
AUTOMATIC DESIGN OF EFFICIENT

APPLICATION-CENTRIC ARCHITECTURES

by

Kevin C. Fan

A dissertation submitted in partial fulfillment
of the requirements for the degree of

Doctor of Philosophy
(Computer Science and Engineering)

in The University of Michigan
2008

Doctoral Committee:
Associate Professor Scott Mahlke, Chair
Professor Stéphane Lafortune
Professor Trevor N. Mudge
Associate Professor Todd M. Austin

c© Kevin C. Fan 2008
All Rights Reserved

ACKNOWLEDGEMENTS

This dissertation would not have been possible without the guidance and support

of many people. First and foremost, I would like to thank my advisor, Scott Mahlke.

His insight, expertise, enthusiasm, and encouragement played a large part in my

success in graduate school. Without his guidance, this dissertation would not exist.

In addition, Scott was one of the first to encourage me to undertake graduate studies

in the first place after I worked with him as an undergraduate.

I would also like to thank my thesis committee, Professors Trevor Mudge, Todd

Austin, and Stéphane Lafortune. They donated their time, giving valuable comments

and suggestions to help improve the research and refine the thesis. In addition, I would

like to thank Bill Mangione-Smith, who first exposed me to compilers and to graduate

school when I worked with him at UCLA.

The research presented in this dissertation was not the work of one person; I

was fortunate to have the assistance of a number of other students in the Compilers

Creating Custom Processors research group. Manjunath Kudlur provided significant

help with the ILP and SMT scheduling formulations presented in this dissertation.

Hyunchul Park assisted with creating the Verilog back-end of the synthesis system.

ii

Ganesh Dasika implemented the Verilog simulation framework and also answered my

numerous questions about the area and power analysis tools. In addition, my work is

based on the Trimaran compiler infrastructure; Mike Chu, Nate Clark, Rajiv Ravin-

dran, and Hongtao Zhong, among others, have done significant work in maintaining

and improving this infrastructure.

Outside of the technical reasons, I appreciate the opportunity to have worked

with a great group of people who provided moral support and made my graduate

school experience enjoyable, namely: Amin Ansari, Jay Blome, Mike Chu, Nate

Clark, Ganesh Dasika, Shuguang Feng, Shantanu Gupta, Jeff Hao, Amir Hormati,

Po-Chun Hsu, Manjunath Kudlur, Steve Lieberman, Yuan Lin, Mojtaba Mehrara,

Rob Mullenix, Pracheeti Nagarkar, Hyunchul Park, Yongjun Park, Rajiv Ravindran,

Misha Smelyanskiy, and Hongtao Zhong. I have shared offices, and in many cases,

homes with these friends and my time in Ann Arbor would not have been the same

without them.

I would like to thank my family for their support, encouragement, and advice.

Finally, and most importantly, I thank Jennifer Mato for her unconditional love and

support over the years, even through separation over long distances and long periods

of time. Her companionship added invaluable depth to my years in graduate school

and has made its completion all the more sweet.

iii

TABLE OF CONTENTS

ACKNOWLEDGEMENTS . ii

LIST OF FIGURES . vi

LIST OF TABLES . viii

ABSTRACT . ix

CHAPTERS

1 Introduction . 1
1.1 Contributions . 4
1.2 Organization . 4

2 Background and Motivation . 6
2.1 The Costs of Computation 6
2.2 Automated Synthesis . 8
2.3 Hardware Reusability . 10
2.4 Related Work . 11

3 Hardware Organization and Design Flow 13
3.1 System View . 13
3.2 Accelerator Template . 14
3.3 Accelerator Design Flow . 16

3.3.1 FU Allocation . 16
3.3.2 Modulo Scheduling 17
3.3.3 Datapath Construction 18
3.3.4 Architecture Instantiation 19

4 Cost Sensitive Modulo Scheduling 20
4.1 Introduction . 20
4.2 Related Work . 23
4.3 Scheduling Techniques . 25

4.3.1 Greedy Scheduling . 27

iv

4.3.2 Branch-and-Bound Solution 28
4.3.3 Integer Linear Programming Formulation 34

4.4 Decomposition Methods . 41
4.4.1 Operation Partitioning 42
4.4.2 Time and Space Decomposition 46
4.4.3 Space and Time Decomposition 48

4.5 Experimental Results . 49
4.6 Summary . 58

5 Multifunction Accelerator Design . 59
5.1 Introduction . 59
5.2 Synthesizing Multifunction Accelerators 61

5.2.1 Joint Scheduling . 63
5.2.2 Union of Accelerators 64

5.3 Experimental Results . 70
5.4 Summary . 74

6 Programmable Loop Accelerator Design 76
6.1 Introduction . 76
6.2 Motivation . 79

6.2.1 Architecture Style vs. Efficiency 79
6.2.2 Programmability Case Study 82

6.3 From Single-function LA to Programmable LA 84
6.3.1 Single-function Accelerator 84
6.3.2 Programmable Loop Accelerator 86

6.4 Constraint-driven Scheduling 93
6.4.1 Scheduling Overview 93
6.4.2 SMT-based Scheduling 95

6.5 Graph Perturbation . 99
6.6 Experimental Results . 103

6.6.1 Overview . 103
6.6.2 Area and Power Comparison 104
6.6.3 Datapath Generalizations 107
6.6.4 Programmability . 108

6.7 Accelerator Efficiency Analysis 115
6.8 Related Work . 117
6.9 Summary . 119

7 Conclusion . 121
7.1 Summary . 121
7.2 Future Directions . 123

BIBLIOGRAPHY . 125

v

LIST OF FIGURES

Figure

2.1 Architecture design space. 7

2.2 Design productivity gap [61]. 9

2.3 (a) Traditional behavioral synthesis. (b) Application-centric architec-
ture synthesis. 10

3.1 Streaming application mapped to pipeline of loop accelerators. 14

3.2 Loop accelerator template. 14

3.3 Loop accelerator design flow. 16

3.4 An example loop accelerator design. (a) sobel source code, (b) result
of FU allocation with II = 4, (c) a portion of the sobel modulo sched-
uled loop, (d) datapath derived from the modulo schedule shown in
(c), (e) lowered datapath. 18

4.1 Effect of schedule on wire cost. 26

4.2 Cost sensitive scheduling framework used for greedy and branch-and-
bound schedulers. 28

4.3 Branch-and-bound search. The highlighted state corresponds to the
partial schedule shown. 29

4.4 Wire estimation example: (a) DFG, (b) partial schedule, (c) connection
diagram . 31

4.5 Effect of space-time decomposition. (a) Dataflow graph, (b) schedule
resulting in optimal FU cost but suboptimal overall cost, (c) schedule
with same FU cost and improved overall cost. 48

4.6 Hardware cost breakdown of loop accelerators synthesized using vari-
ous scheduling techniques, relative to näıve scheduler. 51

4.7 Effect of different cost objectives on (a) iir, (b) sha, and (c) average
across all benchmarks. 54

4.8 Effect of partition size on hardware cost. 55

4.9 Cost breakdown for various partitioning methods. 57

5.1 ILP formulation for joint scheduling. 62

vi

5.2 Example of union techniques. Two single-function accelerators, each
with three FUs, are combined using positional (left) and ILP (right)
methods. The cost of each FU and SRF is shown on its right. 67

5.3 Gate cost of multifunction accelerators designed using sum (s), posi-
tional union (p), pairwise union (u), full union (f) (not shown for 2-loop
combinations), and joint scheduling (j). * indicates the synthesis did
not complete due to problem complexity. 71

5.4 Degree of sharing of multifunction accelerator gates across loops. . . . 73

6.1 Peak performance and power efficiency of different architecture styles. 80

6.2 Feature Addition to mdct.c in faad2. 83

6.3 Bug-fix to mdct.c in faad2. 84

6.4 LA scheduling and synthesis example. 85

6.5 PLA generalization and scheduling example. 88

6.6 Generalizing port-specific connections: (a) baseline, (b) allowing swaps,
(c) generalized. 90

6.7 Generalizing staging predicate: (a) direct hardwired connections, (b)
generalized. 91

6.8 Template for programmable loop accelerator. 92

6.9 Design and compilation flow for programmable loop accelerator. . . . 93

6.10 Graph perturbation example from the heat benchmark: (a) original
loop, (b) after 5 perturbations, (c) after 10 perturbations. 102

6.11 Power consumption of PLA and OR-1200 relative to single-function LA.105

6.12 Area of loop accelerators and OR-1200. 105

6.13 Power consumption breakdown of PLA generalizations. 107

6.14 II increase necessary to schedule loops with perturbations. 110

6.15 Relative II increase and graph difference vs. perturbations for fir,
fmradio, and sobel. 111

6.16 Perturbation studies with more restrictive PLAs. 112

6.17 Cross compilation results. PLAs are designed for loops along the x-
axis at II values listed in Table 6.1. Loops along the y-axis are then
mapped onto them. 113

6.18 Performance/power of loop accelerators, OR-1200, and commercial ar-
chitectures. 116

vii

LIST OF TABLES

Table

6.1 Loop kernels from DSP and media applications. 109

6.2 Similarity of loop kernels; a lower number means the two loops are
more similar to each other. 114

viii

ABSTRACT

AUTOMATIC DESIGN OF EFFICIENT

APPLICATION-CENTRIC ARCHITECTURES

by

Kevin C. Fan

Chair: Scott Mahlke

As the market for embedded devices continues to grow, the demand for high

performance, low cost, and low power computation grows as well. Many embedded

applications perform computationally intensive tasks such as processing streaming

video or audio, wireless communication, or speech recognition. Often, performance

requirements are on the order of 10-100 billion operations per second and must be

implemented within tight power budgets on the order of 100 mW. Typically, general

purpose processors are not able to meet these performance and power requirements.

Custom hardware in the form of loop accelerators are often used to execute the

compute-intensive portions of these applications because they can achieve significantly

higher levels of performance and power efficiency.

ix

Automated hardware synthesis from high level specifications is a key technology

used in designing these accelerators, because the resulting hardware is correct by

construction, easing verification and greatly decreasing time-to-market in the quickly

evolving embedded domain. In this dissertation, a compiler-directed approach is used

to design a loop accelerator from a C specification and a throughput requirement. The

compiler analyzes the loop and generates a virtual architecture containing sufficient

resources to sustain the required throughput. Next, a software pipelining scheduler

maps the operations in the loop to the virtual architecture. Finally, the accelerator

datapath is derived from the resulting schedule.

In this dissertation, synthesis of different types of loop accelerators is investigated.

First, the system for synthesizing single loop accelerators is detailed. In particular, a

scheduler is presented that is aware of the effects of its decisions on the resulting hard-

ware, and attempts to minimize hardware cost. Second, synthesis of multifunction

loop accelerators, or accelerators capable of executing multiple loops, is presented.

Such accelerators exploit coarse-grained hardware sharing across loops in order to re-

duce overall cost. Finally, synthesis of post-programmable accelerators is presented,

allowing changes to be made to the software after an accelerator has been created.

The tradeoffs between the flexibility, cost, and energy efficiency of these different

types of accelerators are investigated. Automatically synthesized loop accelerators

are capable of achieving order-of-magnitude gains in performance, area efficiency,

and power efficiency over processors, and programmable accelerators allow software

changes while maintaining highly efficient levels of computation.

x

CHAPTER 1

Introduction

Embedded devices such as cellular phones, personal digital assistants, digital cam-

eras, gaming platforms, and music players continue to proliferate. The embedded

computing systems that go into these devices must meet the demands of higher per-

formance and greater energy efficiency to support new functionality and higher band-

width communication. For example, the projected data rates for 4G wireless data

communication are expected to increase 50 times over current 3G standards [71].

Conventional programmable processors are unable to meet the demands of these ap-

plications, so custom hardware is used to provide the desired levels of performance

and energy efficiency. This custom hardware commonly takes the form of loop accel-

erators, which execute the compute-intensive portions of applications. Low cost, high

performance, systematic verification, and short time-to-market are all critical objec-

tives for designing these accelerators. Automatic synthesis technology to build loop

accelerators from high-level specifications is critical to achieving these objectives.

A key challenge with automatic synthesis is creating quality designs. Quality

1

can be defined along many axes, including performance, cost, and energy. Tradeoffs

among these axes can be made depending on the particular goals of the application.

In this work, various loop accelerator designs are proposed, and the performance,

cost, and energy tradeoffs are investigated. The objective is to automatically create

customized hardware for a given application or set of applications, so that order-of-

magnitude wins can be achieved in performance, cost, and energy consumption over

general purpose processors.

Efficient accelerators are synthesized by optimizing the design in a number of

ways. First, hardware structures are sized just large enough to meet the worst-case

requirements of the application, both in terms of datapath width and number of

entries in the storage structures. Second, connectivity between hardware structures

is tailored to the application, decreasing interconnect costs, or conversely allowing

the number of structures to be scaled up to exploit parallelism. Third, hardware can

be shared by time multiplexing hardware components when either the hardware is

required under disjoint conditions or the performance of dedicated hardware is not

necessary.

This work examines the design of a loop accelerator synthesis system. The pro-

posed system utilizes a compiler-directed approach for designing accelerators that was

inspired by the PICO-NPA (Program-In Chip-Out Non-Programmable Accelerator)

system [60]. The inputs to the system are a target loop expressed in C and the de-

sired throughput. Synthesis is divided into three steps. First, a simple, single-cluster

VLIW (Very Long Instruction Word) processor is designed to meet the throughput

2

requirements of the application. The simple processor consists of a set of function

units, connected to a centralized register file with unlimited entries and an unbounded

memory. It provides an abstract target to which the compiler can efficiently map al-

gorithms. Next, modulo scheduling [58] is performed to map the application onto the

simple processor. Finally, a stylized loop accelerator is synthesized from the result-

ing schedule. Since the cost of the resulting accelerator is highly dependent on the

schedule, an intelligent cost sensitive modulo scheduler is proposed that minimizes

accelerator cost during the scheduling phase.

In order to achieve greater hardware efficiency, multiple loops may be implemented

on the same loop accelerator if the loops are to be executed disjointly. The accelerator

synthesis system is augmented to create accelerators that can execute multiple target

loops given their respective throughput requirements. By reusing a common datapath

for multiple loops, coarse-grained hardware sharing is achieved, reducing the overall

hardware cost from the baseline case of creating individual accelerators for each loop.

Finally, programmability is added to the accelerator hardware in order to combat

a downside of ASIC design, namely the inability to change the software. Applications

in the embedded domain evolve rapidly, and it is important to be able to reuse acceler-

ator hardware when the loop is changed. By introducing a degree of programmability

to the accelerator, its flexibility and usable lifetime is increased, while maintaining

the efficiency advantages of customization.

3

1.1 Contributions

This dissertation makes the following contributions:

• An automated synthesis system, taking as input a loop expressed in C code and

a throughput requirement, and generating Verilog code representing a custom

loop accelerator.

• A cost sensitive modulo scheduler that schedules operations to minimize the

hardware cost of the resulting accelerator.

• A system to synthesize a multifunction loop accelerator given a set of input

loops and throughput requirements.

• Extensions to the loop accelerator architecture and toolchain to enable post-

programmability, and evaluation of the tradeoffs between accelerator flexibility

and efficiency.

1.2 Organization

The remainder of this dissertation is organized as follows. Chapter 2 provides

an overview of the motivations and tradeoffs of designing customized hardware, and

the benefits of automated design and hardware reuse. Chapter 3 describes the hard-

ware organization of a loop accelerator and how it may be integrated into a system

of accelerators. It then describes the synthesis flow for a single-function accelera-

tor. Chapter 4 presents the cost sensitive modulo scheduler used in the synthesis.

4

It also presents experimental data about the effectiveness of the scheduler and the

methods of decomposing the scheduling problem to make it tractable for larger appli-

cations. Chapter 5 discusses multifunction loop accelerators and evaluates different

methods of synthesizing them. Chapter 6 discusses the synthesis of programmable

loop accelerators and the mapping of loops to such accelerators. The programmable

accelerators are evaluated in terms of their area and power efficiency as well as their

programmability. Finally, Chapter 7 concludes the dissertation and provides future

research directions.

5

CHAPTER 2

Background and Motivation

2.1 The Costs of Computation

An algorithm or task has an inherent energy cost of computation, independent

of what type of computing system is used to implement it. That is, given a task

consisting of a set of operations to execute, there is a minimum amount of energy

that must be expended in order to complete the task. If each operation corresponds to

a computation by a function unit (FU), this overall minimum cost can be calculated

by multiplying the energy cost of the FU executing each operation by the number of

times that the operation needs to be executed, and summing up across all operations.

In reality, when the task is implemented on a computing system, there are addi-

tional costs that vary depending on the implementation, whether it is a traditional

programmable processor, a coarse-grained reconfigurable architecture, an ASIC, or

some other implementation. For example, intermediate values need to be stored in

registers or memory, which have associated costs. Values need to be routed from pro-

6

Programmable
Loop Accelerators

FPGAs
General Purpose

Processors
DSPs

CGRAs

Loop Accelerators,
ASICs

Efficiency, Performance

F
le

x
ib

ili
ty

Figure 2.1: Architecture design space.

ducing operations to consuming operations, and the associated wires and multiplexers

have costs associated with them. Also, if the task is implemented in a programmable

machine, there are costs associated with fetching and decoding instructions and con-

trolling the datapath.

For example, an ASIC has relatively low cost overhead over the inherent compu-

tation costs, because the storage and routing elements are tailored for the needs of

the specific application, and there are no costs associated with control. Conversely, a

general purpose processor has significant costs because it consists of a pipeline that

fetches and decodes instructions, reads values from a central, wide register file, by-

passes values between FUs, etc. The tradeoff is that the processor is usable for a wide

variety of applications, while the ASIC, though much more efficient, is only usable for

one. Figure 2.1 shows several implementation types in this space. The tradeoffs be-

tween flexibility and efficiency of different implementations will be further discussed

in Section 6.2.1 in the context of designing programmable accelerators.

7

Thus, a typical embedded computing system is a heterogeneous mix of different

types of computing implementations, each tailored towards different parts of the tar-

get applications. A critical loop nest, for instance, could be implemented on an ASIC,

while more control-intensive out-of-loop code could be implemented on a general pur-

pose core. In this way, different parts of the applications are matched with the most

appropriate hardware implementations to achieve a design that is efficient overall.

In this dissertation, the focus is on applications in the embedded domain, includ-

ing image, video, and audio processing, wireless communications, and encryption.

Such applications typically consist of tight loops processing streaming data, and as

such, the loops are critical to the overall performance. By creating efficient hardware

accelerators targeted towards loops, significant wins are possible in performance and

overall efficiency. These accelerators could be integrated into a heterogeneous sys-

tem consisting of, for example, a general purpose core and a pipeline of several loop

accelerators.

2.2 Automated Synthesis

When creating ASICs, much of the cost comes from the design and verification

process, which must be repeated for each new ASIC; these costs are not as easily

amortized as when designing general purpose processors. In addition, the design and

verification process takes a significant amount of time, which is challenging in the

rapidly evolving embedded domain where market requirements and standards evolve

quickly. Thus, automated synthesis from high-level specifications, such as C, becomes

8

0.001

0.01

0.1

1

10

100

1000

10000

1
9
8
1

1
9
8
3

1
9
8
5

1
9
8
7

1
9
8
9

1
9
9
1

1
9
9
3

1
9
9
5

1
9
9
7

1
9
9
9

2
0
0
1

2
0
0
3

2
0
0
5

2
0
0
7

2
0
0
9

Lo
gi

c
Tr

an
si

st
or

s
pe

r C
hi

p
(M

)

0.01

0.1

1

10

100

1000

10000

100000

Pr
od

uc
tiv

ity
(K

) T
ra

ns
./S

ta
ff-

M
o.

Logic Tr./Chip

Trans./Staff-Mo.

Figure 2.2: Design productivity gap [61].

key.

Automated synthesis provides a design system that is correct by construction,

thereby reducing verification times significantly. In addition, design times are reduced

from months or years to weeks, greatly speeding time-to-market of new devices. This

translates into increased performance relative to other devices on the market. For

example, if performance improves by 50% every year, and it takes a year longer to do

a hand design than an automatic design, then the hand design must be 50% faster

just to break even.

Furthermore, as hardware continues to grow more complex each year, non-auto-

mated design methods fail to keep up. Figure 2.2 shows that the number of transistors

per chip is growing at an exponentially faster rate than the growth in designer pro-

ductivity. Thus, automated synthesis systems are needed to create new devices within

a competitive time frame and keep up with the embedded market.

Traditionally, hardware synthesis from high-level specifications consists of directly

9

Operation graph Datapath Application Architecture

(a) (b)

Figure 2.3: (a) Traditional behavioral synthesis. (b) Application-centric architecture
synthesis.

translating C operators into hardware gates; see Figure 2.3. The synthesis system pre-

sented in this dissertation, however, takes a different approach, designing application-

centric architectures for given applications. A performance requirement is specified in

terms of the required loop throughput, and the system designs an application-specific

loop accelerator to achieve the required throughput while maximizing hardware shar-

ing, reducing overall cost and improving efficiency.

The synthesis system takes a compiler-directed approach, using compiler analyses

to discover relationships between operations in a loop and expose instruction-level

and loop-level parallelism. Compiler techniques are used to schedule the operations

to maximize hardware sharing while meeting specified throughput requirements.

2.3 Hardware Reusability

As shown in Figure 2.1, the downside to creating an efficient application-specific

accelerator is its lack of flexibility: the hardware cannot be reused to perform other

tasks. Two methods are investigated to increase the reusability of the hardware.

The first method is to create an accelerator that can execute more than one loop.

10

In many cases, an embedded system will use hardware to accelerate multiple loops,

and not all loops are executing simultaneously. When two or more loops are disjoint,

one loop accelerator may be designed that is capable of executing some or all of the

disjoint loops. This is referred to as a multifunction accelerator [20]. Coarse-grained

hardware sharing is achieved, because a single multifunction accelerator is created

rather than multiple single-loop accelerators.

