasa7’ 0 0 12 23876
101.tomcatv 0 0 6 16036
104.hydro2d 0 0 18 24346
171.swim 0 0 9 33258
172.mgrid 0 0 13 5218
179.art 0 0 5 2102224
MPEG2 Dec. 0 1 1 269
MPEG2 Enc. 0 3 1 257
GSM Dec. 0 0 1 358
GSM Enc. 0 0 1 538
LU 0 0 1 15054
FIR 0 0 1 13343
FFT 0 0 3 7716

Table 6.6: Number of cycles between the first two consecutive calls ttirmd hot loops.
The first three columns show the number of outlined hot lobgs have distance
of less than 150, less than 300, and greater than 300 cydiesdretheir first two
consecutive calls.

because it also reduced the number of load and store instngataused due to register
spills. Table 6.5 shows that 172.mgrid and 101.tomcatv tlaeéargest outlined functions
with a maximum of nearly 64 instructions. In most of thesedtenarks, it would be
possible to decrease the number of instructions per loogstthan 32 in order to decrease
the size of the microcode cache.

These results lead us to propose a control cache with 8 sifi® SIMD instructions
each. Assuming each instruction is 32 bits, this would tataKB SRAM used for storing
translated instruction sequences.

Another benchmark characteristic that affects dynamiasiagtor design is latency be-
tween two executions of hot loops. Translation begins geimgr SIMD instructions for
outlined scalar code the first time that a code segment isugxéc If translation takes a
long time, then SIMD instructions might not be available rizeny subsequent executions
of that hot loop. This restricts the performance improvetraghievable from a Liquid
SIMD system. Moreover, if translation takes a long timenthige dynamic translator will

need some mechanism to translate multiple loops at the saree t

179

O Vector Width = 2 O Vector Width = 4 B Vector Width =8 B Vector Width = 16 ‘

9 SPECfp Mediabench Kernels
8 f A
; \
6
o
3 5
Q
g 4
»
3
2
1
0 & < A o > Q GO A A
& &g P g & & qpb & &L L e NI &
o & o o N S @0 @3’0
° O \tg@o \‘8@0 7 &

Figure 6.6: Speedup for different vector widths relative to a procesgihout SIMD ac-
celeration. The callout shows the speedup improvement fmoaessor with
built-in ISA support for SIMD instructions.

Table 6.6 shows the number of cycles between the two firstemanise calls to outlined
hot loops for the benchmarks. In all benchmarks except MPE@@de and Decode, there
is more than 300 cycles distance between outlined procezhll® The reason for large
distances is that the scalar loops usually iterate seviemaktover dozens of instructions,
and also because memory accesses tend to produce cold cesdss.nilable 6.6 shows
that there is significant time for hardware based dynamicstedion to operate without
adversely affecting performance. A carefully designedtdéhslator would likely be able
to meet this 300 cycle target, as well.

Performance Overhead from Translation: Figure 6.6 illustrates the speedup attained
using one Liquid SIMD binary (per benchmark) on machinespsuting different width
SIMD accelerators. Speedup reported is relative to the da@nehmark running on a
ARM-926EJ-S processor without a SIMD accelerator and withautlining hot loops.
Compiling with outlined functions would have added a smakrhead (less than 1%) to

the baseline results.

180

In the ideal case, a SIMD-enabled processor with unlimiesburces can achieve a
speedup ofﬁ, where S is SIMD optimizable fraction of the code and’ is the
accelerator vector width. Some of the factors that decrdasamount of speedup in real
situations are cache miss penalties, branch miss preagstand trip count of the hot loop.

As expected, speedup generally increases by increasingettier width supported in
the SIMD hardware. In some of the benchmarks, like MPEG2 Decthere is virtually
no performance gain by increasing the vector width from 8 @0 This is because the
hot loop(s) in these benchmarks operate on vectors thatrdyeB8celements. Supporting
larger vector widths is not beneficial for these applicatiah/9.art shows the least speedup
of any of the benchmarks run. In this case, speedup is lintitedhuse 179.art has many
cache misses in its hot loops. FIR showed the highest spedduyy benchmark because
approximately 94% of its runtime is taken by the hot loop, lbap is fully vectorizable,
and there are very few cache misses.

Figure 6.6 shows that SIMD acceleration is very effectivectrtain benchmarks. How-
ever, this fact has been well established and is not the garpbthis chapter. The main
purpose of Figure 6.6 is to demonstrate the performancéeagrof using dynamic transla-
tion in a Liquid SIMD system. Overhead stems from executiigZloops in their scalar
representation whenever the SIMD version does not resideemmicrocode cache. To
evaluate the overhead, the simulator was modified to elitmicantrol generation. That is,
whenever an outlined function was encountered, the simulegated it like native SIMD
code.

The performance improvement from using native instrucimas measured for all fif-
teen benchmarks. Of these benchmarks, the largest perficardifference occurred in
FIR, illustrated in the callout of Figure 6.6. Native SIMDdm provided 0.001 speedup
above the Liquid SIMD binary. This demonstrates that thégoerance overhead from
virtualization is negligible.

Code Size Overhead:Compilation for Liquid SIMD does increase the code size of
applications. Code size overhead comes from additionaldbrand-link and return in-
structions used in function outlining, converting SIMD tingtions to scalar idioms, and

also from aligning memory references to a maximum vectbiedength (discussed in

181

Section 6.3). Obviously, too much code size expansion wilploblematic, creating in-
struction cache misses, which may affect performance.

To evaluate code size overhead, the binary sizes of unmaddi&§echmarks were com-
pared with Liquid SIMD versions. The maximum differenceetv&d occurred in hydro2d,
and was less than 1%. The reason behind this is that the amidBiM D code in the bench-
marks is very small compared to the overall program size.eGizk overhead is essentially
negligible in Liquid SIMD.

6.6 Related Work

Many different types of accelerators have been proposedakermmomputation faster
and more efficient in microprocessors. Typically, theseebators are utilized by chang-
ing the instruction set; that is, statically placing accatier control in the application binary.
This means that the binary will not run on systems without #taelerator, or even systems
where the accelerator has changed slightly.

To allow more flexibility in the instruction set, some prengowork [28, 30, 60, 94,
112, 130] has recognized the benefits of dynamically bingistyuctions to an accelerator.
Many different methods have been proposed to generate coidedfor the various targeted
accelerators at runtime. For example, work by Hu [59, 60] deestrated the effectiveness
of using binary translation software to dynamically getentrol for one type of acceler-
ator, a 3-1 ALU. The rest of these techniques utilize tracdedased hardware structures,
to perform translation. Our method evolves this approactsfD accelerators.

There is a great deal more related work if the scope of dynaimiting is expanded to
include benefits other than accelerator utilization. Dyitannding has long been used to
support modern microarchitectures in the context of led&#és, such as the use of micro-
ops (including micro-op fusing) in Intel processors [47]n@ther motivation for dynamic
binding has been to enable runtime optimizations. Seveatiard compiler optimizations,
such as dead code elimination and constant propagatioafibiEom runtime information
available to dynamic translators [51].

Continuous Optimization [41] and RENO [100] are both exassmf dynamic transla-

182

tors that perform traditional compiler optimizations bgnslating instructions during the
decode stage of pipelines. The rePLay [99] project sinyilapgtimized code, but oper-
ated on instructions post-retirement. Post-retirememtdiation is attractive because there
is usually a long latency between instruction retiremertt &g next use [45], effectively
taking translation off the critical path.

Just in time compilers (JITs) and virtual machines, suchysano [10], DAISY [39],
and the Transmeta Code Morpher [38], are all examples scftaaly dynamic transla-
tors. Software dynamic translators have been proposedfbotode optimizations and to
translate one ISA to another.

Virtualizing a SIMD ISA is similar to the way modern graphicdated shader appli-
cations [19] are executed. In these applications, pixehamtex shaders are distributed in
an assembly-like virtual language such as DirectX, whick $igport for SIMD. At run-
time, the shaders rely on a virtual machine to translate ttteal SIMD instructions into
architecture-specific SIMD instructions. The benefits ahgscalar instructions to virtu-
alize SIMD instructions, as opposed a virtual languagenas & translator is not necessary
to run the application.

The hardware translator proposed in this chapter is clasédyed to two other works [97,
123]. These papers developed methods to utilize SIMD hashdgnamically, without
software support for identifying the instructions. Thattleese works (often speculatively)
create SIMD instructions from an arbitrary scalar binarjpeThardware support required
to perform this translation is generally more complicateait our proposed design, which
merely recognizes and translates a set of predetermin&datisn patterns.

The proposed hardware translator is also similar to work byoBs [21] and Loh [84].
These papers propose using dynamic translation to detesrt wperations do not use the
entire data path (e.g., only 8-bits of a 32-bit ALU), and tipatk multiple narrow opera-
tions onto a single function unit.

Somewhat related to this chapter are the decades of resiatchave gone into auto-
mated compiler-based SIMDization. Many of these techrégue summarized by Krall [69]
for the UltraSparc VIS instruction set, and by Bik [14] fortdlis SSE instructions. Re-

cent work [40, 127] has investigated techniques to veatanisaligned memory references

183

through data reorganization in registers. Other recenkWiB] introduced techniques to
extract vector operations within basic blocks and selectiectorization of instructions.
Automatic SIMDization is completely orthogonal to the warkthis chapter; the SIMD
virtualization scheme proposed here can be used in comjunafith or in the absence of
any automated SIMD techniques.

The main contribution of this chapter is the development ofethod for virtualizing
SIMD instructions in a way amenable to dynamic translatido.previous work has done
this. To demonstrate that our virtualization schema idg#asinslated, the design of a post-
retirement hardware translator was presented in SectibnAny other style of dynamic

translator could have been used to prove this point, though.

6.7 Summary

Liquid SIMD is a combination of compiler support and dynartrenslation used to
decouple the instruction set of a processor from the impiaat®n of a SIMD accelerator.
SIMD instructions are identified and expressed in a virzei SIMD schema using the
scalar instruction set of a processor. A light-weight dyiatranslation engine binds these
scalar instructions for execution on an arbitrary SIMD &eor during program execu-
tion. This eliminates the problems of binary compatibibtyd software migration that are
inherent to instruction set modification.

