
J Sign Process Syst (2015) 78:35–47
DOI 10.1007/s11265-014-0932-x

Using Graphics Processing Units in an LTE Base Station

Qi Zheng · Yajing Chen · Hyunseok Lee ·
Ronald Dreslinski · Chaitali Chakrabarti ·
Achilleas Anastasopoulos · Scott Mahlke · Trevor Mudge

Received: 28 February 2014 / Revised: 11 July 2014 / Accepted: 15 July 2014 / Published online: 9 August 2014
© Springer Science+Business Media New York 2014

Abstract Base stations have been built from ASICs, DSP
processors, or FPGAs. This paper studies the feasibility
of building wireless base stations from commercial graph-
ics processing units (GPUs). GPUs are attractive because
they are widely used massively parallel devices that can be
programmed in a high level language. Base station
workloads are highly parallel, making GPUs a potential
candidate for a cost effective programmable solution. In
this work, we develop parallel implementations of key ker-
nels to evaluate the merits of using GPUs as the baseband
signal processor. We also study the mapping method of
key kernels onto a multi-GPU system to minimize the
number of required GPUs and the overall subframe
processing latency. Our results show that the baseband
subsystem in an LTE base station, which supports ≤
150 Mbps peak data rate, can be built with up to
four NVIDIA GTX 680 GPUs and commercial mother-
boards. We also show that the digital processing subsystem
for a 75 Mbps LTE base station can be built using two
NVIDIA GTX 680 GPUs with power consumption of
188 W.

Q. Zheng (�) · Y. Chen · R. Dreslinski · A. Anastasopoulos · S.
Mahlke and T. Mudge
EECS Department, University of Michigan, Ann Arbor, MI, USA
e-mail: qizheng@umich.edu

H. Lee
Department of Electronics and Communications Engineering,
Kwangwoon University, Seoul, Korea
e-mail: hyunseok@kw.ac.kr

C. Chakrabarti
School of ECEE, Arizona State University, Tempe, AZ, USA
e-mail: chaitali@asu.edu

Keywords LTE base station · Baseband processing ·
Graphics processing unit · Multi-GPU system · Power
efficient

1 Introduction

Over the last decade more and more people have been using
mobile devices to connect anywhere anytime. Applications
supported by these devices, such as web browsing and real-
time gaming, require high data rates. To address these needs,
third (3G) and fourth (4G) generation wireless technologies
have been deployed.

3GPP Long Term Evolution (LTE) is a standard
for 4G wireless communication of high-speed data for
mobile phones and data terminals. LTE is designed to
increase the cell capacity and provide high data rate
and is expected to support up to four times the data
and voice capacity supported by HSPA [3]. LTE can
achieve a peak data rate of 75 Mbps for uplink and
150 Mbps for downlink. In multiple antenna configura-
tions, the peak data rate for downlink can be as high as
300 Mbps.

A wireless base station is responsible for coordinat-
ing the traffic and signaling between mobile devices and
the network switching system, making them an integral
part of the cellular network. Baseband processing requires
giga-operations-per-second level throughput [6], making it
one of the most computationally intensive components of
a base station. Further complicating baseband processor
design is the requirement that they must also support mul-
tiple wireless communication protocols. This makes the
cost of a fixed application-specific integrated circuit (ASIC)
solution more costly and drives the need for a programmable
solution.

mailto:qizheng@umich.edu
mailto:hyunseok@kw.ac.kr
mailto:chaitali@asu.edu


36 J Sign Process Syst (2015) 78:35–47

To support easy migration to newer and updated stan-
dards, a base station should be built with programmable
processors that provide high throughput and low power.
While some commercial DSPs [6, 8, 15] provide a good
tradeoff between throughput and power consumption, they
have to be integrated with accelerators, often designed
by different companies, to implement a baseband system.
Alternatively, a general-purpose processor has been shown
to be a viable solution for CDMA with full programmabil-
ity and good portability [2]. Unfortunately, this solution is
costly because of the large number of Intel Xeon processors
that are required.

In this paper we explore building an LTE base station
with graphics processing units (GPUs). These processors
provide GFLOPS-level throughput, and have high compute
capability per Joule [16]. GPUs also have added language
support like CUDA for general purpose programming. They
provide programmers the ability to exploit high degrees of
data-level parallelism (DLP) and thread-level parallelism
(TLP). Thus, GPUs are ideal architectural platforms for LTE
baseband processing where DLP and TLP are abundant. In
addition, due to their high raw compute power per dollar,
GPUs are very cost-efficient solutions.

In this work, we focus on the uplink receiver in the
LTE base station, because most of the computations are
done in the receiver side [24]. We develop highly paral-
lel GPU implementations of all key kernel algorithms in
LTE uplink baseband processing, and study their runtime
performance under different antenna configurations and
modulation schemes when implemented on the NVIDIA
GTX680 GPU. We explore a multi-GPU configuration for
high data rate applications, and study different mapping
methods of key kernels onto a multi-GPU system when con-
sidering the LTE throughput constraint and the inter-GPU
communication overhead. Our study shows that the base-
band subsystem in an LTE base station, which supports up
to 150 Mbps peak data rate, can be built with four NVIDIA
GTX 680 GPUs and commercial motherboards. Finally, we
estimate the power consumption by measuring the dynamic
power of each kernel running on a GTX680 GPU. For a
75 Mbps LTE baseband uplink, the digital subsystem of our
dual-GPU based LTE base station consumes 188 W, which
is competitive with commercial systems.

