
Mirage Cores: The Illusion of Many Out-of-order Cores Using
In-order Hardware

Shruti Padmanabha
University of Michigan, Ann Arbor

shrupad@umich.edu

Andrew Lukefahr∗
Indiana University

lukefahr@indiana.edu

Reetuparna Das
University of Michigan, Ann Arbor

reetudas@umich.edu

Scott Mahlke
University of Michigan, Ann Arbor

mahlke@umich.edu

ABSTRACT
Heterogenous chip multiprocessors (Het-CMPs) offer a combina-
tion of large Out-of-Order (OoO) cores optimized for high single-
threaded performance and small In-Order (InO) cores optimized for
low-energy and area costs. Due to practical constraints, CMP de-
signers must choose to either optimize for total system throughput
by utilizing many InO cores or maximize single-thread execution
with fewer OoO cores. We propose Mirage Cores, a novel Het-CMP
design where clusters of InO cores are architected around an OoO
in a manner that optimizes for both throughput and single-thread
performance. The insight behind Mirage Cores is that InO cores
can achieve near-OoO performance if they are provided with the
dynamic instruction schedule of an OoO core. To leverage this, Mi-
rage Cores employs an OoO core as an optimal instruction schedule
generator as well as a high-performance alternative for all neigh-
boring InO cores. We also develop intelligent runtime schedulers
which orchestrate the arbitration and migration of applications
between the InO cores and the central OoO. Fast and timely transfer
of dynamic schedules from the OoO to InO allows Mirage Cores to
create the appearance of all OoO cores to the user using underlying
In-Order hardware.

Overall, with an 8 InO per OoO configuration, Mirage Cores can
achieve on average 84% of the performance of a CMP with 8 OoO
cores, a 28% increase relative to current systems, while conserving
55% of energy and 25% of area costs. We find that we can scale the
design to around 12 InOs per OoO before starvation for the OoO
starts to hamper system performance.

CCS CONCEPTS
•Computer systems organization→Multicore architectures;
Heterogeneous (hybrid) systems; • Hardware → Chip-level
power issues;

∗This work was done while author was at the University of Michigan

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than the
author(s) must be honored. Abstracting with credit is permitted. To copy otherwise, or
republish, to post on servers or to redistribute to lists, requires prior specific permission
and/or a fee. Request permissions from permissions@acm.org.
MICRO-50, October 14-18, 2017, Cambridge, MA, USA
© 2017 Copyright held by the owner/author(s). Publication rights licensed to Associa-
tion for Computing Machinery.
ACM ISBN 978-1-4503-4952-9. . . $15.00
https://doi.org/10.1145/3123939.3123969

KEYWORDS
Heterogeneous multicores, Energy-efficient architectures, CMP
scheduling
ACM Reference format:
Shruti Padmanabha, Andrew Lukefahr, Reetuparna Das, and Scott Mahlke.
2017. Mirage Cores: The Illusion of Many Out-of-order Cores Using In-
order Hardware . In Proceedings of The 50th Annual IEEE/ACM International
Symposium on Microarchitecture, Cambridge, MA, USA, October 14-18, 2017
(MICRO-50), 14 pages.
https://doi.org/10.1145/3123939.3123969

1 INTRODUCTION
Growing energy and power dissipation concerns are impeding the
rate of progress that has come to be expected in modern proces-
sors. To continue scaling performance, computer architects must
fundamentally increase energy efficiency of processors across all
platforms – from the data centers which draw megawatts of power,
to mobile phones where battery life is precious to all users.

Decades of research pushing the limits of single-threaded perfor-
mance have led to the sophisticated design of modern Out-of-Order
(OoO) cores, albeit at the expense of high energy consumption.
Shrinking transistor sizes with static threshold voltages gave rise
to Chip MultiProcessors (CMPs) that allow parallel execution of
multiple applications, further boosting system performance. In-
order (InO) cores, on the other hand, are designed to be low-power
and lean, but in the process compromise on performance. ARM’s
InO A7 core, for instance, consumes nearly 1/3 the energy of the
OoO A15 core, while sacrificing 1/2 the performance[15]. Hetero-
geneous CMPs (Het-CMPs) allow for a combination of cores with
different performance and energy characteristics. They can achieve
energy-proportionality by executing the high performance applica-
tions/phases on the fast OoO cores, and running the low-utilization
ones on the slower, more efficient InO cores.

Higher energy savings can be gained from increasing the uti-
lization of InO cores. Additionally, more of them can fit in a given
power and area budget of a CMP as compared to bulkier OoOs,
potentially increasing system throughput. Yet, their inferior single-
threaded performance forces general-purpose system designers to
favor and maximize the number of OoO cores on Het-CMPs, while
use of InO cores is limited to non-critical, background execution.

This work attempts to improve the adoption and utilization of
InO cores in a Het-CMP by reducing this performance disparity.
With Mirage Cores we envision a single-ISA Het-CMP with many
small, InO cores and a few OoO cores, where the InO performance

https://doi.org/10.1145/3123939.3123969
https://doi.org/10.1145/3123939.3123969

MICRO-50, October 14-18, 2017, Cambridge, MA, USA S. Padmanabha et al.

is increased substantially by using scheduling information from the
OoO execution. Within the same power and area budget, Mirage
Cores1 proposes to replace some OoO cores with multiple, nearly-
as-fast InO cores, thus increasing overall system-throughput and
energy-savings while maintaining single-thread performance.

The performance advantage of an OoO comes from its complex
instruction reordering backend. Using large instruction windows,
the OoO can look past stalling instructions and extricate instruction
parallelism by issuing subsequent independent instructions. This is
an energy-intensive process requiring complex issue logic. How-
ever, as shown by previous research, [30, 34, 35], since a majority
of an application is spent executing loops with predictable control
and data flow, in the steady state, the OoO tends to schedule recur-
ring instructions in the same program context in similar patterns.
Moreover, if given a best-case OoO schedule for a set of instruc-
tions, with perfect control-flow knowledge, we found that an InO
core with the same superscalar width and functional units as an
OoO can attain up to 90% of its performance. This reveals a unique
opportunity to utilize an available OoO for the purpose of creating
highly optimized, dynamic schedules for applications executing on
neighbouring InO cores in a Het-CMP, instead of merely acceler-
ating critical sections as proposed previously [19, 45]. Capturing
these schedules and running future iterations on InO cores, can
provide the energy-savings of a leaner core while retaining all the
performance advantage of an OoO core.

The process of remembering useful issue schedules on the OoO
will henceforth be referred to as schedule memoization [34]. In
many cases, running a short representative sample of millions of
instructions on the OoO was enough to memoize execution phases
of billions of instructions. Mirage Cores proposes a design wherein
the OoO core functions as a schedule producer for its cluster of InO
cores, when possible. This paper addresses challenges in its design
and implementation, including the arbitration of the OoO’s time,
the process of recording, transferring and replaying of schedules,
and the architecture of the CMP.

While memoizing an application, the OoO finds repetitive sched-
ules in its execution and records them in a Schedule Cache (SC), to
be later consumed by an InO core. Since the producer OoO core is a
scarce and costly resource, the benefits ofMirage Cores are dictated
by how efficiently and intelligently it is employed. Its runtime must
recognize memoizability within and across a diverse set of applica-
tions and determine the best usage of the OoO’s time. We develop
a low-overhead runtime arbitrator that monitors consumer applica-
tions’ executions and determines the best candidate for schedule
optimization based on current performance, relative performance
achievable on the OoO and Schedule Cache miss rates. The goal
of the arbitrator can vary based on the requirement of the system.
We build and analyze arbitrators optimized for both overall system
throughput and equal resource allocation.

The InO cores are provisioned with a recently proposed OinO
mode, which augments the core with the ability to interpret and
correctly execute schedules from OoO cores [34]. They need fast
access to these recorded schedules in order to achieve high per-
formance. Each core has private L1 caches and a small Schedule
Cache (SC), which are coherently connected to a shared L2 through

1A mirage of a cluster of fast cores with underlying InO hardware

the on-chip interconnect. The cost of migration of the application
from the schedule producer to consumer includes transferring the
contents of the SC and L1 caches, along with other state associated
with the pipeline. These overheads limit the frequency of switch-
ing between cores to coarse periods of roughly a million cycles.
The number of consumer cores that can be serviced by the pro-
ducer core without compromising overall performance depends on
the architecture of the cores themselves, migration overheads, and
characteristics of the applications. To study these trade-offs, we eval-
uate several configurations for Mirage Cores on multi-application
workload sets from SPEC 2006. Such a diverse set of application
workloads stressesMirage Cores’s arbitration schemes and architec-
ture to reveal interesting observations regarding how heterogeneity
among modern applications can be exploited. Although we focus
on single-threaded benchmarks to evaluate our architecture in this
paper, the concepts remain applicable to a multi-threaded environ-
ment. Section 6 qualitatively discusses the utility of Mirage Cores
on multithreaded and server workloads.