This chapter presented a software schema powerful enougirtt@lize nearly all
SIMD instructions in the ARM Neon ISA using the scalar ARMtiostion set. The de-
sign of a hardware dynamic translator was presented, pgawat the software schema is
translatable and that this translation can be incorporatidmodern processor pipelines.
Synthesis results show that the design has a critical patitieof 16 gates and the area is
less than 0.22m? in a 90nm process. Experiments showed that Liquid SIMD caused code
size overhead of less than 1%, and performance overheadsfHat 0.001% in the worst
case. This data clearly demonstrates that Liquid SIMD i$ Ippactical and effective at
solving the compatibility and migration issues associatétl supporting multiple SIMD

accelerators in a modern instruction set.

184

CHAPTER 7

Design and Utilization of Cyclic Accelerators

7.1 Introduction

Previous chapters in this dissertation describe the desigrutilization of acyclic and
SIMD accelerators. The purpose of this chapter is to extkosé ideas to accelerators tar-
geting computation in the form of innermost loop bodies. baeefit of accelerating entire
loop bodies, instead of just acyclic portions, is that moogkws done in hardware, making
the resultant execution more efficient. The downside ofglaiiore work in hardware is that
the accelerator is less programmable; that is, fewer agijphics are able to take advantage
of the accelerator because the class of computation aatetiels more specialized.

Accelerators targeting innermost loops present a goodydgsoint in the efficiency
versus programmability spectrum. Many applications spegredmajority of their time
executing in innermost loops, meaning that acceleratogetiaag this type of computa-
tion can potentially be broadly applicable. Additionalllgere are several characteristics
of innermost loops (discussed in Section 7.2.1) that makéwsre implementations par-
ticularly efficient. The accelerators described in thisptka are more efficient, but less
programmable, than the acyclic accelerators discusseunqus chapters.

The first part of this chapter presents the architecturalogagion and design of a
hardware accelerator that targets a class of loop bodiea Wide range of applications.
By defining a single architecture to accelerate loops, tharrang costs of designing an

application-specific accelerator are eliminated. The go&b cost-effectively generalize

185

an ASIC design to make it useful for a wider range of loops,(irerease the programma-
bility), without generalizing it to the point where it begino look like a general purpose
processor.

The second step is to attack the software costs of targetiggle accelerator. As with
acyclic and SIMD accelerators, software costs result frerenmgineering the application
once the underlying hardware has changed. To avoid theteweslevelop a software ab-
straction that virtualizes the salient architectural fiees of loop accelerators. An applica-
tion that uses this abstraction is dynamically retargetedke advantage of the accelerator
if it is available in the system; however, the applicatiotl iill execute correctly without
any accelerator in the system. The tradeoff is to abstraayas many architecture-specific
features as possible without requiring a significant ovadte dynamically retarget the ap-
plication.

There are two primary contributions of this chapter:

e It presents the design a novel loop accelerator architecidesign space exploration
ensures that the accelerator design is broad enough tceazieemany different ap-

plications, yet very efficient at executing the targetediestf computation.

e It describes an dynamic algorithm for mapping loops ont@laacelerators. The
algorithm is analyzed to determine the runtime overheatisdnced by this dynam-
ically mapping loops, and static/dynamic tradeoffs areegtigated to mitigate the

overhead.

7.2 Overview

It is widely acknowledged that the vast majority of executiime for most applications
is spent in loops. Applying this fact, along with Ahmdal’'svsagenerally leads system
designers to construct hardware implementing loop bodlesnever ASICs are needed to
meet performance or power consumption goals. For exanyeja purpose loop acceler-
ators for Fast Fourier Transforms and Viterbi decoding driguitous in modern embedded
SoCs.

186

This section begins by describing the general architectaremon across loop accel-
erators. Next, it gives an overview afiodulo schedulinga compilation technique used
to schedule loops so that they effectively use the hardweseurces available to them.
The section concludes by introducing the issues surrogndiymamically retargeting ap-
plications to a particular loop accelerator implementatiwhich are discussed in detail in
Section 7.4.

7.2.1 Loop Accelerator Architectures

In order to determine an appropriate architecture for adbszd of loop bodies, it is first
necessary to identify the general structure of loop acatdes. Figure 7.1 shows the high
level structure of a loop accelerator. At the top of this fejuaddress generators stream data
into the accelerator. The address patterns typically Wokosimple, deterministic pattern
(often based on the loop’s induction variable(s)) that é&sstihem to be decoupled from the
computation performed on the data. When data is streamednm the memory system,
it is placed in FIFOs that are accessed by function units YFAddress generators can be
time multiplexed to fetch multiple streams, which enablesnt to hide any stalls due to
bursty memory behavior amongst the different streams.tldata that is not streamed into
the accelerator, such as constants or scalar inputs, ateminto a register file. Typically,
this register file is memory mapped and must be initializéfdteeinvoking the accelerator.

Once all the data is available, FUs begin processing it,ingachlues from the FIFOs
or register file and writing results to either the output meynlouffers or registers. The
register file that stores results from the FUs, need not be @aofithic standard SRAM;
many loop accelerators utilize distributed SRAMs [29] orrmefficient structures such
as FIFOs [43] or ShiftQs [1]. Additionally, the function@liprovided by the FUs is often
highly customized, executing several RISC equivalentaipans back-to-back in the name
of improved efficiency [116].

Once computation has completed, another set of addressagi@rsestream the results
back to memory. It is assumed that the input and output mersioeams are mutually

exclusive, so that the accelerator does not need to perfegmoary dependence analysis.

187

88T

Control

Registers

Memory
4

Address
Generator

Address
Generator

Memory

Memory
4

Address
Generator

Interconnect

Address
Generator

v
Memory

Memory

Loop

Accel.

Figure 7.1: An architecture template for loop accelerators

L1$

Processor

This abstract architecture encapsulates the structuresf lmop-targeting ASICs [114] as
well as previously proposed generalized loop acceler§2&,29, 88].

There are several reasons why this architecture is moréegffiat executing loops than
general purpose processors. First, the control flow in lasp&ry simple, removing the
need for control flow speculation such as sophisticateddbraredictors. Second, the
repeating control sequence (instructions) used to cordithug accelerator can be stored
in a circular buffer, which is much more efficient to accesantla large instruction cache.
Third, the memory accesses are not data dependent and dreitinphdependent from
each other, enabling memory accesses to be decoupled feovothputation and obviating
the need for dependence analysis. Lastly, the interconRéld, and register files can be

customized to fit the needs of the application or domain thbeing targeted.

7.2.2 Utilizing Loop Accelerators

Assuming that there is an effective piece of hardware forcetieg loops, it is also
necessary to have a capable compilation strategy to makefuke hardware. Modulo
scheduling is a state-of-the-art software pipelining fetierfor scheduling loops, and pro-
vides the basis for the software techniques presented snctiapter. Previous work on
modulo scheduling is extensive [33,72, 74,82, 83, 105-108], and the purpose of this
section is only to introduce fundamental concepts.

Figure 7.2 shows a sample modulo schedule. In this exanmgotl,ieeration of the loop
has six instructions (represented by grayed boxes), and Hre three different FUs that
can execute the instructions. The instructions are asgigm&Us so that new iterations
can begin executing at a constant rate, calledrittiation interval, or simply!ll.

Walking through the example in Figure 7.2, iteration 1 begrecuting at cycle 0, and
a new iteration begins every 2 cycles (the Il) until all thesFhecome fully utilized in
cycles 4 through 7. After cycle 7, there are no more iteratitmnbegin and so the software
pipeline begins to drain until execution completes. Theqosrwhere the software pipeline
is ramping up and ramping down are called firelogueandepilogue respectively, and

the steady state (when an iteration is starting and conmgletvery 1l cycles) is called the

189

Function Unit

Time A B C

Stage 0

1 Prologue
2
Stage 1

3 age

Initiation Interval = 2
4
] Stage 2 } Kernel Num. Stages = 3
6 oration 1 Num. lterations = 4

plete
7
8 Iteration 2
Complete
9
10 Iteration 3 Ep"oQue
Complete
11
Iteration 4
Complete
Figure 7.2: Important concepts in modulo scheduling loops
kernel

A single loop iteration can be broken down into multigkagesbased on how many
times Il cycles has passed since it began executing. Forgraduring cycle 6, iteration 2
is executing stage 3 instructions, iteration 3 is execustage 2 instructions, and iteration
4 is executing stage 1 instructions. The different time stagach stage are referred to as
the stagecycles which range from 0 to 1I-1. The goal of modulo scheduling teics is
generally to make Il as low as possible, so that kernel exatig reached and completed
as soon as possible. A secondary goal is to make the numb&rgess(often abbreviated
SCfor stage count) as small as possible. To rephrase usindathpipeline terminology,
lower Il equates to higher iteration throughput and lowereg@ates to lower latency.

Modulo scheduling has proven to be a very effective techaiigu software pipelin-
ing, however there are some limitations with the processe [@nitation is that loops with
function calls cannot be modulo scheduled. This problemmiéigated through intelli-
gent function inlining, and is not a major drawback. A moregaortant limitation is that

while-loops and loops with side exits require special hanasupport, such as speculative

190

memory accesses [91, 105]. Although it is feasible to suppbile-loops and loops with
side exits, we chose to preclude them from this study, tommize the architectural impact
outside the accelerator itself.

Figure 7.3 demonstrates the implication of this decisioactEbar in this figure rep-
resents the entire execution time for a given benchmark fstediaBench or SPEC. The
black bars on the bottom are the fraction of time spent exeguih modulo schedulable
loops. The bars labeled “Speculation Support” refer to thee tspent in while-loops that
would be modulo schedulable, provided the appropriatevairel support existed. Bars
labeled “Subroutine” are loops with function calls that ktboot be inlined (e.g., calls into
the math library that were not visible to the compiler).

Media processing and floating point applications (the leftipn of Figure 7.3) tend
to spend the vast majority of their execution time in modubegiulable loops. Lack of
support for loops requiring speculation will limit the uttyl of the loop accelerator for some
applications (e.g., the applications on the right portiéririgure 7.3); however, modulo
schedulable loops clearly represent an important classrapatation worthy of hardware

acceleration.

7.2.3 Dynamic Retargeting for Binary Compatibility

Using specialized hardware to execute loops has many pesfoce and power bene-
fits, but hardware and software design costs prevent widasieployment in many cases.
Designing one architecture for a broad set of loops tackiesiardware design costs. How-
ever, the software design costs remain a difficult problem.