Though multifunction accelerators increase hardware reuse and thus reduce cost,

they still have the downside that all loops that will execute on the hardware must be

known a priori. Therefore, the second method of increasing accelerator flexibility is

to introduce post-programmability [21]. This allows a loop to be changed after the

hardware has been created, and still be runnable on the hardware. Tradeoffs must be

considered between the degree of customization of hardware to a given loop versus

allowing more programmability, because as the datapath is generalized, additional

cost overheads are introduced that reduce efficiency. An additional challenge is the

question of how to quantify programmability of a hardware datapath.

2.4 Related Work

Datapath synthesis from behavioral specifications is a field that has been studied

for many years. The basic techniques, including resource allocation and scheduling,

have been well established [22]. Cathedral III represents a complete synthesis sys-

tem developed at IMEC and illustrates one comprehensive approach to high-level

synthesis [49]. It uses an applicative language for program specification and designs

11

customized datapaths for signal processing applications from this specification. Force-

directed scheduling is used to synthesize datapaths for ASIC design in [57]. The Sehwa

system automatically designs processing pipelines from behavioral specifications [56].

The PICO system synthesizes C loop nests into a synchronous array of customized

processor datapaths [60].

The above systems produce standard cell based designs. Automatic mapping of

applications to FPGA-based and other reconfigurable systems has also been investi-

gated. One of the first efforts to automatically map applications onto an FPGA was

Splash [23], subsequently productized as the NAPA system [24]. Other automatic

compiler systems for FPGA-based platforms include GARP [6], PRISM [70], and

DEFACTO [5]. Modulo scheduling has been used to map critical loops onto recon-

figurable coprocessors [27, 62]. Compilation for architectures consisting of predefined

FUs and storage with reconfigurable interconnect have been investigated, including

RaPiD [13] and PipeRench [25]. The MOVE processor [10] is an application specific

instruction-set processor (ASIP) based upon transport triggered architectures, where

instructions direct the flow of operands rather than the computation.

In addition to the works discussed here, there are related works relevant to specific

chapters of this dissertation. Those chapters will contain their own discussion of

related work.

12

CHAPTER 3

Hardware Organization and Design Flow

3.1 System View

Embedded devices commonly execute streaming applications, in which multiple

compute-intensive loops (such as filters) operate in turn on large amounts of streaming

data. The natural realization of these tasks is a hardware pipeline of accelerators,

each implementing one or more of the tasks that process the data. Figure 3.1(a)

shows an example of a streaming application that consists of multiple loops; in some

cases, different loops are executed depending on the type of input data. Figure 3.1(b)

shows a pipeline of loop accelerators designed to execute the loops in the application.

Each accelerator executes one or more of the loops, and SRAM buffers in between

the accelerators allow the output of one accelerator to feed into the input of the next.

The accelerator labeled LA2 is a multifunction accelerator, and can execute either

Loop 2 or Loop 3.

The hardware pipeline is designed in an intelligent way, matching the throughput

13

Frame
Type?

…

LA1

LA2

LA3

…

Loop

Accelerator

Multifunction

Loop

Accelerator

Loop 1

Loop 2 Loop 3

Loop 4

(a) Streaming application (b) Accelerator pipeline

Loop

Accelerator

Figure 3.1: Streaming application mapped to pipeline of loop accelerators.

* MEM+BR
Local
Mem

Control

Point−to−point Connections

II D
at

a
In

D
at

a
O

ut

...Start
Done

Data In

SRF

CRF

Figure 3.2: Loop accelerator template.

of each accelerator and sizing the buffers so that an overall performance goal is met

while the overall system cost is minimized [34]. The specifics of the system-level

design of the accelerator pipeline is outside the scope of this dissertation; this work

focuses on synthesizing efficient individual accelerators.

3.2 Accelerator Template

Figure 3.2 shows the hardware schema used in this system. It is designed to

exploit the high degree of parallelism available in modulo scheduled loops with a

14

large number of function units (FUs). Each FU writes to the top entry of a dedicated

shift register file (SRF); entries move down at every cycle. Wires from the registers

back to the FU inputs allow data transfer from producer to consumer. Multiple

registers may be connected to each FU input; a multiplexer (MUX) is used to select

the appropriate one. Since the operations executing in a modulo scheduled loop are

periodic, the selector for this MUX is simply a modulo counter. Other than this

counter, no control signals are needed to address the registers.

Literals and static live-in register values cannot be stored in the SRFs. Therefore,

live-in values are supplied by a central register file (CRF), and literals are hardwired

to the inputs of FUs that require them. FUs that access memory are connected to

a local memory structure such as a scratchpad, cache, or stream buffer. The loop

accelerator begins execution when a start signal is asserted by the host processor.

When the loop execution is complete, the branch FU asserts a done signal to the host

processor.

Support for predication in the loop accelerator hardware is useful, because it allows

loops with internal control flow to be modulo scheduled and accelerated. In addition,

modulo scheduling itself uses predication to implement the prolog, kernel, and epilog

phases of the schedule. Predication is supported in the loop accelerator via a valid

bit associated with each register. In each cycle, each FU produces a value that is

written to the top entry of the corresponding SRF. If the guarding predicate of the

FU is true during this cycle, the corresponding valid bit is set to true, otherwise it is

set to false. Later, when the value is used by an FU, a data-merge MUX at the FU

15

Modulo
Schedule II−1

0 Build
Datapath

Instantiate
Arch

+ M− .v Synthesize

Concrete
Arch

Scheduled
Ops

Control

Verilog
Signals,

−+ M

RF
.c

FU
Alloc

II
C Code, Abstract

Arch

Figure 3.3: Loop accelerator design flow.

input selects the register whose corresponding valid bit is set. If multiple registers

are valid, the MUX should select the most recently computed valid value. Recency is

known statically, as the register closest to the top of its SRF will have been computed

most recently.

3.3 Accelerator Design Flow

The overall flow of the synthesis system is presented in Figure 3.3. Each step of

the flow is described in this section with an example from sobel, an edge detection

algorithm.

3.3.1 FU Allocation

This step takes the inputs of the system and creates an abstract VLIW architec-

ture that represents a high-level view of the accelerator’s functionality. The abstract

architecture is parameterized only by the number of FUs and their capabilities; a

single unified register file with infinite ports/elements that is connected to all FUs

is assumed. Given the operations in the loop, the desired throughput (expressed as

the initiation interval of the loop or II [58]), and a library of hardware cell capabil-

16

ities and costs, the problem of FU allocation is to come up with a mix of FUs that

minimizes cost while providing enough resources to meet the throughput constraint.

In this phase, all FUs are assumed to be full width for cost purposes. (Bitwidth

specialization is performed after the cost sensitive scheduling, when operations have

been assigned to specific FUs.) In the simplest case where each operation can be

executed by only one type of FU, �compatible ops/II� instances of each FU type

should be created. However, operations can generally be executed by multiple types

of FUs, such as when both adder and adder/subtractor units are available. In this

case, the FU allocation problem becomes more complex and can be formulated as an

integer linear program, minimizing the sum of the FU costs while supporting all of

the operations. Figure 3.4(b) shows the result of FU allocation for sobel with II=4.

There are 22 ADD and 2 SUB operations in the loop, which are covered by the 5

ADD and 1 ADDSUB units.

3.3.2 Modulo Scheduling

The loop is modulo scheduled to the abstract architecture created in the previous

step. A cost-sensitive modulo scheduler, to be described in Chapter 4, assigns oper-

ations to the resources and timeslots in the abstract architecture. At the completion

of this phase, all of the loop operations are bound to resources and time, and the

producer-consumer relationships between FUs have been determined. Figure 3.4(c)

shows some operations from the modulo schedule for sobel, with edges indicating

communication between operations. The number associated with each operation in-

17

for (i = 0; i < N1; i++) {
for (j = 0; j < N2; j++) {
t00 = x[i][j];
t01 = x[i][j+1];
t02 = x[i][j+2];
t10 = x[i+1][j];
t12 = x[i+1][j+2];
t20 = x[i+2][j];
t21 = x[i+2][j+1];
t22 = x[i+2][j+2];
e1 = ((t00 + t01) + (t01 + t02)) –

((t20 + t21) + (t21 + t22));
e2 = ((t00 + t10) + (t10 + t20)) –

((t02 + t12) + (t12 + t22));
e12 = e1*e1; e22 = e2*e2;
e = e12 + e22;
if (e > threshold) tmp = 1;
else tmp = 0;
edge[i][j] = tmp;

}
}

1CMP

1MPY

3MEM

1ADDSUB

5ADD

#FU

1CMP

1MPY

3MEM

1ADDSUB

5ADD

#FU

II = 4

LD8

ADD32

ADD8 ADD8

LD8

ADD80

3

1

2

cycle FU0 FU1 FU2 FU3

+ +

8

+

8

8

32

MEM

 + + MEMctrlctrl ctrl

Central RFCluster CTRL

 +/-ctrl

muxmux mux

 (a) (c) (e)

(d)

(b)

Figure 3.4: An example loop accelerator design. (a) sobel source code, (b) result
of FU allocation with II = 4, (c) a portion of the sobel modulo scheduled loop, (d)
datapath derived from the modulo schedule shown in (c), (e) lowered datapath.

dicates its width; the width of each FU is set to the width of the largest operation

assigned to it.

3.3.3 Datapath Construction

The virtual FUs of the abstract architecture, concretized by operation assign-

ments, directly become the FUs of the loop accelerator. The rest of the accelerator

datapath is derived from the producer-consumer relationships in the modulo sched-

ule. Wires connect a shift register entry at the output of a producing FU to the input

of a consuming FU. The register entry that should be connected is determined from

the difference in execution time between the producer and consumer, since register

entries move down at every cycle. More specifically, the register number r that should

be connected to transfer a value from producing operation p to consuming operation

18

c is:

r = time(c) − time(p) + iteration distance(p, c) ∗ II − latency(p)

assuming that the topmost register in each SRF is numbered 0.

The bitwidths of FUs and register files are determined by the maximum bitwidth

of operations that are mapped to the FU or contained in the register. The depth of a

register file is set to the longest lifetime of the values produced by the corresponding

FU. Figure 3.4(d) shows the SRFs and connections resulting from the scheduled

operations in Figure 3.4(c).

3.3.4 Architecture Instantiation

Lastly, the architecture created in the previous step is lowered into a Verilog

realization of the accelerator. Each module in the datapath is translated into a set of

primitive modules that have pre-defined behavioral Verilog descriptions. To reduce

global wiring of control signals, we employ a distributed hierarchical control scheme

that consists of three levels of control logic: FU control activates the appropriate

primitive FU with the proper functionality and sets any internal MUX selects; cluster

control converts the II value to generate high-level FU opcodes and sets the input

MUXes select signals; and, processor control generates the II counter value. A subset

of the final lowered datapath for sobel is presented in Figure 3.4(e). Input MUXes

are added when multiple wires share the same FU input port, and the control path

is generated to direct the MUXes and FUs.

19

CHAPTER 4

Cost Sensitive Modulo Scheduling

4.1 Introduction

This chapter focuses on the scheduling component of single-function accelerator

synthesis. The scheduler is a key component of the synthesis system because the ac-

celerator datapath is determined from the modulo schedule of operations, as described

in Section 3.3.

Modulo scheduling is a method of overlapping iterations of a loop to achieve high

throughput. The performance of the schedule is determined by the initiation interval

(II), or the number of cycles between successive iterations of the loop. The modulo

schedule contains a kernel which repeats every II cycles and may include operations

from multiple loop iterations. As the modulo schedule implements a software pipeline,

the execution of kernel operations must be orchestrated so that the pipeline fills and

drains properly. The pipeline fill and drain phases are known as the prolog and epilog,

respectively, and they are controlled during execution by a staging predicate.

20

Scheduling algorithms used in compilers traditionally focus on goals such as reduc-

ing schedule length and register pressure or producing compact code. In the context

of a hardware synthesis system where the schedule is used to determine various com-

ponents of the hardware, including datapath, storage, and interconnect, the goals

of a scheduler change drastically. In addition to achieving the traditional goals, the

scheduler must proactively make decisions to ensure efficient hardware is produced.

The objective of cost sensitive modulo scheduling is to create a schedule that not

only achieves a specified throughput, but also yields the lowest cost accelerator design.

To accomplish this objective, the accelerator design is modeled during scheduling, so

the impact of binding decisions on cost can be assessed. Our first approach to this

problem utilized a greedy strategy, wherein at each scheduling step, the alternative

that produced the least cost increase to the current design was made. The greedy

approach was generally better than the baseline cost insensitive scheduler, but not by

a large amount. The scheduler got trapped in too many local minima and the overall

quality did not improve much.

The central problem is that each portion of the accelerator architecture is not the

result of an individual scheduling decision, but rather is determined by many inter-

related scheduling decisions. Each decision for a single operation has cost implications

on earlier and later decisions. Thus, a greedy approach inherently does not make sense

as the cost saved by making one decision is often unrelated to the cost of the entire

design. As a result, we decided to focus on two scheduling methods that provide

exact solutions: branch-and-bound and integer linear programming. Our approach is

21

to develop cost sensitive formulations of both methods.

As with most exact formulations, these methods break down for moderate to large

problem sizes as the run-time and memory usage of these methods explode. Thus, the

scheduling problem is decomposed into a set of more manageable subproblems, where

each subproblem is solved in a phase-ordered manner. We utilize three techniques to

break down the problem: graph partitioning, space-time decomposition, and time-

space decomposition. Graph partitioning divides loop bodies into smaller subgraphs,

optimally scheduling the subgraphs, while space-time and time-space decomposition

split the scheduling process into two separate phases, time slot and resource assign-

ment. These methods sacrifice optimality of the schedule and thus of the cost of the

accelerator, but enable realistic problems to be solved in a reasonable amount of time,

while achieving substantial cost savings.

The contributions of this chapter are two-fold:

• Two exact methods for cost sensitive modulo scheduling are presented: branch-

and-bound and integer linear programming. Each method can be applied to

optimize for area, interconnect, or a simple combination of both. The effective-

ness of these methods is compared to traditional cost insensitive and greedy

cost sensitive modulo schedulers.

• To address the issue of problem size explosion common to exact scheduling

methods, three methods for decomposing scheduling algorithms into phased so-

lutions of simpler subproblems are utilized. They consist of graph partitioning,

time-space decomposition, and space-time decomposition. The implementation

22

details of each are presented along with analysis of the performance tradeoffs.

4.2 Related Work

Cost sensitive scheduling in the context of data path synthesis has been studied for

many years. Force-directed scheduling integrates resource allocation and scheduling

into a common synthesis algorithm to minimize overall cost of synthesized datap-

aths [57]. Tradeoffs in allocating either low latency and expensive or high latency

and inexpensive resources have been considered within an integrated scheduling and

resource allocation algorithm [4]. [54] proposes a polynomial time scheduling algo-

rithm based on heuristics that produces near optimal results. [36] presents an integer

programming formulation for the scheduling problem in data path synthesis. Gener-

ation of more efficient designs by sharing hardware across basic blocks was recently

proposed [46]. All of the above work handle only acyclic code regions. The opti-

mization criteria usually is achieving shortest schedule length, or given a schedule

length, achieving the least cost of data path. The focus of our work is cyclic schedul-

ing. Though the components of the cost are the same, the optimization strategy is

different because of the way in which function units are utilized in a cyclic schedule.

Heuristics that work as a preprocessing step to scheduling and try to minimize

cost of the resulting hardware have also been studied. Clique-based partitioning

algorithms were developed in the FACET project to jointly minimize function unit

and inter-function unit communication costs [68]. Within the PICO system, width

clustering is used to bind operations of narrow bitwidth to common resources to

23

reduce datapath cost [42]. Assignment of scheduled operations to resources with the

goal of increasing interconnect sharing has been proposed [55]. The advantage of

preprocessing heuristics is that they are fast and usually achieve good results when

used in conjunction with a traditional scheduling algorithm. Our work intertwines

the cost minimization into the scheduling algorithm to achieve greater cost savings.

In the compiler domain, software pipelining is a technique to exploit instruction-

level parallelism by overlapping the execution of successive loop iterations. Mod-

ulo scheduling is a class of software pipelining algorithms that achieve high quality

solutions and have been implemented in production compilers [58]. A number of

extensions to modulo scheduling have been proposed to increase the quality of the

solution, including reducing register requirements [14, 28, 40] and code size [41]. Re-

ducing register requirements is most closely related to accelerator cost reduction.

Swing modulo scheduling changes the core modulo scheduler to reduce register re-

quirements by considering operations in different orders and changing how time slots

are chosen [40]. Conversely, stage scheduling is a post-processing to shift the pipeline

stage of instructions to reduce register requirements [14]. While the application of

these techniques can reduce the cost of loop accelerators, the affect is limited as tradi-

tional compiler-based measures, such as register lifetimes, do not reflect the structure

of a loop accelerator. For instance, a long lifetime may be free in an accelerator if

it is scheduled to share a register with a similar lifetime. Hardware sharing and all

aspects of cost must be considered to create efficient loop accelerators.

Many techniques for optimal modulo scheduling have been proposed in the lit-

24

erature. [15] proposes and efficient integer programming formulation for optimal

modulo scheduling. [2] proposes an enumeration based approach for optimal modulo

scheduling. Both of these techniques focus primarily on achieving a valid schedule.

Minimizing register requirements has been the main optimization criteria for many of

the works published on optimal modulo scheduling. [26], [16], and [17] formulate the

modulo scheduling with minimum register requirements as an integer linear program-

ming problem. Our work uses the basic ILP formulation from [15] and builds upon

it significantly by adding variables and constraints to represent the cost of hardware

and uses the hardware cost as the objective function.

4.3 Scheduling Techniques

Cost sensitive modulo scheduling focuses on reducing the cost of three components

of the hardware: FUs, register storage, and interconnect wires. These components

were found to dominate the hardware cost of loop accelerators; other components such

as multiplexers and control signals are less significant and are not specifically targeted

for cost reduction in this work. By reducing the sizes of FUs and shift registers re-

quired to support execution of a given loop, the resulting hardware implementation

will achieve the same throughput with fewer logic gates and less power. In addition,

with high numbers of FUs and registers to support loop level parallelism, the inter-

connection network feeding values from registers to FU inputs can grow very large.

Decreasing the number of wires required to support these data transfers reduces chip

area from the wires themselves as well as from simplifying the placement and routing

25

+1

LD1

+
1

LD
1

+2

LD2

LD
2

+
2

+
1

+
2

LD
2

LD
1

ti
m
e

ti
m
e

FU1 FU2 FU3

FU1 FU2 FU3

FU1 FU2 FU3

FU1 FU2 FU3

Figure 4.1: Effect of schedule on wire cost.

of other structures in the hardware layout.

FU and storage cost can be reduced by scheduling operations cognizant of their

resource and communication requirements, such as bitwidth and register lifetimes;

by maximizing hardware reuse, the total amount of hardware is reduced. Wire cost

can be reduced by maximizing reuse of the same wires by different producer and

consumer operations. Wires are reused if producers and consumers are scheduled on

the same respective FUs, and the consumers read data from the same shift register

entry (i.e., the time differences between producers and consumers are identical). In

Figure 4.1, assume the two pairs of operations to be scheduled are 32 bits wide.

An interconnect-unaware modulo scheduler might produce the upper schedule, which

requires 64 wires, while the lower schedule would have required only 32.

The remainder of this section describes approaches for achieving these goals, as-

signing operations to FUs and time slots such that the cost of the hardware needed

to support their execution is minimized.

26

4.3.1 Greedy Scheduling

The baseline (näıve) scheduler used in this work is the iterative modulo scheduler

described in [58], with a stage scheduling postpass [14]. This scheduler arbitrarily

selects an available scheduling alternative for each operation in order to meet a given

II, and does not consider hardware cost. The stage scheduling postpass reduces reg-

ister lifetimes, which may reduce hardware cost, but this is done without cognizance

of the hardware.

A straightforward way to make the scheduler cost-aware is to augment the näıve

modulo scheduler with a hardware cost model and a greedy heuristic to minimize

cost. The cost aware scheduling framework is shown in Figure 4.2. The main com-

ponent of this framework is the hardware cost modeler, explained in more detail in

Section 4.3.2.1. The hardware cost model is able to represent the cost of a partial

machine, that is, the cost of hardware resources required to support execution of

just the scheduled operations. In addition, the cost modeler can estimate the cost of

hardware that would be required to support the remaining, unscheduled operations.

(This estimate is explained in more detail in Section 4.3.2.2.)

To choose the best local alternative, the greedy modulo scheduler makes queries

about the machine cost to the hardware cost modeler. The cost modeler returns a

cost estimate that includes both the partial machine cost as well as the estimated

cost of unscheduled operations. Based on this cost, the scheduler chooses the best

alternative and schedules the operation on that particular FU and time slot. This is

done for all operations in priority order, backtracking as needed. After the completion

27

2

3 4

5

1

Data Flow
Graph

Hardware
Cost

Library

Estimate for
Unscheduled Ops

− +

16

8

+ *

8
32

...

0
1 3

1 2

Table
Modulo Reservation

FU1 FU2 ...

Scheduler
Modulo

Alt i (FU + Reg + Wire)
(FU + Reg + Wire) +sched

unsched
Cost = i

Partial Hardware
for Scheduled Ops

+

Hardware Cost Modeler

Figure 4.2: Cost sensitive scheduling framework used for greedy and branch-and-
bound schedulers.

of greedy scheduling, the stage scheduling postpass is performed to decrease register

lifetimes.

