
3

Leveraging GPUs Using Cooperative Loop Speculation

MEHRZAD SAMADI, University of Michigan
AMIR HORMATI, Google Inc.
JANGHAENG LEE and SCOTT MAHLKE, University of Michigan

Graphics processing units, or GPUs, provide TFLOPs of additional performance potential in commodity com-
puter systems that frequently go unused by most applications. Even with the emergence of languages such as
CUDA and OpenCL, programming GPUs remains a difficult challenge for a variety of reasons, including the
inherent algorithmic characteristics and data structure choices used by applications as well as the tedious
performance optimization cycle that is necessary to achieve high performance. The goal of this work is to
increase the applicability of GPUs beyond CUDA/OpenCL to implicitly data-parallel applications written in
C/C++ using speculative parallelization. To achieve this goal, we propose Paragon: a static/dynamic compiler
platform to speculatively run possibly data-parallel portions of sequential applications on the GPU while
cooperating with the system CPU. For such loops, Paragon utilizes the GPU in an opportunistic way while
orchestrating a cooperative relation between the CPU and GPU to reduce the overhead of miss-speculations.
Paragon monitors the dependencies for the loops running speculatively on the GPU and nonspeculatively
on the CPU using a lightweight distributed conflict detection designed specifically for GPUs, and transfers
the execution to the CPU in case a conflict is detected. Paragon resumes the execution on the GPU after the
CPU resolves the dependency. Our experiments show that Paragon achieves 4x on average and up to 30x
speedup compared to unsafe CPU execution with four threads and 7x on average and up to 64x speedup
versus sequential execution across a set of sequential but implicitly data-parallel applications.

Categories and Subject Descriptors: D.3.4 [Programming Languages]: Processors—Code generation,
Compilers

General Terms: Design, Performance

Additional Key Words and Phrases: Compiler, GPU, speculation, optimization

ACM Reference Format:
Mehrzad Samadi, Amir Hormati, Janghaeng Lee, and Scott Mahlke. 2014. Leveraging GPUs using cooper-
ative loop speculation. ACM Trans. Architec. Code Optim. 11, 1, Article 3 (February 2014), 26 pages.
DOI: http://dx.doi.org/10.1145/2579617

1. INTRODUCTION

In recent years, multicore CPUs have become commonplace, as they are widely used not
only for high-performance computing in servers but also in consumer devices such as
laptops and mobile devices. Besides CPUs, GPUs have presented programmers with a
different approach to parallel execution. Researchers have shown that for applications
that fit the execution model of GPUs, in the optimistic case, speedups of 100–300x
[NVIDIA 2010] and, in the pessimistic case, speedups of 2.5x [Lee et al. 2010] can be

This article extends an earlier version that appeared in the 5th Workshop on General-Purpose Computation
on Graphics Processing Units (GPGPU 2012), 2012.
Authors’ addresses: Mehrzad Samadi (corresponding author), Janghaeng Lee, and Scott Mahlke, Computer
Science and Engineering Department, University of Michigan, 2260 Hayward Street, Ann Arbor, MI 48109;
email: mehrzads@umich.edu; Amir Hormati, Google Inc., 651 N 34th Street, Seattle, WA 98103.
Permission to make digital or hard copies of part or all of this work for personal or classroom use is granted
without fee provided that copies are not made or distributed for profit or commercial advantage and that
copies show this notice on the first page or initial screen of a display along with the full citation. Copyrights for
components of this work owned by others than ACM must be honored. Abstracting with credit is permitted.
To copy otherwise, to republish, to post on servers, to redistribute to lists, or to use any component of this
work in other works requires prior specific permission and/or a fee. Permissions may be requested from
Publications Dept., ACM, Inc., 2 Penn Plaza, Suite 701, New York, NY 10121-0701 USA, fax +1 (212)
869-0481, or permissions@acm.org.
c© 2014 ACM 1544-3566/2014/02-ART3 $15.00

DOI: http://dx.doi.org/10.1145/2579617

ACM Transactions on Architecture and Code Optimization, Vol. 11, No. 1, Article 3, Publication date: February 2014.

http://dx.doi.org/10.1145/2579617
http://dx.doi.org/10.1145/2579617

3:2 M. Samadi et al.

achieved between the most recent versions of GPUs compared to the latest multicore
CPUs.

The main languages for developing applications for GPUs are CUDA and OpenCL.
While they try to offer a more general-purpose way of programming GPUs, extract-
ing high performance from GPUs is still a daunting challenge. Difficulty in extracting
massive data-level parallelism, utilizing the nontraditional memory hierarchy, compli-
cated thread scheduling and synchronization semantics, and lack of efficient handling
of control instructions are the main complications that arise while porting applications
to GPUs [Ryoo et al. 2008]. As a result of this complexity, the computational power of
graphics engines is often underutilized or not used at all.

Although many researchers have proposed new ways to solve these problems [Brunie
et al. 2012; Coutinho et al. 2011; Zhang et al. 2011; Xiao and chun Feng 2010], there
is still no solution for an average programmer to target GPUs. To efficiently run a
sequential or parallel (for small number of cores) C/C++ application on a GPU, there
are two primary methods used by developers: manually redesigning the underlying
algorithm of an application for GPUs to get rid of the memory and control bottlenecks,
or using a compiler to perform automatic parallelization. In most cases, it is difficult to
manually identify the bottlenecks and redesign an application for the massively data-
parallel execution engines of GPUs. This solution is clearly not suitable for average
programmers and is often expensive to apply due to the cost of reimplementing and
redesigning large chunks of legacy applications. The second solution is to use compiler
analysis to automatically extract enough data parallelism from an application to gain
some performance benefit from the resulting code on the target GPU. In many cases,
ambiguous memory dependencies or control flow divergences in a small number of
threads can negatively affect thousands of other threads on a GPU. The main problem
with this approach is that the compiler analyses used for automatic parallelization
are usually too conservative and fragile, resulting in small or no performance gains on
most commodity computer systems.

In this work, we take a different approach to this problem. Considering the amount
of parallelism exposed by GPUs and their ubiquity in consumer devices, we propose
cooperative speculative loop execution on GPUs and CPUs using Paragon for implicitly
data-parallel programs written in C/C++. Paragon, using data-parallel speculation and
distributed conflict detection engines carefully designed for cores in GPUs, enables
programmers to transparently take advantage of GPUs for pieces of their applications
that are possibly data parallel without manually changing the application or relying
on complex compiler analyses, thus reducing the cost of migrating to GPUs. Further,
the set of applications that can be mapped onto a GPU is broadened beyond loops
that exclusively use arrays with affine indices. Paragon’s use of cooperative execution
between the GPU and CPU increases the performance of the overall system in the
presence of conflicts since the CPU is not left idle while the GPU is speculatively
running an application.

The idea of speculative loop execution is not a new one. Speculative parallelization
has been extensively investigated in both hardware and software (see Section 7) in the
context of multicore CPUs [Steffan et al. 2005; Kim et al. 2012; Volos et al. 2009; Harris
et al. 2006; Mehrara et al. 2009; Oancea and Mycroft 2008; Tian et al. 2008]. However,
speculation techniques for multicore CPUs are not designed to scale to thousands
of active threads and deal with the complex memory hierarchy available on GPUs.
Paragon’s compilation and runtime system is the first system, that we are aware
of, that explores the idea of cooperative speculation by leveraging GPUs and CPUs
simultaneously while using lightweight and scalable conflict detection and recovery
for large numbers of data-parallel threads. In Paragon, the CPU is used to execute
parts of an application that are sequential, and both the GPU and CPU are utilized

ACM Transactions on Architecture and Code Optimization, Vol. 11, No. 1, Article 3, Publication date: February 2014.

Leveraging GPUs Using Cooperative Loop Speculation 3:3

for execution of possibly parallel for-loops. The GPU and CPU both start executing
their version of a possibly parallel for-loop (sequential on the CPU, data parallel on the
GPU). The GPU executes the for-loop assuming there is no data dependency between
the iterations but monitors all the active threads for possible dependency violations. If
a dependence violation is detected, the GPU waits for the execution of the dependency
on the CPU and then resumes the remaining iterations. This approach puts otherwise
idle GPUs to productive use, albeit at the cost of energy efficiency.

The Paragon compilation system is divided into two parts: static compilation for spec-
ulation and cooperative execution management. The static part mainly performs loop
classification and generates CUDA code for the runtime system, which monitors the
loops on the GPU for dependency violations. The execution management also performs
lightweight one-time loop monitoring and decides which loops are more likely to benefit
from executing on the GPU. These two phases together enable the execution of C/C++
loops with statistically improbable cross-iteration data dependencies on the GPU.

In summary, the main contributions of this work are:

—Static compilation and runtime systems for cooperative speculative execution on
GPU/CPUs

—Lightweight runtime conflict detection on GPUs
—Low overhead rollback mechanism by using the concurrency between GPUs and

CPUs

The rest of the article is organized as follows. In Section 2, the CUDA programming
model and the basics of GPUs’ architecture are discussed, as is the motivation behind
Paragon. A brief overview of Paragon is discussed in Section 3. In Section 4, Paragon’s
compilation phases and its lightweight data-parallel speculative execution mechanism
with distributed conflict detection on GPUs are explained. Section 5 discusses how co-
operative execution works and explains advantages/disadvantages of using Paragon in
different cooperative execution scenarios. Experiments are shown in Section 6. Finally,
in Section 7, we discuss related works.