Software costs arise from the fact that the control that keeoa loop accelerator is
statically encoded in the binary. An application that mék an accelerator typically has
no forward or backward compatibility. This means that wheméhe underlying hardware
platform changes, the application must completely re+eegyied.

The method proposed to avoid these software costs is talizuthe accelerator inter-
face. That is, we will analyze the steps used during conipilab map applications onto

loop accelerators, and perform as much of it dynamically @ssiple. This enables the

191

O Acyclic ‘

O Subroutine

E Speculation Support

| W Modulo Schedulable

100%

90% A
80% T
70%
60%
50%
40% 7
30% T
20% 7

awi] uonnosax3y slweukq

192

10% 7
0%

Figure 7.3: Percent of execution time spent in various types of codeeé8lation Support” refers to while-loops and loops witheséxits,

“Subroutine” refers to loops that have a non-inlinable tiort call, and “Acyclic” refers to code not known to be in afpo

binary to be flexible, not tying it to any one specific accdlerarchitecture.

The challenge in virtualization is to determine the appiaterstatic/dynamic tradeoffs
to make in the binary. High quality modulo scheduling heigsscan be sophisticated,
taking too long to fully perform dynamically. If the transilan takes too long, it can com-
pletely erode all the efficiency benefits from using the amedbr in the first place. At the
other end of the spectrum, performing the mapping entiresically ties the binary to a
single accelerator implementation, which has significam-recurring engineering costs if
the underlying hardware changes.

The remainder of this chapter is organized as follows: $acfi.3 performs a design
space exploration for a generalized loop accelerator fange of media and floating point
applications. This design provides the basis for our workidnalization, which is covered
in Section 7.4. Section 7.4 walks through the details of caemtiqular modulo scheduling
heuristic and analyzes the tradeoffs involved in perfogreach step statically versus dy-

namically.

7.3 Generalized Loop Accelerator

To mitigate the costs of customized hardware, it often makeese to extend the pro-
grammability of ASICs, making them more useful across atheoget of applications. The
goal of this section is to do just that: design an architecthat effectively supports the set
of modulo schedulable loops from the MediaBench and SPE@ipRcations on the left
portion of Figure 7.3. Designing this architecture has twoppses. First, we provide
a guantitative analysis of the tradeoffs involved with addeach execution resource to
the accelerator. Previous work [26, 88] designing genegdlioop accelerators presented
designs without this analysis. Second, this design helgmuge the static/dynamic trade-
offs in modulo scheduling to target a loop accelerator. & haen reported that the time
needed to modulo schedule a loop strongly correlates to uingber of resources in the
target machine [33], and so a representative architecturedessary to accurately measure
translation overheads.

The loop accelerator architecture template shown in Figutewill serve as the basis

193

for our generalized design. Customizing the template fertdligeted application set now
requires identifying how many resources of each type thppéaations require. To deter-

mine this, we modified the Trimaran toolset [121] to compdednd simulate a processor
with attached loop accelerator. The accelerator connedtsetprocessor through a system

bus using a memory mapped interface.

7.3.1 Design Space Exploration

The baseline architecture in our design space exploraisaraes a hypothetical loop
accelerator with infinite resources. That is, we modulo dakeloops onto a machine with
unlimited registers, execution units, memory ports, etachitectural parameters were
then individually varied to determine what fraction of thdimite-resources speedup was
attainable using finite resources. The Swing modulo sclhmgltkeuristic [82] was used to
target each application to the accelerators. More dethdsitthe Swing modulo scheduler
are presented in section 7.4.1. As previously mentionely, the benchmarks on the left
portion of Figure 7.3 were used in this analysis.

Figures 7.4 and 7.5 show the results of the design spacerakplofor execution units
and register requirements. The x-axis in these graphssepts the number of resources
available in the system and the y-axis is the fraction of itdinesource speedup attained.
For example, the gray line in Figure 7.5 shows that when tieeomly one floating point
register, the average speedup across the targeted afplisatte is 60% of what is attain-
able with infinite floating point registers.

Figure 7.4 explores the function units available in the bareg¢or, where IEx and FEX
represent integer and floating point execution units, retygdy. One interesting result
from this experiment was that very few floating point unit&xHn the right graph) were
needed to attain the a significant amount of speedup in tHeappn set. This is partially
due to the significant number of integer-only applicatiamsur target suite, but the long
latency of floating point operations also contributes tg tieisult. If a floating point unit is
fully pipelined (which was assumed) modulo scheduling doesry good job utilizing the

unit every possible cycle.

194

~—#—CCA =©~|Ex with CCA =#IEx no CCA +FEX‘

14 * —g
s y /
ke
£
]
%06
Q.
=]
ke
Q
3
"
€04
3
)
o
0.2
0 T T T T T T T T
0 4 8 12 16 20 24 28 32 36

Number of Resources

Figure 7.4: Execution resource needs. Each line is the fraction of itefiresource loop
accelerator speedup attained when varying the number otigga units

One surprising result from Figure 7.4 is that the point of idiishing returns for integer
execution units is very high, on the order of 24 units. Duehig tesult, we chose to
experiment with another type of function unit, a CCA [28].eTGCA (shown in Figure 7.6)
is a logic structure specifically designed to efficiently Iempent the most common types
of integer computations. It supports 4 inputs, 2 outputs, @mn execute as many as 15
standard RISC operations atomically in 2 clock cycles. Timagry benefits of the CCA
result because it executes much larger pieces of computasi@ group, reducing storage
and interconnect requirements, as well as squeezing more aud of each clock cycle.
The top line in Figure 7.4 shows that when one CCA is addeddddbp accelerator, the
required number of integer execution units drops dramiyica

Figure 7.5 shows the required number of registers needetbte kve-ins, live-outs,

constants, and temporary values for the loop. Overall, fyisters are needed to support

195

=¥=|Reg ~¥—FReg =®=IReg no CCA‘

1 —- x ¥

'_'

- /

0.8 1

0.6 1

o/

0.2

Fraction of Speedup Attained

O T T T T T T T T
0 4 8 12 16 20 24 28 32 36

Number of Resources

Figure 7.5: Register file resource needs. Each line is the fraction ofitefiresource loop
accelerator speedup attained when varying the number steeg)

the majority of important loops. As would be expected, ad@iiCCA to the system reduces
the register requirements, since fewer temporaries ardateto communicate between
separate execution units.

Similar to Figures 7.4 and 7.4, Figure 7.7 shows the the ivaabf infinite-resource
speedup attained when varying a particular resource. Thaighgvaries the number of
load/store streams supported in the accelerator. As woeldxpected, loads are more
important than stores. Surprisingly, many loops can be stp@d without any address
generators streaming data out to memory; these loops orby $walar outputs, which are
read directly from the memory mapped register file upon loompletion.

Another surprising result from the memory stream analysithat a very large num-
ber of memory streams were needed to support several inmpda@aps in the examined

benchmarks. For comparison purposes, previously propgseeral loop accelerators only

196

Input1 Input2 Input3 Input4

VY

Outputi Output2

|:| Add/Logical @ Logical

Figure 7.6: CCA execution unit from [28]

supported 3 load/1 store [26] stream or 6 total load/staeasts [88] per loop. Supporting
fewer memory streams is desirable, since it requires |lesizae.

Empirically speaking, the loops that required a large nunobenemory streams tended
to be very large. One potential way to reduce the hardwareheael of supporting these
loops is to time-multiplex the address generators. Larggdotend to have larger lls,
giving the address generators time to process severatetffatreams. Another potential
solution is to break the large loops up into smaller loops@isi technique such as decou-
pled software pipelining [96]. This would reduce the regdinumber of streams for each
individual loop but increase memory traffic, as dividing tbep up would likely create
communication streams between the smaller loops.

The graph in Figure 7.8 shows the maximum supported Il bydbp hccelerator (i.e.,
loops that cannot be scheduled in at the maximum II will notabeelerated). This is
an important consideration in the accelerator design, usx¢he size of the loop control
is directly proportional to the maximum supported Il. Rédadm Figure 7.2 that, in the

steady-state, the kernel of the loop simply repeats oveosed Since the kernel is Il cycles

197

== o0ad Streams =% Store Streams

0.8

0.6

0.4

Fraction Speedup Attained

—

0.2

0 5 10 15 20 25 30 35 40
Number of Resources

Figure 7.7: Memory stream resource requirements

long, Il determines the size of the control structure, asagrthere is support to selectively
disable stages for the prologue and epilogue. As with the ongistream limitation, if a
particular loop is too large to be supported by an I, oftemets using the compiler to split
the loop into multiple smaller loops will enable the loop tdize an accelerator.

Using the analysis in this section as a guide, we propose ergiered loop accelerator
design consisting of 1 CCA, 2 integer units (including mullérs), 4 floating point units,
16 floating point and integer registers, 16 load memory stee@iime-multiplexed among
4 address generators), 8 store memory streams (multipkaxechg 2 address generators),
and a maximum Il of 16. This is sufficient for attaining 83% lo¢ tspeedup possible using
a hypothetical loop accelerator with infinite resources.

The design space exploration presented here has omittedn&jar portions of the

data path: the register file structure and interconnectoouigiations that often occur in

198

N

AAAAA
AAAAAAAAAA

o o
co ©
p
)
<

o o
o ~
——

o
~
Tt

Fraction Speedup Attained
o
(¢)]
T——

o
w

o
N

©
-

o

0 10 20 30 40 50 60 70 80
Supported Il

Figure 7.8: Impact of maximum supported Il on potential speedup

customized hardware accelerators. The primary reasorhi®omission is that there are
currently few modulo scheduling algorithms that take th@ssomizations into considera-
tion. Without software support to analyze the costs of deciiiral customization (in terms
of reduced performance) it is difficult to make intellige®isign decisions, and so we leave

this exploration for future work.

7.3.2 Loop Accelerator Control

Figure 7.9 shows the control logic used to support moduledaled loops in the accel-
erator. This design is very similar to previous work [65, 81t used this type of control for
modulo scheduling support in digital signal processorsKB)Sand general-purpose VLIW
processors. The bits needed to configure each part of thedooglerator are stored in

control stores shown in the top right of Figure 7.9. One oktheontrol stores is necessary

199

Per Accelerator Per Function Unit

|
|
Num. _

S tages | Stage Instruction
|
|
—
|
|

b . |

Initiati Current | Active

nitiation » Cycle Stages

Interval .