4.3.2 Branch-and-Bound Solution

A second method of obtaining a modulo schedule that minimizes hardware cost

is to utilize an optimal branch-and-bound (BNB) solution. The goal is to search all

possible schedules in order to find one that has the lowest hardware cost. The search

is performed by scheduling each operation at all of its valid alternatives (FUs × time

slots). In a modulo schedule, each operation can be scheduled in at most II different

time slots. Operations are considered in order of least to most available alternatives;

the order does not affect the algorithm’s optimality, only its runtime. The search

space can be represented by a tree as shown in Figure 4.3. Each node represents a

partial schedule, or a state in which some operations have been assigned FUs and

28

Op1

Op2

Op3
Op3

Op1 Op2

0 1 2

1

0

tim
e

FUs

(1,1)(1,0) (2,0) (2,1)

(0,0) (FU, time)

(0,2) (0,1)

Figure 4.3: Branch-and-bound search. The highlighted state corresponds to the
partial schedule shown.

time slots. The children of a node are formed by scheduling the next operation at all

of its valid alternatives, subject to resource and dependence constraints. Leaf nodes

in the tree therefore represent full schedules, and the goal is to locate a leaf node

whose schedule requires the minimum amount of hardware.

4.3.2.1 Hardware Modeling

The BNB scheduler uses a hardware model to estimate the cost of a machine

supporting a given partial schedule. Three aspects of hardware cost are modeled:

FUs, register storage, and interconnect wires. Function unit cost is determined by

its capabilities and width. In the loop accelerator synthesis system, FU capabilities

are determined during the FU allocation phase described in Section 3.3, prior to

scheduling. Therefore, the scheduler has influence only on the width of the FU – if

only narrow bitwidth operations are scheduled on an FU, then its cost can be reduced.

The FU cost for a given partial schedule can therefore be determined as a function

of the maximum bitwidth operation scheduled on each FU.

The register storage cost is determined similarly. Each shift register must be

wide enough to accommodate the maximum bitwidth operation scheduled on the

corresponding FU, and deep enough to hold the value with the longest lifetime. Also,

29

interconnect wires must connect specific registers with FU input ports. Given a

partial schedule, the known producer-consumer relationships between operations is

used to obtain the widths and depths of the shift registers, as well as the number of

interconnect wires required.

The BNB algorithm requires a single metric to determine whether a given schedule

is better or worse than previously explored schedules. Therefore, when the objective

is to decrease overall hardware cost, the combined metric used is the sum of wires,

storage bits, and FU cost. The units of FU cost are scaled such that they are equiva-

lent to storage bits in terms of the number of logic gates required for implementation.

The wire, storage, and FU metrics may also be used alone, for example, to obtain a

schedule with the objective of minimizing only storage cost.

4.3.2.2 Hardware Cost Estimation

An effective bound function is a crucial element in any BNB algorithm in order

to prune, as early as possible, search paths that will not yield optimal results. The

search is bounded using an estimate of the hardware needed to support operations

that have not yet been scheduled. Thus, for any partial schedule, when the cost of

hardware required by scheduled operations plus hardware estimated for unscheduled

operations exceeds the best solution found so far, that search path is pruned. As long

as the estimate is conservative (i.e., never overestimates the actual hardware cost),

optimality is preserved as no search paths will be erroneously pruned. Additionally,

the more accurate the estimate, the more likely a wrong path will be pruned earlier,

30

+1 +2

LD3 LD4

+6+5 +7
0 Op 5

3 Op 10

1 Op 6 Op 8
2 Op 7

cycle FU0 FU1

existing connection

estimated connection

(a) (b) (c)

FU 0 FU 1

FU 2 FU 3

ADD

LD

+8

LD9 +10

Figure 4.4: Wire estimation example: (a) DFG, (b) partial schedule, (c) connection
diagram

thus decreasing the run time of the search.

Wire estimation. For the wire estimation, FUs are placed into groups based

on their functionality. An FU group is the basic unit for estimation, and estimated

connections are made between FU groups. For a given pair of FU groups, we collect

all compatible edges1 whose producer or consumer ops are unscheduled. Then, we

determine the minimum number of additional connections required to support those

unscheduled edges based on the number of available slots on the FUs (each FU has II

slots). We optimistically assume that empty slots in the FUs can be occupied by any

compatible unscheduled producer, ignoring scheduling constraints. This assumption

guarantees that the estimation is a lower bound for the wire cost. It is assumed

that existing wires in an FU group with n free slots can be reused by n unscheduled

operations with compatible edges. When there are more than n such operations, new

estimated connections are made to support the remaining operations.

Figure 4.4 shows how the estimation is performed for the ADD FU group. The

processor consists of four FUs, two in the ADD FU group (FU0, FU1) and two in

1Multiple dataflow edges whose producer and consumer operations can execute on corresponding
FU groups.

31

the LD FU group (FU2, FU3). Assume the shaded operations are already scheduled

and wires are being estimated for the unshaded operations. There are two types of

edges originating from ADD operations: ADD→ADD and ADD→LD. As there is

already a connection from FU 0 to FU 2 and FU 0 has one available slot, one of

the two ADD→LD edges can potentially be scheduled without generating additional

connections. This will make FU 0 fully occupied and the producer of the second edge

must be placed on FU 1. Therefore, a new estimated connection between FU 1 and

the LD FU group is created. Another estimation is performed independently for the

ADD→ADD edges. Here, both can potentially be scheduled by placing the producers

on FU 1, as it has two available slots. Thus, the ADD→ADD edges will not require

any additional connections. As a result, the wire estimation for the ADD FU group

is one. Wire estimation for the LD FU group proceeds in a similar manner.

Storage estimation. Estimating the incremental storage requirements for

unscheduled operations is performed using an analogous method. First, the overall

storage requirements for the unscheduled operations is determined; then, based on

the number of available execution slots in the FUs and the existing register storage,

the number of bits of new storage needed to support the unscheduled operations is

estimated.

For each unscheduled operation, an estimate of the number of register bits needed

to hold its result is obtained. This value depends on the width and depth of the

output register; the width is simply the bitwidth of the operation, while the depth

can be estimated from the estart/lstart2 times of the operation and its consumers.

2estartop: earliest start time of op ignoring resource constraints. lstartop: latest start time of op

32

More specifically, for operation op with consumers cons:

depth =
(

max
c∈cons

estartc

)
− lstartop − latencyop (4.1)

Once register requirements are approximated for the unscheduled operations, it

is optimistically assumed that existing shift registers at the outputs of compatible

FUs with available execution slots can be reused to satisfy these requirements. Any

required register bits that cannot be satisfied by existing registers become part of

the incremental storage estimation. Similarly to the wire estimation, this storage

estimation does not take dependence constraints into consideration and is therefore

conservative.

Function unit estimation. FU cost estimation is somewhat simpler than wire

or storage estimation, since FU capabilities are fixed prior to scheduling and only

the FU width varies depending on the schedule. First, unscheduled operations are

grouped by type and their maximum bitwidth is determined. Next, existing FUs with

free slots are used to satisfy these FU requirements. Finally, the additional cost of

FUs needed to support the remaining operations (either by widening existing FUs or

creating new FUs) is calculated.

For a given partial schedule, once the wire, storage, and FU costs have been

estimated for the unscheduled operations, the search may be pruned. Once again, a

single metric is needed for the hardware cost estimate, and this is obtained by the

weighted sum of the wire, storage, and FU cost metrics. Note that these hardware

without delaying exit operations.

33

estimations are performed at every step of the BNB search. Therefore, they are

implemented in a computationally efficient way, using incremental updates to internal

data structures in order to minimize their impact on the execution time of the search.

Note also that it is worthwhile to spend some computation time obtaining an accurate

estimate if it allows the search paths to be pruned earlier, since the number of states

eliminated by pruning a node is exponential in the height of the node.

4.3.3 Integer Linear Programming Formulation

The third approach to the problem is an integer linear programming (ILP) formu-

lation for achieving modulo schedules optimal with respect to the cost of hardware

generated from the schedule. The basic structure of the formulation is identical to

the one proposed in [15, 26]. The basic formulation described in these works do not

perform FU assignment, but only ensure that a valid assignment is possible. FU

assignment is crucial in determining cost of hardware derived from the schedule. In

the formulation described in this section, additional variables and constraints to rep-

resent FU assignment for operations is added to the basic formulation. An objective

function to represent hardware cost is derived from these variables and constraints.

4.3.3.1 Basic Formulation

The body of the loop under consideration is represented by a graph G = {V, E},

where V represents the set of operations in the loop body and E represents data de-

pendence edges between operations. Each dependence edge has an associated latency

34

li,j which specifies the latency of the producer i, and a distance di,j, which specifies

the difference in iterations between when the value is produced by i and when the

value is consumed by j.

Consider a loop with |V | = N operations. Let II be the initiation interval. The

schedule for this loop is represented by II × N binary variables Xi,s. Operation

i ∈ {0, N − 1} is scheduled in slot s, 0 ≤ s ≤ II − 1, if Xi,s = 1. The following

constraint enforces a unique slot for every operation i.

II−1∑
s=0

Xi,s = 1 ∀i ∈ {0, N − 1} (4.2)

N integer variables ki, i ∈ {0, N − 1} are introduced to represent the stage in which

each operation is placed. Xi,s and ki uniquely identify the cycle in which an operation

i is scheduled. In fact, the schedule time of an operation i is given by

ti =
II−1∑
s=1

s × Xi,s + II × ki (4.3)

Note that ti is used as a shorthand to represent the schedule time of an operation i.

In a real implementation, there is no need to introduce a new variable to represent

the schedule time. Given the ti’s for all operations, the data dependences between

operations can be enforced with the following set of constraints.

tj + di,j × II − ti ≥ li,j ∀(i, j) ∈ E (4.4)

35

The schedule times should satisfy the resource constraints, i.e., the number of oper-

ations scheduled in each slot should not exceed the available number of FUs for each

FU type. Suppose If are the set of operations that require a FU of type f and Mf are

the total number of FUs of type f available. Then, the following constraint enforces

the resource constraints.

∑
i∈If

Xi,s ≤ Mf s ∈ {0, II − 1} (4.5)

Note that the above constraint only ensures a valid FU assignment and does not

actually perform the assignment.

4.3.3.2 Function Unit Assignment

The FU assignment for operations is represented by a set of binary variables Ri,j,

i ∈ {0, N − 1}, j ∈ {0, Mf − 1}, i.e., there are Mf binary variables for every op i,

where Mf is the number of compatible FUs to which i can be assigned. The following

constraint enforces a unique assignment.

Mf−1∑
j=0

Ri,j = 1 ∀i ∈ {0, N − 1} (4.6)

The number of operations assigned to a particular FU cannot exceed II. The following

constraint enforces this.

∑
i∈Ij

Ri,j ≤ II i ∈ Ij can execute on j (4.7)

36

Even with the above constraint, an FU can be assigned to two operations in the same

cycle. To prevent this from happening, the following constraint has to be enforced

for every FU.

∑
i∈Ij

Ri,j × Xi,s ≤ 1 ∀s ∈ {0, II − 1} and i ∈ Ij can execute on FU j (4.8)

The above equation is a sum of products of two binary variables, and is non-linear;

it can be linearized as follows. For every Ri,j and Xi,s appearing in the above set of

equations, an auxiliary binary variable Zi,j,s is introduced and following set constraints

are enforced on Zi,j,s.

−Ri,j + Zi,j,s ≤ 0 (4.9)

−Xi,s + Zi,j,s ≤ 0

Ri,j + Xi,s − Zi,j,s ≤ 1

Now the product terms in Equation 4.8 can be replaced with the correspond-

ing Zi,j,s’s. Solving equations 4.2 through 4.9 would yield a valid schedule and FU

assignment for operations in a loop.

4.3.3.3 Cost Minimization

As described in Section 3.2, the hardware schema is a set of FUs writing to inde-

pendent shift registers. The cost of the hardware includes cost of the FUs and cost

of the shift registers and cost of wires used to connect shift registers to the input of

FUs. In this section, we describe modeling of costs of FU and shift registers only.

37

Modeling wire cost is left out due to space considerations.

Function unit cost. The cost of the FU depends on the set of operations

assigned to it. For example, if 8-bit and 16-bit add operations are assigned to an add

FU, then the cost of the add FU is the cost of a 16-bit adder. Suppose Hi is the

cost of a FU required to execute operation i only. Hi is a constant and is a (possibly

non-linear) function of the bitwidth of operation i. Now, the cost of a FU j will be

at least Hi, if i is assigned to j. Since we have binary variables to represent the fact

that operation i is assigned to FU j, the above fact be represented as follows.

Cj ≥ Ri,j × Hi i can execute on FU j and Cj is the cost of FU j (4.10)

The above constraint is introduced into the integer program for every operation i that

can be assigned to FU j. Thus, Cj automatically gets set to the maximum cost of an

FU that can execute any set of operations assigned to it. The total cost of FUs in

the hardware can be calculated as follows.

∑
j∈FUs

Cj (4.11)

Storage cost. As described in Section 3.2, the FUs write their output to the

head of a shift register which shifts the values down every cycle. The shift register

should have enough entries to hold the values until the consumer FU reads it in a

later cycle. Consider an operation i1 feeding another operation i2. From Equation 4.3

we know that ti1 and ti2 are the schedule times of i1 and i2 respectively. The value

38

produced by i1 is read by i2 after ti2 − ti1 + II × di1,i2 − li1,i2 + 1 cycles. i1 could have

many consumers and the latest time a value produced by i1 is live is the maximum of

ti2 −ti1 +II×di1,i2− li1,i2 +1 with respect to some consumer. A integer variable LTi is

introduced for every producer i operation in the loop body to indicate the maximum

lifetime (measured in number of cycles) of the value produced by that operation.

LTi ≥ ti′ − ti + II × di,i′ − li,i′ + 1 (i, i′) ∈ E (4.12)

Note that the lifetime indicates the lifetime in actual number of cycles. This is signif-

icantly different from the lifetime measure used in [16, 26] which is just the maximum

number of values produced by an operation live at any instant. The maximum life-

times of values produced by operations is used to calculate the depth Dj of the shift

register associated with an FU j. A shift register should hold live values from all

operations assigned to it. Therefore, Dj is the maximum of lifetimes of any operation

assigned to it. This can be represented as follows.

Dj ≥ Ri,j × LTi ∀i assigned to j (4.13)

The above equation is a product of a binary variable and an integer variable, and is

non-linear. However, it can be linearized using an auxiliary variable TDj as shown

below.

39

TDj ≥ 0 (4.14)

TDj ≤ P × Ri,j

TDj ≤ LTi

TDj ≥ LTi − (1 − Ri,j) × P

Dj ≥ TDj

where P is a suitably large constant. Note that TDj is 0 when Ri,j is 0 and is

equal to LTi when Ri,j is 1. Dj thus gets the maximum of LTi among all operations

i assigned to FU j.

The cost of the shift register of an FU also depends on the bitwidth of the op-

erations assigned to the FU. In fact, the width of the shift register has to be the

maximum of the bitwidths of operations assigned to the FU. The width Wj of the

shift register associated with FU j is calculated as follows.

Wj ≥ Ri,j × BWi ∀ i assigned to j (4.15)

where BWi is a constant, indicating the bitwidth of the values produced by operation

i. From Dj and Wj, the cost Sj of the shift register associated with FU j can be

calculated as follows.

Sj = Wj × Dj (4.16)

The above equation is non-linear. However, it can be linearized using the observation

that Wj can take only a small set of discrete values. Suppose Wj can take values w1,

40

w2, ... , wk. Then, Wj can be represented as shown below.

Wj =
k∑

n=1

wn × bj,wn,
k∑

n=1

bj,wn = 1 (4.17)

where bj,w1, bj,w2, ... , bj,wk
are binary variables. Now Sj can be expressed in linear

form as follows.

Sj ≤ wmax × Dj (4.18)

Sj ≥ wn × Dj − (1 − bj,wn) × Q ∀n ∈ {1, n}

where wmax is the maximum among w1, w2, ... wk and Q is a suitable large constant.

The objective function for minimizing the cost of data-path of the hardware can

now be calculated from equations 4.11 and 4.18.

∑
j∈FUs

Cj + Sj (4.19)

The overall ILP formulation for cost sensitive modulo scheduling can be stated as

“minimize Equation 4.19, subject to the constraints expressed in Equations 4.2 through

4.18.”

4.4 Decomposition Methods

It is necessary to decompose the modulo scheduling problem described in the

previous section because the number of possible schedules is too large for realistic

loops. There are multiple ways in which the problem can be decomposed. One

41

approach is to partition the dataflow graph into sets of operations and then schedule

the sets one by one. Another approach is to perform scheduling in phases. In this case,

all operations are considered at once, but only resource assignment is performed in

the first phase, and time assignment is performed in the second phase. Alternatively,

the two phases can be performed in reverse order.

4.4.1 Operation Partitioning

One natural way of simplifying the scheduling problem is to partition the opera-

tions into multiple disjoint sets. The size of each set is bounded (generally to 10-15

operations), and thus the space of possible schedules for the operations in a set can

be reasonably explored using the branch-and-bound or ILP techniques described in

Section 4.3.

The scheduler considers sets of operations in sequence. Within each set, an opti-

mal assignment of operations to resources and time is obtained which minimizes the

cost of the additional hardware required by this set. Once operations from a set are

scheduled, their resource and time slot assignments are fixed, and subsequent sets will

take these assignments into account when they are scheduled. Thus, for each set of

operations, the scheduler attempts to utilize two forms of hardware sharing to mini-

mize cost: intra-set sharing, where operations within a set reuse new hardware, and

inter-set sharing, where operations reuse existing hardware from previously scheduled

sets.

The partitioning scheduler therefore obtains an optimal solution for each set, and

42

the combination of these solutions forms the final global schedule. This decomposition

method loses some global optimality because only operations within the same set are

considered together, and scheduling decisions made in earlier sets cannot be changed

when scheduling later sets. However, in general this method is effective in producing

low-cost schedules as both resource and time assignments are made jointly, and the

decisions account for previously scheduled sets. An elegant tradeoff can be achieved

between global optimality and running time of the scheduler. Larger sets are likely

to give solutions closer to the globally optimal solution at the cost of increased search

time. Smaller sets can be quickly searched to find locally optimal solutions.

Two issues have to be addressed in this scheduling scheme. First, a suitable

partitioning method must be devised. Second, a backtracking strategy has to be

designed to ensure successful completion of the scheduler.

4.4.1.1 Partitioning Method

A simple way to partition the data flow graph is to consider the height based prior-

ity order of operations used in a typical scheduler, and place every n operations into a

set (where n is the desired set size). Since the height based priority minimizes the in-

stances where a consumer is scheduled before its producer operation, this partitioning

method minimizes backtracking and ensures quick convergence to a schedule. A more

sophisticated graph partitioning method could also be employed to form partitions.

However, unlike traditional graph partitioning, the goal of partitioning the dataflow

graph of the loop body is not to achieve min-cut of the edges. This is because we are

43

not considering a traditional performance metric like schedule length. Instead, a good

partition is one which exposes as many hardware sharing opportunities as possible

within a set. Since exhaustive search is performed on each partition, all the sharing

opportunities will be exploited and the combined global solution is improved.

A simple heuristic is used to form partitions with high hardware sharing opportu-

nities. First, a similarity metric is calculated between every pair of operations in the

dataflow graph. Then, the operations are partitioned into sets by taking operation

pairs in order of descending similarity and placing every n operations into a set.

The similarity metric has two components, one based on potential for sharing

interconnect wires and one based on potential for sharing register storage. The wire

similarity metric is a count of the number of wires (in bits) that can potentially be

shared between two operations and their producers/consumers, determined by count-

ing compatible edges. To estimate the storage similarity metric, register requirements

are first estimated for each operation using the method from Section 4.3.2.2. Then,

the metric is calculated as the number of bits of register storage the two operations

have in common. This figure accounts for the dimensions of the register files, so that

a wide, shallow register file has little similarity with a narrow, deep file even if the

total number of storage bits is similar.

This storage similarity metric can be augmented to account for “register waste,”

that is, unused bits of storage that would result if the two operations shared storage.

This gives preference to combining an operation with small register requirements with

another similar operation, rather than one with large register requirements, even if

44

the bits of common storage would be the same.

Figure 4.4(a) shows an example DFG. Consider the two operations +1 and +2.

Both of them have an incoming edge from an add operation and an outgoing edge to

a load operation; thus, the wire similarity metric is 64 (assuming 32-bit operations).

Similarly, both operations will require the shift registers to hold their results for II

cycles as there is an inter-iteration dependence from each add to itself; assuming II =

4, this translates to a storage similarity metric of 128. Thus, the overall similarity

between the two operations is 192. Assuming these are the most similar operations

in the DFG, they will be added to the same operation set and scheduled together.

4.4.1.2 Backtracking

During modulo scheduling, it is possible that a set of operations cannot be sched-

uled due to conflicts with previously scheduled operations. In such a situation, it is

necessary to use backtracking in order to maintain forward progress. When a conflict

arises during traditional modulo scheduling, the operation is forcibly scheduled and

conflicting operations are unscheduled and placed in the queue to be rescheduled later.

The method of backtracking used in this scheduler is similar, but at the granularity

of operation sets rather than individual operations. When a set cannot be scheduled,

first it is determined which scheduled operation(s) is causing the conflict. Then, all

operations in the same set as the conflicting operation are unscheduled. Finally the

current set of operations is scheduled, and the unscheduled set is later rescheduled.

In general, backtracking has an adverse effect on the solution quality. This is

45

because each set is optimally scheduled given the previously scheduled sets. If some

of these previous sets are later unscheduled, the current set is no longer optimal. In

addition, the sets are effectively scheduled out of priority order, which can potentially

decrease the amount of hardware sharing that is achieved.

4.4.2 Time and Space Decomposition

The job of a scheduler is to assign both a schedule time and an FU (e.g., “space”)

to every operation in the loop body. In the context of the schedulers described in

Section 4.3, assigning both time and space for an operation in a single pass has

a multiplicative effect on the search combinatorics. For example, in the branch-

and-bound scheduler, the number of possibilities for an operation to be explored by

the scheduler is the product of number of time slots possible for the operation and

the number of FUs to which the operation can be assigned. Similarly, in the ILP

scheduler, the number of variables introduced by Equation 4.9 is equal to II times

number of FUs for every operation in the loop body.