2. BACKGROUND AND MOTIVATION

2.1. CUDA Programming Model

The CUDA programming model is a multithreaded SIMD model that enables imple-
mentation of general-purpose programs on heterogeneous GPU/CPU systems. A CUDA
program consists of a host code segment that contains the sequential sections of the
program, which is run on the CPU, and a parallel code segment that is launched from
the host onto one or more GPU devices. Host code can be multithreaded, and in this
work, Paragon launches two threads on the CPU: one for managing GPU kernels and
transferring data and the other one for performing computations. Recent generations
of NVIDIA’s GPUs, Fermi and Kepler, can support concurrent kernel execution, where
different kernels of the same application context can execute on the GPU at the same
time. Concurrent kernel execution allows programs that execute a number of small
kernels to utilize the whole GPU. It is also possible to overlap data transfers between
CPU and GPU and kernel execution.

The basic block of work in CUDA is a single thread. A group of threads execut-
ing the same code are combined together to form a thread block or simply a block.
Threads within a thread block are synchronized together through a barrier operation
(syncthreads()). Shared memory is an on-chip memory shared only by threads within
the same thread block. The last level of memory is global memory, which is an off-chip
memory that is accessible to all threads of the kernel.

ACM Transactions on Architecture and Code Optimization, Vol. 11, No. 1, Article 3, Publication date: February 2014.

3:4 M. Samadi et al.

2.2. Motivation

Parallelizing an existing single-threaded application for a multicore system is often
more challenging as it may not have been developed to be easily parallelized in the
first place. It will be even harder to extract the fine-grained parallelism necessary for
efficient use of many-core systems like GPUs with thousands of threads. Therefore,
several automatic static parallelization techniques for GPUs have been proposed to
exploit more parallelism [Han and Abdelrahman 2010; Baskaran et al. 2010; Wolfe
2010; Leung et al. 2009; Tarditi et al. 2006].

However, even the best static parallelization techniques cannot parallelize programs
that contain irregular dependencies that manifest infrequently or statically unresolv-
able dependencies that may not manifest during runtime at all. Removing these de-
pendencies speculatively will dramatically improve the parallelization possibilities.
This work optimistically assumes that these programs can be executed in parallel on
the GPU and relies on a runtime monitor to ensure that no dependency violation is
produced.

Applications that are implicitly data parallel but at the same time difficult to par-
allelize often contain array index expressions that cannot be statically analyzed. We
have identified three common types of loops that demonstrate this property: nonlinear
array access, indirect array access, and array access through pointers.

Nonlinear array access. If a loop accesses an array with a nonlinear function of
the loop’s induction variables, it is hard to statically disambiguate the loop-carried
dependencies. To illustrate, Figure 1(a) shows the make_lattice() function in the milc
benchmark from SPEC2006. This function accesses the lattice array with the index i,
which depends on the induction variables (x, y, z, and t) and the loop-independent
variable squaresize. As shown in lines 4 to 8 of Figure 1(a), the index is calculated
through modulo operation with loop-independent variables, which makes it difficult to
disambiguate cross-iteration dependencies at the compile time. In fact, this loop may
or may not have dependencies between iterations depending on squaresize.

Indirect array access. This type of access occurs when an array index is produced
in runtime. For example, Figure 1(b) shows the code for forward elimination of a matrix
in Compressed Sparse Row (CSR) format where suffix L denotes the array for the lower
triangular matrix. Forward elimination is generally used as a part of the Gaussian
elimination algorithm, which changes the matrix to a triangular form to solve the
linear equations. CSR uses three arrays to store a sparse matrix: (1) a real array a
[1:nnz] contains the nonzero elements of the matrix row by row, (2) an integer array
ja [1:nnz] stores the column indices of the nonzero elements stored in a, and (3) an
integer array ia [1:n+1] contains the indices to the beginning of each row in the
arrays a and ja.

Like the previous example, a static compiler cannot determine whether these loops
are parallelizable since the inner loop in Figure 1(b) accesses arrays using another
array value as an index, which can be identified only at runtime. Since the inner loop is
a sparse dot product of the ith row of array a and the dense vector x, runtime profiling
will categorize this loop as a parallel loop.

Array access through pointers. This type of access also makes it difficult for
static compilers to parallelize a loop. Figure 1(c) shows a function that simply adds
two vectors taking pointers as parameters. If there is a possibility that the pointer c
overlaps with either a or b, the loop cannot be parallelized. The conservative static
compiler will give up parallelizing the loop if there is any chance of pointer aliasing. If
the runtime behavior shows that the probability of pointer aliasing is low, it is beneficial
to speculatively parallelize the loop at runtime.

ACM Transactions on Architecture and Code Optimization, Vol. 11, No. 1, Article 3, Publication date: February 2014.

Leveraging GPUs Using Cooperative Loop Speculation 3:5

Fig. 1. Code examples for (a) nonlinear array access, (b) indirect array access, and (c) array access through
pointer.

As described in these examples, loops that are not possible to parallelize at compile
time must be reinvestigated at runtime. For loops that have cross-iteration dependen-
cies with low probabilities, speculatively parallelizing loops on the GPU will yield a
great performance speedup.

3. PARAGON OVERVIEW

The main goal of Paragon’s execution system is to automatically extract fine-grain data
parallelism from its sequential input code and generate efficient C/CUDA code to run
on a heterogeneous system consisting of a CPU and GPU. However, applications with
irregular or complex data dependencies are hard or even impossible to parallelize at
compile time. To overcome this problem, Paragon detects possibly parallel loops and
runs them speculatively on the GPU. As with any speculation system, two mecha-
nisms are required: a check-pointing state to enable execution rollback and runtime
dependence checking to identify miss-speculations.

Paragon utilizes a check-pointing mechanism that is tailored for GPU-enabled sys-
tems. Traditionally, at each checkpoint, before starting speculative kernel execution,
the speculative execution system takes a snapshot of the architectural state. Storing
copies of a few registers at transaction threads in a CPU core is relatively cheap.
For GPUs, however, with thousands of threads running, naively check-pointing large
register files would incur significant overhead [Fung et al. 2011]. Therefore, it is not
practical to use traditional CPU check-pointing mechanisms on the GPU.

Since GPUs and CPUs have separate memory systems, there is no need for special
check-pointing before launching a speculative kernel on the GPU. Paragon always keeps

ACM Transactions on Architecture and Code Optimization, Vol. 11, No. 1, Article 3, Publication date: February 2014.

3:6 M. Samadi et al.

Fig. 2. An example of running a program with Paragon: (a) sequential run, (b) execution without any conflict,
and (c) execution with conflict.

one version of the correct data in the CPU’s memory, and in case of conflict, it uses the
CPU’s data to recover. To reduce the overhead of recovery, Paragon uses cooperative
execution. Instead of waiting for a speculative kernel to finish and run the recovery
process if it is needed, Paragon runs the safe sequential version of the kernel on the
CPU in parallel to the GPU version. If there was a conflict in the speculative execution
on the GPU, Paragon ignores the GPU’s results and waits for the safe execution to
finish and uses its result to run the next kernel. On the other hand, if there was not
any conflict, Paragon terminates the CPU execution after the GPU kernel is finished
successfully. Cooperative execution is key to achieving good performance in Paragon.

The second speculation mechanism is runtime dependence checking to identify miss-
speculations. Bulk tracking of memory dependences using signatures along with ded-
icated structures works well for CPUs with limited numbers of threads. However, for
tracking memory accesses of thousands of threads, large signatures per thread are
needed. Maintaining and accessing these large signatures dramatically degrades the
performance on the GPU. Also, many of these traditional conflict detection approaches
need a fast communication mechanism between the cores, which is not available in
GPUs. Therefore, Paragon uses a distributed conflict detection mechanism that can
check memory accesses of many threads in parallel. This conflict detection mechanism
is done in two phases. In the first phase, Paragon updates the write log and read log
for each memory access. Then, Paragon checks the write log and read log to detect
any conflicts. Both of these phases are specifically designed to utilize the data-parallel
power of the GPU to reduce the overhead of conflict detection.

Figure 2 shows an example of Paragon’s execution for a program with five different
code segments. Like most programs, this program starts with a sequential code. There
are four loops with different characteristics in this example. Loop1 and Loop3 are
parallel. Loop2 is a possibly parallel loop that has complex or data-dependent cross-
iteration dependency, so the compiler is unable to guarantee the safe parallel execution

ACM Transactions on Architecture and Code Optimization, Vol. 11, No. 1, Article 3, Publication date: February 2014.

Leveraging GPUs Using Cooperative Loop Speculation 3:7

Fig. 3. Compilation flow in Paragon.

of this loop. Finally, Loop4 has cross-iteration dependencies and is statically classified
as a sequential loop. Paragon launches a Conflict Management Thread (CMT) on the
CPU. The CMT is responsible for orchestrating GPU-CPU transfers, running kernels
on the GPU or CPU, and managing the cooperative execution between the CPU and
GPU for speculative kernels. In order to run a kernel on the CPU, the CMT launches
another thread, called the working thread, on the CPU.

In this example, Paragon starts the execution by running the sequential part on
the CPU. After running the sequential code, Paragon transfers the data needed for
the execution of Loop1 to the GPU and starts the parallel version of Loop1. Since
Loop2 is possibly parallel, it should be speculatively executed on the GPU. In order
to keep the correct data at this checkpoint, Paragon transfers data to the CPU. For
re-entrant loops that do not update their input arrays, using asynchronous concur-
rent execution, Paragon launches the CUDA kernel for Loop2 at the same time. If
Loop2 reads and writes to the same array (i.e., nonre-entrant), Paragon should wait
for the data to be completely transferred to the CPU and then launch the GPU kernel.
The CPU executes the safe and sequential version of Loop2 after it receives the data
needed for execution of Loop2 from the GPU. Paragon checks for conflicts in the specu-
lative execution of possibly parallel loops such as Loop2. The conflict detection process
is done in parallel on the GPU with two kernels: the execution kernel and checking
kernel. The execution kernel executes the loop and also marks addresses accessed by
this loop. The checking kernel investigates all these addresses in parallel to detect
conflicts and will set a conflict flag if it detects any dependency violation. After Loop2
is finished, the GPU transfers the conflict flag to the CPU. Based on the conflict flag,
there are two possibilities: first, if there was no conflict (Figure 2(b)), the CMT stops
the working thread that is executing Loop2 on the CPU and uses the GPU data to start
Loop3. The second case is when a conflict is found in parallel execution of Loop2 as
shown in Figure 2(c). In this case, Paragon waits for the CPU execution to finish, then
transfers data needed for the Loop3 to the GPU. Since Loop3 is a do-all loop, this loop
will be executed only on the GPU without speculation. In order to run the sequential
Loop4, Paragon copies the output of Loop3 to the CPU.