End of Stage
v
-1 Instruction
to Issue
N Current
Ulnnk » Iteration lter. == 07
Iterations

Figure 7.9: Control logic in the loop accelerator

for each architectural element (e.g., FU) that can be sdbddndividually. Each row in
the control store corresponds to a particular stage cyd ifistructions are tagged with
each stage they belong to. For example, if this memory stilv@dontrol for function unit
C in Figure 7.2, then the first entry would have a dark grayruttion tagged stage 0 and
the second entry would have a light gray instruction taggades2.

The gray boxes at the left of Figure 7.9 completely define Wwimstructions execute at
a given time. Every clock cycle, the Current Cycle is incrated. When the Current Cycle
reaches ll, 1 stage of the loop has completed, so Currene@yotset to 0, and the Current
Iteration is decremented. In order to support prologue qildgue execution, the Active
Stages bit vector is used to disable instructions whose ssagot supposed to execute.

Using the loop in Figure 7.2 as an example, software confgytire loop accelerator
control by writing 3 into Num. Stages, 2 into the Initiatiamtérval, 4 into Num. Iterations.
Instructions and a bit vector representing each instraiistage are also written into the
control stores on a per function unit basis. Figure 7.10 wé#hkough the execution of FU

C from Figure 7.2. Current Cycle starts at 0 and will accessfitist instruction from the

200

Time Current Current Active Instruction
Cycle Iteration Stages

0 0 3 001

1 1 3 001

2 0 2 o1l Stage Instruction
3 1 2 011 001
4 0 1 111 100
5 1 1 111

6 0 0 111

7 1 0 111

8 0 0 110

9 1 0 110
10 0 0 100
11 1 0 100

control store (shown at the right in Figure 7.10). Activedatsi is initialized to 001, since
at the beginning of the loop only stage one is active. Thev&cBtages bit vector will
be compared with the stage tag from the dark grey instruamessed from the control
store and the instruction will be issued, provided its staiges enabled. A similar process
will happen when Current Cycle is 1 during the next clock eythe light grey instruction
is accessed, the stage tag (100) is compared with the ActageS$ bit vector, and the
instruction is not issued, because its stage has not beeatadt At the end of this cycle,
Current Cycle is reset to 0, since the cycle iterates betv@eand 1l-1. This also causes
the End of Stage signal to be sent to Current Iteration antv&&tages. Current Iteration
is decremented, and a 1 is shifted into the Active Stagesdaitov (011) enabling stage
1, because Current Iteration is non-zero. This processcwiitinue until Current Iteration

reaches zero, at which point zeros will start to be shiftéd Active Stages (the epilogue).

Figure 7.10: Control logic walkthrough

The loop has completed once Active Stages is all zeros.

201

7.4 Virtualizing the Loop Accelerator

The loop accelerator architecture is very effective at akag the modulo scheduled
loops from the wide range of applications studied. Howetleg, tradeoffs made in that
design will not fit all situations. When this is the case, a r@eelerator must be designed
for the system, which creates a burden on the applicatioaldper. Traditionally, control
used to invoke an accelerator is statically placed in tharfyinmeaning the application
will have to be re-engineered to function on a different aack platform. This software
porting cost often prevents the deployment of specialized\are in situations where it
otherwise would provide benefits.

The way to eliminate the software cost is to generate thercbfdr the accelerator
dynamically, only after the application knows what accafers are available in the sys-
tem. Dynamic control generation relies on the assumptianttie cost of performing the
translation is low; otherwise the translation cost wouléaigh any benefits provided by
the custom hardware. Thus, the key to virtualization of aashardware is analyzing the
algorithms used to generate control, performing the timesoming parts statically, and
encoding them in the binary in a way that is binary compatiité other systems.

Towards this end, this section will analyze the Swing modweloeduling heuristic [82],
with the goal of using this algorithm dynamically to map Isamto a loop accelerator.

From a system level view, we are proposing that the compiggically mark modulo
schedulable loops in applications. This can be accomglisitber through a new instruc-
tion signaling the beginning of a loop or via a special enngdicheme, such as the proce-
dural abstraction proposed in [31]. Once the loops are naakeun time software system,
such as Dynamo [10] or DAISY [39], will use the Swing algonitho retarget the binary
to utilize an available accelerator. The translated loagpsstored in a software managed
code cache, and the loop accelerator is used whenever [gd$ia particular loop is not
supported by the target accelerator (for example, if theduired was too high), then the

translation simply aborts and the loop can execute on thergepurpose processor.

202

Figure 7.11: An example loop body. For illustration purposes, assumetipligis take 3
cycles and all other operations take 1 cycle.

7.4.1 Dynamically Mapping using Swing Modulo Scheduling

Swing modulo scheduling is a heuristic for software pipe@kinloops [82]. This algo-
rithm is used as the basis for dynamic loop mapping becawseogus work [33] demon-
strated that it produces high quality schedules and is fsiginitly faster than other modulo
scheduling algorithms, particularly when the machine hiasge number of resources.

There are many steps in mapping a loop onto a loop accelerktrst, if a CCA is
present in the system, the translator tries to collapseiphllRISC instructions into a sin-
gle CCA instruction. The CCA is designed to efficiently execlarger pieces of integer
computation, and so moving computation to this resourceongs the loop schedule. Op-
timally utilizing the CCA is an NP-complete problem [57], #us work uses a greedy
algorithm to keep runtime overheads low.

After CCA mapping, modulo scheduling begins. The first seefpicompute the min-
imum Il that the loop could potentially be scheduled at. Theimum Il is a function of
both the recurrences in the loop and the resources availalhe accelerator. As an ex-
ample, consider the loop in Figure 7.11. This loop has twomences, ops 3-6-9 which
is 5 cycles long and ops 4-7 which is 2 cycles long. Since thgdst recurrence is 5 cy-
cles long, Il must be at least 5, since it is impossible totStdure iterations before the
recurrence completes execution. Resources may also #fteotinimum Il for the loop in

Figure 7.11. For example, assume the target loop accetdérationly one multiplier. Since

203

there are 3 multiply instructions in the loop, [l must be aidEe3 because an iterations worth
of computation must be issued every Il cycles. The minimufarlh loop is the maximum
of the recurrence and resource constrained lls. A more tlgiraliscussion of algorithms
to compute Il is covered in [105].

Now that Il is computed, Swing prioritizes operations toetgtine the order in which
to schedule them. Simplifying a bit, the Swing priority ftion tries to schedule the most
critical recurrence first, moving through less critical weences, and then finally to oper-
ations that do not appear on a recurrence path. The intwgtimd this is that scheduling
the recurrences is a more constrained problem since opesdtiave a min and max sched-
ule time. Additionally, failing to schedule a recurrenceafiven Il will make the schedule
fail, forcing the scheduler to increase Il (lowering perf@nce) in order to map the loop.
Using Figure 7.11 as an example again, the Swing priority tyilto schedule the most
critical recurrence, 3-6-9, followed by the next most calirecurrence, 4-7, followed by
the remaining acyclic operations. Once the operationsrwétzed, Swing uses a slightly
modified list scheduling algorithm to assign each operatianslot in the modulo schedule.
Full details of the Swing prioritization and scheduling@ighms are found in [82].

After a loop schedule is generated, a postpass maps opdrandthe virtual loop en-
coding to the register files/memory buffers in the loop aexbr. If there are not enough
registers to support the translated loop, translationtaband the loop is executed on the
baseline processor. In addition to operand mapping, theslaor must also generate in-
structions to move scalar inputs/outputs between the laoplarator and the scalar pro-

cessor.

7.4.2 Evaluation

In order to gauge the overheads associated with dynamioaiyping loops onto an
accelerator, the Swing algorithm was implemented as a ppast-to compilation in the
Trimaran toolset. The number of instructions needed tagetaeach loop was recorded
using OProfile [78], which reads on-chip performance coutthe average penalty per

loop is reported in Figure 7.12.

204

O CCA Subgraph ID OResMIl BRecMIl OPriority B Scheduling B Register Assignment ‘

500000
|

450000

400000

350000

300000

250000 I

200000

150000

Translation Overhead (Instructions)

100000

SOOOZj}‘EEE HBsfR ﬂW_FEQHH-gQ

Figure 7.12: The measured translation overhead per loop.

There are a few important trends to take away from this gré&fst, the average loop
translation time varies widely from benchmark to benchmdike primary reason for this
is that the number and size of the loops also varies by a laerf and larger loops require
more work to translate. A secondary reason for the high magas that the algorithm used
in Swing’s priority calculation takes significantly moreni if there are many recurrences
in the loop. Applications that took the longest time to ttatesdid not necessarily have the
largest loops.

The most important take-away from Figure 7.12 is the distrdn of time spent in vari-
ous phases of the Swing algorithm. On average, it took apmetely 110,000 instructions
to map each loop onto the targeted loop accelerator. 70%@sétimstructions were devoted
to calculating the priority used in scheduling, and 18% efitistructions were spent map-

ping subgraphs onto the CCA. The vast majority of transtatime was spent performing

205

these two tasks, which motivates us to perform these stapsaily.

One potential, non-static solution to reducing the pnoritn time is to use a simpler
priority function. A promising candidate is to use the hetghsed priority function pro-
posed in [105]. The simpler priority function was previguiund to be effective in [105],
because of the more exhaustive backtracking scheduleringeé algorithm. However,
using the simpler priority function in conjunction with tsengle-pass scheduler in Swing
often yielded sub-optimal schedules.

Statically encoding the Swing priority for each operatiarthe binary is another solu-
tion. One of the fortunate characteristics of the Swingnigrdunction is that it focuses on
scheduling the most critical recurrences in the loop first] eecurrences are architecture
independerit Statically encoding priority in the binary enables a highality schedule,
while at the same time reducing the average loop translatioa from 110,000 down to
36,000 instructions. One potential way to encode this isregpting a data section in the
binary immediately before the loop. One number is encodec&eh instruction in the
loop, and once the size of the loop is known the prioritieseasly recoverable. Statically
encoding the instructions that map onto the CCA has beerredwe previous work [28],
and further reduces the translation overhead from 36,00thdo an average of 17,000
instructions per loop.