This paper makes the following contributions:

• With the Mirage Cores architecture, we propose to replace
many expensive OoO cores with one schedule producing
OoO and many cheaper InO schedule consumers. A CMP
with 8 InOs and 1OoO allows us to trade off 15% performance
for a 55% reduced energy consumption at 74% of the area as
compared to a homogeneous CMP with 8 OoO cores.

• We propose a low-cost runtime arbitration mechanism that
determines the best candidate for memoization using com-
plexity effective metrics like Schedule Cache Misses Per Kilo
Instruction (MPKI) and Instructions Per Cycle (IPC). We
also compare against traditional homogeneous and heteroge-
neous CMPs with similar resources and show 30% improve-
ment in overall performance while utilizing the OoO for 40%
less time.

• We quantify the benefits of recording repeating issue sched-
ules on the OoO core at coarse granularities of millions of
instructions and replaying them on InO cores to achieve
higher performance. We analyze configurations with vari-
ous producer to consumer ratios and show that 1 producer
core can create schedules for up to 12 consumer cores.

2 MOTIVATION
In this section we motivate how the InO cores in a Mirage Cores
architecture can achieve near OoO performance at a lesser energy
penalty, by leveraging memoized out-of-order issue schedules.

2.1 Core characteristics
Out-of-order cores are the result of decades of research to push
the limits of single-core performance. Hardware structures like
the Reorder Buffer, Reservation Stations, Load/Store Queues, and
complex issue logic, allow them to overlook false dependencies
and speculatively issue independent instructions out of program
order while guaranteeing program correctness. This allows them
to increase both Instruction Level Parallelism (ILP) and Memory
Level Parallelism (MLP) and create dynamic schedules that are
more optimized compared to those created by the best case static

Mirage Cores: The Illusion of Many Out-of-order Cores Using In-order Hardware MICRO-50, October 14-18, 2017, Cambridge, MA, USA

Figure 1: Performance, area and energy comparison between
OoO and InO cores. Benchmarks are categorized into Low
and High Performance Difference (LPD, HPD), based on
their relative performances on InO and OoO cores.

compilers. Unfortunately, high performance comes at the cost of
increased power consumption.

In-order cores on the other hand, are made of smaller, simpler
logic that can only exploit the ILP statically and conservatively
exposed by the compiler, and hence lose out on 40% of the OoO’s
performance. Figure 1 quantifies the behavior of an InO core relative
to an OoO core in terms of performance, power and energy, for the
SPEC2006 benchmark suite. The OoO core is modeled as a 3-wide
OoO core, while the InO core has an equal number of functional
units and superscalar width, but is forced to issue instructions
in program order. More details on the simulation infrastructure,
benchmarks and energy models are given in Section 4. As seen
in Figure 1, the InO consumes 1/5th the power of the OoO, thus
operating ~3x more energy efficiently at less than 1/2 the area cost.
Thus, a fixed area and power density budget can be met with a
higher number of InOs than OoO cores.

To aid in analyses, we have divided the benchmark suite into two
categories Low andHigh Performance Difference (LPD, HPD), based
on their relative performances on InO and OoO cores (Section 4).
The HPD category represents benchmarks that see higher relative
performance on the OoO than the InO core, and hence significantly
benefit from the OoO’s ability to reorder execution. Benchmarks
like hmmer , with a high dynamic ILP and mcf, which benefits from
parallel memory operations are examples in this category. The LPD
category consists of benchmarks that could not take full advantage
of the OoO core due to serialized or unpredictable code, like дcc and
дobmk . Figure 1 also illustrates this classification. TheHPD category
performs faster on an OoO core, but also sees a greater power
consumption because of higher utilization of the aforementioned
core structures.

2.2 Benefits of Memoization
The previous section quantified the benefits of executing instruc-
tions out of order. When the instruction control and data flow is
regular, as is the case in loops, the OoO core creates the same dy-
namic issue schedule for a given set of instructions (a trace) in
the same context. When the trace’s execution sees high variance
and uncertainty, the OoO creates new schedules for the trace in
that context to extract the most ILP. In fact, previous research[30]
shows that only 19% of the OoO’s performance advantage is due to
its ability to react to unexpected long latency events, by creating

Figure 2: Fraction of the total execution that can be memo-
ized, along with its effect on InO performance across bench-
mark categories.

different issue schedules for the same trace. Since the majority of an
application’s execution is spent in loops, a substantial code fraction
can be usefully memoized. Previous work [34] shows that 90% of
all traces in a program’s execution are scheduled similarly for 90%
of their runtime. This exposes the wasteful nature of work done by
the OoO. Lower energy consumption has been achieved on inno-
vative architectures that enable storing such repetitive schedules
and replaying them for future instances of the trace on the same or
optimized cores [31, 34, 46].

Figure 2 also quantifies the fraction of the execution that can be
memoized, for each category. These experiments were conducted
under conditions with perfect control flow and an infinite Schedule
Cache (SC), and thus represent the ideal scenario. The HPD category
has a higher fraction of memoizable instructions. Most benchmarks
in this category can efficiently exploit the OoO hardware because
of their regular code structure, which translate to highly repeat-
able schedules. Exceptions include mcf, which exploits the OoO’s
ability to dynamically recreate schedules around unpredictable and
irregular long latency instructions to extract MLP. Once memoized,
schedules are handed over to the InO core, which is augmented with
an ‘OinO’ mode to enable memoized schedule execution (details
in Section 3) [34]. The performance boost achieved when such a
mode is given the best-case memoized schedules is quantified in
Figure 2. As expected, the LPD category gets a lower performance
boost than the HPD category, because the benchmarks are both less
memoizable and by definition gain minimal relative performance.

2.3 Concept of Mirage Cores
Figure 3a illustrates how Mirage Cores’s architecture can provide
high throughput and single-thread performancewith energy-efficiency.
A CMP with four OoO cores (Figure 3a(i)) has the same area as that
with ten traditional InO cores (Figure 3a(ii)). Although the InO CMP
offers more system throughput and energy savings, it comes at the
cost of unacceptable single-threaded performance. For the same
area costs, three OoO processors can be replaced by six InO cores
capable of achieving near OoO performance by executing mem-
oized schedules (InOmem cores in Figure 3a(iii)). This is the ncy
suffers slightly, Mirage Cores offers higher system throughput, and
also lowers power density and overall energy consumption.

An application is memoized by running on the producer OoO
core for a fixed interval of time or the memoize phase, after which
it transfers back to a consumer InOmem . The interval length for

MICRO-50, October 14-18, 2017, Cambridge, MA, USA S. Padmanabha et al.

(a) Substitute bulky OoO cores with leaner InO cores capable of executing memoized OoO sched-
ules.

(b) Memoizability reduces with increasing in-
terval lengths, whilemigration overheads are
unacceptable at smaller interval lengths.

Figure 3: Concept ofMirage Cores

Mirage Cores was empirically found as follows. Switching between
cores incurs overheads of migrating not only the workload but also
the penalty of cold L1 cache access. To measure performance lost
due to migration, we execute two applications on three identical
cores, with one application switching between two of them every
n cycles, where n varies between 1000 to 10 Million cycles. As
shown in Figure 3b, beginning with > 10% performance losses for
a 1000 cycle interval, the migration penalty steadily reduces and
is negligible (1%) beyond 1 Million cycles. To minimize migration
costs, applications may therefore be allowed to migrate only at
coarse intervals greater than millions of instructions.

Since the OoO is a scarce resource, it is imperative to run the
application on the producer core just long enough, so as to satis-
factorily capture all useful memoizable traces to be consumed in
its subsequent execution. To observe the effect of phase length on
memoizability, we run a similar oracle experiment as in Section
2.2 and measure the fraction of instructions usefully memoized,
while changing how often the OoO could refresh the contents of an
infinite SC. As shown in Figure 3b, for smaller intervals, a larger
fraction of the execution was memoized, because an OoO that is
allowed the opportunity to refresh its SC every 1000 cycles is more
likely to capture relevant and updated versions of schedules in
the cache. Traces might have schedules that change rapidly over
time. As the interval length increases, the producer is more likely
to encounter more than one schedule for a trace, and hence be
unable to store one version to be used by the consumer. In order
to have the best trade-off of low switching overheads with suffi-
cient memoization, we choose 1 Million cycles as our minimum
memoize phase granularity. Applications have the opportunity to
switch to the producer core for updating their SC at the boundaries
of this phase. The arbitration mechanism of when the application
is actually allowed to switch is described in Section 3.

3 MIRAGE CORES ARCHITECTURE
In this section we describe the architectural details of Mirage Cores
along with the arbitrator policies and goals.

3.1 Architecture Overview
Practical constraints force CMP designers to pick one of two designs:
a system made of many low-area and low-power InO cores that
delivers high throughput and parallelism, or a system that consists
of a few high-power, fasterOoO cores to guarantee fast single thread

performance. With Mirage Cores, we aim to find middle-ground by
raising the performance of many InO cores with the support of a
few OoO cores. Figure 4 illustrates a high level overview of Mirage
Cores. Its description is as follows.