Figure 3 shows the overall flow of Paragon’s compilation and runtime system.

4. COMPILING FOR DATA-PARALLEL SPECULATION

One of the main challenges in Paragon is how to perform lightweight speculation and
conflict detection on a massively data-parallel engine similar to a GPU. Traditional
approaches for performing speculation on a multicore system fall short in this con-
text due to the vast number of active threads, complex memory architecture, and
communication and synchronization overheads in GPUs. Therefore, Paragon is
equipped with lightweight data-parallel speculation and distributed conflict detection
engines to address these issues.

Paragon focuses on loops in sequential C/C++ applications. As shown in Figure 3,
Paragon first performs loop classification to determine which code segments are safe
to parallelize. Based on this information, loop classification categorizes each loop into

ACM Transactions on Architecture and Code Optimization, Vol. 11, No. 1, Article 3, Publication date: February 2014.

3:8 M. Samadi et al.

one of the following three categories: parallel (do-all), sequential, and possibly parallel.
Parallel loops do not have any cross-iteration dependency and can be run in parallel on
the GPU. Sequential parts, which will be run on the CPU, are parts that do not have
enough parallelism to run on the GPU or have system function calls. Loops that static
analysis cannot determine if they are parallel or sequential will be in the last group
called possibly parallel loops.

Loop classification passes all this information to the code generation and instrumen-
tation units. Since the sequential loops will be run on the CPU, Paragon generates only
C code for such loops. For parallel loops, CUDA kernels will be generated. Code genera-
tion generates the CPU and GPU code with instrumentation for possibly parallel loops.
The purpose of the instrumentation is to detect any possible conflict in the execution
of unsafe kernels. This distributed conflict detection mechanism has two kernels: the
execution kernel and the checking kernel. These two kernels and instrumentations
that need to be added will be discussed in Section 4.3. Before that, in the next two
sections, Paragon’s loop classification and code generation are explained.

4.1. Loop Classification

Loop classification categorizes each loop into one of the following three categories:
parallel (do-all), sequential, and possibly parallel. Paragon is using static analyses
and transformations such as scalar and array privatization, symbolic data dependence
testing, reduction recognition, and induction variable substitution to detect parallel
loops [Wolfe 1995].

Besides detection of parallel loops using static analyses, Paragon also searches for
sequential loops with indirect, nonlinear, or pointer accesses that may be parallel and
marks them as possibly parallel loops. The rest of the loops will be marked as sequential
loops. Loop classification sends this information to the next stages, which are kernel
generation and instrumentation for conflict detection.

4.2. Kernel Generation

Distributing the workload evenly among thousands of threads is the main key to
gaining good performance on a GPU. How to assign loop iterations to threads running
on the GPU is a significant challenge for the compiler. This section illustrates how
Paragon distributes iterations of the loop among GPU threads.

For single do-all loops, Paragon assigns the loop’s iterations to the GPU’s threads
based on the trip count. If the trip count is fixed and it is smaller than the maximum
number of possible threads, Paragon assigns one iteration per thread. Since our exper-
iments show that the best number of threads per block is constant (for our GPUs, it is
equal to 256), the number of Threads per Block (TpB) is always equal to 256. Therefore,
the number of blocks will be equal to the trip count divided by 256. This number can be
easily changed based on the GPU for which Paragon is compiling. If the trip count is
more than the maximum possible number of threads, Paragon assigns more than one
iteration per thread. The number of Iterations per Thread (IpT) is always a power of
two to make it easier to handle on the GPU. In this case, number of blocks (B) will be:

B = Trip Count
TpB ∗ IpT

.

On the other hand, if the trip count is not known during the compile time, the
compiler cannot assign a specific number of iterations to each thread. In this case,
Paragon sets the number of blocks to a predefined value, but this number will be tuned
based on the previous runs of this kernel. As shown in Figure 4(b), each thread will
run iterations until no iterations are left. We could use this method for loops with fixed

ACM Transactions on Architecture and Code Optimization, Vol. 11, No. 1, Article 3, Publication date: February 2014.

Leveraging GPUs Using Cooperative Loop Speculation 3:9

Fig. 4. Generated CUDA code for parallel loops with (a) fixed trip count, and (b) variable trip count.

trip counts, but our experiments show that assigning the exact iterations per thread
increases the performance for these loops. If the number of threads launched is less
than the number of iterations, some threads will be idle during the kernel execution,
and that may degrade the performance. Another advantage is that for loops similar to
the loop in Figure 4(a), which has a fixed trip count, the compiler can unroll the loop
efficiently.

Nested do-all loops will be easy to compile if Paragon can merge those loops and
generate one do-all loop. However, it is not always possible. For imperfectly nested
loops, in which all assignment statements are not contained in the innermost loop, it is
hard to merge nested loops. In these cases, Paragon merges nested loops as far as it is
possible. Finally, two loops will be mapped to the GPU. The outer loop will be mapped
to the blocks, and the inner loop will be mapped to threads of blocks. Therefore, the
number of blocks will be equal to the trip count of the outer loop and the number of
threads per block is still equal to 256.

Reduction loop. A reduction operation generally takes a large array as its input,
performs computations on it, and generates a single element as its output. This op-
eration is usually parallelized on GPUs using a tree-based approach, such that each
level in the computation tree gets its input from the previous level and produces the
input for the next level. In a uniform reduction, each tree level reduces the number of
elements by a fixed factor and the last level outputs one element as the final result.
The only condition for using this method is that the reduction operation needs to be
associative and commutative.

Paragon automatically detects reduction operations in its input using reduction vari-
able analysis [Wolfe 1995]. After this detection phase, the compiler replaces the reduc-
tion loop with a highly optimized kernel in its output CUDA code. Paragon uses the
optimized CUDA version of the reduction kernel as described in different studies such
as the work proposed by Roger et al. [2007].

If there are multiple do-all loops and the innermost loop is a reduction loop, Paragon
compiles them based on the trip count of the outer loops. If the trip counts of the outer
loops are low, Paragon maps the outer loops to the blocks and each block executes the
reduction loop. On the other hand, if the outer loops have a high number of iterations,
Paragon may assign each reduction process to one thread. Therefore, iterations of the
outer loops will be distributed among threads, and each thread executes one instance
of the innermost loop.

After generating CUDA codes for parallel and possibly parallel loops, Paragon in-
serts copying instructions between the kernels. All live-in and live-out variables for all
kernels are determined by Paragon at compile time. After each kernel, Paragon inserts
copy instructions based on the previous and next kernel’s types. If both consecutive
kernels are parallel or sequential, there is no need to transfer data. If one of them is

ACM Transactions on Architecture and Code Optimization, Vol. 11, No. 1, Article 3, Publication date: February 2014.

3:10 M. Samadi et al.

parallel and the other one is sequential, transferring data is needed. In cases where
at least one of the kernels is possibly parallel, Paragon adds copy instructions in both
directions: from the CPU to the GPU and from the GPU to the CPU. Cooperative exe-
cution management will decide how to move the data at runtime based on the place of
correct data.

4.3. Instrumenting for Conflict Detection

One of the main challenges for speculative execution on the GPU is designing a con-
flict detection mechanism that works effectively for thousands of threads. Traditional
techniques used for multicore CPUs are not well suited for GPUs because of the non-
traditional memory hierarchy, different synchronization tradeoffs on GPUs, and vast
number of active threads available at runtime.

To deal with these constraints, we designed a distributed conflict detection mecha-
nism in our system. Paragon detects the dependencies between different iterations of
possibly parallel loops with two kernels: the execution kernel and the checking kernel.
The first kernel executes the computations and also tags load and store addresses, and
the checking kernel inspects these addresses to find a conflict. In this case, a conflict
means writing to the same address by multiple threads or writing to an address by one
thread and reading the same address by other threads.

Execution kernel. For indirect and nonlinear array accesses, Paragon detects the
arrays that can cause conflicts, and for those arrays, it allocates write-log and read-log
arrays. Traditionally, Bloom filters have been used to track the dependencies between
threads with very low overhead. However, using a Bloom filter for keeping track of
thousands of threads at the same time requires large signatures [Bloom 1970]. Fur-
thermore, accessing these signatures on the GPU requires uncoalesced accesses, which
leads to the performance degradation on the GPU. Therefore, instead of using a Bloom
filter, Paragon stores all memory accesses in read-log and write-log arrays separately.
During the execution, each store to a conflict candidate array will be added to a write
log and each load from that array will be added to a read log.

Since the order of execution of threads on the GPU is not known a priori, any two
threads that write to the same address can potentially cause a conflict. This conflict
may result in a wrong output. Therefore, if the number of writes to one address is more
than one, there is considered a write-write dependency violation and that loop is not
parallelizable. To detect write-write dependencies, Paragon utilized two approaches:

—Atomic: In this approach, Paragon uses CUDA atomic increment instructions to
increment the number of writes for each store in a kernel. This method used
GPU-specific atomic instruction. Based on the values stored in the read and write
logs, the checking kernel can detect dependency violations. Figure 5 shows an exam-
ple of using the atomic approach. Figure 5(a) shows the original code and Figure 5(b)
shows the execution kernel using atomic operation. Since each iteration modified
x[i] and also reads x[jal[j]], these accesses to array x can cause conflicts. Therefore,
Paragon instruments all accesses to array x. In order to prevent false-positive conflict
detection, Paragon just sets the write log for x[i] not the read log. As shown in this
example, if Paragon statically detects that one thread accesses the same element
several times, it just keeps track of one of the accesses.