The rest of the paper is organized as follows. Section 2
introduces the background information of baseband pro-
cessing in an LTE base station. The GPU implementations
of key kernels are described in Section 3. Section 4 intro-
duces different multi-GPU systems, and the mapping meth-
ods of key kernels onto a multi-GPU system. Section 5
shows the kernel runtime performance, the minimum num-
ber of needed GPUs under different system configurations,
and the power consumption. Related work is discussed in
Section 6 and the paper is concluded in Section 7.

2 Baseband Processing in an LTE Base Station

The main baseband processing kernels in an LTE base sta-
tion receiver are shown in Fig. 1. LTE uplink uses Single
Carrier Frequency Division Multiple Access (SC-FDMA)
for transmission [4]. The total number of subcarriers is fixed
based on how much radio bandwidth is used. When there
is more than one user, the subcarriers are shared, thereby
lowering the data rate for each user.

A bird’s-eye view of the processing flow is as fol-
lows. The received data from the channel is first processed
through SC-FDMA FFT. Pilot signals are used to estimate
the channel state information (CSI), which is then used in
the MIMO detector to counteract the effects of the channel.
The transform decoder performs IFFT on the equalized data.
The modulation demapper retrieves bits by generating soft
information, and the descrambling reorders soft information
based on a predefined pattern. The rate matcher punctures
soft information into a predefined length, and finally the
Turbo decoder recovers binary information bits. A brief
description of the key kernels is given below.

SC-FDMA SC-FDMA is a precoded Orthogonal Frequency
Division Multiplexing (OFDM) scheme, which has an addi-
tional transform decoding step after conventional OFDM
processing. In the LTE uplink receiver, the OFDM step is
done using FFT, and the transform decoding step is done
using a mixed radix IFFT. The largest size of OFDM FFT is
2048, and that of transform decoding IFFT is 1200.

Channel Estimation The LTE uplink transmission uses the
comb-type pilot arrangement. Channel estimation takes the
received signal and known pilot reference symbols to esti-
mate the CSI, and then computes the channel coefficients.
We implemented frequency domain least square channel
estimation [14].

MIMO Detector MIMO technology is the use of multi-
ple antennae at both the transmitter and the receiver with
the aim of increasing performance and/or data rate. There
are various MIMO detection methods, such as equalization-
based detection, sphere decoding and lattice reduction
detection. For LTE uplink, an equalization-based MIMO
detector, such as zero-forcing (ZF) and minimum mean-
square error (MMSE) equalizer, is usually used [17].
We used the MMSE-based MIMO detector in our GPU
implementation.

Modulation Demapper The goal of the modulation map-
per is to represent a binary data stream with a signal that
matches the characteristics of the channel [20]. The binary
sequences are grouped and mapped into complex-valued
constellation symbols. The modulation demapper, on the



J Sign Process Syst (2015) 78:35–47 37

RF SC-FDMA 
Demodulation

MIMO 
detector

Ant 1

Ant 1 data

Transform
decoder

Ant 1 data

Ant N data

.

.

. P/S Channel 
decoder

R
esource elem

ent D
em

apper

Channel 
Estimation

Ant N data

Ant 1 pilot

Ant N pilot

D
escram

b
lin

g

R
ate m

atch
er

RF SC-FDMA 
Demodulation

Ant N

Modulation 
demapper

Figure 1 Baseband processing of the receiver in an LTE base station.

other hand, retrieves the binary stream from the signal
by generating either hard or soft information. LTE uplink
supports four different schemes: BPSK, QPSK, 16QAM
and 64QAM. We implemented a soft decision modulation
demapper.

Turbo Decoder Turbo codes are used for channel cod-
ing in LTE. The Turbo decoder architecture includes two
Soft-Input-Soft-Output (SISO) decoders and one internal
interleaver/deinterleaver. Inside each SISO decoder, a for-
ward and backward trellis traversal algorithm is performed.
The Turbo decoder works in an iterative fashion. For our
GPU implementation, we set the number of iterations to
be 5 [21].

3 Implementation of Key Kernels on GPU

The baseband of LTE uplink consists of kernels in the
physical layer and the Turbo decoder. We will explain the
parallelization schemes of these two parts separately.

3.1 Implementation of Kernels in the Physical Layer

A state-of-the-art GPU, such as NVIDIA GTX680, can
launch thousands of threads at the same time. So an efficient
implementation of kernels on a GPU involves exploiting
parallelism at all levels so that enough number of threads
are created to keep GPUs busy. There are several types
of parallelism in the physical layer kernels: user-level,
antenna-level, symbol-level, subcarrier-level and algorithm-
level. The different types of parallelism are orthogonal to
each other, and can be used at the same time to achieve a
better GPU utilization.

User-Level Parallelism A base station serves several users
simultaneously, and the signal processing that is done for
each user’s data is independent from others. There are some
initial joint steps required that cannot be parallelized. After

the initial steps, a kernel can process data from different
users at the same time. The number of generated threads is
the same as the number of users.

Antenna-Level Parallelism Data received by the different
antennae in the uplink receiver can be processed simultane-
ously until they reach the transform decoder. Therefore, in
these instances, the number of threads is equal to the number
of receiver antenna.