The problem of scheduling can be decomposed into its two constituent phases:

(1) assigning a time slot to every operation, (2) fixing the operations in space. Note

that the first phase still has to honor resource restrictions, i.e., it cannot assign more

operations to a time slot than there are FUs available to execute those operations.

The second phase of assigning operations to FUs should ensure that it does not

assign two operations scheduled in the same time slot to the same FU. Such an

46

assignment is always made possible by enforcing the resource restrictions in the first

phase. The number of possibilities for every operation is reduced from O(II×#FUs)

in the combined solution to O(II) + O(#FUs) in the decomposed solution. The

decomposed scheduler phases still have to be cost sensitive. Due to the nature of

decomposition, some optimizations may not be possible in a particular phase. In

time-space decomposition, optimizing for FU cost and width of the shift register file

is not possible in the first phase. This is because the cost of FUs and width of registers

depend on the assignment of operations to FUs. However the time assignment phase

can optimize the depth of the shift register files.

In the ILP scheduler, assigning valid time slots to operations can be enforced using

the constraints given by Equations 4.2 through 4.5. Note that time slot assignment

is sufficient to calculate the lifetime of the value produced by an operation i, given by

Equation 4.12. Since the lifetimes LTi directly affect the register depth, minimizing

lifetimes is important. Therefore,

N−1∑
i=0

BWi × LTi is used as the objective function in

the formulation. Note that the lifetimes of operations are weighted by their bitwidths

BWi. This is to ensure that lifetimes of narrow operations are not minimized at the

cost of wide operations. Solving the set of constraints described above gives a time slot

assignment for all operations in the loop. Now the space (resource) assignment can

be performed by forming a new ILP problem which includes all equations described

in Section 4.3.3. The objective function remains the same, given by Equation 4.19.

However, the values of time slots Xi,s and stages ki obtained from time assignment

phase are explicitly specified to the ILP problem formed in the space assignment

47

+
16

+
32

C

D E F

B+
16

A

(a)

+
16 32

+ +
16 32

+t
t+1
t+2
t+3
t+4

A
B C

F
E D

+
16

+
32

(b)

t
t+1
t+2
t+3
t+4

B C

F
E D

A

+
16

+
32

(c)

Figure 4.5: Effect of space-time decomposition. (a) Dataflow graph, (b) schedule
resulting in optimal FU cost but suboptimal overall cost, (c) schedule with same FU
cost and improved overall cost.

phase. Thus the second phase problem size is reduced greatly, because only resource

assignments have to be computed.

4.4.3 Space and Time Decomposition

In this decomposition, the scheduling problem solved in two phases, namely, FU

assignment followed by time assignment. This has the effect of optimizing the FU

cost and shift registers’ width before optimizing the depth of shift register files.

In the ILP scheduler, the formulation for space assignment consists of Equa-

tions 4.6 and 4.7. The objective function used in this phase is
N−1∑
j=0

Wj, where the

Wj ’s are given by Equation 4.15. Thus, the FU assignment phase reduces the sum of

widths of the FUs. Note that this minimizes both the FU cost and the width of shift

register files. Now, the time assignment can be performed by forming an ILP prob-

lem that includes all equations described in Section 4.3.3, and explicitly specifying

the values for Ri,j’s obtained from the FU assignment phase.

Figure 4.5 illustrates a negative effect of phase ordering the scheduling problem

into FU assignment followed by time assignment. Figure 4.5(a) shows part of the

dataflow graph of a loop. There are two 16-bit adds feeding subtract operations and

48

a 32-bit add feeding a subtract operation. Suppose the machine has a budget for 2

adders and 2 subtractors and let the subtract operations be identical in width. The

goal of FU assignment phase is to minimize the FU costs. Figures 4.5(b) and 4.5(c)

show two possible assignments which result in the same FU cost of a 32-bit adder, a

16-bit adder and two subtractors. The crucial difference however is that operation A is

assigned to the 32-bit adder in Figure 4.5(b) and the 16-bit adder in figure 4.5(c). Note

that both these assignments result in the same FU cost, and there is no way for the FU

assignment phase to differentiate between these two solutions. Now consider the time

assignment phase. Suppose that, due to other data dependencies, the only possible

time assignment is as shown in either of the Figures 4.5(b) or (c). The separation of

the operations due to the schedule in Figure 4.5(b) results in 16 × 2 + 32 × 3 = 128

register bits. However, the schedule in Figure 4.5(c) results only in 16×3+32×2 = 112

register bits. Thus, phase ordering could result in some sub-optimality.

4.5 Experimental Results

Loop kernels from several application domains are used to evaluate cost sensitive

modulo scheduling. Idct, dequant and dcacrecon are loops from MPEG-4; fsed,

sobel, and sharp are image processing loops; blowfish and sha are used in encryp-

tion applications; lyapunov is a mathematical kernel; and viterbi, fft, fir, and

iir are commonly used in signal processing. The sizes of the loops range from 24

operations for iir up to 120 operations for idct. In general, loops for these applica-

tions can have intra loop code and may not be perfectly nested. For the experiments,

49

we manually convert the loop kernels to a single perfectly nested for loop. Only the

innermost loop is considered for modulo scheduling. The numbers reported below

correspond to hardware generated for the innermost loop only.

For each benchmark, we use the compiler-directed loop accelerator synthesis sys-

tem described in Section 3.3. After FU allocation, various cost sensitive scheduling

algorithms are evaluated. From the resulting schedules, the hardware datapath and

control path is generated and the resulting RTL is synthesized to obtain gate counts.

Synthesis is performed with Synopsys Design Compiler in 0.18µ technology. A 200-

MHz clock rate is assumed.

The ILP scheduler is used for most experiments; however, the BNB scheduler is

used for the experiments that vary the cost objectives or partitioning method. The

two schedulers are both exact solutions; thus, we do not compare them with each

other. Their use in certain experiments is a software engineering decision as some

experiments are more amenable to one formulation or the other.

The first experiment, shown in Figure 4.6, evaluates the effectiveness of the dif-

ferent decomposition methods in reducing hardware cost. The baseline in this ex-

periment is the hardware resulting from the näıve, iterative modulo scheduler [58]

followed by a stage scheduling postpass [14] as implemented in the Trimaran com-

piler framework [67], and is represented by 1.0. This baseline result is shown by the

first bar of each benchmark; all bars are divided into three segments, representing the

contribution of MUXes, storage, and FUs to the overall cost. The remaining bars are

as follows: the second bar shows the greedy algorithm described in Section 4.3.1; the

50

0

0
.2

0
.4

0
.6

0
.81

1
.2

1
.4

naïve
greedy

part
ts
st

full

naïve
greedy

part
ts
st

full

naïve
greedy

part
ts
st

full

naïve
greedy

part
ts
st

full

naïve
greedy

part
ts
st

full

naïve
greedy

part
ts
st

full

naïve
greedy

part
ts
st

full

naïve
greedy

part
ts
st

full

naïve
greedy

part
ts
st

full

naïve
greedy

part
ts
st

full

naïve
greedy

part
ts
st

full

naïve
greedy

part
ts
st

full

naïve
greedy

part
ts
st

full

naïve
greedy

part
ts
st

full

fs
e
d

s
o
b
e
l

fi
r

iir
d
e
q
u
a
n
t

d
c
a
c

b
lo

w
fi
s
h

id
c
t

ff
t

ly
a
p
u
n
o
v

v
ite

rb
i

s
h
a
rp

s
h
a

a
v
e
ra

g
e

M
U

X

S
to

ra
g
e

F
U

W
ir
e
s

Normalized cost

F
ig

u
re

4.
6:

H
ar

dw
ar

e
co

st
br

ea
kd

ow
n

of
lo

op
ac

ce
le

ra
to

rs
sy

nt
he

si
ze

d
us

in
g

va
ri

ou
s

sc
he

du
lin

g
te

ch
ni

qu
es

,
re

la
ti
ve

to
nä

ıv
e

sc
he

du
le

r.

51

third is the partitioned scheduler described in Section 4.4.1, using the priority-based

partitioning method with a set size of 16 operations; the fourth is the time-space

decomposition described in Section 4.4.2; the fifth is the space-time decomposition

described in Section 4.4.3; and the sixth bar shows the optimal solution. Note that

for some large benchmarks (idct and viterbi) this value could not be obtained due

to the problem complexity, emphasizing the need for problem decomposition. The

number of interconnect wires relative to the näıve scheduler is also shown in this

figure as lines superimposed on the bars.

In this graph, FU cost does not differ significantly across schedulers. This is

because FU capabilities are fixed prior to scheduling and most schedules result in the

same or similar FU cost. The overall gate savings is significant in many benchmarks.

The time-space decomposition scheduling achieves gate savings of 42% for sharp.

The greedy scheduler achieves only 5% gate savings on average and sometimes

performs worse than the näıve scheduler. This is because it considers only one op-

eration at a time and can be trapped in local minima. The average gate savings

achieved by the partitioned, time-space and space-time scheduling methods are 8%,

19% and 20% respectively. In general, the time-space and space-time decomposition

methods perform well as they are able to consider all operations at once. This is

an advantage because the final machine cost is due to the combined effects of all

operations rather than individual scheduling decisions. The partitioned cost sensitive

scheduler results in slightly more gates than the näıve scheduler for some benchmarks

like fsed, dcacrecon, and blowfish. This is due to the locally greedy nature of

52

the decomposition. Also, for large benchmarks, the fixed-sized operation sets make

up smaller fractions of the whole loop and thus the algorithm becomes greedier as it

“sees” less of the loop at once.

The optimal scheduler achieves 27% savings over the näıve scheduler. For some

benchmarks (iir, sha) the partitioned scheduler performs near optimal. The time-

space and space-time decomposed schedulers are able to achieve near optimal for

many benchmarks while only requiring a fraction of the runtime. Both time-space

and space-time schedulers produce high quality solutions and can practically han-

dle large problem sizes. Thus, we believe these methods to be the best choices for

accelerator synthesis. The two perform differently according to the application char-

acteristics: space-time performs better for loops with more bitwidth variation (sobel,

viterbi) while time-space performs better for loops with more register lifetime vari-

ation (blowfish, idct).

Generally, the number of wires decreases as gate count decreases. On average, the

wire savings achieved for the three decomposed scheduling methods are 7%, 8%, and

10% for partitioned, time-space, and space-time, respectively. In many cases, the wire

cost of the optimal solution is higher than the wire cost for one of the decomposed

solutions; this is because the optimal scheduling formulation does not account for

wire cost.

The next experiment shows the effect of changing the hardware cost objective.

The objective discussed thus far has been minimizing the sum of logic (storage and

FUs) and wires. The weights of these components can be modified; for example, if

53

0.6

0.8

1

1.2

1.4

FU Storage MUX Total

Gates

Wires

0.6

0.8

1

1.2

1.4

FU Storage MUX Total

Gates

Wires

0.6

0.8

1

1.2

1.4

FU Storage MUX Total

Gates

Wires

Wires

Gates

Sum

(a) (b)

(c)

N
o

rm
al

iz
ed

 c
o

st

N
o

rm
al

iz
ed

 c
o

st

N
o

rm
al

iz
ed

 c
o

st

Figure 4.7: Effect of different cost objectives on (a) iir, (b) sha, and (c) average
across all benchmarks.

interconnect cost is a dominating factor, the weight of the interconnect wires can be

increased as a fraction of overall cost. The BNB scheduler can naturally accommo-

date these varying cost components. Figure 4.7 shows the breakdown of FU, storage,

MUX, and wire costs relative to the baseline which optimizes the sum of these com-

ponents. Each curve represents the machine resulting from scheduling with a certain

cost objective; optimizing wires alone and optimizing logic gates (storage + FU) alone

are presented. In Figure 4.7(a), iir is shown; when optimizing for wires, the cost of

storage increases while wire cost decreases slightly. Conversely, optimizing for gates

reduces the storage cost but increases wires slightly. Figure 4.7(b) shows the sha

benchmark; interestingly, optimizing for gates reduces the number of wires. This is a

54

0

2000

4000

6000

8000

10000

12000

14000

16000

18000

20000

3 6 9 12 15 18 21 24 27 30 33 36 full

Partition size

C
os

t i
n

ga
te

s

(a) sobel

0

10000

20000

30000

40000

50000

60000

70000

3 6 9 12 15 18 21 24 27 30 33 36 full

Partition size

C
os

t i
n

ga
te

s

(b) fft

0

5000

10000

15000

20000

25000

30000

3 6 9 12 15 18 21 24 27 30 full

Partition size

C
os

t i
n

ga
te

s Mux

FU

Storage

Total

(c) sharp

Figure 4.8: Effect of partition size on hardware cost.

product of the problem decomposition, which is imperfect – the baseline scheduler is

unable to exploit wire sharing even though the gate optimizing scheduler happens to

do so successfully. Figure 4.7(c) shows the average across all benchmarks; note that

the wire optimizing scheduler did not save wires on average (though the wire count

remains low). This is because jointly optimizing both gates and wires naturally re-

sults in good wire sharing (as fewer connections are made between fewer logic gates),

and optimizing only wires does not improve on this for most benchmarks.

To show the effect of set size on the partitioned scheduler discussed in Section 4.4.1,

Figure 4.8 shows the hardware cost of scheduling the sobel, fft, and sharp bench-

marks with varying set sizes. The set size is varied from 3 operations per set up to

55

“full”, where all operations are in one set. Each graph shows four lines, represent-

ing the FU, MUX, storage, and total gate costs at each set size. First, note that

for these benchmarks, FU cost remains largely constant as there is little bitwidth

variation among the data values, and no width specialization is performed. Second,

the storage cost is where the scheduler is able to take the most advantage of larger

set sizes. Third, the hardware cost decreases as set size increases, closely tracking

the storage cost decrease. As expected, with larger set sizes, the scheduler is able to

exploit hardware sharing across more operations at once. However, the overall cost

generally nears optimal before the partition size becomes very large. For example,

for sobel, a partition size of 15 gives a gate cost within 6% of optimal. Thus, the

scheduler is often able to obtain good results while partitioning the operations into

small sets.

In the ILP scheduler, CPLEX was used to solve the ILP formulations. A time

limit of 6 hours was enforced for the ILP formulations leading to fully optimal so-

lutions. CPLEX reports the best solution seen so far when the time limit expires.

Thus the numbers reported for the optimal solution in Figure 4.6 correspond to this

best solution. For the time-space and space-time decompositions, CPLEX runtimes

were between 30 seconds for the smaller benchmarks like fir to 2 hours for the larger

benchmarks like idct and viterbi. The CPLEX runtimes for partitioned ILP for-

mulation were less than a second for smaller partitions sizes and a maximum of 80

minutes for the bigger partition sizes, irrespective of the benchmarks. Note that the

time taken by the rest of the compiler phases is non-significant (less than a minute)

56

0

0.2

0.4

0.6

0.8

1

1.2

1.4

n
a

ïv
e

ra
n

d

p
ri

o

m
in

c
u

t

s
im

s
im

-w

n
a

ïv
e

ra
n

d

p
ri

o

m
in

c
u

t

s
im

s
im

-w

n
a

ïv
e

ra
n

d

p
ri

o

m
in

c
u

t

s
im

s
im

-w

n
a

ïv
e

ra
n

d

p
ri

o

m
in

c
u

t

s
im

s
im

-w

n
a

ïv
e

ra
n

d

p
ri

o

m
in

c
u

t

s
im

s
im

-w

n
a

ïv
e

ra
n

d

p
ri

o

m
in

c
u

t

s
im

s
im

-w

fsed sha dcac fft fir average

MUX

Storage

FU
N

o
rm

al
iz

ed
 g

at
es

Figure 4.9: Cost breakdown for various partitioning methods.

compared to the CPLEX runs.

For the partitioned scheduler, various partitioning strategies are investigated as

discussed in Section 4.4.1.1. Figure 4.9 shows the resulting hardware cost of various

partitioning methods for select benchmarks and the overall average. A partition size

of 8 is used in these experiments. In the graph, rand refers to random partitioning

and usually performs worse than the näıve, cost unaware scheduler. Prio (priority-

based) is the best on average, and is the method used in other experiments involving

the partitioned scheduler. Mincut refers to a standard graph partitioner which at-

tempts to minimize edge cuts; we use the Metis [32] partitioner. This method can

perform poorly as it does not account for hardware cost. Sim (similarity-based) and

sim-w (similarity-based with waste accounting) perform better than mincut but are

hampered by backtracking effects as discussed in Section 4.4.1.2. Note that not all

benchmarks could be scheduled using all partition methods (due to backtracking ef-

fects), so the cost average includes only benchmarks that could be scheduled using

57

all methods. Thus, the average cost of prio is not the same as in Figure 4.6.

4.6 Summary

This chapter proposes cost sensitive modulo scheduling in a loop accelerator syn-

thesis system. Scheduling decisions must be made with the goal of decreasing the

cost of hardware that is generated from the final schedule. Traditional modulo sched-

ulers are not suitable in this context as they are unaware of the effect of scheduling

decisions on hardware cost. Two exact solutions, branch-and-bound and ILP, are pre-

sented to solve this problem. In addition, three methods of decomposing the problem

are presented that allow the algorithm to solve realistic problems. The decomposition

techniques work either by partitioning the dataflow graph into smaller subgraphs and

optimally scheduling the subgraphs, or by splitting the scheduling problem into two

phases, time slot and resource assignment. All decomposition methods were success-

ful at making increasing problem sizes tractable, and depending on the application,

different decomposition methods performed better than others. Since the final cost

depends on the combined effects of all operations, the time-space and space-time

methods, which consider all operations together, worked best. Overall, cost sensitive

modulo scheduling increases hardware efficiency of automatically synthesized loop ac-

celerators by an average of 8–20%, with individual savings of up to 42% over a näıve

scheduler.

58

CHAPTER 5

Multifunction Accelerator Design

5.1 Introduction

There is a growing push to increase the functionality of special-purpose hardware.

Many applications that run on portable devices, such as wireless networking, do not

have one dominant loop nest that requires acceleration. Rather, these applications

are composed of a number of compute-intensive algorithms, including filters, trans-

forms, encoders, and decoders. Further, increasing capabilities, such as supporting

streaming video or multiple wireless protocols, places a larger burden on the hard-

ware designer to support more functionality. Dedicated accelerators for each critical

algorithm could be created and included in a system-on-chip. However, the inabil-

ity to share hardware between individual accelerators creates an inefficient design.

Processor-based solutions are the obvious approach to creating multi-purpose designs

due to their inherent programmability. However, such solutions do not offer the per-

formance, cost, and energy efficiency of accelerators as there is an inherent overhead

59

to instruction-based execution.

The focus of this chapter is on automatic design of multifunction loop accelerators

from high-level specifications. The goal is to maintain the efficiency of single-function

accelerators while exposing opportunities for hardware sharing across multiple algo-

rithms. By building one accelerator that can run multiple loops, overall hardware

cost savings can be realized when the loops are to execute disjointly. In addition,

if the loops are not executing disjointly, it is possible to trade off hardware savings

with performance. For example, if two loops in a streaming application are both non-

critical in terms of the overall application pipeline, it may be beneficial to merge them

into one accelerator. Similarly, in a multithreaded application, it may be beneficial to

merge two loops from different threads into one accelerator which is time-multiplexed

across the threads.

To create multifunction designs, the single-function system is extended using three

alternate strategies. The simplest strategy is to create individual accelerators for

each algorithm and place them next to each other. This method is referred to as a

summed design, and is the baseline for comparison. The second strategy is to again

create individual accelerators for each algorithm. The data and control paths for each

accelerator are then intelligently unioned together to create a single design capable of

all algorithms. Finally, the third strategy is to perform joint cost-aware synthesis of

all algorithms. We employ an integer linear programming (ILP) formulation to find

a joint solution with optimal estimated cost. A consequence of the joint scheduling

strategy is that synthesis time and memory usage may become prohibitive for large

60

loop bodies or large numbers of loops. Each successive strategy represents a more

complex approach and hence has more potential to exploit sharing opportunities.

5.2 Synthesizing Multifunction Accelerators

Multifunction design refers to generalizing a loop accelerator to support two or

more loop nests. One obvious approach to creating a multifunction accelerator is

to separately design accelerators for the individual loops, and then place these loop

accelerators side by side in silicon. The area of the final accelerator would be the

sum of the areas of the individual accelerators. However, by creating an accelerator

with a single datapath that can support multiple loops, more hardware sharing can

be achieved while continuing to meet the throughput constraints of both loops.

The cost of a multifunction accelerator is affected by the individual functions in

several ways. First, the execution resources required by the multifunction accelerator

must be a superset of the resources required for each individual accelerator. Since the

multiple functions will not be executing simultaneously, any resources common to the

individual accelerators need only be instantiated once in the combined accelerator.

Effectively, the multifunction accelerator should have the union of the FUs required

by the individual accelerators. Second, the cost of the SRFs is sensitive to how the

hardware is shared across functions. Since every FU has an SRF at its output, and

the SRF has the bitwidth of its widest member and the depth of its value with the

longest lifetime, there is a potential for careless sharing to result in large, underutilized

SRFs. Third, one advantage of a customized ASIC is that there are few control signals

61

Constraints:

For each loop a:

Time slots:
IIa−1∑
s=0

Xi,s,a = 1 ∀i ∈ {1, N} (5.1)

Resources:

Mf∑
f=1

Ri,f,a = 1 ∀i ∈ {1, N} (5.2)

∑
i∈If

Ri,f,a × Xi,s,a ≤ 1 (5.3)

Dependences: tj,a + di,j,a × IIa − ti,a ≥ li,j,a ∀(i, j, a) ∈ Ea (5.4)

SRF Depth: LTi,a ≥ ti′,a − ti,a + IIa × di,i′,a − li,i′,a + 1

(i, i′, a) ∈ Ea (5.5)

Df ≥ Ri,f,a × LTi,a ∀i assigned to f (5.6)

FU/SRF Width: Wf ≥ Ri,f,a × BWi,a ∀i assigned to f (5.7)

Objective:

Cost: Cost =
∑

f

Df × Wf + fu costf × Wf (5.8)

Definitions:

ti,a =

IIa−1∑
s=1

s × Xi,s,a + IIa × ki,a li,j,a = latency on edge (i, j)

di,j,a = iteration distance on edge (i, j) Mf = number of FUs of type f

Figure 5.1: ILP formulation for joint scheduling.

that need to be distributed across the chip, since the datapath is hard-wired for a

specific loop. When multiple loops come into play, not only must the datapath be

able to support the computation and communication requirements of each loop, but

the control path must be capable of directing the datapath according to which loop

is being executed.