—Reduction: In this approach, each thread sets the addresses of writes in the write-
log array and also each thread counts the number of addresses that it modifies
and stores this number in the total-writes array (tw) as shown in Figure 6(a). The
checking kernel then compares these numbers to detect any possible dependency
violations. This approach is a variation of LRPD [Rauchwerger and Padua 1999],
which is employed in multicore CPUs.

ACM Transactions on Architecture and Code Optimization, Vol. 11, No. 1, Article 3, Publication date: February 2014.

Leveraging GPUs Using Cooperative Loop Speculation 3:11

Fig. 5. Generated CUDA code for example code: (a) with atomic approach, (b) the execution kernel code
with instrumentation, and (c) the checking kernel.

In addition to the output dependency, writes to and reads from the same address by
two different threads may violate the dependency constraints, and the GPU’s result
may not be valid anymore. In this case, one read is sufficient to cause a conflict and
invalidate the results. Therefore, for decreasing the overhead of maintaining a read-log
array, Paragon does not increment read-log elements atomically. Instead, it just sets the
corresponding bit in the read log for each read without using any atomic instruction.

The execution kernel is different for loops with pointer accesses, because these loops
access memory through pointers and, statically, it is not clear which array they access.
In order to keep track of the arrays that each kernel accesses, Paragon stores the
start address and size of arrays that are statically allocated on the CPU in a global
table. A similar table is also loaded into the GPU’s memory. In order to find the arrays
corresponding to each of the input pointers, Paragon compares the address of each of
the kernel’s input pointers with the start addresses and sizes of all the allocated arrays
before launching the kernel. Afterward, Paragon transfers these arrays to the GPU
memory before launching the kernel. If the array that the pointer accesses is not found
in the address table, the pointer is accessing dynamically allocated arrays and Paragon
will run these kinds of loops sequentially on the CPU. Moreover, Paragon assumes that
each pointer accesses only one array during the kernel execution. Therefore, if a pointer
accesses more than one array, Paragon will detect that and raise the conflict flag.

Also, Paragon translates the pointers from the CPU’s memory address space to the
GPU’s memory address space. In order to do this translation, Paragon subtracts the
start address of the CPU array from the pointer address and adds it to the start address

ACM Transactions on Architecture and Code Optimization, Vol. 11, No. 1, Article 3, Publication date: February 2014.

3:12 M. Samadi et al.

Fig. 6. Generated CUDA code for example code in Figure 1(b) with reduction approach: (a) the execution
kernel code with instrumentation and (b) the checking kernel.

of the corresponding GPU array. Similarly, Paragon translates these pointers from the
GPU to the CPU after the execution of the kernel.

For loops with pointer accesses, it is hard to detect which arrays may cause conflicts.
Therefore, Paragon allocates one write-log array and one read-log array whose size
is equal to the sum of the sizes of arrays that this loop accesses. This size can be
calculated based on the address table. Each array has its own range in the write-log
and read-log arrays. At the beginning of the kernel, Paragon again detects which array
each pointer accesses and determines its corresponding address in the write-log and
read-log arrays as shown in Figure 7(a). Each pointer’s address is compared to the
beginning and finishing addresses of all arrays, which are stored in GPU_Table, to find
the corresponding array. By doing this, Paragon is able to detect conflicts when two or
more pointers access the same array. Since this process is done at the beginning of the
kernel and outside of the main loop, its overhead is small for the kernels that have
high trip count loops.

Checking kernel. After completion of the execution kernel, the checking kernel will
be launched. This kernel investigates the read log and write log to find conflicts. To
find write-read conflicts, the easiest implementation of the checking kernel is to check
all addresses as shown in Figure 5(c).

ACM Transactions on Architecture and Code Optimization, Vol. 11, No. 1, Article 3, Publication date: February 2014.

Leveraging GPUs Using Cooperative Loop Speculation 3:13

Fig. 7. CUDA functions that Paragon uses to check pointer memory accesses: (a) finding array that each
pointer accesses, which is called outside the main loop; (b) for each pointer, Paragon computes the minimum
and maximum addresses that are accessed through that pointer. The range-check function checks these
maximums and minimums at the end of the execution kernel to see if all accesses were to the corresponding
array or not.

For the reduction approach, Paragon calculates the sum of writes performed by all
threads and number of distinct writes performed as follows:

Total Writes =
Threads∑

i=0

tw[i].

Distinct Writes =
Addresses∑

i=0

write-log[i].

These two sums are computed using reduction kernels as shown in Figure 6(b). If
Total_Writes is more than Distinct_Writes, it means that two or more threads write to
the same address, which is an output conflict.

Since the exact number of writes to each address is known in the atomic approach,
there is no need to launch reduction kernels. Line 5 of Figure 5(c) checks the number
of writes and reads of the corresponding element. If the number of writes is more than
one (wr � 1) or there is at least one write and one read (rd & wr), the checking kernel
will set the conflict flag.

However, checking all addresses may degrade the performance. Instead, it will be
advantageous to just check those addresses that at least one of the execution kernel’s
threads writes to. In order to check these addresses, the checking kernel should re-
generate indices that threads of the execution kernel wrote to them. For each store,
Paragon starts from the index of the store instruction and traverses the dataflow graph
in the reverse order, to build up a slice of instructions on which the store depends, ei-
ther directly or indirectly. This process stops when it reaches the input variables or the
loop indices. The checking kernel executes these instructions to regenerate the store
indices and investigates them to find a conflict.

Paragon uses an optimization for loops in which write-write dependencies are the
only possible source of conflicts. In these types of loops, there is no need to launch the
checking kernel because the atomicInc function returns the old value of the write-log
element. For each write that may cause conflict, the execution kernel increments the

ACM Transactions on Architecture and Code Optimization, Vol. 11, No. 1, Article 3, Publication date: February 2014.

3:14 M. Samadi et al.

corresponding element in the write-log array and it also checks the old value. If the
old value is more than zero, it shows that another thread already wrote to the same
element. In such a case, this access is marked as a conflict.

Since atomic instructions are slower than nonatomic memory accesses, the execu-
tion kernel runs faster for the reduction approach. However, as mentioned before, the
reduction approach needs to calculate the sum of two arrays, write log and total writes,
before executing the checking kernel. Since these two reduction operations have a sig-
nificant overhead for large arrays, checking for conflicts in the atomic approach has
lower overhead than in the reduction approach.

For loops with pointer accesses, Paragon runs the same checking kernel as
Figure 5(c), but it also takes an additional step to make sure no cross-array depen-
dency violation is happening. Paragon assumes that each pointer accesses only one
array during the execution of a kernel. Therefore, for kernels with pointers that may
access multiple arrays, Paragon raises the conflict flag. In order to detect these point-
ers, Paragon keeps track of the maximum index and the minimum index that each
pointer accesses. By computing maximum and minimum with the max and min intrin-
sic functions available in CUDA, this range check process is done without any dataflow
divergences. At the end of the kernel, all these maximums and minimums will be
checked to see if each pointer accesses only one array or not as shown in Figure 7(b). If
Paragon detects that a pointer accesses different arrays during the kernel execution,
it stops the GPU execution and transfers the execution to the CPU.

Whenever Paragon finds a conflict, it will set the conflict flag. This flag will be sent
to the CPU and, based on that, the CMT makes further decisions. These decisions will
be discussed in Section 5.

5. COOPERATIVE EXECUTION MANAGEMENT

The cooperative execution management unit in Paragon is a runtime component that is
in charge of deciding where a loop should execute, coordinating execution of a possibly
parallel loop between the CPU and GPU, and orchestrating data transfers between
the host and GPU memories. Paragon tries to increase the efficiency of speculation by
utilizing both the GPU and CPU at the same time. This cooperation between the CPU
and GPU can reduce the overhead of speculation in case of miss-speculations.

During runtime, the first invocation of possibly parallel loops will be monitored
to find any dependency between different iterations. After loop monitoring, possibly
parallel loops will be categorized as a parallel or sequential loop based on the number
of dependencies found in the monitoring result. Sequential loops will be run on the CPU,
and parallel loops will be run speculatively on the GPU. For speculative execution on
the GPU, Paragon requires the original code to be augmented with the instructions
that drive the runtime dependence analysis.

The main unit of cooperative execution management is the CMT, which uses moni-
toring information to decide which kernels should be executed on the GPU and which
of them should be run on the CPU. The CMT also takes care of data movement between
the CPU and GPU especially in miss-speculation cases.

5.1. Loop Monitoring

This section describes how Paragon monitors possibly parallel loops on the CPU to find
the dependency between iterations and uses this information to improve the perfor-
mance of the generated code. Paragon executes the first invocation of possibly parallel
loops on the CPU with two threads: working thread and monitoring thread. The work-
ing thread executes the loop sequentially and the monitoring thread monitors the loop
in parallel to decrease the overhead of monitoring. The monitoring thread keeps track

ACM Transactions on Architecture and Code Optimization, Vol. 11, No. 1, Article 3, Publication date: February 2014.

Leveraging GPUs Using Cooperative Loop Speculation 3:15

of all memory accesses. This one-time monitoring has a negligible overhead because
Paragon only monitors possibly parallel loops in parallel with the real execution.

The monitoring thread executes every instruction from the loop except stores and
keeps track of the number of conflicts. After monitoring each possibly parallel loop,
if there was no conflict (read-after-write, write-after-read, and write-after-write), the
monitoring thread marks the kernel as a parallel kernel for the CMT. If there were
conflicts, the monitoring thread marks the loop as sequential. After all possibly parallel
kernels are categorized based on the monitoring results, Paragon enters the kernel
execution phase. In this phase, Paragon keeps track of the number of iterations that
each loop has. Based on these numbers, it will tune the number of blocks for the next
execution of each kernel on the GPU to get the best performance.