• This particular configuration consists of one OoO core part-
nered with a cluster of 4 InO cores. The OoO core not only
provides high performance alternatives for the application
to run, but acts as the main memoized schedule producer for
its cluster of InO cores.

• The arbitrator is responsible for picking the best candidate
to be transferred to the OoO core, if idle, and hence controls
the extent of energy savings achieved. Factors like relative
performance speedups and the potential for memoization
contribute to this decision. We build and analyze arbitrators
that can optimize for maximum system throughput or fair
resource allocation, as described in Section 3.2.

• Both the OoO and InO cores’ architecture need modifications
that enable smooth recognition, storage and re-execution of
memoized schedules. Section 3.3 describes these in detail.

• Each core has its own L1 Instruction and Data caches, and
Translation Lookaside Buffers (TLBs). They all share access
to a common L2 cache over a coherent bus. Migrating an
application between the OoO and InO causes transfer of
state between the cores over this bus. More details on this
communication is given in Section 3.3.3.

3.2 Designing the Arbitrator
The mechanism that controls the scheduling decisions is perhaps
the most important component of a Het-CMP, since it dictates
whether the maximum efficiency is achieved. The scheduler or ar-
bitrator is cognizant of the state of all the applications running on
Mirage Cores and determines the most efficient usage of the lone
OoO, subject to the goals set by the system designer. As shown in
Figure 4, we design the arbitrator as a hardware extension, inte-
grated in the OoO core and capable of polling performance counters
from all active applications at predefined intervals. In Section 2.3,
this interval was determined to be 1 Million cycles based on empir-
ical studies.

In order to make the best decision for the oncoming interval, the
arbitrator must estimate the future performance of applications in
terms of some quantifiable metrics. Previous works make schedul-
ing decisions by either relying on sampling all the heterogeneous

Mirage Cores: The Illusion of Many Out-of-order Cores Using In-order Hardware MICRO-50, October 14-18, 2017, Cambridge, MA, USA

Figure 4: Overview ofMirage Cores’s architecture. In this configuration, 1 OoO is shared by 8 InO cores

core options periodically and assuming that past performance is
an indication of future execution [4, 23] or by using static or dy-
namic models to estimate execution characteristics on the other
cores [11, 33, 48]. InMirage Coreswewill use a combination of these
methods, as described further. Scheduling decisions vary based on
the overall goals set by the system designer such as maximizing
energy-efficiency/system-throughput/fairness.

3.2.1 Energy-Efficiency Oriented Arbitration. Mirage Cores can
provide the highest performance by ensuring that the underlying
InO cores receive the most comprehensive set of dynamic sched-
ules in their Schedule Caches (SC). At the same time, since OoO
execution is expensive, the arbitrator aiming for maximum en-
ergy efficiency must activate the OoO with restraint, only when
memoization exists. We found that the best metric to quantify the
usefulness of memoization is the Misses Per Kilo Instruction (MPKI)
observed on the SC(SC-MPKI).

The SC is populated by the OoO and only contains traces that
both benefit from reordering and have repeating control and data
flow. An InO core that executes the majority of its instructions from
the SC (thus observing low SC-MPKI) is most likely experiencing
near OoO performance, and therefore has no need to transition
to the OoO yet. On the contrary, if it misses in the SC and is in-
stead fetching program-order instructions from its L1 Icache (high
SC-MPKI), it is either executing inherently non-memoizable instruc-
tions, or it has entered a new phase of execution and all traces in the
SC are stale. Phase changes are prime opportunities for migration
for schedule production. The arbitrator chooses an application with
the highest ∆SC-MPKI metric above a fixed threshold for memoiza-
tion, defined as follows:

∆SC-MPKI =
SC-MPKIInO − SC-MPKIOoO

SC-MPKIOoO
(1)

where SC-MPKIOoO represents the extent of memoizability of
the application phase and is measured on the OoO during memoiza-
tion. Applications like bzip2 that are highly memoizable, measure
a very low SC-MPKIOoO . When transferred back to InO, they con-
tinue to hit in the SC, leading to a low ∆SC-MPKI. Such applications
mainly see a rise in∆SC-MPKIwhen they experience a phase change
that renders the current SC stale.

Figure 5 illustrates this case using a timeline over 500 million
cycles bzip2’s execution. Every point represents the Instructions
Per Cycle (IPC) seen on the OoO core as well as the ∆SC-MPKI seen
on the InO core for a 1 million cycle interval. The periods with
constant IPC signify a regular loop, and hence the ∆SC-MPKI is
near zero. Phase changes are evident when there is a shift in the
level of IPC. The highlighted region shows that large changes in

∆SC-MPKI are seen in the immediate locus of a phase change, while
the code transitions from one stable loop to another. The arbitrator
migrates bzip2 at this stage to the OoO, which refreshes the InO’s
stale SC with more relevant schedules.

Figure 5: Relationship between ∆SC-MPKI and IPC for bzip2
where every point represents a 1M cycle interval across
500M cycles of its execution.

An arbitrator targeting maximum energy savings should only
activate the OoO when there is scope for memoization. If none is ob-
served, theOoO is powered down for that period to conserve energy.
Applications like astar for example, have inherently no memoizabil-
ity, and hence measure both high SC-MPKIOoO and SC-MPKIInO .
Because we use a ratio of these SC-MPKIs and not their absolute
values to determine the next candidate for memoization, arbitrator
will rightly avoid scheduling astar on OoO.

In some cases like дcc , due to high variability in control and
data flow, schedules tend to repeat over only very short intervals of
less than a million cycles. Although it observes a low SC-MPKIOoO ,
its SC-MPKIInO tends to increase rapidly once it migrates back
to InO and the execution moves to a non-memoized section of
code. To prevent such an application from ping-ponging between
the two cores, we divide ∆SC-MPKI by an additional decay factor
determined by the duration since its last switch to OoO.

3.2.2 System Throughput Oriented Arbitration. Overall system
throughput (STP) is the metric used by schedulers proposed in a
substantial body of previous work [4, 23] to maximize throughput
observed. It is defined as the mean of the speedups achieved by all
applications.

speedupi = (
IPCInO (i)
IPCOoO (i)

) (2)

MICRO-50, October 14-18, 2017, Cambridge, MA, USA S. Padmanabha et al.

IPCInO (i) is the current IPC observed on InO by application i.
IPCOoO (i) is measured on the OoO the last time application i ran
there and is used to approximate its current IPC on OoO. The
maxSTP arbitrator tries to maximize the STP at every interval
boundary by migrating the application that incurs the most slow-
down (lowest speedupi) to the OoO. It also forcibly samples every
application on the OoO at least once every 50 million cycles in order
to avoid stale IPCOoO values. In comparisons to existing Het-CMPs
in Section 5, this arbitrator is employed on a traditional Het-CMP.

3.2.3 Fairness Oriented Arbitration. In some cases, especially
with multiprogram workloads that care about Quality-of-Service
(QoS), fairness of resource allocation ismore important than STP [47].
Guaranteeing fairness, or making sure all threads get equal access
to the OoO, will lead to a more balanced execution. To achieve
this goal, the arbitrator migrates applications to the OoO in round
robin order, such that every application has an equal time share.
With memoization, an application can run almost as fast as on OoO
hardware, and hence can meet the same QoS guarantees on the InO.
The OoO could be powered down in such instances without caus-
ing a user noticeable performance degradation. The fair arbitrator
assumes that the time an application spends executing memoized
schedules on the InO counts towards OoO execution. It calculates
theUtil(i) metric to determine each application’s OoO timeshare.

Util(i) = (
tOoO (i) + tInOmemoize(i) ∗ speedupi

toverall
) (3)

where t is the time in cycles spent on each core for application i.
tInOmemoize(i) is scaled by the speedup from Equation 2 for a fairer
approximation of the time OoO would have taken. In round robin
order, application i under consideration will be migrated to OoO
only if eitherUtil(i) is less than 1/(#applications) or if ∆SC-MPKI
falls below the threshold.

3.2.4 Arbitration in Software. The arbitrator described thus far
is designed as part of the OoO’s hardware, giving it faster access to
a core’s performance counters and a shorter reaction time. A similar
arbitrator built in the software layer will be restricted to coarser
polling intervals of OS time slices (~10ms). Its effectiveness might
be lower since memoizability in the code was shown to reduce
sharply for coarser intervals (Section 2.3). The OS is oblivious to
Mirage Cores’s current design but it can be leveraged to provide the
runtime with higher system-level metrics, enabling more nuanced
scheduling decisions.

3.3 Designing the Core Architectures
Several works [8, 31, 34, 49] proposemethods that useOoO pipelines
to create and record optimized schedules for another, more efficient
pipeline. We will borrow the ideas most recently proposed by the
DynaMOS system [34] to facilitate correct memoization in Mirage
Cores.

In this paper, we refer to the issue sequence recorded by an OoO
core for a trace as a schedule. A trace is a sequence of instructions be-
tween two consecutive backward looping branches. They’re around
50 instructions long on average and capture the most recurring
code paths in loops and functions; deeming them good candidates
for memoization. Both traditional OoO and InO cores have to be

supplemented by structures needed to enable efficient and accurate
memoization.