Figure 7.13 demonstrates the importance of driving thestedion overhead as low
as possible. This graph shows the average speedup attaivedwarying the translation
cost per loop. The various lines reflect how frequently tlagtation penalty must be
paid. For example, the top line assumes that each modulalgiaide loop need only be
translated once during benchmark execution, and the bdit@enassumes each loop must
be translated 10% of the time when it is invoked, due to emictiom a code cache.

If translation costs average 110,000 instructions per I@gpshown in Figure 7.12)
and each instruction takes one cycle, even a 1% miss rateebewmpacts the speedup
provided from the loop accelerator: moving from an ideaizpeedup of 2.63 down to

1.47. Driving the translation penalty down to 17,000 instians, by performing the CCA

LIt should be noted that the criticality of recurrences arly anchitecture independent if execution laten-
cies of the function units remain consistent across theiteatires.

206

2.8

26"

N\
201X \\ =—0Once
\\ ——0.10%
0.50%
\ T =19
18 \ -
10%

1.6 T

Speedup

oo

1.2 %

1 T T T T T T T T I T
0 50000 100000 150000 200000 250000 300000 350000 400000 450000 500000

Translation Overhead (Cycles)

Figure 7.13: Speedup attained when varying the translation overheadlfgenEach line
represents how frequently the penalty must be paid.

selection and priority computation offline, would push therage speedup up to almost 2.
An alternate way to view Figure 7.13, is that it stressesi@oirtance of providing enough
space in the code cache so that loops do not need to be relydededlated.

Figure 7.14 shows the speedup over a single-issue processsured per application
using a realistic code cache. It was assumed the code caunVidgut enough space to store
the previous 16 translated loops using an LRU eviction politsing the target architecture
proposed in Section 7.3, this works out to approximately 83df storage, which is small
compared with typical code cache sizes [55]. The hit rateseéxh application varied
slightly, but all were very close to 100%.

The left-most bar for each application shows the speedup frsing the loop accel-
erator, assuming no translation penalty. This is equivaiethe speedup of a statically

compiled binary. The next bar, labeled “Swing Real Cachkbdyss the speedup when as-

207

OSwing No Overhead OSwing Real Cache B Height Priority Real Cache B CCA/Swing Priority Offline

Speedup
w

1.5 7

1+

RN N RN RN O & L @ @ O 0 S R S QO 2 N
‘"Q@ &09 & ef“oe} 0006 ez(’Ob «\006 N IDQQ'SZI %é\ s@a ¥ 3 0006 (\006 'b‘\b\ b’b‘»& (‘?’Q\ rz>&° QD‘Q? \Q’oo & ¢ 6@\ /\Q’rp(‘ &’{8{- @&Q @Q”b
FFF ST LS S F & ! AN TN & o
NSRX ¢
6)\()/ é\q/ &6\ qé{\ é@e@ (QQ &Q Qe] Qe’ QQQ Q§ ARG QGJ '\Q{b N <\ '\céb '\%

Figure 7.14: Static/dynamic and algorithm tradeoffs for the key mapstages.

suming a realistic translation cache and the penalties unedd$rom preforming the entire
Swing algorithm dynamically. The “Height Priority” bar i¢sa fully dynamic, but instead
uses the simpler height-based priority function. The firzlriepresents the speedups when
CCA mapping and Swing priority calculation are performedliné and encoded in the
binary.

Several interesting patterns emerge from Figure 7.14.t,FHios many benchmarks,
such as rawcaudio, the translation overhead of performmggentirely dynamically has
a negligible impact on the loop accelerator’s speedup (@mg the first two bars). In
the case of rawcaudio, there is only one critical loop in tppligation and so the trans-
lation cost is easily amortized. Other applications sholitdd performance degradation
because their most critical loops were quite small, makimggttanslation costs negligible.
The translation overhead for many other loops was quiteifssggnt, however. Mpeg2dec
notably went from a speedup of 2.1 down to 1.15, and pegwidgrac172.mgrid lost all
performance benefits from the loop accelerator. On avefagtring the translation costs

brought the speedup from 2.63 down to 2.17.

208

The middle two bars for each application show the tradeefflved in using the Swing
priority function in comparison with the simpler heightdeal priority. The less sophisti-
cated height-based priority function sometimes generstasdules with higher lls (and
thus, worse performance), but the translation times ar@fgigntly faster. On average, the
benefits of faster translation time outweighed the benefitetier schedules, providing a
speedup of 2.3 compared with 2.17.

The final bar in Figure 7.14 shows that by moving the partidyldifficult portions of
mapping loops offline, the speedups can approach that afefattompiled code. On av-
erage, performing CCA mapping and Swing priority calcaatoffline reduced translation
penalties to the point where the average speedup was 2.5hgsaced with 2.63 for na-
tively compiled code. This hybrid static/dynamic mappitigategy provides a significant
24% and 37% more speedup up over fully dynamic solutiongung height-based and

Swing priority functions, respectively.

7.5 Related Work

As mentioned in previous chapters, accelerators are a ppméthod to increase the
performance and efficiency of microprocessor designs. raepeople have proposed ac-
celerators specifically targeting loop nests, becausedyelar control structure in loops
provides significant efficiency gains over processors cesigor general purpose control
structures. The Reconfigurable Streaming Vector ProcB®VP) [26] is a vector-based
accelerator designed for loops in multimedia applicatimomsing in an embedded environ-
ment. The architecture is similar to what we have proposedigver, RSVP uses SIMD
execution units, and a single SRAM to buffer memory accesbtathew et al. propose
another loop accelerator architecture in [88], which isn@milar to the architecture pro-
posed here. The main difference is the memory bufferingctre and type of execution
resources provided. This chapter goes beyond these twiopseworks by providing a
guantitative analysis of accelerator resource needs Usops from a diverse application
set. Other work, such as [91,107], proposed adding hardwagestandard pipeline to

efficiently support the control structure of loops. The c¢ohin our proposed accelerator is

209

very similar to [91], but our work extends this by additiolyatustomizing execution and
memory resources. The loop accelerator architecture preden this chapter was primar-
ily developed to provide a realistic target for evaluatirymamic mapping algorithms.

Statically generating efficient code for loops is also amafemuch related work. Soft-
ware pipelining [72] has proven to be an excellent way to iowprthe resource utilization
of loop execution. Lam [72] showed that developing an optisoftware pipelining is an
NP-complete problem, and so many heuristics have beenajeato produce high-quality
schedules in a reasonable amount of time [33, 50, 74, 82083106, 110, 118]. Most per-
tinent related work is the Swing Modulo Scheduling algantloriginally proposed in [82].
Later work [33] demonstrated that this algorithm producesh lyuality schedules in much
shorter runtimes than other modulo scheduling algorithmeking it a good starting point
for dynamically retargeting loops. While the work in thisagtter did not exploit this fact,
Swing has been extended to support loops with complex dofiore, such as side ex-
its [74]. The contribution of this chapter is evaluating 8wiModulo Scheduling in the
context of dynamically targeting a loop accelerator. ThHathee runtime of each mod-
ulo scheduling stage is measured, and we explore the trfgdesdociated with statically
encoding the results of each stage in the binary.

Abstracting the underlying hardware structure to improffeiency without affecting
binary compatibility has much related work, as well. Peshde best known example of
this is the Transmeta Code Morphing Software [38], whichaiyitally converts x86 ap-
plication into VLIW programs. Dynamo [10], Daisy [39], andD[94] are all examples
that dynamically translate applications to target engicfferent microarchitectures. Sev-
eral proposals exist to only translate select portions dgplication to target accelerators.
For example, [30, 59, 112] all explored the benefits of dymathy binding applications to
acyclic accelerators. Other work [31] looked at dynamicaiinding for SIMD accelera-

tors. This chapter is the first proposal for dynamically lmgoto cyclic accelerators.

210

7.6 Summary

Adding customized hardware to a processor is an effective twamprove the per-
formance and efficiency of the system. However, significamtiivare and software non-
recurring engineering costs prevent customized hardware being adopted in many sit-
uations. This chapter addresses those costs in the coritextlec computation. Cyclic
computation accelerators are a compelling design poittalee they encompass a larger
fraction of many applications’ execution time than acyelacelerators, even though cyclic
accelerators are not as broadly applicable as acyclic ones.

This chapter presented the design of a generalized loopeaate®. Design space ex-
ploration was used to ensure that the accelerator is ajpidica a wide range of media and
floating point applications. This generalized design patesia good architecture for execut-
ing common modulo schedulable loops, thus eliminating tiggresering costs associated
with designing loop-specific accelerators from scratch.

Software costs were addressed by virtualizing the acdeleirsterface. Modulo sched-
uled loops are statically marked in the binary and express#te baseline instruction set.
At runtime, a dynamic translator attempts to map the loop @my available accelerators
using modulo scheduling. This work found dynamically madstheduling loops has a
significant performance overhead and proposed staticattp@ing scheduling priority to
be an effective technique for minimizing the overhead. @Ngthe loop accelerator and
dynamic compilation system provided a mean speedup of Z/&dasingle-issue proces-
sor, and the resulting binary remains flexible enough to leel oy systems with different

(or even no) accelerators.

211

CHAPTER 8

Summary

Industry has produced, and consumers rely on, continuairexutial performance in-
creases from microprocessor-based systems. The traalitoathod for improving per-
formance, increasing clock frequency, is no longer eflects sharply rising power con-
sumption has made designs with higher clock frequenciesstpensive to cool. This trend
has given rise to a new generation of designs with many singalees on a single chip.
Multicore chips attempt to improve performance by provglincreased parallelism to ap-
plications. This strategy is well suited for some applicatdomains, such as transaction
processing; however, many applications without readilgaapnt parallelism suffer from
this design decision.

The focus of this dissertation is on an alternate method fware performance: hard-
ware customization. Hardware customization is an attraditernative to homogeneous
multicore chips, because customized hardware is far mdicegit than general-purpose
hardware, and often applicable when coarse-grained pésatl is difficult or impossible
to find. Technology trends, such as increasing transistositeand alternate manufac-
turing techniques [66], only serve to make hardware custatian more likely in future
designs. The aim of this dissertation was to solve many o#thkitectural and compila-
tion challenges that traditionally made customized hardwdifficult to implement.