5.2. Conflict Management Thread (CMT)

The Conflict Management Thread (CMT) is a thread running on the CPU and its
responsibility is to manage GPU-CPU transfers and run kernels speculatively on the
GPU. The CMT decides which kernel should be executed on the CPU or GPU. In case
of conflicts, it uses the correct data on the CPU to run the next kernel. If there was
a dependency violation, the CMT does not launch the next kernel on the GPU and
waits for the working thread on the CPU to finish. Based on the next kernel type, the
CMT makes different decisions. If the next kernel should be run on the GPU, the CMT
transfers all live-out variables to the GPU and launches the next kernel. If the next
kernel is possibly parallel, in addition to the GPU version, one version will also be run
on the CPU. The last case is that the next kernel is sequential, so the CMT runs the
sequential code on the CPU.

If there was no conflict in the GPU execution, the CMT sets a global variable to inform
the working thread on the CPU to stop. To decrease the overhead, the working thread
checks that global variable once every several iterations (10 in our experiments). This
global variable works as a memory barrier to manage the data transferring between
the CPU and GPU. If the next kernel is parallel, the CMT will launch the next kernel.
Otherwise, it transfers live-out variables and runs the next kernel on the CPU.

5.3. Execution Scenarios

This section explains the advantages and disadvantages of using cooperative loop
execution for different possible scenarios. Figure 8 shows four different possibilities
for an example with three loops. In this example, Loop2 is a possibly parallel loop,
and based on the characteristics of the Loop1 and Loop3, different scenarios may take
place. In the first scenario shown in Figure 8(a), Loop1 and Loop3 are sequential loops
and they will be executed on the CPU. Figure 8(b) shows a case when both Loop1 and
Loop3 are do-all loops and will be run on the GPU. In Figures 8(c) and 8(d), one of these
two loops is do-all and the other one is sequential.

For each of these scenarios, there are three cases: the first case is the baseline when
Paragon does not run the possibly parallel loop (Loop2) speculatively on the GPU. In
all baseline cases, Loop2 will be executed on the CPU. In the next two cases, Paragon
runs the loop speculatively on the GPU. If there was no conflict in the GPU execution,
Paragon uses the GPU’s results and launches the next kernel. In the last case, there
is a conflict in the GPU execution. Therefore, Paragon continues the CPU version of
Loop2 and uses its results to execute the last loop.

Figure 8 compares the execution time (τ) of Loop2, which includes the transfer times
needed for executing this loop. In other words, τ is equal to the time between the
termination of the first loop and the start of the last loop. L is the execution time of
Loop2 on the CPU and G is the speedup of the GPU execution of Loop2 compared to
the sequential run of Loop2. For the sake of simplicity, it is assumed that transfer time

ACM Transactions on Architecture and Code Optimization, Vol. 11, No. 1, Article 3, Publication date: February 2014.

3:16 M. Samadi et al.

Fig. 8. Different scenarios for Paragon execution. This figure compares the execution time (τ) of Loop2 for
different scenarios. τ is equal to the time between termination of the first loop and the start of the last loop.
L is the execution time of the Loop2 on the CPU and G is the speedup of the GPU execution of the Loop2
with instrumentation compared to the sequential CPU execution. T is the transfer time between the CPU
and the GPU.

Fig. 9. This figure shows performance and speculative overhead for different execution scenarios in Figure 8.
Part (a) illustrates speedup of different scenarios compared to the baseline when there is no conflict. Scenario
b in the best case (b_b) has the highest speedup and scenario a in the worst case (a_w) has the lowest speedup.
All the legends are sorted based on the speedup on top of the figure. Part (b) illustrates the overhead of these
scenarios compared to the baseline in case of miss-speculation.

from the GPU to the CPU is equal to the transfer time from the CPU to the GPU, which
is equal to T.

If Loop2 does not modify the inputs of the loop, there is no need to wait for the transfer
operation to be over, and Paragon can perform the transfer and launch the kernel at
the same time. For example, in Figure 8(b), with no conflicts, if Loop2 is re-entrant, the
GPU version can start right after Loop1. However, if Loop2 is not re-entrant, Paragon
transfers the data to the CPU before starting Loop2 on the GPU to make sure that
there is a correct version of the data in the CPU’s memory. Dashed arrows in Figure 8
represent these kinds of transfers, which, based on the characteristics of the possibly
parallel loop, may or may not affect the execution time.

Figure 9(a) shows the speedup that Paragon can gain with speculation for different
L/T s. This speedup is equal to τbaseline/τnoconflict. In fused architectures where the CPU
and the GPU are integrated on the same die and share DRAM, as in AMD Fusion,
or L3 cache, as in Intel Sandy Bridge, transfer time is low compared to the discrete
GPUs.1 As can be seen in the figure, speedup for these systems will be close to the

1A typical discrete GPU has a separate memory from system memory and data transfer is done through
PCIExpress.

ACM Transactions on Architecture and Code Optimization, Vol. 11, No. 1, Article 3, Publication date: February 2014.

Leveraging GPUs Using Cooperative Loop Speculation 3:17

Table I. Application Specifications

Input Size Output Size Number of loops
FDTD 4096 × 4096 matrix 4096 × 4096 matrix 6
Seidel 4096 × 4096 matrix 4096 × 4096 matrix 2
Jacobi1d 16M array 16M array 1
Jacobi2d 4096 × 4096 matrix 4096 × 4096 matrix 2
Gemm two 4096 × 4096 matrix 4096 × 4096 matrix 3
Tmv 4096 × 4096 matrix + 4096 array 4096 array 2
Saxpy two 32M array 32M array 1
House two 32M array 32M array 2
Ipvec 32M array 32M array 1
Ger two 64K array + sparse 64k × 64k matrix sparse 64k × 64k matrix 2
Gemver two 64K array + sparse 64k × 64k matrix 64k array 6
FWD 64K array + sparse 64k × 64k matrix 64k array 2
SOR 64K array + sparse 64k × 64k matrix 64k array 2

GPU’s gain (G) in all scenarios. The interesting point in this figure is that speedup is
increasing by decreasing the transfer time, except in scenario (b) with the re-entrant
loop (the best case). The reason for that is Loop1 and Loop3 are both executed on the
GPU. In the baseline case, Paragon should transfer the input data of Loop2 to the CPU,
execute that loop, and transfer the data back to the GPU. For speculative execution,
there is no need to transfer the data. Therefore, reducing the transfer time will reduce
the advantage of speculation over baseline for this scenario.

Figure 9(b) shows the overhead of miss-speculation for scenarios 8a and 8c in the
worst case (nonre-entrant loop) for different L/T s. All other scenarios do not have any
performance overhead in case a conflict happens. With decreasing transfer cost, this
overhead decreases rapidly as shown in this figure.

6. EXPERIMENTS

Paragon compilation phases are implemented in the backend of the Cetus compiler
[Lee et al. 2003]. We modified the C-code generator in Cetus to generate CUDA code.
Paragon’s output codes are compiled for execution on the GPU using NVIDIA nvcc 4.0.
GCC 4.4.6 is used to generate the x86 binary for execution on the host processor. The
target system has an Intel i7 CPU and an NVIDIA GTX 560 GPU with 2GB GDDR5
global memory.

In order to evaluate Paragon, we compiled benchmarks with pointer and indirect
memory accesses and compared their performance with hand-optimized unsafe paral-
lelized C code.2 We implemented unsafe parallel versions of these benchmarks for the
CPU with two and four threads and for the GPU too. Although there are many works
on speculation for CPUs like CorD [Tian et al. 2008], their performance cannot be
better than unsafe parallel versions. For example, CorD has 7% overhead. That’s why
we use unsafe code as an upper bound in our performance measurements for compar-
ison purposes. A summary of the benchmark characteristics is shown in Table I. Also,
we present a case study of accelerating a real-world application, Rayleigh quotient
iteration, which will be discussed in Section 6.4.

2Unsafe means sequential code that is optimistically parallelized and does not perform any dynamic de-
pendence checking or synchronization/locking to ensure correct results. Therefore, its final results might be
wrong due to memory dependencies between threads.

ACM Transactions on Architecture and Code Optimization, Vol. 11, No. 1, Article 3, Publication date: February 2014.

3:18 M. Samadi et al.

Benchmarks with pointer memory accesses. We reimplemented six benchmarks from
the Polybench benchmark suite [Polybench 2011] in C with pointers to show Paragon’s
performance for loops with pointers.

FDTD, the finite difference time domain method, is a powerful computational tech-
nique for modeling electromagnetic space. This benchmark has three pairs of different
stencil loops and all these loops are highly memory intensive. The Seidel benchmark
uses the Gauss-Seidel method, which is an iterative method used to solve a linear
system of equations. Seidel is a stencil benchmark with more computation than FDTD.
Jacobi is another stencil method to solve linear systems; we used one-dimensional and
two-dimensional versions of this benchmark.

Gemm is a general matrix multiplication benchmark that has three nested loops. The
innermost loop is a reduction loop and two outer loops are parallel. As mentioned before,
Paragon decides which loops should be parallelized based on the number of iterations.
Since both outer loops have high trip counts, Paragon parallelizes these loops and
executes reduction sequentially inside each thread. It should be noted that this code is
automatically generated for matrix multiply with pointers, so most compilers cannot
detect that these loops are parallel. For the CPU version, we parallelized the outermost
loop.

Tmv is a transposed matrix vector multiplication benchmark that has two nested
loops. The outer one is a do-all loop and the inner one is a reduction loop. The outer
loop will be mapped to thread blocks and each thread block performs the reduction in
parallel.

Benchmarks with indirect memory accesses. Seven benchmarks from the sparse ma-
trix library are used to show Paragon’s performance for loops with indirect array ac-
cesses. We selected them because they have loops that cannot be analyzed by traditional
compilers. For each sparse matrix benchmark, we generated matrices randomly with
1% nonzero elements.