Symbol-Level Parallelism The operations of a kernel for a
subframe can be parallelized by processing SC-FDMA sym-
bols in a subframe at the same time. The number of threads
is as many as SC-FDMA symbols in a subframe.

Subcarrier-Level Parallelism We assume the subcarriers
are evenly distributed among all users. If each subcarrier in
an SC-FDMA symbol of each user is independent, then they
can be calculated in parallel. The number of threads is the
same as the number of independent subcarriers.

Algorithm-Level Parallelism There is parallelism inherent
inside each algorithm, and it varies based on the kernel. For
example in FFT, the operations in the nodes of each butterfly
stage can be done in parallel.

In order to quantify the parallelism in each physical layer
kernel, we define the following parameters:

– NFFT – FFT/IFFT size
– NT x × NRx – antenna configuration
– NMod – number of points in a modulation constellation
– Nsub – number of subcarriers in a symbol per user
– Nsym – number of symbols in a subframe
– Nusr – number of users

SC-FDMA The primary operations in SC-FDMA are FFT
and IFFT. To map FFT and IFFT efficiently onto a GPU,
we employed user-level, antenna-level, symbol-level and
algorithm-level parallelism. In FFT/IFFT, in each stage, the



38 J Sign Process Syst (2015) 78:35–47

butterfly nodes can be processed independently. So the num-
ber of threads created from algorithm-level parallelism is
the same as the FFT/IFFT size. The total number of threads
that can be generated for FFT/IFFT is Nusr ×NRx ×Nsym×
NFFT .

In this study, we used cuFFT for the GPU implementa-
tion of FFT/IFFT. CuFFT is a CUDA library provided by
NVIDIA for computing FFT/IFFT with the input sizes in the
form of 2a ×3b×5c×7d [13]. We can employ all four levels
of parallelism by using cuFFT: the FFT/IFFT implementa-
tion of cuFFT exploits the algorithm-level parallelism, and
we make use of the other types of parallelism by batching
multiple FFT/IFFT computations.

Channel Estimation We implemented a least square based
frequency domain channel estimation unit. User-level,
antenna-level and subcarrier-level parallelism are consid-
ered. The total number of threads that can be generated is
Nusr × NRx × Nsub.

MIMO Detector We mapped an MMSE-based MIMO
detector on the GPU. We considered user-level, symbol-
level and subcarrier-level parallelism. The total number of
threads that can be generated for MIMO detector is Nusr ×
Nsym × Nsub.

Modulation Demapper Modulation demapping of a sub-
carrier value consists of two parts: metric calculation and
likelihood ratio computing. For metric calculation, we com-
puted the Euclidean distances between the subcarrier value
and all complex values in the mapping constellation as
the metrics. Algorithm-level parallelism results in as many
threads as points in the constellation mapping for a subcar-
rier. For the logarithm likelihood ratio part, the number of
threads is the same as the number of bits in a bit sequence.
For example, QPSK groups two bits in a bit sequence and
maps the sequence to a single value in the constellation;
thus two threads are created for each subcarrier in this
case. For metric calculation and likelihood ratio comput-
ing, the total number of threads that can be generated is
Nusr × Nsym × Nsub × NRx × NMod , and Nusr × Nsym ×
Nsub × NRx × log2(NMod), respectively.

In our GPU implementation of modulation demapper,
we process the two stages using two sequential GPU ker-
nel functions respectively. Although having two GPU kernel
functions leads to higher function launching overhead com-
pared with having only one, it results in more efficient
implementation because it allows each stage to choose the
level of parallelization independently. With only one ker-
nel function, the launching overhead is low; however, the
number of threads is constrained by the stage with the least
amount of parallelism.

Table 1 summarizes the number of threads that can
be created for each kernel. In our implementation using
NVIDIA GTX680 GPU, we were able to launch all the
threads, and our GPU utilization was very high.

3.2 Turbo Decoder

For the Turbo decoder, we consider algorithm-level paral-
lelism in the form of codeword-level, subblock-level and
trellis-level parallelism [23]. We include a brief introduction
here, a more detailed description can be found in [23].

Codeword-Level Parallelism The codewords can be stored
in a buffer so that they can be decoded in parallel. Using
codeword-level parallelism results in long latency especially
for the first codeword in the buffer.

Subblock-Level Parallelism A codeword can be divided
into several subblocks, which are processed in parallel. This
leads to a higher bit error rate, because the computations in
the subblocks are not independent of each other. The per-
formance loss can be compensated by employing recovery
algorithms. There are two widely used algorithms: train-
ing sequence (TS) and next iteration initialization (NII).
From an implementation perspective, TS requires additional
operations, and NII needs additional memory.

Trellis-Level Parallelism In the trellis of Turbo code, we
can parallelize the Turbo decoder by exploring state-level
parallelism, forward-backward traversal (FB) and branch-
metric parallelism (BM). State-level parallelism, in which
the nodes in a stage are processed in parallel, does not
affect BER. FB leads to more complex index and memory
address computations, thereby lowering the throughput. BM
is not as effective since the vector reduction parts cannot be
parallelized.

In summary, trellis-level parallelism improves through-
put without impairing latency and BER. Codeword-level
and subblock-level parallelism improve throughput at the
cost of either longer latency or higher BER. Both recov-
ery schemes degrade the throughput but improve BER
performance compared to only subblock-level parallelism.

Table 1 Number of threads in PHY layer kernels.