One problem with customized hardware is the effort neededetign an accelerator
for each target application or domain. Chapter 2 solvesgtoblem for acyclic accelera-

tors, by developing an automated technique for identifyiregcritical computation patterns

212

given an application (or set of applications). Hardwareyistisesized specifically for the
targeted applications without user input. The system destnated significant speedups for
several applications, with as much as 2.39 and an averag®®fwWhile utilizing modest
additional die area.

Another contribution from Chapter 2 is the observation tritical computation sub-
graphs within a domain tend to be very similar, although theyot exactly match. This
trend can be exploited, by slightly generalizing the fumietility in the accelerators proac-
tively. For relatively little additional cost, generaligj accelerators provides a substantial
likelihood of the accelerators being useful even in the exindf future algorithms.

Designing execution resources for one application or danediapplications makes
sense in many high volume-markets, but non-recurring esgging costs render this tech-
nique infeasible in many other markets. To increase contipuia efficiency in these situa-
tions, Chapter 3 uses critical subgraph identification wigletwo general-purpose acyclic
accelerators, one based on combinational logic and onel lmas&®okup-tables. A wide
range of applications are analyzed to ensure the most conommiputation patterns are
efficiently supported in the proposed designs. Overallyaye speedups of 1.66 for the
combinational logic and 1.47 for the lookup-table baseckcators were achieved.

Another challenge in utilizing custom hardware is the eegiing costs associated with
integrating accelerators into existing hardware and saiveystems. The root of the prob-
lem stems from the typical method software uses to invokelacators, by statically en-
coding specialized control sequences into the applicdiioary. This is costly because
adding new accelerators implies that the hardware mustratade the new control se-
guences. Software must also be re-engineered to include tentrol sequences, and if
the underlying accelerator ever changes, the softwarenwilbonger be compatible.

Chapters 4 and 6 address this problem in the context of acgold SIMD accelera-
tors, respectively. We apply the technique of delayed lbigdivhere computation to be
accelerated is expressed using the baseline instructioof $ke processor. At runtime,
a dynamic translator converts these sequences into aatmlaspecific control sequences.
This technique eliminates the need for new control sequetzde added to the hard-

ware and software systems when adding customized hardwiaregprove the utility of

213

dynamic binding, we present the design of several dynaramstators and evaluate the
static/dynamic tradeoffs of performing some translatitaps offline. Overall, we found

that using dynamic binding enables accelerator integnati@ binary compatible manner,
while incurring negligible overheads in terms of die areade size, and application slow
down.

Chapter 7 builds on the work in previous chapters by disagsthe design and inte-
gration of cyclic accelerators into microprocessor-basgstems. Designing cyclic accel-
erators is a fundamentally harder problem because it regiandling memory references,
residual state, long latency communication and many othpects that were not issues
in dealing with acyclic and SIMD accelerators. Additioyallynamically binding an ap-
plication onto a cyclic accelerator is algorithmically nmumore difficult. The analysis
in Chapter 7 culminates in a generalized cyclic accelerdésign and dynamic mapping
algorithm, which is binary compatible, and provides 2.58esjup in the average case.

A last problem related to customized hardware is how to aatamally compile an
application to target a particular accelerator. That igegian application written in a high-
level language, how do we pick out the portions that would loeeneffectively run on an
accelerator? Chapter 5 solves this problem in the contextyxdlic accelerators. Automat-
ically generating code to optimally target acceleratofdishard, and the typical industry
solution involves either hand coding or simplistic greetfyoathms. This dissertation pre-
sented a graph-based algorithm, which on average provid#dbore speedup than greedy
solutions, while retaining the fast runtimes associatat gieedy solutions.

As awhole, this dissertation has developed many solutlatsnable customized hard-
ware to be the vehicle for exponential performance growtded in future processor de-

signs.

214

BIBLIOGRAPHY

215

BIBLIOGRAPHY

[1] Shail Aditya and Michael Schlansker. ShiftQ: A bufferederconnect for custom
loop accelerators. IfProc. of the 2001 International Conference on Compilers,
Architecture, and Synthesis for Embedded Systpages 158167, November 2001.

[2] A. Aho, R. Sethi, and J. UllmanCompilers: Principles, Techniques, and Taols
Addison-Wesley, Reading, MA, 1986.

[3] A.V. Aho, M. Ganapathi, and S.W.K. Tijang. Code generatusing tree pattern
matching and dynamic programmingACM Transactions on Programming Lan-
guages and Systeiikl (4):491-516, October 1989.

[4] A. Alomary et al. PEAS-I: A hardware/software co-desigystem for ASIPs. In
European Design Automation Conferenpages 2—7, 1993.

[5] ARM Ltd. ARM926EJ-S Technical Reference Manualanuary 2004.
http://www.arm.com/pdfs/DDI10198D26 TRM.pdf.

[6] M. Arnold. Instruction Set Extensions for Embedded Procesdein® thesis, Delft
University of Technology, 2001.

[7] Kubilay Atasu, Laura Pozzi, and Paolo lenne. Automatiplecation-specific
instruction-set extensions under microarchitecturakt@mnts. InProc. of the 40th
Design Automation Conferengeages 256—-261, June 2003.

[8] P. M. Athanas and H. S. Silverman. Processor reconfigamrahrough instruction
set metamorphosisSEEE Computer26(3):11-18, 1993.

[9] Todd Austin, Eric Larson, and Dan Ernst. Simplescalan:iAfrastructure for com-
puter system modelinglEEE Transactions on Computer35(2):59-67, February
2002.

[10] Vasanth Bala, Evelyn Duesterwald, and Sanjeev Bamefjlynamo: a transparent
dynamic optimization system. IRroc. of the SIGPLAN '00 Conference on Pro-
gramming Language Design and Implementatipeges 1-12, June 2000.

[11] M. Baleani et al. HW/SW partitioning and code genenatad embedded control
applications on a reconfigurable architecture platformPtac. of the Tenth Inter-
national Conference on Hardware/Software Codesjgages 61-66, May 2002.

216

[12] Max Baron. Cortex-A8: High speed, low powddicroprocessor Repoytl1(14):1—
6, 2005.

[13] J. P. BennettA Methodology for Automated Design of Computer InstrucSets
PhD thesis, University of Cambridge, 1988.

[14] Aart J. C. Bik, Milind Girkar, Paul M. Grey, and Xinmin @nh. Automatic intra-
register vectorization for the intel architecturénternational Journal of Parallel
Programming 30(2):65-98, 2002.

[15] Partha Biswas, Sudarshan Banerjee, Nikil Dutt, LaucazP, and Paolo lenne.
ISEGEN: Generation of high-quality instruction set extens by iterative improve-
ment. InProc. of the 2005 Design, Automation and Test in Euyqueeges 1246—
1251, 2005.

[16] P.Bose and E. S. Davidson. Design of instruction sdtitnttires for support of high-
level languages. IRroc. of the 11th Annual International Symposium on Compute
Architecture pages 198-206, June 1984.

[17] A. Bracy, P. Prahlad, and A. Roth. Dataflow mini-grapBsnplifying superscalar
capacity and bandwidth. IRroc. of the 37th Annual International Symposium on
Microarchitecture pages 18—-29, December 2004.

[18] R. P. Brentand H. T. Kung. A regular layout for paralldders.|IEEE Transactions
on ComputersC-31(3):260-264, 1982.

[19] Mauricio Breternitz, Herbert Hum, and Sanjeev Kumaongilation, Architectural
Support, and Evaluation of SIMD Graphics Pipeline Programa General-Purpose
CPU. InProc. of the 12th International Conference on Parallel Atebtures and
Compilation Techniquepages 135-145, 2003.

[20] P. Brisk et al. Instruction generation and regularityraction for reconfigurable pro-
cessors. IrProc. of the 2002 International Conference on Compilerghitecture,
and Synthesis for Embedded Systgmages 262—-269, 2002.

[21] David Brooks and Margaret Martonosi. Dynamically esifhg narrow width
operands to improve processor power and performancd?rdo. of the 5th Inter-
national Symposium on High-Performance Computer Architecpage 13, 1999.

[22] Randal E. Bryant. Symbolic Boolean manipulation witldered binary-decision
diagrams ACM Computing Survey24(3):293-318, 1992.

[23] Jorge E. Carrillo and Paul Chow. The effect of reconfadle units in superscalar
processors. IProc. of the 9th ACM Symposium on Field Programmable Gate Ar-
rays, pages 141-150, 2001.

[24] H. Choi et al. Synthesis of application specific instioes for embedded DSP soft-
ware. [EEE Transactions on Computer3(6):603—-614, June 1999.

217

[25] Yuan Chou, Pazhani Pillai, Herman Schmit, and John Baeh. Piperench imple-
mentation of the instruction path coprocessorPhoc. of the 33rd Annual Interna-
tional Symposium on Microarchitectyngages 147—-158, December 2000.

[26] Silviu Ciricescu, Ray Essick, Brian Lucas, Phil May, ifeMoat, Jim Norris,
Michael Schuette, and Ali Saidi. The reconfigurable stregmiector processor
(RSVP). InProc. of the 36th Annual International Symposium on Micobétec-
ture, pages 141-150, 2003.

[27] N. Clark, H. Zhong, and S. Mahlke. Automated customrungion generation
for domain-specific processor acceleratiolEEE Transactions on Computers
54(10):1258-1270, 2005.

[28] Nathan Clark et al. Application-specific processingageneral-purpose core via
transparent instruction set customization.Piroc. of the 37th Annual International
Symposium on Microarchitectynpages 30—40, December 2004.

[29] Nathan Clark et al. OptimoDE: Programmable acceleratgyines through retar-
getable customization, August 2004.Rroc. of Hot Chips 16

[30] Nathan Clark et al. An architecture framework for trpagent instruction set cus-
tomization in embedded processorsPioc. of the 32nd Annual International Sym-
posium on Computer Architectyneages 272—-283, June 2005.

[31] Nathan Clark et al. Liquid SIMD: Abstracting SIMD hardve using lightweight dy-
namic mapping. IfProc. of the 13th International Symposium on High-Perfonoea
Computer Architecturegpages 216-227, 2007.

[32] Nathan Clark, Hongtao Zhong, and Scott Mahlke. Promeasceleration through
automated instruction set customization.Froc. of the 36th Annual International
Symposium on Microarchitectyrmpages 129-140, December 2003.

[33] J. Codina, J. Llosa, and A. Gonzalez. A comparative\stafdnodulo scheduling
techniques. IfProc. of the 2002 International Conference on Supercomgupiages
97-106, June 2002.