Saxpy adds a sparse array with a dense array and writes the result in the dense
array. The householder reflection benchmark, House, computes the reflection of a plane
or hyperplane containing the origin. This method is widely used in linear algebra to
compute QR decompositions. This benchmark consists of two parts. The first part is
a reduction loop that cannot cause conflict, and this loop will be compiled to CUDA
without any instrumentation. The second part has a loop that is similar to Saxpy and
it may have cross-iteration dependencies.

Ipvec is a dense matrix benchmark that shuffles all elements of the input array based
on another array and puts the results in the output array. Sparse BLAS functions Ger
and Gemver also have loops that can cause conflicts. Dependencies between different
iterations of these loops cannot be analyzed statically, so we need to use Paragon to
run these loops on the GPU speculatively.

Forward elimination with level scheduling, FWD, is another method used in solving
linear systems. FWD’s code is shown in Figure 1 and it has both reads and writes to the
conflicted array. The next benchmark is SOR, a multicolor SOR sweep in the EllPack
format, and its code is similar to FWD. This benchmark has two loops: the outer loop is
do-across and the inner loop is parallel, but traditional static compilers cannot easily
detect that.

6.1. Performance

Figures 10(b) and 10(a) compare the performance of the benchmarks with pointer and
indirect memory accesses to the unsafe parallel execution. The Paragon-Reduction ver-
sion is the performance of the Paragon’s generated code with instrumentation using re-
duction to check the dependencies. Paragon-Atomic uses the CUDA atomic instruction

ACM Transactions on Architecture and Code Optimization, Vol. 11, No. 1, Article 3, Publication date: February 2014.

Leveraging GPUs Using Cooperative Loop Speculation 3:19

Fig. 10. This figure shows performance of Paragon approaches compared to unsafe parallelized versions.
Baseline is running the code sequentially on the CPU. Part (a) illustrates performance comparison of Paragon
with unsafe parallel versions on the GPU and CPU with four and two threads for loops with pointers. Part (b)
shows performance for loops with indirect accesses.

to find the conflicts on the fly. CPU 4 and 2 are unsafe parallel CPU versions without
any checks for conflicts. GPU is an unsafe parallel version of applications without any
instrumentations. All these different versions are compared with the sequential runs
on the CPU without any threading.

Since memory accesses in benchmarks with indirect accesses are irregular, the GPU’s
performance is lower for these benchmarks than regular access benchmarks. In these
loops, unlike the pointer loops, Paragon marks arrays that can cause conflicts. Since
Paragon only checks memory accesses for these arrays, the overhead of conflict checking
is lower compared to the pointer loops.

As shown in Figures 10(b) and 10(a), for all benchmarks except Ipvec, Paragon-
Atomic performs better than Paragon-Reduction. Since atomic instructions are slower
than nonatomic memory accesses, maintaining write history of different iterations
in Paragon-Reduction has less overhead than Paragon-Atomic. However, in order to
find conflicts, Paragon-Reduction needs to calculate the sum of two arrays: write log
and total writes. Since these two reduction operations have a large overhead for
large array sizes, the performance of the Paragon-Atomic approach is better than
Paragon-Reduction. The performance gap between these two approaches is higher for
benchmarks with higher checking kernel overhead. Paragon-Reduction performs bet-
ter than Paragon-Atomic for Ipvec because atomic memory accesses perform poorly for
the many uncoalesced memory accesses found in Ipvec.

For benchmarks with pointer accesses, Paragon-Atomic is 6.8x faster than CPU
execution with four threads. For these benchmarks, Paragon is 12x faster than two-
thread execution. Also, Paragon-Atomic is 1.3x faster than the Paragon-Reduction
approach on average. As can be seen in Figure 10(a), the performance of the Paragon-
Atomic is 2.5x better than the unsafe parallel version of the code running on the
CPU with four threads for benchmarks with indirect accesses. Paragon-Atomic is 3.4x
faster than two-thread execution. Also, Paragon-Atomic is 1.3x faster than the Paragon-
Reduction approach on average. It should be noted that in the CPU version, we assumed
that there is no conflict between different iterations and, therefore, our results are
pessimistic. Figure 10(a) shows that running safely on the GPU is better than running
unsafely on the CPU for these data-parallel loops.

On average, for benchmarks with pointer accesses and indirect array accesses, the
unsafe parallel GPU versions are respectively 1.9x and 1.5x faster than Paragon-
Atomic’s performance. The reason is that in loops with pointers, all arrays can cause
conflicts, and Paragon’s approach can lead to 2x more memory accesses. These extra
memory accesses can degrade the performance of memory-intensive loops. The unsafe

ACM Transactions on Architecture and Code Optimization, Vol. 11, No. 1, Article 3, Publication date: February 2014.

3:20 M. Samadi et al.

Fig. 11. Breakdown of Paragon’s overhead compared to unsafe parallel version on the GPU for loops with
pointers.

GPU code’s performance is not realistically achievable, and we report this number to
show the potential of our system if further optimizations and smarter runtime systems
are deployed in Paragon.

6.2. Overhead Breakdown

Figure 11 shows the overhead of Paragon execution compared to the unsafe GPU
execution without any instrumentation. This figure also breaks down the overhead into
five groups: write-log maintenance, read-log maintenance, checking kernel execution,
detecting which arrays each pointer accesses, and range check of indices that each
pointer accesses. Note that only benchmarks with pointer memory accesses have find-
arrays or range-check overhead.

Saxpy, House, Ipvec, Ger, and Gemver only write to the conflict candidate arrays.
Since the atomicInc function used in the Paragon-Atomic approach returns the old
value, there is no need to launch the checking kernel. For each write in the execution
kernel, each thread atomically increments the corresponding element in the write log
and it checks the old value. If the old value is more than zero, the execution kernel sets
the conflict flag. Therefore, for these benchmarks there is no checking-kernel overhead.

For all benchmarks, the write-log overhead is higher for Paragon-Atomic than
Paragon-Reduction. The reason is that Paragon-Atomic uses atomic instructions to
update the write log that are not as fast as just writing to the global memory. Also,
since Paragon-Reduction needs to count the number of writes with executing two re-
duction kernels, the overhead of the checking kernel is higher for the Paragon-Atomic
approach.

SOR and FWD benchmarks read from an array and write to the same array with dif-
ferent addresses. Consequently, both Paragon approaches need to launch the checking
kernel. Therefore, the overhead breakdown is similar for both approaches.

Benchmarks with pointer memory accesses have range-check and find-arrays over-
head too. Find-arrays overhead is negligible for benchmarks with high computation
such as Gemm because finding arrays is done only once for each kernel. Range-check
overhead is high for benchmarks with a large number of memory accesses such as
Gemm and Tmv because for each memory access, Paragon needs to compare the ac-
cessed address with maximum and minimum addresses that are accessed by that
pointer. Since Gemm and Tmv have more reads than writes, the overhead of main-
taining the read log is higher than the write log’s maintenance overhead. The effect
of finding arrays is smaller on Jacobi2d compared to the same value in Jacobi1d be-
cause the two-dimensional version has more computation and memory accesses and

ACM Transactions on Architecture and Code Optimization, Vol. 11, No. 1, Article 3, Publication date: February 2014.

Leveraging GPUs Using Cooperative Loop Speculation 3:21

Fig. 12. This figure shows the performance of Paragon for all four different scenarios to the sequential C
code. Part (a) illustrates performance for loops with pointers. Part (b) shows performance for loops with
indirect accesses.

the find-array process is done completely outside of the loop at the beginning of the
kernel.

On average, for the Paragon-Atomic scheme, the overhead introduced by checking
kernel is 6% for indirect access and 14% for pointer access benchmarks. As mentioned
before, this overhead is higher for the Paragon-Reduction scheme. The checking kernel
overhead for Paragon-Reduction is 57% and 39% for benchmarks with indirect and
pointer memory accesses, respectively. For benchmarks with indirect memory accesses,
maintaining write-log overhead is 74% for Paragon-Atomic, but it is 25% for Paragon-
Reduction. Since the only difference between two schemes is how they detect write-
write conflicts, the effects of read log, range check, and find arrays are similar for both
approaches.

6.3. Execution Scenarios Performance

This section describes the impact of transferring data between the CPU and GPU
for different scenarios discussed in Section 5.3. Figures 12(b) and 12(a) compare the
performance of the benchmarks with pointer and indirect memory accesses to the
sequential C code on the CPU for all four different scenarios. As discussed in Section 5.3,
transferring overhead is high for scenario (a) because the previous and next kernel are
executed on the CPU. In this case, Paragon transfers the input data to the CPU and
transfers the result back. That’s why performance improvement for scenario (a) is
smaller than the gain reported in Figures 10(a) and 10(b), which do not consider the
transferring time.

On the other hand, transferring time helps Paragon to get better speedups for sce-
nario (b). In this scenario, baseline transfers the data from the GPU to the CPU, runs
the possibly parallel kernel, and transfers the data back to the GPU. Instead, Paragon
executes the possibly parallel kernel on the GPU, and if the loop is re-entrant, there
is no need to wait for transferring data. For this scenario, Paragon gets more than 8x
speedup for both types of loops on average.

For scenarios (c) and (d), final performance gain is dependant on transferring time
for input or output data, and whether the loop is re-entrant or not. For loops with
pointer accesses, Paragon cannot decide whether the loop is re-entrant. Therefore, it
waits for the transfer. That’s the reason that transferring overhead for scenarios (c)
and (d) is higher for loops with pointer accesses than loops with indirect accesses.

6.4. Case Study

In this section, we look into the effects of our compiler on the performance of the
Rayleigh quotient benchmark. We used this benchmark to demonstrate Paragon’s

ACM Transactions on Architecture and Code Optimization, Vol. 11, No. 1, Article 3, Publication date: February 2014.