Kernel Number of Threads

FFT/IFFT Nusr × NRx × Nsym × NFFT

Channel estimation Nusr × NRx × Nsub

MIMO detector Nusr × Nsym × Nsub

Modulation Nusr × Nsym × Nsub × NRx × NMod

demapper Nusr × Nsym × Nsub × NRx × log2(NMod)



J Sign Process Syst (2015) 78:35–47 39

We also explore how to use GPU memory effectively
for Turbo decoder. The GPU memory system consists of
on-chip memory, off-chip L2 cache and external DRAM.
On-chip memory can be configured into 48KB/16KB or
16KB/48KB shared memory/L1 cache. Shared memory is
software managed, and the benefit of using it is that any
access to shared memory is always in the fast on-chip mem-
ory. When the number of threads is fixed, more shared
memory usage per thread leads to faster memory access.
However, this results in larger shared memory and smaller
L1 cache, and thus increases the L1 cache miss rate. In
our Turbo decoder implementation, we use shared memory
to store the intermediate metrics. By varying the amount
of intermediate metrics stored in shared memory, we can
change the shared memory usage per thread. In order to
maximize the GPU performance, we test implementations
with different shared memory usages and different on-chip
memory configurations. The corresponding results are given
in Section 5.2.

4 LTE Base Station Baseband on a Multi-GPU System

In order to support high peak data rates of the LTE uplink,
we may need more than one GPU to build the baseband sub-
system in a base station. Therefore, it is important to explore
how to map kernels onto multiple GPUs, considering the
communication overhead of different multi-GPU systems.

4.1 Multi-GPU System

Employing multiple GPUs in an LTE base station can fur-
ther speedup computation to help kernels meet the through-
put constraint of an LTE subframe, when a high peek data
rate is required. Inter-GPU communication overhead is a
key concern of a multi-GPU system when there is data
movement between GPUs. Multi-GPU systems can be clas-
sified into two types based on the inter-GPU connection:
multiple GPUs within a single network node (MGSN), and
multiple GPUs across multiple network nodes (MGMN).

GPUs within a Node In an MGSN systems, GPUs sit in
the same network node and they communicate to each other
through fast point-to-point interconnects on board. Figure 2
shows two most commonly used on-board interconnects
on a commercial motherboard: connected through the PCI
Express (PCI-E) switch, and through the I/O hub (IOH)
chip. The achievable throughput of inter-GPU data move-
ment is different between these two connections. When
GPUs are connected through the PCI-E switch (shown in
Fig. 2a), they can communicate through direct peer-to-peer
(P2P) memory copies, which leads to a high communi-
cation throughput. When connected through IOH chips

(shown in Fig. 2b), GPUs attached to the same IOH chip
can still use direct P2P communication, achieving a high
throughput. However, GPUs attached to different IOH chips
cannot. This is because the GPUs connected through dif-
ferent IOH chips are not coherent with each other [19].
Therefore, the data transfer between GPUs attached to dif-
ferent IOH chips is staged via CPU memory, which lowers
the communication throughput.

GPUs Across Multiple Nodes Due to the power supply and
heat dissipation constraint, a motherboard can only support
a limited number of GPUs. Commercial motherboards today
support up to four GPUs for general-purpose computing [9].
When more GPUs are required, we have to use multiple net-
work nodes, in which each node is an MGSN system. In an
MGMN system (shown in Fig. 3), GPUs in the same node
transfer data in the same way as an MGSN system. How-
ever, when GPUs in different nodes try to communicate,
the data has to be staged via CPU memory and inter-node
connection that is usually Ethernet. This increases the com-
munication latency between GPUs, and makes it difficult to
fulfill the real-time deadline of an LTE subframe.

We use the inter-GPU and CPU-GPU communication
throughputs from [19] in this study. Table 2 summarizes
the throughput numbers. These numbers are representa-
tive of a multi-GPU system; however, these numbers may
vary for different BIOS settings and IOH chips. For the
inter-node connection, we simplify the communication
overhead calculation by only taking the transfer latency
on Ethernet cable into account. Since the data transfer
between GPUs on different nodes is staged through sev-
eral steps and has a fairly long latency, this simplification
is reasonable and will not change the conclusion of our
study.

4.2 Mapping Kernels on a Multi-GPU System

Figure 4 shows two different ways of mapping the LTE
baseband kernels onto a multi-GPU system: sequential and
pipelined.

Sequential Mapping Figure 4a shows an example of
sequential mapping, in which kernels 1 and 2 are executed
in sequence on the same GPU. All GPUs process kernel
1 in time slot [t0, t1], and kernel 2 in time slot [t1, t2].
The overall execution time T (= t2 − t0) must be shorter
than that specified by the throughput constraint of the LTE
system.

Pipelined Mapping The other way to process kernels 1 and
2 is pipelined mapping, which is shown in Fig. 4b. Dur-
ing time slot [t ′0, t ′1], GPU-0 processes kernel 1 of packet k,
while GPU-1 and GPU-2 process kernel 2 of packet k − 1.



40 J Sign Process Syst (2015) 78:35–47

CPU IOH

GPU

PCI-E 
Switch

GPU

PCI-E

PCI-E

CPU 0

IOH

GPUGPU

CPU 1

IOH

GPUGPU

PCI-E PCI-E PCI-E PCI-E

QPI QPI

Figure 2 Multiple GPUs within a single network node (MGSN).