3.3.1 Designing the OoO core. In order to memoize schedules,
the OoO core must be able to recognize (a) when a trace is repetitive,
and (b) if its instructions are scheduled in the same order. A naive
way to find repeating schedules is to match the cycle-by-cycle
schedule order of instructions in two trace iterations; which is
expensive, both in terms of storage and computation. Instead we
track performance metrics associated with a trace’s schedule, like
execution time, IPC, memory characteristics, branch misses and
number of reordered instructions. We make the approximation that
two trace executions with matching metrics are likely to have been
issued in the same order.

Hardware tables proposed by Padmanabha et. al [34] maintain in-
formation about repeatability of schedules. Traces that are deemed
memoizable are stored in a specialized Schedule Cache (SC) in a
format that is useful to the InO core. Since the SC stores memoized
schedules across millions of instructions, our algorithm is more
conservative compared to prior work and only memoizes schedules
that repeat with high levels of confidence. The overheads include
an 8kB SC and 0.3kB of hardware tables.

3.3.2 Designing the InO core. To correctly execute memoized
schedules on an InO, the OinO mode [34] was introduced. The
modifications include:

Atomic Execution: Since the InO does not track correct pro-
gram order for memoized code, it lacks the ability to detect and
resolve unexpected events like branch misspeculations or memory
aliases. To circumvent this issue, the OinO mode forces memoized
schedules to execute atomically. On misspeculation, the whole trace
is squashed and execution is restarted in original, non-memoized
program order.

PRF: The OoO uses register renaming to eliminate false register
dependencies. By renaming every architectural register (AR) to a
unique physical register (PR), instructionswith the same destination
AR can be reordered on the OoO. To guarantee correct data flow
across registers, the OinO must honor this register renaming. It is
therefore supplemented with an expanded register file that can be
used to store multiple versions of an AR and access them as per
the memoized schedules. We allow every AR to map to at most
4 unique PRs, resulting in a 128 entry PRF. Bookkeeping adds an
additional 28 bytes of storage. A bigger PRF and tables adds 14%
dynamic energy to the InO.

LSQ: Loads and stores are reordered relative to each other in
the memoized schedules generated by OoO. Memory alias errors
could occur; for example, if a load is speculatively moved ahead of
older stores that write to the same memory location. A specialized
LSQ is added for the OinO mode, that tracks the original sequence
of memory operations in a trace in order to detect an alias event.
A fixed-size meta-data block, added to every recorded schedule, is
used to store program-sequence ordering of memory operations.
This allows loads and stores to be inserted into the LSQ in orig-
inal program sequence, thus ensuring that aliases between them
are detected correctly. In the event of no errors, all the stores are
committed in order and the LSQ is flushed for the next trace. Mis-
speculations are handled by flushing the whole LSQ and restarting
the trace. The added 32 entry LSQ contributes 5.5% overhead to the

Mirage Cores: The Illusion of Many Out-of-order Cores Using In-order Hardware MICRO-50, October 14-18, 2017, Cambridge, MA, USA

dynamic energy of OinO, and the meta-data block adds 20B to each
recorded schedule.

Schedule Cache: An 8KB specialized SC stores the schedules
memoized and transferred from the OoO and specialized fetch and
decode stages assist in interpreting them. It is designed similarly to
Trace-caches [40], where the first block is pointed to by its set ID
and a special End of Trace marker denotes its end. Its eviction policy
first evicts existing traces that have been deemed unmemoizable
and then falls back to LRU. A write to the SC is expensive, since
each trace is compacted to prevent fragmentation and hence must
be done conservatively. The SC contributes 10% towards increased
leakage energy, but offers to reduce L1 Icache access energy by
satisfying fetch requests from a relatively smaller cache.

Trace misspeculations are expensive since they incur the penalty
of abort and replay and hence must be avoided. Mirage Cores em-
ploys a trace selection algorithm that is heavily biased against traces
that mis-speculate thus maintaining this penalty to around 0.3% of
execution time on average. Section 5 shows a break down of the
power overheads added by all the components necessary to enable
the OinO mode in comparison to InO and OoO cores.

3.3.3 Migration between cores. An important concern with Het-
CMPs is the cost associated with migrating an application between
cores. On migration, all of the active core’s state, including the
register file, program counter, control bits, store buffer entries, etc.
must be explicitly stored into memory and its pipeline flushed.
On resuming on the other core, there is a delay associated with
rebuilding and warming up the stateful structures like L1 caches
and branch predictor. With memoization, we introduce an added
transfer of the 8KB SC contents to the consumer. As shown in Figure
4, a bus serves as a point of serialization for all communication
outside the core and hence can contribute towards contention and
slowdown. Preliminary studies (Section 2.3) showed that while the
migrating benchmarks suffered slight performance losses, other
benchmarks on the same bus saw negligible effects. This, coupled
with the low migration frequency in our analysis, motivated us
to re-use the shared high-bandwidth coherent bus interconnect
between the L1/L2 caches for migrating contents of the SCs. If
the bandwidth usage of benchmarks is expected to be high, an
alternative is to include an interconnect exclusively for SC contents
transfer, trading off increased area for higher performance. This
interconnect can be simplified because it needs to support only
unidirectional communication, from schedule producing OoO to
consuming InO cores.

4 METHODOLOGY

Category IPC Ratio Benchmarks
High Performance < 60% cactusADM, bwaves, gamess,
Difference (HPD) gromacs, h264ref, hmmer,

leslie3d, libquantum, mcf,
milc, povray, tonto, zeusmp

Low Performance >= 60% GemsFDTD, astar, bzip2, calculix,
Difference (LPD) dealII, gcc, gobmk, namd, omnetpp,

perlbench, sjeng, wrf, xalancbmk
Table 1: Classification of benchmarks by performance

Architectural Feature Parameters
OoO 3 wide superscalar @ 2GHz

12 stage pipeline
128 entry ROB
128 entry integer register file
256 entry floating-point register file
8KB Schedule Cache

InO 3 wide superscalar @ 2GHz
8 stage pipeline
128 entry integer register file
128 entry floating-point register file
8KB Schedule Cache

Memory System 32 KB L1 iCache @ 2 cycles
32 KB L1 dCache @ 2 cycles
2 MB Shared L2 Cache with stride prefetcher @ 15 cycles
8192MB Main Mem @ 120 cycles
32 B L1-L2 bus @ 2Ghz

Table 2: Experimental Core Parameters

4.1 Workloads
We evaluate the Mirage Cores design on multi-application bench-
mark mixes consisting of 27 applications from SPEC 2006 bench-
mark suite[12] compiled for the ARM ISA. The benchmarks were
split into two categories to understand how specific application
characteristics affected Mirage Cores’s benefits. These categories,
represented in Table 1, were picked based on their relative perfor-
mance on OoO vs InO (Section 2.1). The aim behindMirage Cores is
to achieve high InO utilization with minimal performance losses for
not only applications that are inherently slow (LPD category) but
also for the HPD category of applications which would traditionally
suffer great performance losses on InO cores.

The first 5 billion instructions in each benchmark were analyzed
using Simpoints [44], and the highest weighted 1 billion instruction
window per benchmark was used for all our experiments. We create
32 workload mixes, where a mix contains the same number of work-
loads as the number of InO in the configuration being studied. To
analyze applications both within and across categories, we pick 10
mixes each exclusively within a single category, and 22 mixes with
a random mix of both categories. Each workload mix is executed
until every application within it completes a billion instructions.
Since different applications can have different rates of execution,
we restart applications that finish early while waiting for the rest
to finish. Section 6 discusses Mirage Cores’s potential behavior on
multithreaded applications.

4.2 Simulation Methodology
We use the cycle accurate Gem5 simulator [6] to model Mirage
Cores, including the InO, OinO and OoO cores, caches and memory.
The producer OoO core is a deeply pipelined, high performing
out-of-order processor capable of issuing and committing three
instructions per cycle. It boasts of large structures like the ROB and
Reservation Stations that allow it to extract ILP and MLP from a
large instruction window, creating the most efficient and optimized
issue schedule for its hardware. The energy efficient InO is an stall-
on-use in-order core that has the same superscalar width and FUs
as the OoO. This configuration was chosen to allow the simplistic
transfer of issue schedules between the OoO and InO. Each core
within a cluster has private 32KB L1 instruction and data caches,
and are each augmented with a 8KB schedule cache. This size was
picked empirically by testing the effects of varying SC sizes on

MICRO-50, October 14-18, 2017, Cambridge, MA, USA S. Padmanabha et al.

performance and energy savings. The increases in relative STP as
cache size increases is not as linear as the energy overheads, and
was observed to plateau around 8KB. Since Mirage Cores aims at
both area and energy-efficiency, we choose an 8KB cache for our
final design as it provides the best performance permm2. They all
share a 2MB per benchmark L2 cache over a 32B wide coherent bus
interconnect. We use Gem5’s relaxed consistency model (ARMv7a)
and ensure that traces break at barriers and fences boundaries. Since
a trace is atomic, its stores aren’t revealed globally until correct
execution. Table 2 describes the configurations used in detail. Our
design is loosely inspired by clusters like ARM’s Cortex A53 [2]
consisting of 4 InO cores with private L1 caches that share access
to a L2 over a high bandwidth coherent bus.