3:22 M. Samadi et al.

Fig. 13. Rayleigh quotient code.

performance for applications with several loops where a large amount of data has to be
shipped back and forth between the GPU and CPU. We also investigate the overhead
of Paragon execution in the presence of conflicts in this section. A Rayleigh quotient
iteration is an eigenvalue algorithm that extends the idea of the inverse iteration by
using the Rayleigh quotient to obtain increasingly accurate eigenvalue estimates.

Rayleigh quotient iteration is an iterative method; that is, it must be repeated until
it converges to an answer. Fortunately, very rapid convergence is guaranteed and no
more than a few iterations are needed in practice. The Rayleigh quotient iteration
algorithm converges cubically for symmetric matrices, given an initial vector that is
sufficiently close to an eigenvector of the matrix that is being analyzed.

To solve the linear systems in lines 3 and 9 in Figure 13, we used the biconjugate
gradient stabilized method (BiCGSTAB), which is an iterative method used for finding
the numeral solution of linear systems such as Ax = B for x where A is a square matrix.
The whole BiCGSTAB process can be executed on the GPU.

If matrix A is a sparse matrix, computing A-mu*eye(rows(A)) will be a possibly
parallel code. In this case, a conservative compiler will run this part on the CPU and
transfer the result from the CPU to the GPU. However, Paragon speculatively runs
this loop on the GPU and removes the transfer overhead. We observed that this loop
is executed 5.3x faster on the GPU, and if we consider the transfer time, this speedup
will be increased to 7.8x. The effect of this speculation on the whole benchmark is
dependant on how accurate linear systems in lines 3 and 9 should be solved.

To show the overhead of Paragon’s execution in case of conflict, we added one write-
write dependency to every 20 iterations of the speculative kernel. As expected, the
performance impact of detecting conflict and using the CPU’s data to continue the
execution is negligible. Our experiments show that the overhead is less than one percent
for this benchmark.

7. RELATED WORK

As many-core architectures have become mainstream, there has been a large body
of work, such as SUIF [Wilson et al. 1994] and Polaris [Blume et al. 1996], on
static compiler techniques to automatically parallelize applications to utilize thread-
level parallelism. These compilers automatically detect loops that can be parallelized
using static analyses and transform the loops for parallel execution. However, it
is hard to statically decompose the application to take advantage of the growing
number of processor cores [Kulkarni et al. 2007, 2009]. One of the most challeng-
ing issues in automatic parallelization is to discover loop-carried dependencies. Al-
though various research projects on loop dependence analysis [Psarris et al. 1993]
and pointer analysis [Nystrom et al. 2004] have tried to disambiguate dependencies

ACM Transactions on Architecture and Code Optimization, Vol. 11, No. 1, Article 3, Publication date: February 2014.

Leveraging GPUs Using Cooperative Loop Speculation 3:23

between iterations, parallelism in most real applications cannot be uncovered at com-
pile time due to irregular access patterns, complex use of pointers, and input-dependent
variables.

For those applications that are hard to parallelize at compile time, Thread-Level
Speculation (TLS) is used to resolve loop-carried dependencies at runtime. In order to
implement TLS, several extra compiler and runtime steps such as buffering memory
access addresses for each thread, checking violations, and using recovery procedures
in case of conflicts between threads are necessary. Software-only approaches [Steffan
et al. 2005; Bocchino et al. 2008; Volos et al. 2009; Couceiro et al. 2009; Kim et al. 2012;
Kotselidis et al. 2008; Harris et al. 2006; Mehrara et al. 2009; Oancea and Mycroft
2008; Tian et al. 2008] implement all these steps in software. However, most existing
proposals for software-only speculative runtimes target tens of cores at most [Mehrara
et al. 2009; Oancea and Mycroft 2008; Tian et al. 2008]. Kim et. al. [2012] targets
100 cores, but even their method is not applicable to the GPU because they validate
the correctness of all speculative memory accesses on a core in parallel to the loop
execution on other cores. However, this parallel check is not possible on the GPU due
to communication and synchronization overheads on the GPU.

There are previous works that have focused on generating CUDA code from se-
quential input [Han and Abdelrahman 2010; Baskaran et al. 2010; Wolfe 2010; Leung
et al. 2009; Tarditi et al. 2006]. HiCUDA [Han and Abdelrahman 2010] is a high-level
directive-based compiler framework for CUDA programming where programmers need
to insert directives into sequential C code to define the boundaries of kernel functions.
The work proposed by Baskaran et al. [2010] is an automatic code transformation
system that generates CUDA code from input sequential C code without annotations
for affine programs. In the system developed by Wolfe [2010], by using C pragma pre-
processor directives, programmers help the compiler to generate efficient CUDA code.
Tarditi et al. [2006] proposed accelerator, in which programmers use C# and a library
to write their programs and let the compiler generate efficient GPU code. The work by
Leung et al. [2009] proposes an extension to a Java JIT compiler that executes program
on the GPU. Delite [Chafi et al. 2011] is another approach that aims at simplifying the
creation of performance-oriented DSLs and compiling them for heterogeneous systems,
including systems with GPUs. Our approach is orthogonal to these systems and can
be integrated in such compilation frameworks to increase the efficiency of these sys-
tems by enabling them to run more applications on the GPU. In order to improve the
performance of automatic parallelization, Paragon can take advantage of polyhedral
models [Bastoul 2004; Pouchet et al. 2008; Baskaran et al. 2008], which can perform
more powerful automatic parallelization.

While none of the previous works on automatic compilation for current GPUs con-
sidered speculation, there are other works [Menon et al. 2012; Diamos and Yalaman-
chili 2010; Liu et al. 2011] that studied the possibility of speculative execution on the
GPU. Menon et al. [2012] modified the GPU hardware to support voltage speculation.
Diamos and Yalamanchili [2010] described speculative execution on multi-GPU sys-
tems exploiting multiple GPUs, but they explored the use of traditional techniques
to extract parallelism from a sequential loop in which each iteration launches a GPU
kernel. This approach leveraged the possibility of speculatively partitioning several
kernels on multiple GPUs. Liu et al. [2011] showed the possibility of using GPUs for
speculative execution using a GPU-like architecture on FPGAs. They implemented
software value prediction techniques to accelerate programs with limited parallelism,
and software speculation techniques, which re-executes the whole loop in case of a
dependency violation.

Recent works [Cederman et al. 2010; Fung et al. 2011] proposed software and hard-
ware transactional memory systems for graphic engines. In these works, each thread

ACM Transactions on Architecture and Code Optimization, Vol. 11, No. 1, Article 3, Publication date: February 2014.

3:24 M. Samadi et al.

is a transaction, and if a transaction aborts, it needs to re-execute. This re-execution
of several threads among thousands of threads may lead to control divergence on the
GPU and will degrade the performance. For Paragon, each kernel is a transaction,
and if it aborts, Paragon uses the CPU’s results instead of re-executing the kernels.
There are many other works that try to improve the performance of GPUs by different
approaches such as reducing the overhead of divergence [Brunie et al. 2012; Coutinho
et al. 2011; Zhang et al. 2011], coalescing more memory accesses [Zhang et al. 2011],
improving inter-block communication [Xiao and chun Feng 2010], and generating dif-
ferent kernels for different input sizes [Samadi et al. 2012].

8. CONCLUSION

GPUs provide an attractive platform for accelerating parallel workloads. Due to their
nontraditional execution model, developing applications for GPUs is usually very chal-
lenging. As a result, these devices are left underutilized in many commodity systems.
Several languages have emerged to solve this challenge, but past research has shown
that developing applications in these languages is a difficult task because of the tedious
performance optimization cycle or inherent algorithmic characteristics of an applica-
tion. Also, previous approaches of automatically generating optimized parallel code in
CUDA for GPUs using complex compiler infrastructures have failed to utilize GPUs
that are present in everyday computing devices.

In this work, we proposed Paragon: a static/dynamic compiler platform to specula-
tively and cooperatively run possibly data-parallel pieces of sequential applications
on GPUs and CPUs. Paragon monitors the dependencies for possibly data-parallel
loops running speculatively on the GPU and nonspeculatively on the CPU using a
lightweight distributed conflict detection designed specifically for GPUs, and transfers
the execution to the CPU in case a conflict is detected. Paragon resumes the execution
on the GPU after the CPU resolves the dependency. We looked at two classes of implic-
itly data-parallel applications: applications with indirect and pointer memory accesses.
Our experiment show that, for applications with indirect memory accesses, Paragon
achieves 2.5x on average and up to 4x speedup compared to unsafe CPU execution with
four threads. Also, for applications with pointer memory accesses, Paragon achieves
6.8x on average and up to 30x speedup compared to unsafe CPU execution with four
threads.

ACKNOWLEDGMENTS

Much gratitude goes to the anonymous referees who provided excellent feedback on this work. This
research was supported by ARM Ltd. and the National Science Foundation under grants CNS-0964478 and
CCF-0916689.

REFERENCES

M. M. Baskaran, U. Bondhugula, S. Krishnamoorthy, J. Ramanujam, R. Atanas, and P. Sadayappan. 2008. A
compiler framework for optimization of affine loop nests for GPGPUs. In Proc. of the 2008 International
Conference on Supercomputing. 225–234.

M. M. Baskaran, J. Ramanujam, and P. Sadayappan. 2010. Automatic C-to-CUDA code generation for affine
programs. In Proc. of the 19th International Conference on Compiler Construction. 244–263.

C. Bastoul. 2004. Code generation in the polyhedral model is easier than you think. In Proc. of the 13th
International Conference on Parallel Architectures and Compilation Techniques. 7–16.