[34] J. Cong et al. Architecture-level synthesis for auttimeaterconnect pipelining. In
Proc. of the 41st Design Automation Conferegruages 602—607, June 2004.

[35] L. Cordella et al. Performance Evaluation of the VF Gragatching Algorithm.
In Proc. of the 1999 International Conference on Image Analgsid Processing
volume 2, pages 1038-1041, 1999.

[36] Roberto Cordone, Fabrizio Ferrandi, Donatella Sciatwd Roberto Wolfler Calvo.
An efficient heuristic approach to solve the unate coverirggplem. InProc. of the
2000 Design, Automation and Test in Eurppages 364—371, 2000.

218

[37] Marc L. Corliss, E. Christopher Lewis, and Amir Roth. $H: A programmable
macro engine for customizing applicationsAroc. of the 30th Annual International
Symposium on Computer Architectupages 362—-373, 2003.

[38] J. Dehnert et al. The Transmeta code morphing softwaseg speculation, re-
covery, and adaptive retranslation to address real-lifdlehges. InProc. of the
2003 International Symposium on Code Generation and Op#itiain pages 15-24,
March 2003.

[39] K. Ebcioglu and E. Altman. Daisy: Dynamic compilatioor fL00% architectural
compatibility. InProc. of the 24th Annual International Symposium on Conrpute
Architecture pages 26—-38, June 1997.

[40] Alexandre E. Eichenberger, Peng Wu, and Kevin O’Bri&ectorization for simd
architectures with alignment constraints. Rroc. of the SIGPLAN '04 Conference
on Programming Language Design and Implementafgages 82—93, 2004.

[41] B. Fahs, T. Rafacz, S. Patel, and S. Lumetta. Continoptisization. InProc. of
the 32nd Annual International Symposium on Computer Agchire pages 86-97.
IEEE Computer Society, 2005.

[42] Brian Fahs et al. Performance characterization of @\ware mechanism for dy-
namic optimization. IrProc. of the 34th Annual International Symposium on Mi-
croarchitecture pages 16—27, 2001.

[43] K. Fan, M. Kudlur, H. Park, and S. Mahlke. Cost sensitiwedulo scheduling
in a loop accelerator synthesis system. Pliroc. of the 38th Annual International
Symposium on Microarchitectyrnpages 219-230, November 2005.

[44] J. A. Fisher. Trace scheduling: A technique for globammcode compactionEEE
Transactions on Computer30(7):478—-490, 1981.

[45] D. Friendly, S. Patel, and Y. Patt. Putting the fill uratwork: Dynamic optimiza-
tions for trace cache microprocessors. Rroc. of the 25th Annual International
Symposium on Computer Architectusages 173-181, June 1998.

[46] Michael R. Garey and David S. Johns@@omputers and Intractability: A Guide to
the Theory of NP-Completenedd. H. Freeman & Co., 1979.

[47] S. Gochman et al. The Intel Pentium M processor: Mi-
croarchitecture and performance. Intel Technology Journal
7(2):http://developer.intel.com/technology/itj/2@@3lume07 issue02/, 2003.

[48] E.Il. Goldberg, L.P. Carloni, T. Villa, R.K. Brayton, dnA.L. Sangiovanni-
Vincentelli. Negative thinking in branch-and-bound: these of unate covering.
IEEE Transactions on Computer-Aided Design of Integrateduits and Systems
19(3):281-294, March 2000.

219

[49] R. E. Gonzalez. Xtensa: A configurable and extensibtegssor. IEEE Micro,
20(2):60-70, March 2000.

[50] R. Govindarajan, E. R. Altman, and G. R. Gao. Minimizmegister requirements
under resource-constrained rate-optimal software pipedi InProc. of the 27th An-
nual International Symposium on Microarchitectupages 85-94, November 1994,

[51] Brian Grant, Markus Mock, Matthai Philipose, Craig @faers, and Susan J. Eg-
gers. DyC: an expressive annotation-directed dynamic demfpr C. Theoretical
Computer Scienc48(1-2):147-199, 2000.

[52] M. Gschwind. Instruction set selection for ASIP design Proc. of the Seventh
International Conference on Hardware/Software Codespages 7—11, 1999.

[53] Matthew Guthaus, Jeffrey Ringenberg, Dan Ernst, Toddti, Trevor Mudge, and
Richard Brown. MiBench: A free, commercially representatembedded bench-
mark suite. InProc. of the 4th IEEE Workshop on Workload Characterizatpayges
10-22, December 2001.

[54] J. R. Hauser and J. Wawrzynek. GARP: A MIPS processdn witeconfigurable
coprocessor. liProc. of the 5th IEEE Symposium on Field-Programmable Gusto
Computing Machinepages 12-21, April 1997.

[55] K. Hazlewood and M. Smith. Generational cache managemicode traces in
dynamic optimization systems. Rroc. of the 36th Annual International Symposium
on Microarchitecturepages 169-179, December 2003.

[56] B. Holmer. Automatic Design of Computer Instruction Se@hD thesis, University
of California, Berkeley, 1993.

[57] Amir Hormati et al. Exploiting narrow accelerators twilata-centric subgraph map-
ping. InProc. of the 2007 International Symposium on Code Genaratial Opti-
mization pages 341-353, March 2007.

[58] Ellis Horowitz and Sartaj Sahni. Exact and Approximatgorithms for Scheduling
Nonidentical Processorgournal of the ACM23(2):317-327, 1976.

[59] Shiliang Hu, llhyun Kim, Mikko H. Lipasti, and James Em&h. An approach
for implementing efficient superscalar CISC processorsrot. of the 12th Inter-
national Symposium on High-Performance Computer Architecpages 213-226,
2006.

[60] Shiliang Hu and James E. Smith. Using dynamic binanydiation to fuse dependent
instructions. InProc. of the 2004 International Symposium on Code Genearatnul
Optimization pages 213-226, 2004.

[61] I. Huang and A. M. Despain. Synthesis of applicationc#jie instruction sets.
IEEE Transactions on Computer-Aided Design of Integrateduits and Systems
14(6):663—-675, June 1995.

220

[62] Q.Jacobson and J. E. Smith. Instruction pre-procegdsitrace processors. Proc.
of the 5th International Symposium on High-Performance Quater Architecture
pages 125-133, 1999.

[63] G. Karypis and V. KumarMetis: A Software Package for Paritioning Unstructured
Graphs, Partitioning Meshes and Computing Fill-Reducinde€ings of Sparce Ma-
trices University of Minnesota, September 1998.

[64] R. Kastner et al. Instruction generation for hybridoefigurable systemsACM
Transactions on Design Automation of Electronic Systen(4):605-627, April
2002.

[65] Vinod Kathail, Mike Schlansker, and Bob Rau. HPL-PDhiecture specifica-
tion: Version 1.1. Technical Report HPL-93-80(R.1), HettvRackard Laboratories,
February 2000.

[66] M. Mercaldi Kim, M. Mehrara, M. Oskin, and T. Austin. Angectural implications
of brick and mortar silicon manufactoring. Rroc. of the 34th Annual International
Symposium on Computer Architectupage To Appear, 2007.

[67] P. M. Kogge and H. S. Stone. A parallel algorithm for tiffeceent solution of a gen-
eral class of recurrence equatiodEEE Transactions on ComputeiG-22(8):786—
793, 1973.

[68] Israel Koren. Computer Arithmetic AlgorithmsPrentice-Hall, Inc., Upper Saddle
River, NJ, USA, 1993.

[69] Andreas Krall and Sylvain Lelait. Compilation techo&s for multimedia proces-
sors.International Journal of Parallel Programmin@8(4):347-361, 2000.

[70] Evgeny Krissinel and Kim Henrick. Common subgraph isophism detection by
backtracking searctSoftware: Practice and Experienc@(6):591-607, 2004.

[71] Krishna Kunchithapadam and James R. Larus. Usingvigigtht procedures to im-
prove instruction cache performance. Technical Reporf®St999-1390, January
1999.

[72] M. Lam. Software pipelining: an effective schedulirechnique for VLIW ma-
chines. InProc. of the SIGPLAN '88 Conference on Programming Langueggn
and Implementatiorpages 318—-327, 1988.

[73] Samuel Larsen, Rodric Rabbah, and Saman Amarasingt@oiling vector paral-
lelism in software pipelined loops. IRAroc. of the 38th Annual International Sym-
posium on Microarchitecturgpages 119-129, 2005.

[74] Tanya Lattner. An Implementation of Swing Modulo Schiag with Extensions
for Superblocks. Master’s thesis, Computer Science Dépiiversity of lllinois at
Urbana-Champaign, Urbana, IL, June 2005.

221

[75] C. Lee, M. Potkonjak, and W.H. Mangione-Smith. MediaBe: A tool for evaluat-
ing and synthesizing multimedia and communications systénProc. of the 30th
Annual International Symposium on Microarchitectysages 330-335, 1997.

[76] R.Leupers and P. Marwedel. Instruction selection fobedded DSPs with complex
instructions. InProc. of the 1996 European Design Automation Conferepages
200-205, September 1996.

[77] Rainer Leupers and Peter Marwedel. Instruction-sedelimg for asip code gener-
ation, 1996.

[78] John Levon. OProfile - a System Profiler for Linux 2004.
http://oprofile.sourceforge.net/doc/index.html, Retad June 6, 2007.

[79] S. Liao et al. Code optimization techniques for embedd&P microprocessors. In
Proc. of the 32nd Design Automation Confererages 599-604, 1995.

[80] S. Liao et al. Instruction selection using binate cavgifor code size optimization.
In Proc. of the 1995 International Conference on Computer Aibesign pages
393-399, 1995.

[81] Yuan Lin et al. Soda: A low-power architecture for sofire radio. InProc. of
the 33rd Annual International Symposium on Computer Aechitre pages 89—-101,
June 2006.

[82] J. Llosa et al. Swing modulo scheduling: A lifetime-siive approach. IiProc. of
the 5th International Conference on Parallel Architectuignd Compilation Tech-
niques pages 80-86, 1996.

[83] Josep Llosa, Mateo Valero, Eduard Ayguadé, and Amt@donzalez. Hypernode
reduction modulo scheduling. Proc. of the 28th Annual International Symposium
on Microarchitecturepages 350-360, 1995.