Since kernel 2 takes longer time to run, its execution also
overlaps with the inter-kernel data transfer from GPU-0 to
GPU-1 and GPU-2. Because the processing of a packet is
pipelined into multiple stages, only the runtime of each
stage is required to be shorter than that specified by the
throughput constraint.

Every mapping method has its advantages and disad-
vantages. The sequential mapping has a short processing
latency for each packet, and usually no additional inter-GPU
communication overhead. However, it requires more GPUs
to accelerate the processing so that all kernels can be com-
puted within the timing deadline. The pipelined method,
on the other hand, needs fewer GPUs but longer latency.
This is because the total processing time of a packet is
the sum of runtimes of all the pipeline stages. The two
mapping methods can be combined to get a better tradeoff
between the number of GPUs and the overall packet pro-
cessing latency. For instance, kernels can be combined into
several groups in which kernels run sequentially on the same
GPUs, and the groups can be pipelined on different sets of
GPUs.

In order to help decide the best mapping method of
the LTE baseband kernels onto a multi-GPU system, we

assume that a mix of sequential and pipelined mapping
methods is employed. The overall processing is pipelined
into several stages. In each stage, some kernels are pro-
cessed on the same GPUs sequentially. Let S be the number
of pipelined stages, K be the number of kernels, Ni be
the number of GPUs needed in the ith stage, Pi be the
number of kernels running sequentially in the ith stage,
trun(i, j, Ni) be the runtime of the kernel j in the ith stage
using Ni GPUs, and tcomm(i, i + 1) be the inter-GPU com-
munication overhead between the ith and (i + 1)th stage.
Our objective is to minimize the number of GPUs and the
overall packet processing latency. This can be expressed as

relative importance of minimizing the number of GPUs and
minimizing the processing latency.

GbE Hub

Node 0 Node 1

Ethernet 
Switch

CPU 0

IOH

GPUGPU

GbE Hub IOH

GPUGPU

CPU 1

Ethernet 
connetion

Figure 3 Multiple GPUs across multiple network nodes (MGMN).

follows:

α ×(min(

S∑

i=1

Ni))+

β ×(min(

S∑

i=1

Pi∑

j=1

trun(i, j, Ni)+
S−1∑

i=1

tcomm(i, i + 1)))

(1)

where α and β are predetermined constants that reflect the



J Sign Process Syst (2015) 78:35–47 41

Table 2 Inter-GPU and CPU-GPU copy throughputs in a non-uniform
memory access system.

Inter-GPU copy Throughput (GB/s)

Via PCI-E switch 6.3

Via IOH chip (attached to 5.3
the same IOH chip)

Via CPU (attached to 2.2
different IOH chips)

CPU-GPU copy

GPU to local CPU 6.3

GPU to remote CPU 4.3

CPU to local GPU 5.7

CPU to remote GPU 4.9

Let tdeadline be the timing deadline that is derived from
the throughput constraint. Then for the ith stage, the timing
constraint is given by:

Pi∑

j=1

trun(i,j) + tcomm(i,i+1) ≤ tdeadline (2)

5 Results

5.1 Experimental Environment

We used an NVIDIA GTX680 GPU to evaluate the per-
formance of the key kernels. GTX680 is based on the
Kepler architecture [12]. It has 8 Streaming Multiprocessors
(SMX), and in each SMX there are 192 Streaming Proces-
sors clocked at 1GHz. A GTX680 GPU can launch at most

1024 threads at a time. There is a 64 KB on-chip mem-
ory, a 512 KB L2 cache and 2048 MB external memory. To
monitor the GPU, we used GPU-Z, which is a lightweight
tool designed to provide information such as the dynamic
power consumption, the dynamic GPU load, the fan speed,
etc. To launch GPU kernels, we used a 2.13 GHz Intel Core
2 processor, running the Linux 3.2.0-39 generic operating
system.

In this study, we simulated a fading channel with additive
white Gaussian noise. We evaluated kernel implementa-
tion performance corresponding to peak data rate. We also
focused on the single-user scenario, because it does not
exploit user-level parallelism and gives a worst case esti-
mate of the GPU performance. In this operating scenario,
the computations in a base station depend on the total
number of available subcarriers.

5.2 Kernel Runtimes

We ran each kernel for the different configurations shown
in Table 3. Table 4 shows the runtimes of different
physical layer kernels of an LTE subframe. It demon-
strates that modulation demapping takes the longest run-
time. In addition, MIMO detection, channel estimation and
modulation demapping have fairly long runtimes when
more antennae or more complex modulation schemes are
used.

For the Turbo decoder, we first studied the on-chip
memory use. We implemented two GPU memory configura-
tions (48KB/16KB and 16KB/48KB shared memory/L1
cache) with state-level, subblock-level and packet-level par-
allelism [23]. We varied the number of subblocks from
1 to 512, and the number of packets from 1 to 84. We
found that a larger L1 cache results in better runtime

kernel 1 kernel 1 kernel 1 kernel 1

kernel 2 kernel 2 kernel 2 kernel 2

kernel 2
runtime

t

t0

t1

t2

deadline

kernel 1
runtime

GPU-0 GPU-1 GPU-2 GPU-3

GPU-0
kernel 1

GPU-1
kernel 2

GPU-2
kernel 2

GPU-0
kernel 1

GPU-1
kernel 2

GPU-2
kernel 2

t

t0'

deadline

kernel 1 on packet k kernel 2 on packet k-1

t1'

t2'

kernel 2
runtime

Communication
time

kernel 1
runtime

Figure 4 Mapping kernels onto a multi-GPU system.