To model overheads of migrating an application between cores,
wemeasure the costs incurred due to drain and refill of pipeline state
and L1 caches and include that in our experiments. We generously
approximate a 1000 cycle penalty to transfer an 8KB SC over the
32B coherent bus. Section 5 includes a breakdown of these costs.

We use the McPAT modeling framework to estimate area, static
and dynamic energy consumption of the core and L1 caches [27].
We assume instantaneous power-gating of the OoO core when
not in use. The energy overheads imposed on the InO core due to
addition of the OinO mode, including the added leakage energy due
to SCs is detailed in Section 5.

5 RESULTS
The benefits of Mirage Cores come from its runtime’s ability to
navigate the memoizability across diverse applications and exploit
the available architecture.

Figure 6: Adding anOoO core aswell asOinOmode increases
Mirage Cores’s area consumption relative to baseline

5.1 Architecture Configurations
Mirage Cores consists of 1 OoO schedule producer with a cluster of
n InO schedule consumers, henceforth referred to as a n:1 configura-
tion. Unless stated otherwise, the baseline for the following graphs
is a homogeneous CMP (Homo-CMP) with n OoO cores (0:n). In ad-
dition, we also include comparisons to a Homo-InO CMP (n:0). This
bar usually represents the lower limit in terms of performance, area
and energy consumption. We compare Mirage Cores’s architecture
to a corresponding n:1 traditional (no memoization) heterogeneous
CMP (Het-CMP). Figure 6 compares the area of these architectures
while varying n from 4 to 16. The traditional 4:1 Het-CMP, for e.g.,

introduces 1 OoO to the 4:0 Homo-InO CMP, increasing its area
by 55%. The OinO mode adds structures described in Section 3.3.2,
increasing area consumed by the 4:1 Mirage Cores by an additional
23%.

5.2 Throughput Aware Arbitration

Figure 7: A traditional Het-CMP (maxSTP) achieves lesser
speedup with a n:1 configuration than Mirage Cores (SC-
MPKI , SC-MPKI+maxSTP)

The runtime arbitrators dictate the overall performance and
energy consumption of the above architectures. The proposed SC-
MPKI arbitrator (Section 3.2.1) maximizes energy-efficiency by
leveraging the Mirage Cores architecture and engaging the OoO
to generate memoized schedules. As a comparison, the runtime
for a traditional Het-CMP was described in Section 3.2.2 as per
prior work[4, 23]. This scheduler maximizes STP at every interval
boundary of 1 Million cycles, by reserving the OoO for the InO
candidate with the highest expected speedup. Henceforth maxSTP
will refer to the combination of this arbitrator acting on a tradi-
tional Het-CMP. The SC-MPKI+maxSTP arbitrator similarly aims
to maximize throughput on Mirage Cores.

Figure 8: Relative energy consumption reduces as n in-
creases

Performance: Figure 7 shows how these arbitrators affect over-
all STP of a given system. In the 8:1 configuration, for instance, the
maxSTP arbitrator gains 8% speedup over a 8:0 InO Homo-CMP.
The SC-MPKI exploits the OinO mode to increase performance by
39% on the other hand, and provides nearly the same STP as the
SC-MPKI+maxSTP arbitrator . Further sections will provide a deeper
understanding of how the SC-MPKI arbitrator intelligently exploits

Mirage Cores: The Illusion of Many Out-of-order Cores Using In-order Hardware MICRO-50, October 14-18, 2017, Cambridge, MA, USA

(a) Structures added for OinO mode incur higher dynamic power
consumption than InO

(b) Lower OoO utilization conserves higher energy

Figure 9: The energy consumed by various CMPs depends on the constituent architectures as well their utilization

memoizability in and across applications. Overall, it achieves 84%
of a 0:8 OoO Homo-CMP’s performance with 26% less area. The
area conserved can be recycled to include 2 more OoOs, or 3 more
OinOs, or even uncore components like bigger caches, increasing
STP even further.

Energy consumption: The energy consumed by a CMP, shown
in Figure 8, depends on (a) the power characteristics of constituent
cores as well as (b) the amount of time they were utilized for. Figure
9a shows that OinO mode additions like the bigger PRF and LSQs
add a premium on traditional InO dynamic power. However, the
lack of an ROB and an aggressive scheduler as compared to the
OoO, allows it to retain most of the efficiency of an InO. Addition-
ally, fetching trace blocks from a smaller SC allows it to maintain
lower Icache and branch-prediction power. Although the OinO core
increases the dynamic power of an individual InO core by 2.4x, its
shorter runtime ensures a more conservative energy cost (60%).
The OoO core continues to be the highest power burner, at 2.1x the
power of an OinO core, and hence curtailing its utilization can lead
to bigger energy savings. Figure 9b, displays the fraction of overall
cycles that OoO was utilized on average for various configurations.
The SC-MPKI arbitrator’s awareness of memoizability across appli-
cations affords it the highest conservatism in terms of OoO usage.
For instance, it powers the OoO down for 40% of execution for the
8:1 configuration allowing energy savings of 54% relative to base-
line. In contrast, both SC-MPKI+maxSTP and maxSTP schedulers
aim to maximize throughput and hence always utilize the OoO to
speed up the slowest application. Overall, we observe that the SC-
MPKI+maxSTP provides very little benefits over SC-MPKI , since
the latter exploits most of the high-return opportunities to migrate.
Additionally, speeding up 1/n applications in a mix using maxSTP
on a traditional Het-CMP is not nearly as beneficial as speeding up
all n applications using memoization and simple heuristic based
scheduling. As n increases, so does contention for the sole OoO,
leading to tapering STP and energy wins. The SC-MPKI utilizes
OoO at 100% after the 12:1 configuration. Without considering im-
plementation complexities, we can conclude that the upper limit for
designing a memoization-based cluster in Mirage Cores is 12:1. The
next two sections will focus on understanding how the different
arbitrators work in context to real applications and their effects on
our workload mixes.

5.2.1 Case study. We study a workload mix of astar , bzip2 and
hmmer for a 3:1 configuration. Figure 10 portrays benchmark ex-
ecution timelines over 500M cycles with each point representing
the speedup observed during a 1M cycle interval relative to OoO
execution. Points are marked in blue if they were scheduled on the
OoO (and hence by definition have speedup of 1) and red otherwise.
Figures 10a and 10b illustrate decisions made by the maxSTP and
SC-MPKI schedulers respectively.

astar , a LPD category benchmark, has the lowest slowdown on
InO and hence is not a prime candidate for maximizing STP as
described in Section 3.2.2. Due to high variability in its control
flow, it is not a good candidate for memoization either. Both sched-
ulers in this study therefore, avoid migrating astar to OoO, except
for periodic sampling, as illustrated by the majority of red points
in its timeline. The other two benchmarks are more regular and
show high memoization potential. hmmer experiences very high
slowdowns (> 60%) on the InO and hence is chosen to migrate to
OoO by the maxSTP scheduler for most of its execution, except
around the 130M cycle mark (Figure 10a), where it competes with
bzip2. For the rest of execution, bzip2 is starved of OoO time. In
contrast, the SC-MPKI arbitrator executes an application on OoO
only when memoized execution and/or performance drops. Once
memoized, hmmer can consistently achieve an average of > 90% of
OoO’s performance while using the OoO a lot less, as evidenced
by the majority of red points in its timeline in Figure 10b. This
allows SC-MPKI to either schedule bzip2 on the idle OoO more
often to achieve a much higher average IPC or power it down to
conserve energy. Thus, although SC-MPKI lowers the performance
of hmmer by 7%, it increases STP by raising bzip2’s performance
and conserves energy by powering down OoO.

5.2.2 Analyses of Benchmark Categories. Diving deeper into
the 8:1 configuration we evaluate Mirage Cores for the predefined
benchmark categories. As was shown in Section 2.2, while the HPD
category has inherently lower performance on InOs, its regular
execution structure renders it more memoizable. Hence SC-MPKI
achieves a 54% speedup compared to a Homo-InO CMP (Figure
11a) by engaging the OoO at 80% as a schedule producer for this
category (Figure 11b). LPD benchmarks on the other hand, gain
limited speedups on the OoO because of factors like high branch

MICRO-50, October 14-18, 2017, Cambridge, MA, USA S. Padmanabha et al.

(a) MaxSTP Decisions: astar + hmmer + bzip2

(b) SC-MPKI Decisions: astar + hmmer + bzip2

Figure 10: Case studymarking the differences between the SC-MPKI andmaxSTP arbitrators, for a 3 InO to 1OoO core configu-
ration. Every point in the timeline denotes the IPC observed for each 1M cycle interval over a 500M cycle period. If a particular
interval executed on the OoO it is colored blue, while red represents intervals executed on InO.