Two techniques are presented to increase hardware sharing: joint scheduling and

the union of individually designed accelerators.

62

5.2.1 Joint Scheduling

Since the cost of the multifunction datapath depends on the combined schedules

of all loops, an ideal scheduler should look at all loops simultaneously and schedule

them to minimize the total hardware cost (while meeting their individual II con-

straints). This is referred to as joint scheduling; the scheduler is aware that all loops

will execute on the same hardware, and is therefore able to make scheduling decisions

that maximize hardware sharing across loops.

An ILP formulation for joint scheduling is used. This formulation is similar to

the modulo scheduling formulation with extensions to minimize accelerator cost as

described in Section 4.3.3. These formulations are extended to consider multiple loops

simultaneously. For each loop a under consideration, integer variables to represent

time and FU assignment are introduced. For every operation i in loop a, IIa mutually

exclusive binary variables Xi,s,a represent the time slot s in the modulo reservation

table (MRT) that the operation is scheduled. The integer variables ki,a represent

the stage in which operation i is scheduled. Binary variables Ri,f,a represent the

assignment of operation i in loop a to the FU f . The set of variables Xi,s,a, ki,a, and

Ri,f,a represent complete modulo schedules for the loops. Other auxiliary variables

are introduced to represent the cost of the hardware.

The full ILP formulation for joint scheduling is shown in Figure 5.1. The formu-

lation consists of basic constraints (Equations 5.1 through 5.4) that ensure a valid

schedule, and auxiliary constraints (Equations 5.5 through 5.8) that are used to com-

pute the cost of the resulting hardware. Note that Equations 5.3, 5.6, 5.7, and 5.8

63

have non-linear components; these may be linearized using standard techniques as

was done in Section 4.3.3.

The schedule validity constraints for individual loops are totally independent and

represented using disjoint variables. However, there is only one set of variables that

represent the hardware cost. For example, the cost of an FU is represented by a single

variable, but depends on FU assignment of operations in all loops. Similarly, SRF

costs are modeled using a single set of variables.

5.2.2 Union of Accelerators

The joint scheduler considers the effects on hardware cost of the scheduling alterna-

tives for operations in all loops, and selects combinations of alternatives to minimize

cost. This is computationally complex, because the number of possible schedules

grows exponentially as the number of loops increases (since the scheduling alterna-

tives of operations in different loops are independent). As a result, joint scheduling

with ILP is impractical for large loop bodies or high numbers of loops.

Instead, the multi-loop scheduling problem may be divided into two phases to

reduce its complexity. First, loops are scheduled individually and a single-function

accelerator is designed for each loop; then, the accelerator datapaths are unioned into

one multifunction datapath that supports all loops. This phase ordering can result

in high quality designs, as the single-function accelerator costs are first minimized,

and then hardware sharing across loops is exploited during the accelerator union.

Synthesis runtimes are reduced significantly as it is no longer necessary to consider

64

all schedules simultaneously.

The union phase is accomplished by selecting an FU and its corresponding SRF

from each single-function accelerator and combining them into a single FU and SRF in

the resultant accelerator. The new FU has the bitwidth and functionality to execute

all operations supported by the individual FUs being combined. Similarly, the new

SRF has sufficient width and depth to meet the storage requirements of any of the

SRFs being combined. This process is repeated for the remaining FUs and SRFs until

all of them have been combined. At this point, the resulting accelerator supports all

of the functionality of the individual accelerators.

The cost of the multifunction accelerator is affected by the specific FUs and SRFs

that are combined. For FUs, the ideal case occurs when FUs with identical function-

ality and bitwidth from k individual accelerators are combined into a single FU. This

FU in the multifunction accelerator represents a cost savings (by a factor of k) over

the single-function accelerators due to hardware sharing. When FUs with differing

functionality are combined, no cost savings is achieved in the FUs, but this may en-

able cost savings in the corresponding SRFs. In the case of SRFs, maximal sharing

occurs when two or more SRFs with similar bitwidths and numbers of registers are

combined; in this case, only a single SRF is required in the multifunction accelerator

where several were needed by the single-function accelerators.

65

5.2.2.1 Positional Union

The most straightforward union method is a positional union, where the FUs in

each accelerator are ordered by functionality (multiple FUs with the same function-

ality have no particular order), and FUs and SRFs in corresponding positions are

selected for combination. The first FU and SRF in accelerator 1 are combined with

the first FU and SRF in accelerator 2 to form the first FU and SRF in the multi-

function accelerator, and so on. This union method yields good hardware sharing in

the FUs, as FUs with identical functionality are combined, and the number of unique

FUs in the resultant accelerator is therefore minimized. However, it does not account

for FU width, nor does it attempt to improve hardware sharing in the SRFs. Sharing

in the SRFs occurs by chance, if the dimensions of the SRFs being combined happen

to be similar.

In Figure 5.2, an example of positional union is shown on the left. Here, each

single-function accelerator has two ADD FUs and an AND FU. The FUs and SRFs

have varying widths and depths, and thus varying costs, as shown to the right of each

FU and SRF. The FUs of the two accelerators are combined according to functionality,

and the resulting accelerator is shown on the lower left of the figure. Each FU and

SRF in the unioned accelerator is sized to accomodate the corresponding FUs and

SRFs from the single-function accelerators directly above them.

66

Positional Union ILP Union

40

64

+ 20

48

+ 20

96

&

Accel 1

Accel 2

Union

40

64

10

16

+

+

20

48

20

32

+

+

96

20

24

5&

& +

40

64

+

96

20&

48

32

20

20

+

24

5

10

16

+

&

FU: 80 SRF: 208 Total: 288

20

48

+

96 24

60 15+& +&

FU: 95 SRF: 168 Total: 263

Figure 5.2: Example of union techniques. Two single-function accelerators, each
with three FUs, are combined using positional (left) and ILP (right) methods. The
cost of each FU and SRF is shown on its right.

5.2.2.2 ILP Union of Accelerators

An improved union method to increase hardware sharing should consider all per-

mutations of FUs (and corresponding SRFs) from the different loops, and select the

permutation that results in minimal cost, considering both FU and SRF costs. This

can be formulated as an ILP problem where binary variables are used to represent

the possible pairings of FUs and SRFs from different loops. In this section, the com-

bination of two loops to form a multifunction accelerator will be examined. Unions

of more than two loops will be considered in the next section.

Assume that both single-function accelerators have N FUs. (If one accelerator has

fewer FUs than the other, zero-width FUs may be added to make the number of FUs

equal.) Then, N2 binary variables xij may be used to represent the combination of FU

i from the first loop with FU j from the second loop (along with their corresponding

67

SRFs). For example, if x11 = 1, the first FUs in both accelerators will be combined in

the multifunction accelerator. In addition, the following equations ensure that each

FU is selected exactly once for combination with another FU:

∑
1≤j≤N

xij = 1 ∀i,
∑

1≤i≤N

xij = 1 ∀j (5.9)

Next, the objective function is defined so that the overall cost of the multifunction

accelerator is minimized. This cost consists of two components: FU cost and SRF

cost. Define variables Fij as the cost of the FU resulting from the combination of FU

i from loop 1 and FU j from loop 2. Depending on the functionality and bitwidth

of these FUs, this cost can vary from the maximum cost of the two FUs up to their

sum. Also, define variables Rij as the cost of the SRF resulting from the combination

of the SRFs corresponding to these two FUs. Then, the objective function is the

minimization of the following:

Cost =
∑
∀i,j

(Fij + Rij) × xij (5.10)

By minimizing (5.10) subject to the constraints (5.9), a combination of the FUs

and SRFs of two loops is chosen that minimizes the cost of the multifunction accel-

erator.

The right side of Figure 5.2 shows an example of the ILP union. The single-

function accelerators contain the same FUs and SRFs as in the positional union case,

but they are combined differently. The resulting FU cost is higher than the FU

68

cost from the positional union, because dissimilar FUs were combined and thus less

hardware sharing in the FUs is achieved. However, the overall cost is lower as the

SRF hardware is shared more intelligently.

5.2.2.3 Union of Multiple Accelerators

In the case where more than two loops are being combined, two strategies may be

applied to extend the union technique. The first strategy is referred to as pairwise

union and consists of first combining two accelerators to form a (temporary) mul-

tifunction accelerator. This temporary accelerator is then combined with the third

single-function accelerator to form a new multifunction accelerator that supports all

three loops. This process is continued, combining the new temporary accelerator with

remaining single-function accelerators, until all desired loops have been combined into

one multifunction accelerator.

The second method is referred to as full union and extends the ILP formulation

given in the previous section. Given k loops, there are Nk binary variables xi1...ik that

represent the combination of FUs i1, ..., ik from accelerators 1, ..., k, respectively.

Constraints (5.9) and objective (5.10) are extended to reflect the additional loops. The

solution consists of the N variables set to 1 which represent the specific combinations

of FUs and SRFs which minimize the final hardware cost.

The advantage of full union is that it simultaneously considers all single-function

accelerators together, and determines the best permutation of FUs to minimize the

overall FU and SRF cost. However, the downside is that the number of variables

69

is exponential in the number of loops. Therefore, the full union quickly becomes

infeasible for higher numbers of loops. Conversely, the pairwise union method may

become trapped in local minima as it only considers two accelerators at a time during

combining. We find experimentally that the pairwise union performs nearly as well

as the full union in terms of final hardware cost, and its runtime is significantly faster

due to its lower complexity.

5.3 Experimental Results

Kernels from four different application domains are used to evaluate the loop

accelerator designs. Sharp, sobel, and fsed are image processing algorithms. Idct,

dequant and dcacrecon are computationally intensive loops extracted from MPEG-

4. Bffir and bfform are loops from the beamformer benchmark of the StreamIt

suite [66]. Viterbi, fft, convolve, fmdemodulator, fmfilter, and fir are loops

from the signal processing domain. To evaluate multifunction designs, loops from

within the same application domain are combined, as they would likely be part of the

same larger application accelerator.

For each machine configuration, we use the synthesis system described in this

dissertation to design loop accelerators and generate RTL. The resulting Verilog is

synthesized using the Synopsys design compiler in 0.18µ technology. All designs were

synthesized with a 200-MHz clock rate. For all experiments, performance is held

constant and is specified by the II value. A typical II is selected for each benchmark

(for example, II=4 for sobel and II=8 for idct), and multifunction hardware is

70

0

0.2

0.4

0.6

0.8

1

1.2

s p u j s p u f j* s p u j* s p u f j* s p u j s p u j s p u f j s p u f j s p u f* j* s p u f* j* s p u f j

sharp,

sob

sharp,

sob,fsed

idct,deq idct,

deq,dca

bfir,

bform

vit,fft vit,fft, conv vit,fft,

conv,fmd

vit,fft,conv,

fmd,fmf

vit,fft,

conv,fmd,

fmf,fir

Avg

No
rm

al
ize

d
Ga

te
 C

os
t

FU Storage MUXImage MPEG-4 Beamformer Signal processing

Figure 5.3: Gate cost of multifunction accelerators designed using sum (s), positional
union (p), pairwise union (u), full union (f) (not shown for 2-loop combinations),
and joint scheduling (j). * indicates the synthesis did not complete due to problem
complexity.

synthesized for combinations of benchmarks within the same domain. Gate counts

are used to measure the cost of each accelerator configuration.

Figure 5.3 shows the cost in gates of multifunction loop accelerators designed using

various scheduling methods. Each group of bars represents a benchmark combination,

showing, from left to right, the sum of individual accelerators (s), the positional union

of individual accelerators (p), the pairwise union (u), the full union (f), and the joint

solution (j). When only two accelerators are combined, the full union is not shown as

it is identical to the pairwise union. The bars are normalized to the sum of the cost

of individual accelerators for that benchmark group. In addition, each bar is divided

vertically into three segments, representing the contribution of FUs, storage, and

MUXes to the overall cost. Since the joint solution relies on an ILP formulation with

a large number of variables and constraints, it did not complete for some benchmark

groups (labeled j∗). Also, for groups containing more than four benchmarks, the full

71

union becomes infeasible (labeled f∗).

The first bar of each set represents current state-of-the-art multifunction accel-

erator design methodologies, i.e., creating single-function accelerators for each loop.

Each single-function accelerator is designed using a cost-aware scheduler to minimize

cost [19]. Thus, the difference between this bar and the other bars in each group

represents the savings obtained by hardware sharing in multifunction designs. Since

II is fixed for each benchmark, all multifunction designs in a group have the same

performance, and hardware savings is essentially free. (However, note that additional

multiplexers may increase critical path delay; this is discussed later in this section.)

As the graph shows, the hardware savings is significant and increases with the number

of loops. Up to 58% savings is achieved for the signal processing benchmark group,

and 43% savings is achieved on average across all groups. Some groups (e.g. idct

and dequant) exhibit less multifunction savings because the sizes of the two loops

differ significantly, decreasing the amount of potential sharing.

On average, the pairwise and full union methods yield significantly lower-cost

hardware than the positional union and are very close to the cost obtained with joint

scheduling. However, in a few cases (most notably the benchmark groups containing

idct), the positional union yields a lower cost than the more intelligent unions. This

is due to two factors: first, MUX cost is not considered during the union phase and

can affect the final cost; and second, the FU costs being minimized in the union phase

are estimates, and actual FU costs may differ slightly when the design is synthesized

into gates. In most benchmark groups, the pairwise union yields hardware that is

72

0%

20%

40%

60%

80%

100%

s p u j s p u f s p u s p u f s p u j s p u j s p u f j s p u f j s p u s p u

sharp,sob sharp,

sob,fsed

idct,deq idct,

deq,dca

bfir,bform vit,fft vit,fft,conv vit,fft, conv,fmd vit,fft,

conv,

fmd,fmf

vit,fft,

conv,fmd,

fmf,fir

%
 G

at
e

U
til

iz
at

io
n

1

2

3

≥4

loops

Figure 5.4: Degree of sharing of multifunction accelerator gates across loops.

equivalent in cost to the full union. Thus, pairwise union is an effective and tractable

method of combining accelerators.

An area in which the multifunction accelerator does not improve on the individual

accelerators is in the MUX cost. Although the multifunction accelerator has fewer

FUs (and thus fewer MUXes) than the sum of individual accelerators, each MUX

must potentially select from more inputs, as more operations execute on each FU.

Figure 5.4 shows the amount of hardware sharing in each of the multifunction

accelerators synthesized in Figure 5.3. Each accelerator is represented by a bar which

is divided vertically to show the fraction of gates used by 1 loop, 2 loops, etc. In

general, lower cost accelerators have a higher fraction of gates used by multiple loops.

Some interesting points to note are when sharing across loops increases, but the cor-

responding hardware cost does not decrease much (e.g. vit-fft when moving from

union to joint). This occurs because, even though the joint scheduler is better able

to share hardware across loops, the union method often has better hardware shar-

ing within each loop (since the single-function accelerators are designed separately).

73

Thus, hardware sharing still occurs in the union case, and the cost remains low.

Overall, runtimes for the synthesis system ranged from 20 minutes up to sev-

eral hours on Pentium 4 class machines. The runtimes were dominated by the first

step, generation of cost-efficient single-function accelerators; the runtime of the union

phase was negligible for positional and pairwise unions, and up to 1 hour for the full

union. The joint scheduler was allowed to run for several days; the bars missing from

Figure 5.3 took longer than 5 days to run.

A side effect of multifunction designs is that additional interconnect is necessary

to accomplish sharing in the datapath. The additional interconnect consists mostly

of wider MUXes at the inputs of FUs. This can affect critical paths through the

accelerator datapath and hence the maximal clock rate of the design. On average, the

critical path delay in multifunction designs increased by 4% over the single-function

designs. The largest critical path increase occurred in the signal processing group

due to the increased resource sharing among the six loops. In this group, the length

of the critical path increased by 12% over that of the single-function accelerator. All

of the multifunction designs were able to meet the target clock rate of 200 MHz.

5.4 Summary

This chapter extends the synthesis system to create accelerators that support

multiple loops. Cost savings is achieved by sharing hardware across loops while

meeting the performance requirements of each loop. Union methods are presented

to reduce the complexity of the scheduling problem. It is shown that intelligently

74

unioning single-function accelerators yields multifunction accelerators that are nearly

optimal in cost. By evaluating accelerators designed for various application domains,

average hardware savings of 43% are realized due to sharing of execution resources

and storage between loops, with individual savings of up to 58%.

75

CHAPTER 6

Programmable Loop Accelerator Design

6.1 Introduction

As shown in previous chapters, the high performance and low power demands of

emerging applications can often be met using hardwired solutions, e.g., ASICs such

as loop accelerators. Most modern embedded systems employ ASICs for the most

compute-intensive tasks. However, this is in direct conflict with an increasingly im-

portant characteristic: post-programmability. A programmable solution offers several

key advantages. First, software implementations allow the application to evolve in

a natural way after the chip has been manufactured due to changes in the specifi-

cation, bug fixes, or the addition of new features. Second, multi-mode operation is

enabled by running multiple different applications or variants of applications on the

same hardware. Third, time-to-market of new devices is lower because the hardware

can be re-used and hardware may be developed in parallel with software. And finally,

chip volumes are higher as the same chip can support multiple products in the same

76

family.

The tradeoffs between performance, power, and programmability are at the heart

of the hardware implementation choice that designers are forced to make. ASICs

provide the highest performance and lowest energy solutions for specific problems.

However, they offer little in the areas of programmability and hardware re-use due to

the hardwired nature of the design. At the other end of the spectrum are processors

and DSPs. Processors offer full programmability and thus the ability to execute a

wide range of applications. But, processors offer poor energy efficiency and often

cannot meet application performance requirements. ASICs typically offer 100-1000x

more energy-efficiency for specific applications than processors. Middle-ground solu-

tions offer the promise of high efficiency together with full programmability. However,

they often fall short of these goals. For instance, FPGAs achieve extremely high per-

formance for bit-level parallel computation. But, the overhead of gate-level reconfig-

urability often causes them to fall short in applications that have limited parallelism

or rely on more expensive computations, such as multiplies.

A key question that this chapter investigates is: How much programmability is

really required in a design? Programmability is generally thought of as a binary issue

- either a design is programmable or not. Programmable designs support a wide range

of applications while hardwired designs support a single algorithm implementation.

An important insight is that semi-programmable solutions may be enough for many

embedded designs. For example, video coding standards are typically developed years

ahead of time by industrial consortiums [31]. These standards go through many

77

rounds of development and adjustment, but the core algorithm kernels often evolve at

a relatively slow rate. At the same time, domain-specific hardware is often essential

to achieve the necessary performance and energy efficiency. And, this customized

hardware is neither appropriate nor efficient for applications outside the domain.

Therefore, providing universal programmability may have little practical value.

Our approach is to push programmability into a highly customized hardware sub-

strate to retain the high performance and energy efficiency of an ASIC, while offering

a limited degree of post-programmability. The starting point is a stylized loop ac-

celerator (LA) that is customized for a single application loop nest, as discussed in

Chapter 3. The structure of the base LA template is generalized to create a semi-

programmable solution, termed a programmable LA or PLA. However, the PLA

datapath is still highly specialized with point-to-point interconnect, fixed-capability

function units, and limited storage to retain its inherent efficiency characteristics.

Such a platform cannot execute an arbitrary loop. Rather, the programmability ob-

jective is to map loops with similar computation structure onto a common hardware

platform, such as two loops from the same application domain or a single loop that

has undergone small to modest changes in composition.

This chapter contains the following contributions:

• An analysis of the evolution of several media applications to understand the

programmability needs of customized hardware.

• A parameterized template for a PLA is developed. The template offers high

degrees of customization to the target loop, while providing programmability

78

for a range of loops with similar computation structure.

• To automatically map loops onto PLAs, a constraint-driven modulo scheduling

formulation is presented.

• The performance, area, and power efficiency of the PLAs are evaluated and

compared to single-function LAs and the OR-1200 embedded processor for a

range of compute-intensive loops.

• The programmability of the PLAs is evaluated across a range of loops and

synthetically generated variations of these loops.

6.2 Motivation

6.2.1 Architecture Style vs. Efficiency

A wide range of architectures have been designed before to address the prob-

lem of providing high performance computation efficiently. These solutions main-

tain or sacrifice programmability to various degrees depending on the domain they

target. This section describes some of these solutions and motivates the need for

semi-programmable LAs.

Figure 6.1 shows the peak performance achievable by different architecture styles

and their power efficiency. The x-axis in Figure 6.1 indicates programmability of

different solutions. General purpose processors (GPPs), which fall on the lower right

corner of the figure, are highly programmable solutions, but are limited in terms of

79

Figure 6.1: Peak performance and power efficiency of different architecture styles.

the peak performance they can achieve. Also, structures like instruction decoders

and caches that are needed support programmability consume energy, resulting in a

low computation efficiency of about 1 MIPS/mW for the Pentium M. On the other

extreme of the spectrum are ASICs. ASICs are custom designed for a particular prob-

lem, without extraneous hardware structures. Thus, ASICs have high computational

density with hard-wired control, resulting in high computation efficiency up to 1000

to 10000 times more than GPPs. The space between these two extremes is populated

by different solutions that have varying degrees of programmability.