[84] Gabriel H. Loh. Exploiting data-width locality to inease superscalar execution
bandwidth. InProc. of the 35th Annual International Symposium on Micob&r
tecture pages 395-405, Los Alamitos, CA, USA, 2002. IEEE Computariey
Press.

[85] P. Lowney et al. The Multiflow Trace scheduling compildournal of Supercom-
puting 7(1):51-142, January 1993.

[86] Guangming Lu, Hartej Singh, Ming-Hau Lee, Nader Bagheeh, Fadi J. Kurdahi,
and Eliseu M. Chaves Filho. The MorphoSys parallel recomndiigle system. In
Proc. of the 5th International Euro-Par Conferengages 727—-734, 1999.

[87] Peter Marwedel and Gert GoosserSode Generation for Embedded Processors
Kluwer Academic Publishers, Boston, 1995.

222

[88] Binu Mathew and Al Davis. A loop accelerator for low pawembedded VLIW
processors. liProc. of the 2004 International Conference on on Hardwaoéiare
Co-design and System Synthepeges 6—-11, 2004.

[89] Wen mei W. Hwu, Scott A. Mahlke, William Y. Chen, PohuaGhang, Nancy J.
Warter, Roger A. Bringmann, Roland G. Ouellette, RichardHBnk, Tokuzo Kiy-
ohara, Grant E. Haab, John G. Holm, and Daniel M. Lavery. Tpeblock: An
effective technique for vliw and superscalar compilatidournal of Supercomput-
ing, 7(1):229-248, May 1993.

[90] Gokhan Memik, William H. Mangione-Smith, and Wendong.HNetBench: A
benchmarking suite for network processorsPhoc. of the 2001 International Con-
ference on Computer Aided Desjgrages 39-42, 2001.

[91] Matthew Merten and Wen-Mei Hwu. Modulo schedule bugfdn Proc. of the 34th
Annual International Symposium on Microarchitectysages 138 — 149, 2001.

[92] Paul Metzgen. A high performance 32-bit alu for prograable logic. InProc. of
the 12th ACM Symposium on Field Programmable Gate Arnagges 61-70, 2004.

[93] Takashi Miyamori and Kunle Olukotun. A quantitativeadysis of reconfigurable
coprocessors for multimedia applications. Rroc. of the 6th IEEE Symposium on
Field-Programmable Custom Computing Machingsges 2—11, 1998.

[94] R. Nair and M. Hopkins. Exploiting instruction level gadlelism in processors by
caching scheduled groups. Broc. of the 24th Annual International Symposium on
Computer Architecturgpages 13-25, June 1997.

[95] U. Nawathe et al. An 8-core, 64-thread, 64-bit, powéicefnt SPARC SoC (Nia-
gara2), February 2007. Iaroc. of ISSCC

[96] Guilherme Ottoni, Ram Rangan, Adam Stoler, and Davidugust. Automatic
thread extraction with decoupled software pipelining.Pioc. of the 38th Annual
International Symposium on Microarchitectupages 105-118, November 2005.

[97] Alex Pajuelo, Antonio Gonzlez, and Mateo Valero. Spative dynamic vectoriza-
tion. In Proc. of the 29th Annual International Symposium on CompAitehitec-
ture, pages 271-280, 2002.

[98] Krishna V. Palem, Surendranath Talla, and Weng-Fai §¥oG@ompiler Optimiza-
tions for Adaptive EPIC Processors. Broc. of the 2001 ACM Conference on Em-
bedded Softwargages 257-273, 2001.

[99] Sanjay J. Patel and Steven S. Lumetta. rePLay: A haglWwamework for dynamic
optimization.IEEE Transactions on Computes0(6):590-608, June 2001.

[100] Vlad Petric, Tingting Sha, and Amir Roth. Reno: A rerebased instruction opti-
mizer. InProc. of the 32nd Annual International Symposium on CompArghitec-
ture, pages 98-109, 2005.

223

[101] A. Peymandoust et al. Automatic instruction set esiem and utilization for em-
bedded processors. IREE 14th International Conference on Application-specifi
Systems, Architectures and Processpegyes 108—-120, June 2003.

[102] J. Phillips and S. Vassiliadis. High-performance 8erlock collapsing ALU’s.
IEEE Transactions on Computer3(3):257-268, 1994.

[103] J. Van Praet, G. Goosens, D. Lanner, H. De Man, and Hth®gis. Instruction set
definition and instruction selection for asip, 1994.

[104] D. Sreenivasa Rao and Fadi J. Kurdahi. On clusteringrfaximal regularity ex-
traction. IEEE Transactions on Computer-Aided Design of Integrateduiis and
Systemsl2(8):1198-1208, August 1993.

[105] B.R. Rau. Iterative modulo scheduling: An algorithon $oftware pipelining loops.
In Proc. of the 27th Annual International Symposium on Micobéecture pages
63—74, November 1994.

[106] B. R. Rau, M. Lee, P. P. Tirumalai, and M. S. Schlanskeegister allocation for
software pipelined loops. IRroc. of the SIGPLAN 92 Conference on Programming
Language Design and Implementatigrages 283—-299, June 1992.

[107] B. R. Rau, M. S. Schlansker, and P. P. Tirumalai. Cod®egsion for modulo
scheduled loops. IRroc. of the 25th Annual International Symposium on Microar
chitecture pages 158-169, November 1992.

[108] B.R. Rau, D. W. L. Yen, and R. A. Towle. The cydra 5 depemtal supercomputer.
IEEE Computerl(22):12—-34, January 1989.

[109] R. Razdan and M. D. Smith. A high-performance micrbéecture with hardware-
programmable function units. IAroc. of the 27th Annual International Symposium
on Microarchitecturepages 172—-180, December 1994.

[110] Hongbo Rong, Zhizhong Tang, R. Govindarajan, Albamibet, and Guang R. Gao.
Single-dimension software pipelining for multidimensabmoops. ACM Transac-
tions on Architecture and Code Optimizatjet{1):7, 2007.

[111] P. Sassone and D. S. Wills. Dynamic strands: Collapspeculative dependence
chains for reducing pipeline communication. Pnoc. of the 37th Annual Interna-
tional Symposium on Microarchitectyngages 7—17, December 2004.

[112] Peter Sassone, D. Scott Wills, and Gabriel Loh. Ststtiands: safely collapsing
dependence chains for increasing embedded power efficiégmdroc. of the 2005
ACM SIGPLAN Conference on Languages, Compilers, and Tadifibedded Sys-
tems pages 127-136, June 2005.

[113] Yiannakis Sazeides, Stamatis Vassiliadis, and Jdmeédmith. The performance
potential of data dependence speculation & collapsind?rot. of the 29th Annual
International Symposium on Microarchitectypages 238—-247. IEEE Computer So-
ciety, 1996.

224

[114] R. Schreiber et al. PICO-NPA: High-level synthesimohprogrammable hardware
acceleratorsJournal of VLSI Signal Processing1(2):127-142, 2002.

[115] David Seal. ARM Architecture Reference Manuahddison-Wesley, London, UK,
2000.

[116] Mukund Sivaraman and Shail Aditya. Cycle-time awarehdecture synthesis of
custom hardware accelerators. Pnoc. of the 2002 International Conference on
Compilers, Architecture, and Synthesis for Embedded @gspages 35-42, 2002.

[117] Francesco Spadini, Michael Fertig, and Sanjay J.|P@iearacterization of repeat-
ing dynamic code fragments. Technical Report CHRC-02-G9RC University of
lllinois at Urbana-Champaign, September 2002.

[118] M.G. Stoodley and C.G.Lee. Software pipelining loepth conditional branches.
In Proc. of the 29th Annual International Symposium on Micobéecture pages
262-273, December 1996.

[119] F. Sun et al. Synthesis of custom processors basedtensslzle platforms. IProc.
of the 2002 International Conference on Computer Aided fpepages 641-648,
November 2002.

[120] Tensilica Inc. Xtensa Architecture and PerformanceSeptember 2002.
http://www.tensilica.com/xtensarch white_paper.pdf.

[121] Trimaran. An infrastructure for research in ILP, 200tp://www.trimaran.org/.

[122] J. R. Ullman. An algorithm for subgraph isomorphisndournal of the ACM
23(1):31-42, 1976.

[123] Sriram Vajapeyam, P. J. Joseph, and Tulika Mitra. Dyicavectorization: A mech-
anism for exploiting far-flung ILP in ordinary programs. Pmoc. of the 26th Annual
International Symposium on Computer Architecfyrages 16—27, 1999.

[124] Scott J. Weber and Kurt Keutzer. Using minimal mintetimrepresent programma-
bility. In Proc. of the 2005 International Conference on on Hardwaoé{@are Co-
design and System Synthegiages 63—68, 2005.

[125] M. J. Wirthlin and B. L. Hutchings. DISC: The dynamicstruction set computer.
In Proc. of the 1995 Field Programmable Gate Arrays for Fast iBldaevelopment
and Reconfigurable Computingages 92-103, 1995.

[126] L. Wu, C. Weaver, and T. Austin. Cryptomaniac: A fasikiitde architecture for
secure communication. IRroc. of the 28th Annual International Symposium on
Computer Architecturgrages 110-119, June 2001.

[127] Peng Wu, Alexandre E. Eichenberger, and Amy Wang. igfitcsimd code genera-
tion for runtime alignment and length conversion.Aroc. of the 2005 International
Symposium on Code Generation and Optimizatiages 153—-164, 2005.

225

[128] Zhi Alex Ye et al. CHIMAERA: a high-performance arabeture with a tightly-
coupled reconfigurable functional unit. Rroc. of the 27th Annual International
Symposium on Computer Architectupages 225-235, 2000.

[129] Sami Yehia et al. Exploring the design space of LUTdohgansparent accelera-
tors. InProc. of the 2005 International Conference on Compilerghiecture, and
Synthesis for Embedded Systepages 11-21, September 2005.

[130] Sami Yehia and Olivier Temam. From sequences of degr@rdstructions to func-
tions: An approach for improving performance without ILPspeculation. IrProc.
of the 31st Annual International Symposium on Computerifacture pages 238—
249, June 2004.

[131] P. Yuand T. Mitra. Characterizing embedded applaraifor instruction-set extensi-
ble processors. IRroc. of the 41st Design Automation Conferernuages 723—728,
June 2004.

226