(a) Mirage Cores benefits HPD benchmarks
more

(b) HPD benchmarks find more opportunity
to utilize the OoO

(c) LPD benchmarks consume less energy be-
cause of lower OoO utilization

Figure 11: Delving into the benefits of Het-CMP arbitrators and architectures based on application characteristics for a config-
uration of 8 InO with 1 OoO cores.Mirage Cores works best for a heterogeneous mix (Random) of HPD and LPD benchmarks.

misprediction rates (дobmk , astar) and lack of MLP (дcc) [7]. SC-
MPKI barely sees opportunity to migrate them to the OoO, reflected
in the 27% OoO utilization shown in Figure 11b. The speedup it
gains from migration is only 12%, although its low OoO utiliza-
tion saves it 10% more energy than the HPD category (Figure 11c).
The maxSTP and SC-MPKI+maxSTP arbitrators on the other hand,
maximize OoO utilization for LPD benchmarks despite minimal
scope of speedup. The random category consists of benchmarks
from either family, and hence represents the average case. Bench-
marks that incurred OoO starvation in the HPD category due to
high contention were allowed more access when paired with non-
memoizable benchmarks in the random category, leading to higher
performance. We can conclude that Mirage Cores works most effi-
ciently with a heterogeneous mix of workloads, with varying OoO
requirements.

5.3 Arbitrators for Equal Resource Sharing
The arbitrators in the previous section only allocated an application
to OoO if it showed potential for either memoization or speedup.
This could lead to unfair allocation of the lone OoO resource to
individual applications. Figure 12 illustrates time spent by the OoO
executing each constituent benchmark in a 8:1 configuration. The
maxSTP arbitrator unfairly favors one application while starving

Figure 12: Utilization of the OoO per benchmark in a work-
load mix for the 8:1 configuration

others, which might be unacceptable in a given system. The SC-
MPKI reduces overall OoO utilization, but is still prone to favoring
some benchmarks over others. Under equal resource distribution
in an 8:1 configuration, every benchmark should be allowed at
least 1/8 time on OoO, or in other words, none should be allowed
more than a 12.5% share. A fair arbitrator on a traditional Het-CMP
will assign individual benchmarks in a mix to OoO in round-robin
order, as shown in Figure 12. However, as shown in Figure 13,

Mirage Cores: The Illusion of Many Out-of-order Cores Using In-order Hardware MICRO-50, October 14-18, 2017, Cambridge, MA, USA

Figure 13: Overall evaluation for fair schedulers compared
to Homo-OoO and InO CMPs

such an arbitrator incurs the energy penalty of utilizing the OoO
at a 100% without the performance benefits. This is because some
benchmarks inherently don’t achieve speedups on anOoO as shown
in previous sections. Additionally, migrating between cores at every
interval boundary incurs very high performance and energy costs.
The SC-MPKI -fair arbitrator minimizes this unnecessary migration,
while maintaining a notion of fairness. As described in Section
3.2.3, it avoids migrating the next application in line to the OoO
if it already experiences sufficient speedups from memoization. It
thus achieves both performance and energy benefits (Figure 13)
while ensuring that no benchmark occupies more than 1/8th of
OoO time (Figure 12). Benchmarks experience <12.5% utilization of
OoO with SC-MPKI -fair not because of starvation but because the
arbitrator found them highly memoizable, and at their turn decided
to conserve energy by turning off the OoO instead. Thus Mirage
Cores can ensure energy-savings even while maintaining fairness
between applications unlike a traditional Het-CMP.

Figure 14: Area-neutral comparison of an 8:1 Mirage Cores
configuration with a 5:3 traditional H-CMP

5.4 An Area Neutral Study
Hitherto, the Mirage Cores architecture was compared to an equiv-
alent n:1 CMP of traditional cores. Figure 14 shows how the 8:1
configuration compares to an approximately area-neutral one with
3 OoO and 5 InO cores. Incidentally, this was picked by Kumar
et.al [24] as the best Het-CMP configuration with traditional cores.
We assume instantaneous transfer cost for this experiment. As ob-
served, having 2 more OoO cores not only results in a 20% higher

energy consumption for the 5:3 CMP, it is also slower by 23% as
compared to using 1 OoO core as a schedule producer.

Figure 15: Transfer costs associated withMirage Cores

5.5 Cost of Core Migration
Het-CMPs that allow an application to switch between cores incur
the cost of draining and refilling its pipeline and cache state. In
Section 2 we observed this overhead was dominated by L1 cache
refill at 4 µseconds on average. Mirage Cores faces the additional
penalty of migrating the contents of an 8KB SC, which on a 2GBPS,
32B bus is approximated at ~1000 cycles. Figure 15 breaks transfer
cost per benchmark category into these components. It also shows
the frequency of migration initiated by SC-MPKI . The HPD category
of benchmarks are expectedly migrated to OoO more frequently for
the sake of schedule production, while the LPD category do tend to
remain on the InO. Overall we observe that the transfer overheads
in Mirage Cores’s execution tend to be insignificant at 0.15%.

6 DISCUSSION
In this paper Mirage Cores was evaluated for SPEC 2006 as it rep-
resents a wide range of single-threaded applications that run on
general purpose cores and stress a system’s memory, processor and
compiler. We consider multi-application workloads for our evalua-
tion to showcase how Mirage Cores reacts to heterogeneity across
application behaviors and more importantly, exploits it to gain
higher energy savings, as proven in Section 5.2.2. Mirage Cores can
potentially enable energy-efficient execution for multi-threaded
programs as well. If threads perform homogeneous work, the OoO
core can be used to memoize a single thread’s repeatable phases
and distribute it among all InOs in its cluster, thus speeding up
all threads with one memoization attempt. As shown in previous
work, the OoO can also be used to speed up bottlenecks, long run-
ning threads and critical sections [3, 25] as well as help provide
QoS guarantees for long tail latencies [37]. The arbitrator could be
augmented with thread criticality and runtime predictors [5, 10]
to make better scheduling decisions. Although server workloads
favor Mirage Cores’ architecture style with less aggressive OoOs
and more throughput [14], they tend to have much bigger instruc-
tion footprints, with more irregular fetch patterns. Currently in our
design, memoization is dynamically detected based on repetitive
fetch patterns and the architectural configurations are tuned for
short, predictable phases. More evaluation would be required to
judge these workloads’ proclivity for memoization, and the most

MICRO-50, October 14-18, 2017, Cambridge, MA, USA S. Padmanabha et al.

suited core and cache configurations to serve them. A quantitative
analysis on multithreaded workloads is in the scope of future work.

7 RELATEDWORKS
This section surveys prior work in three broad areas relevant to
Mirage Cores’s design.

7.1 Heterogeneous Cores Architectures
Heterogeneous processors designs range from migrating thread
context across different architectures with same and different ISAs,
to dynamically scaling voltage and frequency, and dynamically
adapting hardware resources as needed.

Kumar et al. [23] wrote one of the seminal papers that pro-
posed an energy-proportional multicore system with OoO and
InO cores. Industry has successfully commercialized this proposal,
with Qualcomm’s Snapdragon [38] and Nvidia’s Tegra [32] being
a few notable examples. These systems boast of multiple ARM
big.LITTLEs [15], a OoO-InO heterogeneous multicore system.
Other industry products, like IBM’s Cell [20] and Intel’s vPro [17]
and AMD’s Accelerated Processing Unit [1] allow special code to be
run on customized elements. To circumvent high switching costs
associated with migrating between cores, works have proposed
novel Het-CMPs that share stateful structures [13, 29] or reduce dis-
tance between them using 3d stacking [41, 50]. Another approach
to heterogeneity is to reduce the voltage and frequency of the core
(DVFS) to improve the core’s energy efficiency at the expense of
performance [18, 39, 51].

7.2 Scheduling Multicore Systems
Substantial research exists for scheduling on single ISA heteroge-
neous cores, both to achieve high throughput and fairness. Static
approaches use offline profiling to leverage the relationship be-
tween inherent characteristics of a program and its resource usage,
in order to determine the appropriate core to run on [11, 43]. Age-
based scheduling[26] predicts age of programs and schedules the
oldest thread on the big core. Becchi and Crowley [4] show that
an IPC driven sampling based scheduling scheme outperforms a
static based approach. Bias scheduling [22] is another scheme that
determines a program’s bias towards a specific core configuration
based on dynamic internal and external stalls due to architecture
variations and resource availabilities. The BIS scheduler exploits a
similar clustered architecture like ours to reduce stalling on lock
acquisition and bottleneck threads by running them on the OoO
for multithreaded workloads. Rather than relying on sampling the
performance on both cores, Van Craeynest et al. [48] propose predic-
tionmodels which use IPC, MLP, and ILP to predict the performance
on the inactive core. A regression model based approach [52] is
used to schedule webpages with varying, diverse characteristics
to underlying heterogeneous architecture. Fairness aware sched-
uling has been proposed for both heterogeneous core and cache
architectures [28, 47]. All these above methods of scheduling on
Het-CMPs are orthogonal to our work and can be combined with
our memoization heuristic to provide more efficient application
scheduling.