Digital signal processors (DSPs) [47, 64, 65] increase the computation efficiency by

providing specialized features that optimize execution of signal processing algorithms.

These features include special arithmetic operations like multiply-accumulate and bit

80

manipulation operations, hardware modulo addressing, and memory architectures

optimized for streaming data. A wide range of DSP algorithms can be executed

efficiently on these processors efficiently. DSPs typically offer an order of magnitude

increase in power efficiency.

Domain loop accelerators are designed to execute computation intensive loops

present in media and signal processing domains. Their design is close to a VLIW

processor, but with a much higher number of FUs, and thus higher peak performance.

Very long instruction words present in a control memory direct all FUs every cycle.

However, the domain LAs have lesser flexibility compared to GPPs because only

highly computationally intensive loops map well to them. Arbitrary control intensive

code yields low computation efficiency on these architectures. Some examples of

architectures in this design space are VEAL [9], RSVP [8], CGRAs [45, 53], and the

Perception Processor [44].

FPGAs have fine grain logic blocks that can be reconfigured to perform various bit

level logic and arithmetic functions. The fine grain reconfigurability allows FPGAs to

be very flexible. Bit parallel computations present in domains like encryption can be

performed very efficiently on FPGAs. However, complex integer and floating point

operations do not map well on to FPGAs. Thus, for a set of domains, FPGAs are

very flexible and highly efficient.

Coarse-grain adaptable architectures have coarser grain building blocks compared

to FPGAs, but still maintain bit-level reconfigurability. The coarser reconfiguration

granularity improves the computation efficiency of these solutions. However, non-

81

standard tools are needed to map computations onto them and their success has been

limited to the multimedia domain. PipeRench [25] and RaPiD [13] are some examples

of coarse-grain adaptable architectures.

The programmable solutions shown in Figure 6.1 are all “universally” program-

mable, allowing any loop to be mapped on to them, although at varying degrees

of efficiency. There is a wide gap between the efficiency that can be achieved by

ASICs and the efficiency that can be achieved by these programmable solutions.

Section 6.2.2 shows that there are instances where there is a narrow requirement of

flexibility. Using any of the above solutions is overkill for these instances as these

solutions sacrifice too much efficiency for the needed flexibility. The PLAs proposed

in this dissertation are positioned in the design space where a small but non-trivial

amount of programmability as well as the high efficiency of ASICs are both required.

6.2.2 Programmability Case Study

As applications evolve over time, code changes are inevitable. Whether due to

changing requirements, changing standards, bug fixes, or new features, software is

constantly in flux. With hardwired solutions, every time the code in an accelerated

loop changes, new hardware must be synthesized even if the changes are small and

the dataflow between operations within the loop is substantially similar. By adding

some programmability, the hardware can be made robust in the face of such changes.

By looking at some loops from real applications, we can get a feel for what kinds of

changes typically occur.

82

Figure 6.2: Feature Addition to mdct.c in faad2.

Figure 6.2 shows a loop from the faad2 application, which is a commonly used free

audio decoder for the Advanced Audio Coding (AAC) standard. The figure shows

that between revisions 1.39 and 1.40 of the software, the loop has been modified

with the addition of an if-clause, while the rest of the loop remains the same. This

represents the addition of a new feature that requires certain new code in the loop

to be guarded under a flag. To implement the if-clause, the hardware must have

function units capable of performing load, multiply, and store. As these operations

are already present elsewhere in the loop, the new code should ideally be executable

on the same hardware, although the level of performance may be lower because the

same hardware resources are being used to execute more operations. The additional

control flow should not present a problem because the loop can be if-converted, and

a compare operation is not required inside the loop because the if-condition is live-in.

Figure 6.3 shows another loop from the same application. In this case, the code

changes from version 1.33 to 1.34 consist of sign changes on the right hand side of some

assignment statements, as might occur in a bug fix. These sign changes correspond

to dataflow changes in the loop, as some values now must go through a subtractor,

83

Figure 6.3: Bug-fix to mdct.c in faad2.

while other values should no longer go through a subtractor. (Alternatively, the

dataflow changes could occur post-negation, with the same values being stored to

different addresses.) In this case, the number of operations does not change, but

the communication between operations changes, and the hardware should be flexible

enough to accommodate this.

It can be seen that loops in real applications undergo minor changes over time.

Since the changes do not alter the loops significantly, it is possible to design an efficient

LA that remains usable after these changes are made.

6.3 From Single-function LA to Programmable LA

6.3.1 Single-function Accelerator

A single-function LA is used as a baseline. This accelerator is designed to execute

a specific loop at a given performance level, and is not programmable. Then, start-

ing from the single-function baseline, the datapath is generalized to create a more

programmable design. The goal is to remove or relax the most restrictive parts of

84

++

LD LD

*

+

+

LD

*

+

−

1

2 3

4

5 6 *

Loop 2

LA Hardware

M *+ +

1
2

0
1

4
3

1

3 4

6

2

5

Loop 1

Time FU0 FU1 FU2 FU3

5 6

Loop 1 Schedule

Figure 6.4: LA scheduling and synthesis example.

the architecture that limit programmability, while retaining the efficiency available

through customization. This section describes the datapath generalizations used to

create a PLA.

The left side of Figure 6.4 shows a portion of the loop from the FIR filter appli-

cation. Assuming the given II is 2, the abstract architecture will have two adders,

one memory unit, and one multiplier. When the operations in the loop are scheduled

as shown in Figure 6.4, the resulting single-function LA hardware will be as depicted

(registers are omitted from the figure for clarity). The connectivity within the LA is

limited because only those connections required to support this schedule are created.

For example, the input of the multiplier can only come from the memory unit.

Now, assume that a second loop (shown on the right) is to be mapped to the same

LA. This second loop is somewhat similar to the first, in that it also contains adds,

loads, and multiplies. However, the functionality is different, and the communication

patterns between operations are different as well. For example, Loop 2 contains a

subtract operation which did not exist in Loop 1, and also contains a dataflow edge

from ADD to MUL, which also did not exist in Loop 1. The next subsection will

85

discuss the changes to be made to the LA datapath to make it programmable and

support the execution of the second loop.

6.3.2 Programmable Loop Accelerator

To build a programmable loop accelerator (PLA), the datapath features of the

single-function LA that are least flexible should be generalized in a power and area

efficient manner. The next sections discuss these datapath characteristics.

6.3.2.1 Functionality

The LA is limited by the opcode repertoire of the FUs. For example, if a new

loop contains a subtract operation, but no FU is capable of performing subtraction,

it will not be possible to map the new loop onto the LA. FUs can be generalized

with low additional cost by adding functionality that is complementary to existing

functionality. For example, any adder can be generalized to support both addition

and subtraction with low additional cost. Other generalizations include broadening

the opcode repertoire of logical, memory, comparison, and shift FUs to include all

variants of those respective opcodes (e.g. all shift FUs are expanded such that they are

capable of left and right arithmetic and logical shifts). The costs of FU generalization

include increased hardware area and power consumption, as well as increased encoding

requirements for the larger number of supported opcodes. For the example second

loop of Figure 6.4, there is a subtract operation that is not supported by the single-

function LA. By generalizing the adders to adder-subtractors, the functionality of the

86

second loop will be supported.

6.3.2.2 Point-to-point Connectivity

A major area where the LA achieves efficiency wins is the point-to-point connectiv-

ity scheme. Only those connections that are needed to sustain the producer-consumer

communications in the modulo schedule exist in the single-function LA. This means

that not all FUs are able to communicate directly with other FUs, making it difficult

to map new applications onto the hardware. Two techniques are used to relax this

constraint. First, all FUs are given the ability to perform a MOV; that is, copy one

of its inputs to its output. This allows values to be transferred from a source FU

to a destination FU via intermediate FUs. Second, a low-bandwidth bus is created

that connects all FUs in the accelerator.1 This allows a single value transfer from any

FU to any other FU each cycle. The bus is scheduled by the compiler and thus is

not arbitrated. Such a global bus can be viewed as a fallback communication path,

ensuring that communication from any FU to any other FU is possible. Thus, the

programmability of a given accelerator (in terms of the number of different loops that

can be mapped onto it) increases significantly; however, since the bus is low band-

width, if a loop requires a large number of bus transfers, it will not be possible to

achieve a schedule with low II (high performance).

The global bus incurs additional hardware cost as each register file contains a

new read port which can place a value onto the bus, and each MUX contains a new

input which allows the FU to read the value from the bus in addition to the existing

1This bus may be pipelined or organized in a hierarchical manner for larger accelerators.

87

point-to-point connections.

In Loop 2 of Figure 6.4, two of the communication paths are not supported by the

single-function LA. Specifically, the edge from operation 3 to 4 cannot be mapped

onto the LA because there is no wire from an adder to a multiplier, and the edge

from operation 4 to 6 cannot be mapped because there is no wire from a multiplier

to a multiplier. The 3 → 4 communication can be handled by inserting a MOV to

pass the value from the adder through the memory unit to the multiplier. The 4 → 6

communication can be handled by passing the value on the global bus.

LA Hardware

M *+ +

+/− +/−M * Bus

PLA Hardware

+

LD

*

+

−

1
3

0
1

1

2 3

4

5 6 *

Loop 2

56
42

MOV

Bus usage required

MOV required

x

Loop 2 Schedule

Time FU0 FU1 FU2 FU3 Bus

Figure 6.5: PLA generalization and scheduling example.

Figure 6.5 shows the results of the datapath generalization so far: FUs have been

generalized, MOVs are supported, and a global bus has been added. Loop 2 is now

able to execute on the LA originally designed for Loop 1, using the II=2 schedule

shown. The remainder of this section discusses additional datapath restrictions that

are not shown by this simple example.

88

6.3.2.3 Shift Register Files

A limiting aspect of the single-function hardware is the nature of the SRFs –

because they have a fixed number of entries, any value produced by the corresponding

FU must be consumed within a certain number of cycles, or it will “fall off” the end

of the SRF. In addition, specific SRF entries are connected to consuming FUs, so the

values can only be read at certain times. Both of these issues can be addressed by

replacing SRFs with rotating register files (RRFs) [12]. RRFs are similar to standard

register files with the modification that the physical register address is a function

of the input address and a base register which is decremented once per iteration.

RRFs are well suited for modulo scheduled loops because this renaming mechanism

overcomes cross-iteration register overwrites.

The replacement of SRFs by RRFs introduces some additional hardware, namely

base registers, adders, and decoders for the read and write ports. In addition, the

sizes of the RRFs are rounded up to the next power of two to facilitate efficient

implementation of register rotation. However, the RRFs remain small (thus the

width of base registers and adders is only a few bits per register file) and distributed.

An additional cost of replacing SRFs with RRFs is in the control path: each

read and write port now requires an address, whereas the hardwired SRFs required

no addressing at all. In addition, the valid bits that were associated with SRFs are

no longer required for RRFs; thus, one less bit is required per register. However,

multiple-producer single-consumer relationships must now be handled through the

use of SELECT operations in software.

89

FU

c e fba d
c e fba d

(a) (c)(b)

FU

a b c d e f a b c d e f

FU

Figure 6.6: Generalizing port-specific connections: (a) baseline, (b) allowing swaps,
(c) generalized.

6.3.2.4 Port-specific Connectivity

In the single-function LA, each input port of an FU has its own connections

to specific register files. To schedule another operation onto that FU, both of the

operation’s source operands must be routable from where they are produced to the

corresponding input ports of the FU. Scheduling can fail if either routing is not

possible. If the operation is commutative, then swapping the sources of the operation

may result in a successful schedule; however, to relax this constraint more generally,

the actual physical connectivity within the datapath should be increased. Figure 6.6

illustrates two methods for accomplishing this. The first is to introduce an additional

level of MUXing at the FU input ports such that the ports can swap values, as shown

in Figure 6.6(b). In the figure, this allows port 1 to read value d and port 2 to read

value a, for example. However, modeling this two-level MUX is challenging for the

compiler, as it must ensure during scheduling that invalid combinations (e.g. port

1 reading d and port 2 reading e) do not occur. Thus, a more general strategy is

to widen the input MUXes to allow each input port to read its operand from any

connection originally made to either port, as shown in Figure 6.6(c).

90

BR

. . .

FU

(b)

Predicate bus

BR

. . .

. . .

. . .

FU

(a)

Figure 6.7: Generalizing staging predicate: (a) direct hardwired connections, (b)
generalized.

6.3.2.5 Staging Predicate

The LA is a hardware implementation of a modulo scheduled loop; as such, oper-

ations in the loop kernel are scheduled in various stages, and must be controlled by

guarding predicates as the software pipeline fills and drains. This guarding predicate

is produced by the branch unit and consumed by all other FUs. In the single-function

hardware, specific connections are made between registers in the branch unit’s output

SRF and the other FUs. This effectively restricts the stage in which operations on

a given FU may be scheduled. To generalize this aspect of the hardware, staging

predicates are broadcast over a bus to all FUs, significantly increasing scheduling

flexibility. The additional cost is low because each predicate is a single bit, and the

number of predicates required is just the number of stages in the schedule.

6.3.2.6 Hardwired Control

In the single-function LA, the datapath is directed by hardwired control signals

generated by a finite state machine. To allow programmability, the datapath should

instead be directed by signals from a control memory. The size of the control memory

depends on the number of FUs, MUXes, and registers in the design as well as on the

91

Local
Mem

D
at

a
In

D
at

a
O

ut

Data In

CRF

Data In

Start
Done

RR RR RRRR

II Control
Memory

...BR MEM+/− */+/−

Data Bus

Predicate Bus

Point−to−point Connections

Literal File

Figure 6.8: Template for programmable loop accelerator.

maximum allowed II. In addition, in the single-function LA, literal operands are

hardwired. Clearly, this does not allow a loop with different literals to be mapped to

the hardware. By placing literals into a central literal file, different literal values may

be used for different loops.

6.3.2.7 PLA Architecture

Figure 6.8 shows the template for the PLA, generalized from the datapath shown

in Figure 3.2. The accelerator is designed for a specific loop at a specific throughput,

but contains a more general datapath than the single-function LA to allow different

loops to be mapped onto the hardware. FUs have been generalized to support more

functionality; a low-bandwidth bus connects all FUs; the staging predicate is broad-

cast over a bus; shift register files are replaced with small, distributed RRFs; and the

FU input MUXes are widened. The area and power overheads of these changes will

be discussed in Section 5.3.

The augmented design flow for PLAs is shown in Figure 6.9. During the creation

of the hardware, the datapath is customized for a given loop (labeled Loop 1) but

92

Modulo
Schedule II−1

0

Scheduled
Ops

−+ M

RF
.c

FU
Alloc

Loop 1 Abstract
Arch

Build
Generalized

Datapath

Concrete
Arch

+ M−

Machine
Description

Instantiate
Arch

.c
Solve
SMT

Allocate
Registers

Generate SMT
Formulation

Insert
Moves

Programmable
Loop Accelerator

Verilog
+

Control

Compiler

Loop 2 Increment II

Control

Figure 6.9: Design and compilation flow for programmable loop accelerator.

is also generalized using the techniques described above. Additional control logic

is generated to support the programmable features of the LA. A scheduler-oriented

description of the hardware is then generated, containing both information about the

datapath as well as the control signals required to direct the datapath. This machine

description can then be used by the compiler (shown by the dotted box and described

in the next section) to map a new loop onto the same hardware.

6.4 Constraint-driven Scheduling

6.4.1 Scheduling Overview

The objectives of scheduling a loop onto an existing accelerator are significantly

different from those of scheduling to design the accelerator. When designing the

accelerator, the scheduler targets an abstract, fully-connected VLIW machine, and

attempts to minimize the final cost of the accelerator at a given II. However, when

93

targeting the existing accelerator, the cost is fixed and the goal is to map the loop

onto the hardware with the lowest II possible.

Conventional modulo schedulers assume a machine with a datapath that is largely

homogeneous. For example, FUs are typically ALUs capable of all integer operations,

and a centralized register file allows data transfers from any producer FU to any

consumer FU. Multicluster VLIWs and CGRAs have more distributed resources,

but these architectures are still regular. Conversely, the loop accelerator datapath

contains a significant amount of heterogeneity. FUs have a subset of functionality that

is tailored for the loop being accelerated, and connections between FUs are point-to-

point and highly irregular. A scheduler targeting an accelerator must accommodate

this heterogeneity. In terms of FU functionality, the scheduler must restrict the valid

resource assignments of each operation to those FUs that are compatible with the

operation. In terms of limited connectivity, if an operation produces a value on some

FU and this value cannot be directly accessed by the FU where the consumer is

scheduled, then either MOV operations must be scheduled to route the value through

other FUs, or a global bus must be used to transfer the value.

The proposed constraint-driven modulo scheduler maps a new loop onto an ex-

isting PLA by first inserting any potentially required MOVs into the loop’s dataflow

graph, and then formulating the assignment of operations to FUs and time slots as a

satisfiability problem as described in the next subsection. As in conventional modulo

scheduling, allocation of rotating registers is performed after assignment of operations

to FUs and time slots. If the loop cannot be scheduled at a given II, or if rotating

94

register allocation fails, the II is increased and another scheduling attempt is made.

The dotted box in Figure 6.9 shows the compiler flow.

6.4.2 SMT-based Scheduling

The scheduling problem is formulated as a Satisfiability Modulo Theory (SMT)

problem. SMT is a general form of satisfiability (SAT) that allows the use of pred-

icates over non-binary variables (for example, integers) in addition to conventional

boolean expressions. The problem input is a dataflow graph, a desired II, and a PLA;

the output is a modulo schedule where each operation in the dataflow graph has been

assigned an FU and a time slot, if such a schedule is feasible.

The body of the loop being scheduled is represented as a dataflow graph G =

(V, E), where V represents the set of operations in the loop and E represents the

data dependence edges between operations. Each edge has an associated latency

li,j that specifies the latency of the producer operation i, and a distance di,j that

specifies the iteration distance between when the value is produced by operation i

and consumed by operation j.

The schedule for the loop is represented by the |V | × |F | × II boolean variables

Xi,f,t, where F is the set of FUs in the machine and II is the initiation interval. Thus,

operation i ∈ V is scheduled on FU f ∈ F in time slot t ∈ {0, II − 1} if Xi,f,t is true.

Variables representing the assignment of operations to incompatible FUs are omitted

from the formulation. In addition, a set of |V | integer variables Si represent the stage

assignment for each operation i in the modulo schedule.

95

To ensure that each operation is assigned to exactly one FU and time slot, the

following constraints are asserted:

∨
∀f∈F

II−1∨
t=0

Xi,f,t = true ∀i ∈ V (6.1)

Xi,f1,t1 ∧ Xi,f2,t2 = false ∀i ∈ V, f1 �= f2, t1 �= t2 (6.2)

Next, to ensure that each FU has at most one operation assigned to it in each

time slot, the following set of constraints are asserted:

Xi1,f,t ∧ Xi2,f,t = false ∀f ∈ F, t ∈ {0, II − 1}, i1 �= i2 (6.3)

It is assumed that any multi-cycle FUs are fully pipelined and able to begin executing

a new operation each cycle.

Next, constraints must be asserted to ensure that no data dependence violations

occur. In other words, given producer operation i and consumer operation j, the

unrolled schedule time of j must be at least li,j − (di,j × II) cycles after that of i. In

other words:

ust(j) ≥ ust(i) + li,j − (di,j × II)

where ust(i) is the unrolled schedule time of i. Since ust(i) is a function of both the

stage Si and the time slot ti, this can be expressed as:

(Sj × II) + tj ≥ (Si × II) + ti + li,j − (di,j × II)

96

In the SMT formulation, t is not a true variable; rather, it is a constant with respect

to some boolean variable Xi,f,t. Thus, the above can be expressed in terms of variables

X and S, and constants t, l, d, and II:

¬Xi,fi,ti ∨ ¬Xj,fj ,tj ∨ (Sj × II) + tj ≥ (Si × II) + ti + li,j − (di,j × II) (6.4)

Constraint (6.4) is asserted for all values of ti and tj between 0 and II − 1, and

for all FUs fi and fj compatible with operations i and j, respectively. This set of

constraints is repeated for all pairs of operations that have data dependence edges

between them.

Note that all of the above constraints merely ensure that a valid schedule can be

achieved given a fully connected architecture; none of the constraints presented thus

far consider the limited connectivity of the loop accelerator datapath. Not all FUs

are able to communicate directly with each other; thus, the satisfaction of constraints

(6.4) may still result in an invalid schedule. To resolve this, the constraints should

be modified slightly. When the producer FU fi and the consumer FU fj are directly

connected (there is a wire from the register file at the output of fi to the input of

fj), constraints (6.4) may be asserted as before. However, when there is no such

connection, the following constraints are asserted instead, which prohibit operations

i and j from being scheduled on fi and fj :

¬
(

II−1∨
ti=0

Xi,fi,ti

)
∨ ¬

⎛
⎝II−1∨

tj=0

Xj,fj ,tj

⎞
⎠ (6.5)

97

Another feature of the PLA is the presence of a low-bandwidth global bus for

transferring values between any pair of FUs. The bus is modeled as a counted resource,

with a limited number of transfers available per clock cycle. In the SMT formulation,

additional boolean variables Bi,t are introduced, representing the use of a global bus

resource by operation i in time slot t. When a producer FU and a consumer FU

are directly connected, the bus is not needed because the value can be transferred

through the standard point-to-point connections. However, when two FUs fi and fj

are not directly connected, constraint (6.5) may be modified to allow use of the global

bus:

¬
(

II−1∨
ti=0

Xi,fi,ti

)
∨
⎛
⎝II−1∧

tj=0

¬Xj,fj ,tj ∨ Bj,tj

⎞
⎠ (6.6)

It then remains to limit the number of global bus users in each cycle:

Bi1,t ∧ Bi2,t = false ∀t ∈ {0, II − 1}, i1 �= i2 (6.7)

The above assumes that one global bus resource is available per cycle. To model

more than one bus resource, either additional boolean variables should be introduced

to represent each additional resource, or the boolean variables may be replaced by

integer variables whose sum is constrained to be less than or equal to the number of

bus transfers available per cycle.