42 J Sign Process Syst (2015) 78:35–47

Table 3 The configurations of each kernel.

Kernel Configuration

Turbo decoder code rate = 1/3,

codeword length = 6144,

iteration number = 5

Modulation demapper 16QAM and 64QAM

SC-FDMA FFT 2048

Decoding IFFT 1200

MIMO 1 × 1, 2 × 2, 4 × 4

performance. For example, for the configuration with small
input size (1 packet) and 64 subblocks, the larger L1 cache
configuration achieves 30.8 % higher throughput compared
with smaller L1 cache configuration. So, we used the 48K
L1 cache configuration in the rest of the experiments. To
maximize the performance, we assigned as many threads
as possible in each CUDA thread block. The number of
threads per CUDA thread block is constrained by the size
of the shared memory and the shared memory usage per
thread, Next we tried combinations of different paralleliza-
tion schemes to find the best tradeoff among the decoding
throughput, worst-case latency and BER [23]. Table 5 shows
the performance of the Turbo decoder implementations. It
demonstrates that the implementation that includes state-
level parallelism and forward-backward traversal (row 3)
achieves the best tradeoff. Compared with other implemen-
tations, it has the shortest worst-case codeword latency with
good BER performance, and the throughput is also quite
high. We use this implementation in the rest of the paper.

Our implementation of kernels exploits the parallelism
at multiple levels. For instance, in our GPU implementa-
tion of a 4 × 4 64QAM system, there are 14,336 threads
created for FFT, 4,800 threads for channel estimation,
14,400 threads for MIMO detection, 3,686,400 threads for
modulation demapping metric calculation, 345,600 threads
for modulation demapping likelihood ratio computing, and
8,192 threads for the Turbo decoder. Because an NVIDIA
GTX680 GPU can launch at most 1,024 threads at a time, it
is almost always fully utilized.

Table 4 PHY layer kernel runtimes (ms) of an LTE subframe.

Antenna configuration 1 × 1 2 × 2 4 × 4

FFT 0.06 0.07 0.08

IFFT 0.10 0.10 0.10

MIMO detector 0.02 0.03 0.52

Channel estimation 0.02 0.05 0.46

Modulation 16QAM 0.08 0.15 0.28
demapper 64QAM 0.47 0.92 1.81

Table 5 Performance of Turbo decoder implementations.

Schemes TH1 WPL1 BER1,3

TL2 Subblock Num CW1 Num (Mbps) (ms)

SL2 512 2 77.64 0.72 1.6 × 10−3

SL 256 4 78.15 1.68 4.1 × 10−4

SL,FB2 256 2 78.30 0.72 4.1 × 10−4

SL,FB 128 7 80.58 3.08 2.0 × 10−4

1TH = Throughput, WPL = Worst-case codeword Latency, SNR =
Signal-to-Noise Ratio requirement, BER = Bit Error Rate, CW =
Codeword
2TL = Trellis-level parallelism, SL = State-level parallelism, FB =
Forward-Backward traversal
3BER here is the bit error rate when SNR = 1.0 dB

5.3 GPU-Based LTE Baseband System

A baseband processor must meet the latency and throughput
requirements of the communication protocol. LTE supports
multiple data rates up to 300 Mbps. Table 6 describes the
kernel configurations for the different data rates. For high
data rates, the computational load of LTE baseband pro-
cessing is very high and a single GPU is not enough. For
instance, LTE provides a throughput of 1 subframe/ms.
Based on runtimes presented in Table 4, one GPU is not
enough to meet this requirement for high data rates when
multiple antennae or more complex modulation schemes are
used. In such cases, we must employ the mapping method
discussed in Section 4.

We use a mixture of sequential and pipelined mapping,
in which the overall processing of an LTE subframe (shown
in Fig. 1) is pipelined into several stages. In each stage,
the processing of some kernels on subcarriers or symbols
in a subframe is assigned evenly to several GPUs. Because
Turbo decoding is the hotspot of LTE baseband [22, 24]
and also not part of the PHY layer, it occupies a stage
by itself. We use the formulation in Section 4.2 to explore
kernel mappings that minimize both the number of GPUs
and the packet processing latency under different system
configurations.

Table 6 Kernel configurations for different peak data rates.

Data rate SC-FDMA Decoding MIMO Modulation

(Mbps) FFT IFFT demapper

50 2048 1200 1 × 1 16QAM

75 2048 1200 1 × 1 64QAM

100 2048 1200 2 × 2 16QAM

150 2048 1200 2 × 2 64QAM

200 2048 1200 4 × 4 16QAM

300 2048 1200 4 × 4 64QAM



J Sign Process Syst (2015) 78:35–47 43

First, we evaluate the number of GPUs needed to process
kernels in the PHY layer. Based on Tables 4 and 6, only
one GTX680 GPU is needed to fulfill the 1 subframe/ms
requirement when the peak data rate is no higher than
100 Mbps. However, when the peak data rate is higher, more
GPUs are required. For the 150 and 200 Mbps peak data
rate configurations, we can either process all PHY kernels
on the same GPUs sequentially, or pipeline them between
decoding IFFT and modulation demapper for 150 Mbps,
and between channel estimation and MIMO detection for
200 Mbps. In either case, two GTX680 GPUs are needed.
Since the pipeline mapping introduces additional inter-GPU
communication overhead, the sequential mapping has a bet-
ter overall packet latency. Therefore we chose the sequential
mapping of PHY layer kernels for the 150 and 200 Mbps
peak data rate configurations. For the 300 Mbps configura-
tion, we have three options: 1) have one pipeline stage, and
process all PHY kernels sequentially, 2) have two pipeline
stages, where stage 1 implements FFT, channel estima-
tion and stage 2 implements MIMO detection, decoding
IFFT, modulation demapper, 3) have three pipeline stages,
where stage 1 implements FFT, channel estimation, stage
2 implements MIMO detection, decoding IFFT and stage
3 implements modulation demapper. These three options
require five, five and four GPUs, respectively. We pick
option 3 to minimize the number of required GPUs.