7.3 Optimizing Instruction Schedules
Storing instructions in the order they execute helps aid the effi-
ciency of fetch [40, 42]. Compilers use profile-based static sched-
uling mechanisms [16] or run-time binary optimization [36] to
create optimized instruction schedules. Even the best compilers
fail to achieve the high performance of schedules created by the
hardware, however, due to lack of dynamic runtime information.
Nvidia’s Project Denver [9] is a similar endeavor to ours, where a
dynamic code optimizer (DCO) in software extracts ILP for recur-
ring code and stores it in an optimization cache to be used by an
InO. Since this is a software process, the program is stalled when it
is being optimized. By using an on-chip core to memoize schedules,
forward progress can continue to be made.

Several other works propose caching OoO schedules, and replay-
ing them either on the same core with structures turned off [46, 49]
or on different pipelines [8, 13, 31, 34]. DynaMOS proposes the
OinO mode of the InO core that we use for interpreting memoized
schedules. While architectures like HBA[13] and DynaMOS [34]
use one core’s frontend to feed into OoO and InO backends, we use 2
separate, self-sufficient cores. This shared frontend gives their archi-
tecture the ability to allow frequent migration every few hundred
instructions allowing the OoO to constantly update the schedule
cache with new schedules. Mirage Cores observes memoizability
over coarser intervals, while having to arbitrate between multiple
candidates for the OoO resource. The concept of sharing a front-end
to optimize instruction fetch for many cores at the backend is also
adopted in the Confluence architecture [21] for server-workloads.

8 CONCLUSION
Although there are more transistors on chip today, practical power
and thermal constraints limit the deployment of homogeneous mul-
ticore systems with many big OoO cores. More small InO cores can
fit in a given area, but their low performance limits their widespread
usage. With Mirage Cores, we build a heterogeneous multicore sys-
tem that combines the performance advantages of an OoO with
the area and energy benefits of an InO. Mirage Cores pairs a few
OoOs with a cluster of many InOs. By allowing the OoO to memoize
schedules for the InO cores in its cluster, Mirage Cores raises the
performance of the system, giving the impression of a core with all
OoOs. Overall, with an 8 InO per OoO configuration, Mirage Cores
can achieve on average 84% of the performance of a Homo-CMP
with 8 OoO cores, while conserving 55% of energy and 25% of area
costs.

9 ACKNOWLEDGEMENTS
This work is supported in part by ARM Ltd and by the National
Science Foundation under grants SHF-1217917, XPS-1628991, SHF-
1527301 and CAREER-1652294. The authors would like to thank the
fellow members of the CCCP research group, and the anonymous
reviewers for their time, suggestions, and valuable feedback.

REFERENCES
[1] AMD. 2014. AMD Compute Cores. (2014).

https://www.amd.com/Documents/Compute_Cores_Whitepaper.pdf.
[2] ARM. 2015. Cortex-A53 Processor. (2015).

http://www.arm.com/products/processors/cortex-a/cortex-a53-processor.php.

Mirage Cores: The Illusion of Many Out-of-order Cores Using In-order Hardware MICRO-50, October 14-18, 2017, Cambridge, MA, USA

[3] Saisanthosh Balakrishnan, Ravi Rajwar, Mike Upton, and Konrad Lai. 2005. The
impact of performance asymmetry in emerging multicore architectures. In ACM
SIGARCH Computer Architecture News, Vol. 33. IEEE Computer Society, 506–517.

[4] Michela Becchi and Patrick Crowley. 2006. Dynamic thread assignment on
heterogeneous multiprocessor architectures. In Proceedings of the 3rd conference
on Computing frontiers. ACM, 29–40.

[5] Abhishek Bhattacharjee and Margaret Martonosi. 2009. Thread criticality pre-
dictors for dynamic performance, power, and resource management in chip
multiprocessors. In ACM SIGARCH Computer Architecture News, Vol. 37. ACM,
290–301.

[6] N. Binkert and others. 2011. The gem5 simulator. ACM SIGARCH Computer
Architecture News 39, 2 (Aug. 2011), 1–7.

[7] Sarah Bird, Aashish Phansalkar, Lizy K John, Alex Mericas, and Rajeev Indukuru.
2007. Performance characterization of SPEC CPU benchmarks on intel’s core
microarchitecture based processor. In SPEC Benchmark Workshop.

[8] Bryan Black and John Paul Shen. 2000. Turboscalar: a high frequency high IPC
microarchitecture. ISCA27 (2000), 36–44.

[9] Darrell Boggs, Gary Brown, Nathan Tuck, and KS Venkatraman. 2015. Denver:
Nvidia’s first 64-bit ARM processor. IEEE Micro 35, 2 (2015), 46–55.

[10] Qiong Cai, José González, Ryan Rakvic, Grigorios Magklis, Pedro Chaparro,
and Antonio González. 2008. Meeting points: using thread criticality to adapt
multicore hardware to parallel regions. In Proceedings of the 17th international
conference on Parallel architectures and compilation techniques. ACM, 240–249.

[11] Jian Chen and Lizy K John. 2009. Efficient program scheduling for heterogeneous
multi-core processors. In Proceedings of the 46th Annual Design Automation
Conference. ACM, 927–930.

[12] Standard Performance Evaluation Corporation. 2006. SPEC 2006. (2006).
http://www.spec.com/cpu2006/.

[13] Chris Fallin, Chris Wilkerson, and Onur Mutlu. 2014. The Heterogeneous Block
Architecture. SAFARI Technical Report No. 2014-001 (March 2014).

[14] Michael Ferdman, Almutaz Adileh, Onur Kocberber, Stavros Volos, Mohammad
Alisafaee, Djordje Jevdjic, Cansu Kaynak, Adrian Daniel Popescu, Anastasia
Ailamaki, and Babak Falsafi. 2012. Clearing the clouds: a study of emerging
scale-out workloads on modern hardware. In ACM SIGPLAN Notices, Vol. 47.
ACM, 37–48.

[15] Peter Greenhalgh. 2011. Big.LITTLE Processing with ARM Cortex-A15 & Cortex-
A7. (Sept. 2011). http://www.arm.com/files/downloads/big_LITTLE_Final.pdf.

[16] Wen-Mei W Hwu, Scott A Mahlke, William Y Chen, Pohua P Chang, Nancy J
Warter, Roger A Bringmann, Roland G Ouellette, Richard E Hank, Tokuzo Kiy-
ohara, Grant E Haab, and others. 1993. The superblock: an effective technique for
VLIW and superscalar compilation. the Journal of Supercomputing 7, 1-2 (1993),
229–248.

[17] Intel. 2008. 2nd generation Intel Core vPro processor family. (2008).
http://www.intel.com/content/dam/doc/white-paper/performance-2nd-
generation-core-vpro-family-paper.pdf.

[18] C. Isci, A. Buyuktosunoglu, C. Cher, P. Bose, and M. Martonosi. 2006. An Anal-
ysis of Efficient Multi-Core Global Power Management Policies: Maximizing
Performance for a Given Power Budget. In Proc. of the 39th Annual International
Symposium on Microarchitecture. 347–358.

[19] José A Joao, M Aater Suleman, Onur Mutlu, and Yale N Patt. 2012. Bottleneck
identification and scheduling in multithreaded applications. ACM SIGPLAN
Notices 47, 4 (2012), 223–234.

[20] James A Kahle, Michael N Day, H Peter Hofstee, Charles R Johns, Theodore R
Maeurer, and David Shippy. 2005. Introduction to the Cell multiprocessor. IBM
journal of Research and Development 49, 4.5 (2005), 589–604.

[21] Cansu Kaynak, Boris Grot, and Babak Falsafi. 2015. Confluence: unified in-
struction supply for scale-out servers. In Proceedings of the 48th International
Symposium on Microarchitecture. ACM, 166–177.

[22] David Koufaty, Dheeraj Reddy, and Scott Hahn. 2010. Bias scheduling in hetero-
geneous multi-core architectures. In Proceedings of the 5th European conference
on Computer systems. ACM, 125–138.

[23] Rakesh Kumar, Keith I Farkas, Norman P Jouppi, Parthasarathy Ranganathan, and
Dean M Tullsen. 2003. Single-ISA heterogeneous multi-core architectures: The
potential for processor power reduction. In Microarchitecture, 2003. MICRO-36.
Proceedings. 36th Annual IEEE/ACM International Symposium on. 81–92.

[24] Rakesh Kumar, Dean M. Tullsen, Parthasarathy Ranganathan, Norman P. Jouppi,
and Keith I. Farkas. 2004. Single-ISA Heterogeneous Multi-Core Architectures
for Multithreaded Workload Performance. In Proceedings of the 31st annual inter-
national symposium on Computer architecture.

[25] Nagesh Lakshminarayana, Sushma Rao, and Hyesoon Kim. 2008. Asymmetry
aware scheduling algorithms for asymmetric multiprocessors. In In Proc. of the
Fourth Annual Workshop on the Interaction between Operating Systems and Com-
puter Architecture. Citeseer.