Solving for boolean variables Xi,f,t and Bi,t and integer variables Si under the

constraints given by Equations (6.1) through (6.7) gives a legal modulo schedule with

initiation interval II for the graph G on a given PLA datapath.

98

6.5 Graph Perturbation

A goal of this work is to quantify the similarity required between two loops in

order for one loop to be mappable onto a PLA designed for another loop. Towards

this end, it is useful to systematically generate a series of loops with varying de-

grees of similarity. We propose a graph perturbation method that takes an existing

dataflow graph for a loop and introduces small changes, producing new loops that

are increasingly different from the original loop.

In a dataflow graph, changes to nodes and edges represent modifications to the

original source code of the loop. For example, a new node can represent a new C

statement; changing an edge can represent changing the operands of a statement.

Most operations in the loop have two source operands; therefore, when a node in

the dataflow graph has fewer than two incoming edges, one or more of these source

operands are either live-in (defined by operations outside of the loop) or literal values.

Thus, when perturbing the graph, adding or removing an incoming edge of a node

corresponds to changing a live-in or literal operand to a register operand or vice versa.

During the graph perturbation, it is assumed that nodes in the graph can have up

to two incoming edges (excluding the guarding predicate input, which exists for all

operations), although in reality, exceptions exist for operations, such as store-with-

displacement and operations with multiply-defined source operands.

In the graph perturbation module, four basic transformations are used:

• Adding an edge between existing nodes. A random node is selected as the

producer node; a random node with fewer than two incoming edges is selected

99

as the consumer node. A new edge is inserted from producer node to consumer

node. The latency of the edge is set to the latency of the producing operation.

The iteration distance of the edge is set depending on the order of producer and

consumer in a topological sort of the graph: if the producer appears later than

the consumer, then the distance is set to 1. Otherwise, it is set to 0.

• Adding an edge with a new producer. A random node with fewer than

two incoming edges is selected as the consumer; a new node with a random

opcode is generated to create a new producer node. A new edge is inserted

from producer to consumer with the latency of the producing operation and a

distance of 0.

• Adding an edge with a new consumer. A random node is selected as a

producer, and a new node with a random opcode is generated to create a new

consumer node. A new edge is inserted from producer to consumer with the

latency of the producing operation and a distance of 0.

• Removing an edge. A random edge is deleted from the graph. Edges origi-

nating from producers with only one consumer are excluded, as removing such

edges would render the producing operation useless. On the other hand, re-

moving an edge from a consumer with only one producer is permitted, as this

corresponds to replacing the operation’s register operand with a literal or live-in

operand.

The graph perturbation process is iterative. Beginning with the original graph,

100

a random transformation is chosen from among the four in the above list. Then,

random nodes or edges are selected as needed depending on the transformation, and

the transformation is applied. This process is repeated as many times as desired.

With each iteration, the graph becomes successively more dissimilar from the original

graph. As nodes and edges are perturbed, the communication patterns within the

graph change and it becomes less likely that the graph can be mapped onto hardware

designed for the original loop.

Figure 6.10(a) shows the dataflow graph for heat, a loop kernel from a scientific

application that models heat diffusion. After 5 perturbations, the graph is as shown in

Figure 6.10(b). Four new edges (and two new nodes) have been added, and one edge

(from node 13 to itself) has been removed. At this point, the graph still resembles

the original. In Figure 6.10(c), 10 perturbations have been performed in total, most

of which happen to be new edges. By this point, the graph looks fairly different from

the original, yet in this case it is still possible to map it onto the PLA designed for

the original loop.

One limiting factor in mapping a loop to an accelerator is the functionality of the

FUs. If the loop contains an operation that is not supported by any FUs in the hard-

ware, mapping is guaranteed to fail. Graphs produced by introducing such operations

to the original graph will fail trivially; thus, we disallow such perturbations in this

study to preserve functional compatibility. Note that, as mentioned in Section 6.3.2,

the PLA datapath already contains FUs that have been generalized to some degree;

thus, it is possible for loops containing operations that do not exist in the original

101

(a)

(b)

(c)

0

2

1

4

3

5

6

7

8

9

10

11

1415 1213

0

2

1

14

4

3

5

6

7

8

9

10

11

1512 13

17

18

0

2

1

7

14

19

4

3

12

5

6

89

10

11

15 13

17

18

20

Figure 6.10: Graph perturbation example from the heat benchmark: (a) original
loop, (b) after 5 perturbations, (c) after 10 perturbations.

102

loop to be successfully mapped.

6.6 Experimental Results

6.6.1 Overview

Loop kernels from various DSP (fir, fft, fmradio, bfform), media (dcac, dequant,

fsed, sobel), and linear algebra (heat, lu) applications are used to evaluate the effi-

ciency and programmability of the PLA architecture. The loops range in size from 17

operations up to 60 operations. For each loop, the synthesis system is used to gener-

ate Verilog corresponding to both single-function and programmable LAs. Synthesis

and placement are performed on the Verilog using Synopsys Design Compiler and

Physical Compiler and a 0.13µ standard cell library. Power analysis is performed us-

ing PrimeTime PX after the design has been back-annotated with information about

parasitics and switching activity. Three experiments are shown: first, the PLA is

compared with single-function LAs as well as with the OR-1200 RISC processor [51],

which is a simple, single-issue core with a 5-stage in-order pipeline. This experiment

examines the tradeoffs in power efficiency when moving from single-function to semi-

programmable to fully programmable hardware. The second experiment shows the

costs of the various PLA datapath generalizations described in Section 6.3.2. The

third experiment measures the programmability of the PLA by attempting to map

different loops onto an accelerator.

103

6.6.2 Area and Power Comparison

In the first experiment, the LAs are compared with the OR-1200 processor, which

is synthesized in the same technology (0.13µ) as the accelerators. The loops are

compiled for the processor using a version of the GNU compiler toolchain which has

been ported to the OR-1200; optimization level -O2 is used. PrimeTime PX is used to

measure the power consumption of the processor given switching activity information

obtained during loop execution. Both the local memories in the loop accelerators

and the caches in the OR-1200 are included in the power measurements. Figure 6.11

shows the relative power consumption of the single-function LA, the PLA, and the

OR-1200 for each loop, on a logarithmic scale. The power consumption of the single-

function LA is 1.0; for each loop, the first bar shows the power consumption of the

PLA, and the second bar shows that of the OR-1200. In addition, there is a third bar

for each benchmark, representing the amount of power the OR-1200 would consume

if it ran at a frequency yielding the same performance as the corresponding LA.2 It is

important to note that though the power consumption of the PLAs and the OR-1200

is comparable, the PLAs are 6x to 33x faster than the processor, and this difference

in power efficiency is reflected in the performance-equivalent bar.

As the graph shows, the PLAs consume about 2x to 9x more power than the

corresponding single-function LAs (which have the same performance). This increased

power consumption is due to several factors. First, the power consumed by the RRFs

makes up a significant fraction of the overall PLA datapath. When the SRFs in the

2Note that no voltage scaling is done, so the power consumption of the OR-1200 is an underes-
timate.

104

1

10

100

1000

b
ff
o
rm

d
c
a
c

d
e
q
u
a
n
t

ff
t

fi
r

fm
ra

d
io

fs
e
d

h
e
a
t

lu

s
o
b
e
l

a
v
e
ra

g
e

N
or

m
al

iz
ed

 P
ow

er
 C

on
su

m
pt

io
n

PLA

OR1K

OR1K-equiv

Figure 6.11: Power consumption of PLA and OR-1200 relative to single-function
LA.

0

0.2

0.4

0.6

0.8

1

1.2

1.4

b
ff
o
rm

d
c
a
c

d
e
q
u
a
n
t

ff
t

fi
r

fm
ra

d
io

fs
e
d

h
e
a
t

lu

s
o
b
e
l

a
v
e
ra

g
e

A
re

a
(m

m
2)

LA

PLA

OR1K

Figure 6.12: Area of loop accelerators and OR-1200.

105

single-function LA are replaced with RRFs, their sizes must be increased to the next

power of two, and additional logic must be added in the form of decoders, adders, and

base registers. Also, in the current implementation, the RRFs are synthesized from

behavioral descriptions rather than being created by a RF generator, thus missing

out on typical RF area and power optimizations such as master latch sharing. The

PLA also has other datapath generalizations as described in Section 6.3.2, such as

wider MUXes, which consume additional power. Finally, since the PLA datapath

is more complex than the single-function LA, when synthesizing both LAs with the

same target clock frequency, the gates in the PLA will be sized larger to meet timing

constraints, thus consuming more power.

Comparing the PLA with the OR-1200 at the same performance level, the OR-

1200 consumes from 4x to 34x more power. Since the OR-1200 performs general

instruction-based execution, it suffers increased power consumption due to factors

such as instruction fetch and decode, a centralized register file, caches, and the data

forwarding network. Conversely, the PLA is a customized architecture with dis-

tributed datapath elements and local memories, and thus is able to achieve high

throughput with significantly less power.

Figure 6.12 shows a comparison of the areas of the single-function LA, PLA, and

OR-1200. The generalized datapath of the PLA causes its area to increase roughly

2x compared to the single-function LA. Overall, all three hardware implementation

styles take up relatively little area, with single-function LAs averaging 0.3mm2, PLAs

averaging 0.65mm2, and the OR-1200 occupying 1.2mm2. In terms of area efficiency

106

0

1

2

3

4

5

6

7

8

b
ff
o
rm

d
c
a
c

d
e
q
u
a
n
t

ff
t

fi
r

fm
ra

d
io

fs
e
d

h
e
a
t

lu

s
o
b
e
l

a
v
e
ra

g
e

R
el

at
iv

e
Po

w
er

 O
ve

rh
ea

d

Ctrl

Mux

FU

Bus

RR

Figure 6.13: Power consumption breakdown of PLA generalizations.

(performance per area), the PLA is roughly 30x more efficient than the OR-1200 on

average for these loops.

6.6.3 Datapath Generalizations

Figure 6.13 shows the power overheads of the major datapath generalizations in

the PLA. For each loop, a stacked bar shows the breakdown of the amount of power

consumption contributed by each datapath element. The power contribution of some

datapath elements (such as the global bus) are difficult to isolate when looking at

the overall PLA hardware; to measure these contributions, an LA was created which

had (for example) a global bus and no other generalizations, and the overall power

consumption was compared with that of the original single-function LA. In general,

the datapath components contributing the highest amount of overhead are the RRFs

107

and the FU generalizations.

6.6.4 Programmability

For each loop, a PLA is synthesized using our system; Table 6.1 shows the char-

acteristics of each loop and its corresponding PLA. The Yices SMT solver [11] is

then used to modulo schedule loops onto PLAs using the formulation described in

Section 6.4.2. Two types of experiments are presented: first, we perturb the loops

and attempt to map them onto the PLAs designed for the corresponding unperturbed

loops. These experiments study the relationship between loop similarity and mappa-

bility, and represent reuse of existing hardware after source modifications are made

to a loop. Next, we attempt to map (unperturbed) loops onto PLAs designed for

other loops. This cross-compilation experiment examines the ability to reuse existing

hardware for different loops with similar computation structure.

For the perturbation study, we run a set of experiments wherein each loop is ran-

domly perturbed a number of times as described in Section 6.5. For each number of

perturbations, the SMT scheduler is used to map the perturbed loop onto the PLA.

Initially, the perturbed loop is scheduled at the same II as the original loop; if this

fails, the II is incremented until the scheduler succeeds or a threshold is reached. The

less the II needs to be increased, the more easily the hardware can be reused. Note

that typically, the II can continue to be increased until there is sufficient scheduling

flexibility to route all data transfers and the scheduler succeeds. Conversely, it is

generally not possible for a perturbed loop to be scheduled at a lower II than the

108

Loop #Ops RecMII Base II #FUs
dcac 44 2 4 13
dequant 63 3 8 12
fft 54 1 7 13
fir 26 1 2 13
fmradio 18 1 4 6
fsed 40 1 4 11
heat 17 6 6 5
lu 41 9 9 9
sobel 49 1 4 16
turbo 17 1 4 6

Table 6.1: Loop kernels from DSP and media applications.

original loop, because after each perturbation, the number of operations either in-

creases or remains the same. Thus the resources (which were allocated to support

the throughput of the original II) are insufficient to support a higher throughput.

Figure 6.14 shows the results of the perturbation study. The y-axis shows the

number of perturbations from the original loop. The bar for each benchmark is

segmented to indicate the amount that the II needed to be increased in order to

achieve a successful schedule. Multiple runs are performed, perturbing the graph

using different random seeds, and the II increases are averaged across these runs.

The performance decrease that the II increase corresponds to is dependent on the

original II shown in Table 6.1 under the “Base II” column.

As the graph shows, the programmability of the PLA depends on the original

loop. Factors such as more opcodes and more heterogeneous communication patterns

in a loop will lead to more programmable hardware. For example, fir is a small loop

which has simple, repeated communication patterns. Thus, there are fewer unique

point-to-point connections in the datapath. On the other hand, heat is also a small

109

0

2

4

6

8

10

12

14

16

18

20

d
c
a

c

d
e

q
u

a
n

t

ff
t

fi
r

fm
ra

d
io

fs
e

d

h
e

a
t

lu

s
o

b
e

l

tu
rb

o

Pe

rtu
rb

at
io

ns

≥3

<3

<2

<1

Average
II Increase

Figure 6.14: II increase necessary to schedule loops with perturbations.

loop, but its PLA contains more heterogeneous connections.

Figure 6.15 looks at three of the benchmarks in more detail. Each graph repre-

sents one loop kernel, with the number of perturbations shown on the x-axis. The

two lines represent the relative II increase required to schedule the perturbed loop

(averaged across multiple runs with different random seeds) as well as a measure of

how similar the perturbed loop is to the original. The similarity metric is based on

degree distribution [48], which is a histogram describing how many operations in the

dataflow graph have a given degree (number of connections with other operations).

We make the modification that nodes are differentiated by class of operation (arith-

metic vs. memory) when calculating the distribution. The degree distributions of

two dataflow graphs are then normalized to range from 0 to 1 and compared using

the sum of absolute differences. Thus, the value can range from 0 (very similar) to

2 (very different). As can be seen in the graphs, the II increase generally tracks the

110

fir

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1 2 3 4 5 6 7 8 9 10

perturbations

ra
tio

graph diff

II increase

fmradio

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

1 2 3 4 5 6 7 8 9 10

perturbations

ra
tio

graph diff

II increase

sobel

0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

0.45

0.5

1 2 3 4 5 6 7 8 9 10

perturbations

ra
tio

graph diff

II increase

Figure 6.15: Relative II increase and graph difference vs. perturbations for fir,
fmradio, and sobel.

increase in difference between perturbed loops and original loops. In several cases,

the II “levels off” before increasing again; this happens when increasing the II gives

enough scheduling flexibility that multiple additional perturbations can be scheduled

without further II increases. Also, notice that in the larger loop (sobel), the graph of

II increase is flatter, as each II increase corresponds to more scheduling slots becoming

available.

In order to study the programmability effects of the architecture generalizations

described in Section 6.3.2, the same perturbation study is run with more restrictive

PLA hardware. Figure 6.16 shows the results of scheduling the fir benchmark to

111

0

0.5

1

1.5

2

2.5

3

3.5

4

4.5

5

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20

perturbations

II
in

cr
ea

se
 ra

tio

PLA

SRF

No Bus

No Mux

Figure 6.16: Perturbation studies with more restrictive PLAs.

various more restrictive hardware configurations. The “SRF” configuration replaces

the rotating register files with SRFs; it is assumed that any entry can be read out of

the SRF, but entries may “fall off” the end, so consumers are forced to be scheduled

closer in time to producers. The “No Bus” configuration contains no global bus.

This limits connectivity significantly because the remaining interconnect is highly

customized to the original loop. In the “No Mux” configuration, the MUX inputs are

not allowed to be swapped; thus, connections are port-specific and more restrictive.

In each configuration, the reduced flexibility in the datapath means that higher IIs are

required to map perturbed loops onto PLAs. In the case of “No Bus”, mapping failed

outright beyond 6 perturbations due to insufficient interconnect; thus, the maximum

II increase that was attempted (4.5x) is shown for greater than 6 perturbations. It

can be seen that with all of the hardware generalizations in place (“PLA” line), the

112

II increase = 0

II increase <= 2

II increase > 2
dcac

dequant

fft

fir

fmradio

fsed

heat

lu

sobel

turbo

dcac dequant fft fir fmradio fsed heat lu sobel turbo

Figure 6.17: Cross compilation results. PLAs are designed for loops along the x-axis
at II values listed in Table 6.1. Loops along the y-axis are then mapped onto them.

achievable II is significantly lower as the number of perturbations increases.

Figure 6.17 shows the results from the cross-compilation study. PLAs are designed

for the loops listed across the x-axis, and the loops listed on the y-axis are mapped

onto them. The presence of a symbol indicates that the loop was successfully mapped

onto the hardware. A dark square indicates that the mapping was accomplished with

no II increase over the ResMII; as expected, dark squares appear on the diagonal

where loops are mapped onto their own hardware. Other symbols represent successful

mapping with some II increase. The lack of a symbol at a particular coordinate

indicates that mapping failed for that combination of loop and hardware; typically

this occurred because of incompatible functionality (that is, the loop contained an

operation that could not be executed on any FU).

113

dcac deq fft fir fmr fsed heat lu sob
turbo 1.41 1.27 1.50 1.76 1.67 1.65 1.53 1.35 1.44
sobel 1.26 1.09 0.67 1.10 0.74 0.76 1.25 1.03
lu 1.06 0.95 1.30 1.63 1.26 1.42 1.35
heat 0.90 1.20 0.97 0.97 0.98 1.23
fsed 1.21 1.08 0.64 0.92 0.80
fmradio 1.24 1.13 0.82 0.81
fir 1.24 1.41 0.96
fft 1.25 0.97
dequant 0.89

Table 6.2: Similarity of loop kernels; a lower number means the two loops are more
similar to each other.

The success of cross-compilation primarily depends on two factors, loop size and

loop similarity. With respect to loop size, it is easier for smaller loops to map onto

larger hardware, as more scheduling flexibility is available. Note that two columns,

those of dequant and fft, are heavily populated, indicating that most other loops

were able to successfully map to these PLAs. These are the two largest loops, and the

resulting PLAs have more functionality and interconnectivity as a result. Similarly,

rows corresponding to smaller loops are well-populated. With respect to loop simi-

larity, loops are often able to map onto the hardware of other similar loops. Table 6.2

shows the degree-based similarity metric described earlier in this section for the loops

in this cross-compilation study. The dcac loop is most similar to heat and dequant,

and is successfully mapped onto hardware designed for these other two loops even

though the heat loop is significantly smaller. However, in general the loop similar-

ity is not an ideal predictor of schedulability, as similarity is an estimated aggregate

measure that does not account for the specific resource usage requirements of the

114

loops.

The runtime of the SMT scheduler ranged from a few seconds up to half an hour,

depending on the size of the loop (the largest loop had 63 operations).

6.7 Accelerator Efficiency Analysis

Three general classes of loop accelerators have been presented in this dissertation:

single-function LAs, multifunction LAs, and programmable LAs. Figure 6.18 plots

the performance vs. power consumption of these LAs as well as the OR-1200. On this

plot, points on the same slope have equivalent power efficiency in terms of MIPS/mW,

with points towards the upper left having greater power efficiency. For each type of

hardware, the average efficiency is plotted as a line; for the designs studied, the single-

function LAs achieve 105 MIPS/mW, multifunction LAs achieve 36 MIPS/mW, PLAs

achieve 24 MIPS/mW, and the OR-1200 achieves 2 MIPS/mW on average.

As can be seen from the plot, the loop accelerators are able to achieve order-of-

magnitude improvements in efficiency over the OR-1200 via customization. The PLAs

allow hardware reuse in the presence of source code changes, giving up some efficiency

to the non-programmable LAs but maintaining large efficiency gains over general

purpose hardware. Four commercially available hardware implementations are also

shown in the plot: the Tensilica Diamond Core [63], a processor with ASIP-style

instruction set extensions optimized for embedded designs; the Texas Instruments C6x

digital signal processor [65]; the ARM11 embedded general purpose processor [3]; and

the Intel Itanium 2 [29], a general purpose processor targeted for enterprise servers.

115

0

2
0
0

4
0
0

6
0
0

8
0
0

1
0
0
0

1
2
0
0

1
4
0
0

0
1
0

2
0

3
0

4
0

5
0

6
0

7
0

8
0

Po
w

er
 C

on
su

m
pt

io
n

(m
W

)

Performance (MIPS)

L
A

M
L
A

P
L
A

O
R

1
K

LA: 105 MIPS/mW

M
LA

: 3
6

M
IP

S
/m

W

P
L
A

:
2
4
 M

IP
S

/m
W

O
R

1
K

:
2

 M
IP

S
/m

W

T
I
C

6
x
:

5
 M

IP
S

/m
W

A
R

M
1

1
:

3
 M

IP
S

/m
W

It
a

n
iu

m
2

:
0

.0
8

 M
IP

S
/m

W

T
e

n
s
ili

c
a

D
ia

m
o

n
d

 C
o

re

1
2

 M
IP

S
/m

W

F
ig

u
re

6.
18

:
P
er

fo
rm

an
ce

/p
ow

er
of

lo
op

ac
ce

le
ra

to
rs

,
O

R
-1

20
0,

an
d

co
m

m
er

ci
al

ar
ch

it
ec

tu
re

s.

116

As can be observed, the efficiency decreases significantly as the hardware becomes

more general and less tailored for embedded applications.