Then we evaluate the Turbo decoding kernel. There is
no timing deadline for Turbo decoding, because in our
implementation multiple subframes are buffered in the GPU
memory before being processed together. But the achievable
throughput of the GPU implementation must be higher than
the peak data rate of the uplink. Therefore multiple GPUs
are still needed for high data rate configurations.

Table 7 summarizes the minimum number of GTX680
GPUs needed for PHY layer processing and Turbo decod-
ing in the uplink receiver of an LTE base station. For the
configurations with peak data rate ≤ 150 Mbps, up to four
GPUs are required, which can fit in an MGSN system.
Due to the fast on-board communication, the inter-GPU

Table 7 The minimum number of GTX680 GPUs needed for the
baseband system covering a cell.

Data rate Number of GPUs

(Mbps) PHY Turbo Total

50 1 1 2

75 1 1 2

100 1 2 3

150 2 2 4

200 2 3 5

300 4 4 8

communication overhead is very small, so these configu-
rations can be built with commercial motherboards. When
using more than four GPUs, an MGMN system must be
employed. In this case, the data transfer between PHY layer
kernels and Turbo decoding requires inter-GPU commu-
nication across different network nodes. Because of the
relatively slow Ethernet connection, and the multiple stages
that the data has to traverse, our calculation shows that the
inter-GPU communication latency across nodes is longer
than what can be supported by the 1 subframe/ms require-
ment. This makes it infeasible to build such a system with
today’s commercial devices.

Based on our analysis above, the inter-GPU communica-
tion overhead across network nodes is the key obstacle to
enable a GPU-based LTE base station to support an uplink
data rate ≥ 200 Mbps. We studied what can be done to
reduce this overhead: a better GPU, a more powerful moth-
erboard, and faster inter-node connections. A better GPU
can result in a smaller number of GPUs being required, and
a more powerful motherboard can support more than four
GPUs for general-purpose computing. Both of them make
it possible to fit the GPUs required for very high uplink
data rate on one motherboard. In this case, all inter-GPU
communication is on-board and fast, and the communica-
tion latency will be smaller than what can be supported by
the 1 subframe/ms requirement. A faster inter-node connec-
tion is another way to reduce the inter-GPU communication
overhead across network nodes. 100 Gbit/s Ethernet has
already been prototyped, using it would reduce the data
transfer latency between network nodes to the timing dead-
line specified by the 1 subframe/ms requirement.

5.4 Power Consumption

We measured the dynamic power consumption of the LTE
kernels using GPU-Z. Table 8 shows the power consumption
of each kernel and the corresponding configuration. We also
measured the power consumed by each kernel under dif-
ferent configurations, and observed very limited variation.
The actual energy consumed by each kernel is presented in
Table 9. It shows that the Turbo decoder consumes most of
the system energy followed by modulation demapper.

Table 8 Power of each kernel on a GTX680 GPU.

Kernel Configuration Power (W)

Turbo decoder Row 3 in Table 5 63.3

SC-FDMA FFT 2048 56.7

Decoding IFFT 1200 56.9

Modulation demapper 64QAM 56.3

Channel estimation – 61.8

MIMO detector 4 × 4 57.7



44 J Sign Process Syst (2015) 78:35–47

Table 9 Energy consumption of each kernel processing 1 subframe at
75 Mbps on a GTX680 GPU.

Kernel Energy (mJ/subframe)

Turbo decoder 144.0

SC-FDMA FFT 3.4

Decoding IFFT 5.7

Modulation demapper 26.5

Channel estimation 1.2

MIMO detector 1.3

For a system-level power assessment, we considered the
configuration corresponding to a 75 Mbps data rate. Based
on Table 7, we need two GTX680 GPUs for a 75 Mbps
data rate, one for the Turbo decoder and the other for the
PHY layer. We also need one Intel Core 2 CPU, whose
maximum power is 63 W. Thus, the total power of the
digital subsystem of the receiver is 188 W. We compared
our implementation with the Alcatel-Lucent 9926 Base
Band Unit [5] whose maximum power is 370 W with
74 Mbps peak uplink throughput. While 370 W includes
both the transmitter and receiver power, the receiver pro-
cesses more complex kernels, like Turbo decoding and
MIMO detection, and consumes a significantly larger por-
tion of the compute power. Even if we conservatively
estimate that half of the power, 185 W, is consumed by
the receiver, our proposed GPU-based solution is still quite
competitive.

6 Related Work

GPU-based Solutions The GPU implementation of the
transmitter in an LTE base station was presented in [18].
In contrast, we provided the GPU implementation of the
receiver along with a detailed analysis of possible paral-
lelization schemes and their effectiveness.