[26] Nagesh B Lakshminarayana, Jaekyu Lee, and Hyesoon Kim. 2009. Age based
scheduling for asymmetric multiprocessors. In Proceedings of the Conference on
High Performance Computing Networking, Storage and Analysis. ACM, 25.

[27] Sheng Li, Jung Ho Ahn, Richard D Strong, Jay B Brockman, Dean M Tullsen, and
Norman P Jouppi. 2009. McPAT: an integrated power, area, and timing modeling

framework for multicore and manycore architectures. In Microarchitecture, 2009.
MICRO-42. 42nd Annual IEEE/ACM International Symposium on. IEEE, 469–480.

[28] Tong Li, Dan Baumberger, David A Koufaty, and Scott Hahn. 2007. Efficient op-
erating system scheduling for performance-asymmetric multi-core architectures.
In Proceedings of the 2007 ACM/IEEE conference on Supercomputing. ACM, 53.

[29] Andrew Lukefahr, Shruti Padmanabha, Reetuparna Das, Faissal M Sleiman,
Ronald Dreslinski, Thomas F Wenisch, and Scott Mahlke. 2012. Composite
cores: Pushing heterogeneity into a core. In Proceedings of the 2012 45th Annual
IEEE/ACM International Symposium on Microarchitecture. 317–328.

[30] Daniel S McFarlin, Charles Tucker, and Craig Zilles. 2013. Discerning the dom-
inant out-of-order performance advantage: is it speculation or dynamism?. In
ACM SIGPLAN Notices, Vol. 48. ACM, 241–252.

[31] R. Nair and M. Hopkins. 1997. Exploiting Instruction Level Parallelism in Pro-
cessors by Caching Scheduled Groups. In Proc. of the 24th Annual International
Symposium on Computer Architecture. 13–25.

[32] NVidia. 2011. Variable SMP - a multi-core CPU archi-
tecture for low power and high performance. (2011).
http://www.nvidia.com/content/PDF/tegra_white_papers/ Variable-SMP-A-
Multi-Core-CPU-Architecture-for-LowPower-and-High-Performance-v1.1.pdf.

[33] Shruti Padmanabha, Andrew Lukefahr, Reetuparna Das, and Scott Mahlke. 2013.
Trace based phase prediction for tightly-coupled heterogeneous cores. In Proceed-
ings of the 46th Annual IEEE/ACM International Symposium on Microarchitecture.
ACM, 445–456.

[34] Shruti Padmanabha, Andrew Lukefahr, Reetuparna Das, and Scott Mahlke. 2015.
DynaMOS: Dynamic Schedule Migration for Heterogeneous Cores. In Proceedings
of the 48th Annual IEEE/ACM International Symposium onMicroarchitecture. ACM.

[35] Oscar Palomar, Toni Juan, and Juan J Navarro. 2009. Reusing cached schedules
in an out-of-order processor with in-order issue logic. In Computer Design, 2009.
ICCD 2009. IEEE International Conference on Computer Design. IEEE, 246–253.

[36] Sanjay J Patel, Tony Tung, Satarupa Bose, and MatthewM Crum. 2000. Increasing
the size of atomic instruction blocks using control flow assertions. In Proceedings
of the 33rd annual ACM/IEEE international symposium on Microarchitecture. ACM,
303–313.

[37] Vinicius Petrucci, Michael A Laurenzano, John Doherty, Yunqi Zhang, Daniel
Mosse, Jason Mars, and Lingjia Tang. 2015. Octopus-man: Qos-driven task
management for heterogeneous multicores in warehouse-scale computers. In
High Performance Computer Architecture (HPCA), 2015 IEEE 21st International
Symposium on. IEEE, 246–258.

[38] Qualcomm. 2011. Snapdragon S4 Processors: System on Chip Solutions for a
New Mobile Age. (2011). https://www.qualcomm.com/documents/snapdragon-
s4-processors-system-chip-solutions-new-mobile-age.

[39] Krishna K Rangan, Gu-Yeon Wei, and David Brooks. 2009. Thread motion: fine-
grained power management for multi-core systems. In ACM SIGARCH Computer
Architecture News, Vol. 37. ACM, 302–313.

[40] Eric Rotenberg, Steve Bennett, and James E Smith. 1996. Trace cache: a low latency
approach to high bandwidth instruction fetching. In Proceedings of the 29th annual
ACM/IEEE international symposium on Microarchitecture. IEEE Computer Society,
24–35.

[41] Eric Rotenberg, Brandon H Dwiel, Elliott Forbes, Zhenqian Zhang, Randy Widi-
alaksono, Rangeen Basu Roy Chowdhury, Nyunyi Tshibangu, Steve Lipa, W Rhett
Davis, and Paul D Franzon. 2013. Rationale for a 3D Heterogeneous Multi-core
Processor. migration 100, 1K (2013), 10K.

[42] Amirali Sharifian, Snehasish Kumar, Apala Guha, and Arrvindh Shriraman. 2016.
Chainsaw: Von-neumann accelerators to leverage fused instruction chains. In
Microarchitecture (MICRO), 2016 49th Annual IEEE/ACM International Symposium
on. IEEE, 1–14.

[43] Daniel Shelepov, Juan Carlos Saez Alcaide, Stacey Jeffery, Alexandra Fedorova,
Nestor Perez, Zhi Feng Huang, Sergey Blagodurov, and Viren Kumar. 2009. HASS:
a scheduler for heterogeneous multicore systems. ACM SIGOPS Operating Systems
Review 43, 2 (2009), 66–75.

[44] T. Sherwood, E. Perelman, G. Hamerly, and B. Calder. 2002. Automatically
characterizing large scale program behavior. In Tenth International Conference on
Architectural Support for Programming Languages and Operating Systems. ACM,
New York, NY, USA, 45–57.

[45] M Aater Suleman, Onur Mutlu, Moinuddin K Qureshi, and Yale N Patt. 2009.
Accelerating critical section execution with asymmetric multi-core architectures.
In ACM SIGARCH Computer Architecture News, Vol. 37. ACM, 253–264.

[46] Emil Talpes and Diana Marculescu. 2005. Execution cache-based microarchi-
tecture for power-efficient superscalar processors. Very Large Scale Integration
(VLSI) Systems, IEEE Transactions on 13, 1 (2005), 14–26.

[47] Kenzo Van Craeynest, Shoaib Akram, Wim Heirman, Aamer Jaleel, and Lieven
Eeckhout. 2013. Fairness-aware scheduling on single-ISA heterogeneous multi-
cores. In Proceedings of the 22nd international conference on Parallel architectures
and compilation techniques. IEEE, 177–187.

[48] Kenzo Van Craeynest, Aamer Jaleel, Lieven Eeckhout, Paolo Narvaez, and Joel
Emer. 2012. Scheduling heterogeneous multi-cores through Performance Impact
Estimation (PIE). In Proceedings of the 39th International Symposium on Computer
Architecture (ISCA ’12). 213–224.

MICRO-50, October 14-18, 2017, Cambridge, MA, USA S. Padmanabha et al.

[49] Carlos Villavieja, Jose A. Joao, Rustam Miftakhutdinov, and Yale N. Patt. 2014.
Yoga: A Hybrid Dynamic VLIW/OoO Processor. HPS Technical Report No. 2014-
001 (2014).

[50] Randy Widialaksono, Rangeen Basu Roy Chowdhury, Zhenqian Zhang, Joshua
Schabel, Steve Lipa, Eric Rotenberg, W Rhett Davis, and Paul Franzon. 2016. Phys-
ical design of a 3D-stacked heterogeneous multi-core processor. In 3D Systems
Integration Conference (3DIC), 2016 IEEE International. IEEE, 1–5.

[51] Qiang Wu, Margaret Martonosi, Douglas W Clark, Vijay Janapa Reddi, Dan
Connors, Youfeng Wu, Jin Lee, and David Brooks. 2005. A dynamic compilation
framework for controlling microprocessor energy and performance. In Proceed-
ings of the 38th annual IEEE/ACM International Symposium on Microarchitecture.
IEEE Computer Society, 271–282.

[52] Yuhao Zhu and Vijay Janapa Reddi. 2013. High-Performance and Energy-Efficient
Mobile Web Browsing on Big/Little Systems. Network 8000 (2013), 6000.

	Abstract
	1 Introduction
	2 Motivation
	2.1 Core characteristics
	2.2 Benefits of Memoization
	2.3 Concept of Mirage Cores

	3 Mirage Cores Architecture
	3.1 Architecture Overview
	3.2 Designing the Arbitrator
	3.3 Designing the Core Architectures

	4 Methodology
	4.1 Workloads
	4.2 Simulation Methodology

	5 Results
	5.1 Architecture Configurations
	5.2 Throughput Aware Arbitration
	5.3 Arbitrators for Equal Resource Sharing
	5.4 An Area Neutral Study
	5.5 Cost of Core Migration

	6 Discussion
	7 Related Works
	7.1 Heterogeneous Cores Architectures
	7.2 Scheduling Multicore Systems
	7.3 Optimizing Instruction Schedules

	8 Conclusion
	9 Acknowledgements
	References