B. H. Bloom. 1970. Space/time trade-offs in hash coding with allowable errors. Communications of the ACM
13, 7, 422–426.

W. Blume, et al. 1996. Parallel programming with Polaris. IEEE Computer 29, 12, 78–82.

ACM Transactions on Architecture and Code Optimization, Vol. 11, No. 1, Article 3, Publication date: February 2014.

Leveraging GPUs Using Cooperative Loop Speculation 3:25

R. L. Bocchino, V. S. Adve, and B. L. Chamberlain. 2008. Software transactional memory for large scale clus-
ters. In Proc. of the 13th ACM SIGPLAN Symposium on Principles and Practice of Parallel Programming.
247–258.

N. Brunie, S. Collange, and G. Diamos. 2012. Simultaneous branch and warp interweaving for sustained
GPU performance. In Proc. of the 39th Annual International Symposium on Computer Architecture.
49–60.

D. Cederman, P. Tsigas, and M. T. Chaudhry. 2010. Towards a software transactional memory for graphics
processors. In Proc. of the 12th Eurographics Symposium on Parallel Graphics and Visualization. 121–
129.

H. Chafi, A. K. Sujeeth, K. J. Brown, H. Lee, A. R. Atreya, and K. Olukotun. 2011. A domain-specific approach
to heterogeneous parallelism. In Proc. of the 16th ACM SIGPLAN Symposium on Principles and Practice
of Parallel Programming. 35–46.

M. Couceiro, P. Romano, N. Carvalho, and L. Rodrigues. 2009. D2STM: Dependable distributed software
transactional memory. In Proc. of the 2009 15th IEEE Pacific Rim International Symposium on Depend-
able Computing. 307–313.

B. Coutinho, D. Sampaio, F. Pereira, and W. Meira. 2011. Divergence analysis and optimizations. In Proc. of
the 20th International Conference on Parallel Architectures and Compilation Techniques. 320–329.

G. Diamos and S. Yalamanchili. 2010. Speculative execution on Multi-GPU systems. In Proc. of the 2010
IEEE International Symposium on Parallel and Distributed Processing. 1–12.

W. W. L. Fung, I. Singh, A. Brownsword, and T. M. Aamodt. 2011. Hardware transactional memory for GPU
architectures. In Proc. of the 44th Annual International Symposium on Microarchitecture.

T. Han and T. Abdelrahman. 2010. hiCUDA: High-level GPGPU programming. IEEE Transactions on Parallel
and Distributed Systems 22, 1, 52–61.

T. Harris, M. Plesko, A. Shinnar, and D. Tarditi. 2006. Optimizing memory transactions. In Proc. of the 2006
Conference on Programming Language Design and Implementation 41, 6, 14–25.

H. Kim, N. P. Johnson, J. W. Lee, S. A. Mahlke, and D. I. August. 2012. Automatic speculative doall for
clusters. In Proc. of the 2012 International Symposium on Code Generation and Optimization. 94–103.

C. Kotselidis, M. Ansari, K. Jarvis, M. Luján, C. Kirkham, and I. Watson. 2008. DiSTM: A software trans-
actional memory framework for clusters. In Proc. of the 2008 International Conference on Parallel
Processing. 51–58.

M. Kulkarni, M. Burtscher, R. Inkulu, K. Pingali, and C. Cascaval. 2009. How much parallelism is there in
irregular applications? In Proc. of the 14th ACM SIGPLAN Symposium on Principles and Practice of
Parallel Programming. 3–14.

M. Kulkarni, K. Pingali, B. Walter, G. Ramanarayanan, K. Bala, and L. P. Chew. 2007. Optimistic paral-
lelism requires abstractions. In Proc. of the 2007 Conference on Programming Language Design and
Implementation. 211–222.

S. I. Lee, T. Johnson, and R. Eigenmann. 2003. Cetus—an extensible compiler infrastructure for source-
to-source transformation. In Proc. of the 16th Workshop on Languages and Compilers for Parallel
Computing.

V. W. Lee, C. Kim, J. Chhugani, M. Deisher, D. Kim, A. D. Nguyen, N. Satish, M. Smelyanskiy, S. Chennupaty,
P. Hammarlund, R. Singhal, and P. Dubey. 2010. Debunking the 100x gpu vs. cpu myth: an evaluation
of throughput computing on CPU and GPU. In Proc. of the 37th Annual International Symposium on
Computer Architecture. 451–460.

A. Leung, O. Lhoták, and G. Lashari. 2009. Automatic parallelization for graphics processing units. In
Proc. of the 7th International Conference on Principles and Practice of Programming in Java. 91–
100.

S. Liu, C. Eisenbeis, and J.-L. Gaudiot. 2011. Value prediction and speculative execution on GPU. Interna-
tional Journal of Parallel Programming 39, 533–552.

M. Mehrara, J. Hao, P. chun Hsu, and S. Mahlke. 2009. Parallelizing sequential applications on commodity
hardware using a low-cost software transactional memory. In Proc. of the 2009 Conference on Program-
ming Language Design and Implementation. 166–176.

J. Menon, M. de Kruijf, and K. Sankaralingam. 2012. iGPU: Exception support and speculative execu-
tion on GPUs. In Proc. of the 39th Annual International Symposium on Computer Architecture. 72–
83.

NVIDIA. 2010. GPUs Are Only Up To 14 Times Faster than CPUs says Intel. Retrieved http://blogs.nvidia.
com/ntersect/2010/06/gpus-are-only-up-to-14-times-faster-than-cpus-says-intel.html.

E. Nystrom, H.-S. Kim, and W. Hwu. 2004. Bottom-up and top-down context-sensitive summary-based
pointer analysis. In Proc. of the 11th Static Analysis Symposium. 165–180.

ACM Transactions on Architecture and Code Optimization, Vol. 11, No. 1, Article 3, Publication date: February 2014.

http://blogs.nvidia.com/ntersect/2010/06/gpus-are-only-up-to-14-times-faster-than-cpus-says-intel.html
http://blogs.nvidia.com/ntersect/2010/06/gpus-are-only-up-to-14-times-faster-than-cpus-says-intel.html

3:26 M. Samadi et al.

C. E. Oancea and A. Mycroft. 2008. Software thread-level speculation: An optimistic library implementation.
In Proc. of the 1st International Workshop on Multicore Software Engineering. 23–32.

Polybench. 2011. The Polyhedral Benchmark suite. Retrieved from http://www.cse.ohio-state.edu/pouchet/
software/polybench.

L.-N. Pouchet, C. Bastoul, A. Cohen, and J. Cavazos. 2008. Iterative optimization in the polyhedral model:
Part ii, multidimensional time. In Proc. of the 2008 Conference on Programming Language Design and
Implementation. 90–100.

K. Psarris, X. Kong, and D. Klappholz. 1993. The direction vector I test. IEEE Journal of Parallel Distributed
Systems 4, 11, 1280–1290.

L. Rauchwerger and D. A. Padua. 1999. The LRPD test: Speculative run-time parallelization of loops with
privatization and reduction parallelization. IEEE Transactions on Parallel and Distributed Systems 10,
2, 160.

D. Roger, U. Assarsson, and N. Holzschuch. 2007. Efficient stream reduction on the GPU. In Proc. of the 1st
Workshop on General Purpose Processing on Graphics Processing Units. 1–4.

S. Ryoo, C. I. Rodrigues, S. S. Stone, S. S. Baghsorkhi, S.-Z. Ueng, J. A. Stratton, and W. mei W. Hwu.
2008. Program optimization space pruning for a multithreaded GPU. In Proc. of the 2008 International
Symposium on Code Generation and Optimization. 195–204.

M. Samadi, A. Hormati, M. Mehrara, J. Lee, and S. Mahlke. 2012. Adaptive input-aware compilation for
graphics engines. In Proc. of the 2012 Conference on Programming Language Design and Implementation.
13–22.

J. G. Steffan, C. Colohan, A. Zhai, and T. C. Mowry. 2005. The STAMPede approach to thread-level speculation.
ACM Transactions on Computer Systems 23, 3, 253–300.

D. Tarditi, S. Puri, and J. Oglesby. 2006. Accelerator: Using data parallelism to program GPUs for general-
purpose uses. In Proc. of the 12th International Conference on Architectural Support for Programming
Languages and Operating Systems. 325–335.

C. Tian, M. Feng, V. Nagarajan, and R. Gupta. 2008. Copy or discard execution model for speculative
parallelization on multicores. In Proc. of the 41st Annual International Symposium on Microarchitecture.
330–341.

H. Volos, A. Welc, A.-R. Adl-Tabatabai, T. Shpeisman, X. Tian, and R. Narayanaswamy. 2009. NePalTM:
Design and implementation of nested parallelism for transactional memory systems. In Proc. of the
23nd European conference on Object-Oriented Programming. 123–147.

R. P. Wilson, et al. 1994. SUIF: An infrastructure for research on parallelizing and optimizing compilers.
ACM SIGPLAN Notices 29, 12, 31–37.

M. Wolfe. 1995. High Performance Compilers for Parallel Computing. Addison-Wesley Longman.
M. Wolfe. 2010. Implementing the PGI accelerator model. In Proc. of the 3rd Workshop on General Purpose

Processing on Graphics Processing Units. 43–50.
S. Xiao and W. chun Feng. 2010. Inter-block GPU communication via fast barrier synchronization. In Proc.

of the 2010 IEEE International Symposium on Parallel and Distributed Processing. 1–12.
E. Z. Zhang, Y. Jiang, Z. Guo, K. Tian, and X. Shen. 2011. On-the-fly elimination of dynamic irregularities for

GPU computing. In Proc. of the 16th International Conference on Architectural Support for Programming
Languages and Operating Systems. 369–380.

Received February 2013; revised July 2013; accepted October 2013

ACM Transactions on Architecture and Code Optimization, Vol. 11, No. 1, Article 3, Publication date: February 2014.

http://www.cse.ohio-state.edu/pouchet/software/polybench
http://www.cse.ohio-state.edu/pouchet/software/polybench