6.8 Related Work

Related work in terms of hardware design and reconfigurable datapaths was largely

discussed in Section 2.4. Thus, this section will discuss work related to compilation

for irregular datapaths. Such prior work can best classified by the target architecture:

CGRAs, multicluster VLIWs, and DSPs.

CGRA scheduling. Several modulo scheduling techniques for CGRAs have been

proposed. [45] proposes a modulo scheduling algorithm for ADRES architecture based

on simulated annealing. It begins with a random placement of operations on the FUs

of a CGRA, which may not be a valid modulo schedule. Operations are then randomly

moved between FUs until a valid schedule is achieved. Modulo graph embedding is

a modulo scheduling technique that leverages graph embedding commonly used in

graph layout and visualization [53]. The scheduling problem is reduced to drawing a

guest graph (the loop body) onto a three dimensional host graph (the CGRA). The

three dimensions consist of the 2-D function unit array and the time slots.

Other CGRA scheduling techniques do not focus on software pipelining loops.

Lee et al. propose a compilation approach for a generic CGRA [35]. This approach

generates pipeline schedules for innermost loop bodies so that iterations can be issued

successively. The main focus of their work is to enable memory sharing between oper-

ations of different iterations placed on the same processing element. [69] proposes an

117

acyclic scheduling technique that decouples resource allocation and time assignment

for CGRAs. A graph is constructed where nodes are operations and edges are in-

serted between nodes that have direct data dependences or common consumers. This

graph is then partitioned into cliques and resource allocation is performed by assign-

ing operations in each clique to the same resource. Time slots for operations are later

assigned in scheduling phase. Last, convergent scheduling is proposed as a generic

framework for instruction scheduling on spatial architectures [37]. Their framework

comprises a series of acyclic scheduling heuristics that address independent concerns

like load balancing, communication minimization, etc.

Multicluster VLIW scheduling. A large body of work has been done on

compiling acyclic and loop code for clustered VLIWs [1, 7, 18, 30, 50, 52, 59]. The

clustered nature of the datapath can either be taken into account in a prepass before

scheduling, such as the Bottom-Up Greedy algorithm in the Bulldog compiler [18],

or during scheduling, such as the Unified Assign and Schedule algorithm used in

the Lego compiler [52]. Multicluster scheduling is generally an easier problem than

CGRA scheduling because it does not consider the issue of routing values through a

sparse interconnection network.

DSP compilation. A common characteristic of DSPs is non-uniform intercon-

nect between multiple function units and function units to register files. Template-

based code generation is typically used to map applications onto such datapaths [38,

39, 43]. However, this is generally done in the context of a single-issue architecture,

thus there is no significant scheduling component. A related area is scheduling to pro-

118

cessors with partial register bypass networks [33, 53]. Partial bypass introduces the

problem of variable latencies on dataflow edges depending on function units chosen

for a producer/consumer pair.

The primary difference that sets our work apart from these techniques is the ir-

regularity of the target architecture. CGRAs and multicluster VLIWs generally have

a regular datapath with uniform interconnectivity, though not all connections are

direct. These designs are typically not customized to a particular application, but

rather are either general-purpose or possibly domain specific. Conversely, the archi-

tectures that we investigate are highly customized LAs with several generalizations.

Programmability and thus the opportunities for a scheduler are limited to applica-

tions that have similar computation structure to that which the original LA was

designed. As a result, previous scheduling approaches cannot readily be adapted to

PLA architectures.

6.9 Summary

Customized loop accelerators are able to provide significant performance and

power efficiency gains over general purpose processors. By building semi-program-

mable accelerators, it is possible to achieve these efficiency gains while allowing hard-

ware to be reused as the software evolves. The loop accelerator datapath is general-

ized in an efficient way such that loops that are similar to the original loop may be

mapped onto the accelerator. Such programmable loop accelerators provide hardware

reusability along with order-of-magnitude improvements in power and area efficiency

119

over simple low power general purpose processors. In addition, a constraint-driven

modulo scheduler is presented which maps loops onto the PLA. The programmabil-

ity of the PLA architecture and effectiveness of the constraint-driven scheduler are

evaluated using a graph perturbation method which allows for systematic exploration

of the relationship between loop similarity and hardware reusability. For the loops

studied, the PLA was able to achieve 4x-34x better power efficiency and about 30x

better area efficiency than a general purpose processor, while losing 2x-9x in power

and 2x in area to a custom non-programmable LA.

120

CHAPTER 7

Conclusion

7.1 Summary

Loop accelerators provide order-of-magnitude gains in computation efficiency over

general purpose processors for highly-executed loop kernels. The difficulty with using

custom accelerators is that designing customized hardware is expensive and time con-

suming. Given the speed at which the computing industry advances, time-to-market

is of paramount importance, particularly in the quickly evolving embedded domain.

Using an automated system to build accelerators from high-level specifications allows

designers to create hardware with a significantly shorter time-to-market. Although

design quality of automatically generated hardware may not be as high as full cus-

tom hand-designed hardware, it can actually be significantly better when taking into

account market advancement during the long time period required for manual design.

In this dissertation, a synthesis system was presented that designs application-

centric architectures. The system allows different types of efficient loop accelerators

121

to be automatically generated from C code. The high level of computation efficiency

is achieved through the use of a hardware template that is customized for each loop,

using techniques to exploit fine-grained and coarse-grained hardware sharing.

The key component of the application-centric architecture synthesis system is the

modulo scheduler, which exposes a high degree of instruction-level parallelism by

overlapping iterations of the loop. The scheduler attempts to exploit fine-grained

hardware sharing to reduce the cost and increase the efficiency of the accelerator.

The accelerator datapath is then derived from the schedule; the final loop accelerator

is essentially a hardware implementation of the modulo scheduled loop. The cost

sensitive modulo scheduler increases the hardware efficiency (in terms of performance

per area) of synthesized accelerators by 20% on average.

By combining the functionality of several accelerators in the form of a multifunc-

tion accelerator, significant hardware savings can be achieved. Instead of requiring

separate accelerators for each computationally intensive loop, several loops may share

a single datapath, exploiting coarse-grained hardware sharing when permitted by the

application or applications. By using the datapath union technique, significant hard-

ware savings can be achieved, averaging 43% over the cost of separate accelerators.

A primary downside of building customized hardware is the lack of flexibility: if

the software changes, the hardware must be redesigned. By making the hardware

semi-programmable, small changes to the software can be accommodated without

having to build new hardware. By keeping the amount of programmability small, the

hardware can retain its high degree of computational efficiency. Thus, the loop accel-

122

erator was generalized to support post-programmability, and the synthesis toolchain

was augmented to be able to map new loops onto existing hardware. The pro-

grammable accelerator achieved up to 34x better power efficiency and 30x better

area efficiency than a simple general purpose processor, while losing 2x-9x in power

and 2x in area to a non-programmable accelerator.

7.2 Future Directions

The research presented here can be extended in several directions. First, there

is the issue of integration of accelerators into a complete system. In order for the

accelerator to be useful, the performance overheads of transferring control and data

to the accelerator must be amortized over its execution. The choice of how accelera-

tors interface with the rest of the system will affect the amount of these overheads,

thus impacting the overall performance of the system. Hardware interface questions

include how the accelerator is connected to the rest of the system, whether or not a

shared memory model is used, etc. Other system integration issues relate to the soft-

ware side: what support is needed in the host operating system or runtime libraries

to efficiently make use of accelerators? The use of language extensions can also be

investigated, as they can make it easier for developers to use accelerator hardware.

Another related issue is how to partition work across a heterogeneous system

consisting of general purpose processors, loop accelerators, and other types of compu-

tation hardware such as domain accelerators and coarse-grained reconfigurable archi-

tectures. Different portions of applications should be matched to different computing

123

substrates depending on the varying requirements for performance, efficiency, and

programmability. This can be done statically or dynamically; potentially, a run-

time system could be used to dynamically map parts of applications to the available

hardware that is best suited for their execution.

124

BIBLIOGRAPHY

125

BIBLIOGRAPHY

[1] A. Aletà, J. Codina, J. Sánchez, and A. González. Graph-partitioning based
instruction scheduling for clustered processors. In Proc. of the 34th Annual
International Symposium on Microarchitecture, pages 150–159, Dec. 2001.

[2] E. R. Altman and G. A. Gao. Optimal modulo scheduling through enumeration.
International Journal of Parallel Programming, 26(3):313–344, 1998.

[3] ARM. Arm11. http://www.arm.com/products/CPUs/families/
ARM11Family.html.

[4] S. Bakshi and D. Gajski. Components selection for high performance pipelines.
IEEE Transactions on Very Large Scale Integration (VLSI) Systems, 4(2):182–
194, June 1996.

[5] K. Bondalapati et al. DEFACTO: A design environment for adaptive computing
technology. In Proc. of the Reconfigurable Architectures Workshop, pages 570–
578, Apr. 1999.

[6] T. Callahan, J. Hauser, and J. Wawrzynek. The Garp architecture and C com-
piler. IEEE Computer, 33(4):62–69, Apr. 2000.

[7] M. Chu, K. Fan, and S. Mahlke. Region-based hierarchical operation partition-
ing for multicluster processors. In Proc. of the SIGPLAN ’03 Conference on
Programming Language Design and Implementation, pages 300–311, June 2003.

[8] S. Ciricescu et al. The reconfigurable streaming vector processor (RSVP). In
Proc. of the 36th Annual International Symposium on Microarchitecture, pages
141–150, 2003.

[9] N. Clark, A. Hormati, and S. Mahlke. Veal: Virtualized execution accelerator
for loops. In Proc. of the 35th Annual International Symposium on Computer
Architecture, page To appear, June 2008.

[10] H. Corporaal and H. J. Mulder. MOVE: A framework for high-performance
processor design. In Proc. of Supercomputing ’91, pages 692–701, Nov. 1991.

126

[11] L. de Moura and B. Dutertre. Yices 1.0: An efficient SMT solver. In The
Satisfiability Modulo Theories Competition (SMT-COMP), Aug. 2006.

[12] J. Dehnert and R. Towle. Compiling for the Cydra 5. Journal of Supercomputing,
7(1):181–227, May 1993.

[13] C. Ebeling et al. Mapping applications to the RaPiD configurable architecture.
In Proc. of the 5th IEEE Symposium on Field-Programmable Custom Computing
Machines, pages 106–115, Apr. 1997.

[14] A. E. Eichenberger and E. S. Davidson. Stage scheduling: A technique to reduce
the register requirements of a modulo schedule. In Proc. of the 28th Annual
International Symposium on Microarchitecture, pages 338–349, Nov. 1995.

[15] A. E. Eichenberger and E. S. Davidson. Efficient formulation for optimal modulo
schedulers. In Proc. of the SIGPLAN ’97 Conference on Programming Language
Design and Implementation, pages 194–205, June 1997.

[16] A. E. Eichenberger, E. S. Davidson, and S. G. Abraham. Minimum register
requirements for a modulo schedule. In Proc. of the 27th Annual International
Symposium on Microarchitecture, pages 75–84, Nov. 1994.

[17] A. E. Eichenberger, E. S. Davidson, and S. G. Abraham. Optimum modulo
schedules for minimum register requirements. In Proc. of the 1995 International
Conference on Supercomputing, pages 31–40, July 1995.

[18] J. Ellis. Bulldog: A Compiler for VLIW Architectures. MIT Press, Cambridge,
MA, 1985.

[19] K. Fan, M. Kudlur, H. Park, and S. Mahlke. Cost sensitive modulo scheduling
in a loop accelerator synthesis system. In Proc. of the 38th Annual International
Symposium on Microarchitecture, pages 219–230, Nov. 2005.

[20] K. Fan, M. Kudlur, H. Park, and S. Mahlke. Increasing hardware efficiency with
multifunction loop accelerators. In Proc. of the 4th International Conference on
Hardware/Software Codesign and System Synthesis, pages 276–281, Oct. 2006.

[21] K. Fan, H. Park, M. Kudlur, and S. Mahlke. Modulo scheduling for highly
customized datapaths to increase hardware reusability. In Proc. of the 2008
International Symposium on Code Generation and Optimization, pages 124–133,
Apr. 2008.

[22] D. D. Gajski et al. High-level Synthesis: Introduction to Chip and System Design.
Kluwer Academic Publishers, 1992.

[23] M. Gokhale and B. Schott. Data-parallel C on a reconfigurable logic array.
Journal of Supercomputing, 9(3):291–313, Sept. 1995.

127

[24] M. Gokhale and J. Stone. NAPA C: Compiler for a hybrid RISC/FPGA archi-
tecture. In Proc. of the 6th IEEE Symposium on Field-Programmable Custom
Computing Machines, pages 126–137, Apr. 1998.

[25] S. Goldstein et al. PipeRench: A coprocessor for streaming multimedia accel-
eration. In Proc. of the 26th Annual International Symposium on Computer
Architecture, pages 28–39, June 1999.

[26] R. Govindarajan, E. R. Altman, and G. R. Gao. Minimizing register require-
ments under resource-constrained rate-optimal software pipelining. In Proc. of
the 27th Annual International Symposium on Microarchitecture, pages 85–94,
Nov. 1994.

[27] Z. Huang, S. Malik, N. Moreano, and G. Araujo. The design of dynamically re-
configurable datapath coprocessors. ACM Transactions on Embedded Computing
Systems, 3(2):361–384, 2004.

[28] R. A. Huff. Lifetime-sensitive modulo scheduling. In Proc. of the SIGPLAN
’93 Conference on Programming Language Design and Implementation, pages
258–267, June 1993.

[29] Intel Corporation, Santa Clara, CA. Intel IA-64 Software Developer’s Manual,
2002.

[30] K. Kailas, K. Ebcioğlu, and A. Agrawala. CARS: A new code generation frame-
work for clustered ILP processors. In Proc. of the 7th International Symposium
on High-Performance Computer Architecture, pages 133–142, Feb. 2001.

[31] H. Kalva. The H.264 video coding standard. IEEE MultiMedia, 13(4):86–90,
2006.

[32] G. Karypis and V. Kumar. Metis: A Software Package for Paritioning Unstruc-
tured Graphs, Partitioning Meshes and Computing Fill-Reducing Orderings of
Sparce Matrices. University of Minnesota, Sept. 1998.

[33] M. Kudlur, K. Fan, M. Chu, R. Ravindran, N. Clark, and S. Mahlke. FLASH:
Foresighted latency-aware scheduling heuristic for processors with customized
datapaths. In Proc. of the 2004 International Symposium on Code Generation
and Optimization, pages 201–212, Mar. 2004.

[34] M. Kudlur, K. Fan, and S. Mahlke. Streamroller: Automatic synthesis of pre-
scribed throughput accelerator pipelines. In Proc. of the 4th International Con-
ference on Hardware/Software Codesign and System Synthesis, pages 270–275,
Oct. 2006.

[35] J. Lee, K. Choi, and N. Dutt. Compilation approach for coarse-grained reconfig-
urable architectures. IEEE Journal of Design & Test of Computers, 20(1):26–33,
Jan. 2003.

128

[36] J. Lee, Y. Hsu, and Y. Lin. A new integer linear programming formulation for
the scheduling problem in data-path synthesis. In Proc. of the 1989 International
Conference on Computer Aided Design, pages 20–23, 1989.

[37] W. Lee, D. Puppin, S. Swenson, and S. Amarasinghe. Convergent scheduling. In
Proc. of the 35th Annual International Symposium on Microarchitecture, pages
111–122, 2002.

[38] R. Leupers. Retargetable Code Generation for Digital Signal Processors. Kluwer
Academic Publishers, Boston, MA, 1997.

[39] R. Leupers. Code Optimization Techniques for Embedded Processors - Methods,
Algorithms, and Tools. Kluwer Academic Publishers, Boston, MA, 2000.

[40] J. Llosa et al. Swing modulo scheduling: A lifetime-sensitive approach. In Proc.
of the 5th International Conference on Parallel Architectures and Compilation
Techniques, pages 80–86, 1996.

[41] J. Llosa and S. Freudenberger. Reduced code size modulo scheduling in the ab-
sence of hardware support. In Proc. of the 35th Annual International Symposium
on Microarchitecture, pages 99–110, 2002.

[42] S. Mahlke et al. Bitwidth cognizant architecture synthesis of custom hardware
accelerators. IEEE Transactions on Computer-Aided Design of Integrated Cir-
cuits and Systems, 20(11):1355–1371, Nov. 2001.

[43] P. Marwedel and G. Goossens. Code Generation for Embedded Processors.
Kluwer Academic Publishers, Boston, 1995.

[44] B. Mathew and A. Davis. A loop accelerator for low power embedded VLIW pro-
cessors. In Proc. of the 2004 International Conference on on Hardware/Software
Co-design and System Synthesis, pages 6–11, 2004.

[45] B. Mei et al. Exploiting loop-level parallelism on coarse-grained reconfigurable
architectures using modulo scheduling. In Proc. of the 2003 Design, Automation
and Test in Europe, pages 296–301, Mar. 2003.

[46] S. Memik et al. Global resource sharing for synthesis of control data flow graphs
on FPGAs. In Proc. of the 40th Design Automation Conference, pages 604–609,
June 2003.

[47] Motorola. CPU12 Reference Manual, June 2003. http://e-
www.motorola.com/brdata/PDFDB/docs/CPU12RM.pdf.

[48] M. E. J. Newman. The structure and function of complex networks. Society for
Industrial and Applied Mathematics Review, 45(2):167–256, 2003.

129

[49] S. Note, W. Geurts, F. Catthoor, and H. D. Man. Cathedral-III: Architecture-
driven high-level synthesis for high throughput DSP applications. In Proc. of the
28th Design Automation Conference, pages 597–602, June 1991.

[50] E. Nystrom and A. E. Eichenberger. Effective cluster assignment for modulo
scheduling. In Proc. of the 31st Annual International Symposium on Microar-
chitecture, pages 103–114, Dec. 1998.

[51] OpenCores. OpenRISC 1200, 2006. http://www.opencores.org/projects.cgi/web/
or1k/openrisc 1200.

[52] E. Özer, S. Banerjia, and T. Conte. Unified assign and schedule: A new ap-
proach to scheduling for clustered register file microarchitectures. In Proc. of
the 31st Annual International Symposium on Microarchitecture, pages 308–315,
Dec. 1998.

[53] H. Park, K. Fan, M. Kudlur, and S. Mahlke. Modulo graph embedding: Mapping
applications onto coarse-grained reconfigurable architectures. In Proc. of the
2006 International Conference on Compilers, Architecture, and Synthesis for
Embedded Systems, pages 136–146, Oct. 2006.

[54] I. Park and C. Kyung. Fast and near optimal scheduling in automatic data path
synthesis. In Proc. of the 28th Design Automation Conference, pages 680–685,
1991.

[55] N. Park and F. Kurdahi. Module assignment and interconnect sharing in register-
transfer synthesis of pipelined data paths. In Proc. of the 1989 International
Conference on Computer Aided Design, pages 16–19, Nov. 1989.

[56] N. Park and A. C. Parker. Sehwa: A software package for synthesis of pipelines
from behavioral specifications. IEEE Transactions on Computer-Aided Design
of Integrated Circuits and Systems, 7(3):356–370, Mar. 1988.

[57] P. G. Paulin and J. P. Knight. Force-directed scheduling for the behavorial
synthesis of ASICs. IEEE Transactions on Computer-Aided Design of Integrated
Circuits and Systems, 8(6):661–679, June 1989.

[58] B. R. Rau. Iterative modulo scheduling: An algorithm for software pipelining
loops. In Proc. of the 27th Annual International Symposium on Microarchitec-
ture, pages 63–74, Nov. 1994.

[59] J. Sánchez and A. González. Modulo scheduling for a fully-distributed clustered
VLIW architecture. In Proc. of the 33rd Annual International Symposium on
Microarchitecture, pages 124–133, Dec. 2000.

[60] R. Schreiber et al. PICO-NPA: High-level synthesis of nonprogrammable hard-
ware accelerators. Journal of VLSI Signal Processing, 31(2):127–142, 2002.

130

[61] SEMATECH. International technology roadmap for semiconductors, 1999.
http://www.itrs.net/.

[62] G. Snider. Performance-constrained pipelining of software loops onto reconfig-
urable hardware. In Proc. of the 10th ACM Symposium on Field Programmable
Gate Arrays, pages 177–186, 2002.

[63] Tensilica Inc. Diamond Standard Processor Core Family Architecture, July 2007.
http://www.tensilica.com/pdf/Diamond WP.pdf.

[64] Texas Instruments. TMS320C54X DSP Reference Set, Mar. 2001. http://www-
s.ti.com/sc/psheets/spru131g/spru131g.pdf.

[65] Texas Instruments. TMS320C6000 CPU and Instruction Set Reference Guide,
July 2006. http://focus.ti.com/lit/ug/spru189g/spru189g.pdf.

[66] W. Thies, M. Karczmarek, and S. P. Amarasinghe. StreamIt: A language for
streaming applications. In Proc. of the 2002 International Conference on Com-
piler Construction, pages 179–196, 2002.

[67] Trimaran. An infrastructure for research in ILP, 2000.
http://www.trimaran.org/.

[68] C. Tseng and D. P. Siewiorek. FACET: A procedure for automated synthesis
of digital systems. In Proc. of the 20th Design Automation Conference, pages
566–572, June 1983.

[69] G. Venkataramani, W. Najjar, F. Kurdahi, N. Bagherzadeh, and W. Bohm. A
compiler framework for mapping applications to a coarse-grained reconfigurable
computer architecture. In Proc. of the 2001 International Conference on Com-
pilers, Architecture, and Synthesis for Embedded Systems, pages 116–125, 2001.

[70] M. Wazlowski et al. PRISM-II compiler and architecture. In Proc. of the 1st
IEEE Symposium on Field-Programmable Custom Computing Machines, pages
9–16, Apr. 1993.

[71] M. Woh et al. The next generation challenge for software defined radio. In
Proc. of the 7thInternational Symposium on Systems, Architectures, Modeling,
and Simulation, pages 343–354, July 2007.

131