DSP-based Solutions There are several DSP-based solu-
tions. Freescale’s Modular AdvancedMC Platform [8] con-
tains three MSC8156 DSPs for baseband processing. Each
DSP has six StarCore SC3850, and a MAPLE-B base-
band accelerator for Turbo/Viterbi decoder, FFT/IFFT,
and multi-standard CRC check and insertion [7]. Com-
mAgility’s AMC-3C87F3 is a signal processing card for
4G wireless baseband. It contains three Texas Instru-
ments’ TCI6487 DSPs, each with three C64x+ cores and
coprocessors for Viterbi decoder, Turbo decoder and Rake
search/spread. Although the DSPs mentioned above are

programmable, several key kernels are implemented using
accelerators, which impairs the system flexibility. To sup-
port new protocols, new accelerators have to be designed
and integrated with DSPs, leading to a long development
cycle and high cost. In contrast, GPU-based solutions only
need new software for the system update, which dramat-
ically reduces time-to-market and cost. Additionally, if
GPUs cannot support the high data rate of future protocols,
they can be replaced by newer and faster GPUs, pro-
vided these newer GPUs support a high level programming
paradigm such as CUDA.

FPGA-based Solutions Xilinx [10] and Altera [11] have
developed FPGA solutions for baseband processing in LTE
base stations. Although FPGAs have good flexibility, their
relatively high price increases the cost of using them to build
a base station. A GPU-based base station has a fairly short
development cycle and little updating effort, because the
software is implemented in a relatively simple high-level
language.

GPP-based Solutions The Vanu Anywave base station [2]
is the only fully programmable commercial base sta-
tion to date. It is built with 4-13 Intel MPCBL0040
single board computers [1] based on the required cell
capacity. An MPCBL0040 computer contains two Dual-
Core Intel Xeon E7520 2.0 GHz processors. The Vanu
Anywave uses GPPs instead of DSP. Currently it sup-
ports GSM/EDGE/CDMA2000 but does not support
LTE.

GPPs have good flexibility and portability, but they
cannot make full use of the available DLP in a wire-
less base station. This is why Vanu needs as many as 52
Intel Xeon cores to support CDMA2000, and more are
expected in order to support LTE, leading to even higher
power consumption. A GPU-based solution takes advan-
tage of massive DLP. So fewer GPUs are needed in an
LTE base station, which makes a GPU-based solution power
efficient.

7 Conclusion

In this paper, we presented our work on building a base-
band system for an LTE base station using commercial
GPUs. The kernels in LTE baseband processing are highly
parallel, and thus amenable to efficient GPU implemen-
tation. We implemented key kernels of an LTE baseband
system on the NVIDIA GTX680 GPU, and evaluated
the runtime performance. We also explored the kernel



J Sign Process Syst (2015) 78:35–47 45

mapping method to minimize the number of required GPUs
and the overall subframe processing latency, when using
a multi-GPU system. We showed that an LTE base sta-
tion that supports a 150 Mbps peak uplink data rate can
be built by using four GPUs and the commercial moth-
erboard [9]. To support higher uplink data rates, more
complex antennae and modulation schemes are needed.
In these situations a quad-GPU solution is no longer
sufficient. We also showed that the GPU-based solution
is power efficient. To support the digital subsystem of
a 75 Mbps uplink, a dual-GPU LTE base station con-
sumes 188 W, which is quite competitive with commercial
solutions.

Acknowledgments We wish to thank Nilmini Abeyratne and Yuan
Lin for their generous help and useful feedback on the paper. This
work is supported by the National Science Foundation grant NSF-
CNS-0910851 and ARM Ltd.

References

1. (2006). Intel solutions for the next generation multi-radio
basestation. Intel application note. http://intel.com/design/intarch/
applnots/307450.htm.

2. (2006). The vanu anywave base station subsystem. http://www.
vanu.com/documents/technology/vanu-anywave-2006-05.pdf.

3. (2007). Long Term Evolution (LTE). Motorola White Paper. http://
www.motorolasolutions.com/web/Business/Solutions/Industry
%20Solutions/Service%20Providers/Wireless%20Operators/
LTE/ Document/Static%20Files/6833 MotDoc New.pdf.

4. (2007). Overview of the 3GPP long term evolution physi-
cal layer. Freescale semiconductor white paper. http://www.
element14.com/community/servlet/JiveServlet/previewBody/
13380-102-1-42319/3GPPEVOLUTIONWP.pdf.

5. (2009). Alcatel-Lucent 9926 digital 2U eNodeB baseband unit.
Alcatel-lucent product brief.

6. (2009). LTE emerges as early leader in 4G technologies.
White Paper. http://www.ti.com/general/docs/lit/getliterature.tsp?
baseLiteratureNumber=spry124&;fileType=pdf.

7. (2010a). Accipiter systems 4G (LTE/WiMAX) base
transceiver station AMC. Product Brief. http://www.
accipitersystems.com/Files/Admin/wexford%20product%20brief
%20final 4G Proprietary Removed 6 28 10.pdf.

8. (2010b). Freescale modular AdvancedMC platform for broad-
band/LTE base stations. http://cache.freescale.com/files/32bit/
doc/fact sheet/LTEWIMAXFS.pdf.

9. (2011). Gigabyte GA-X79-UD7. http://www.gigabyte.us/
products/product-page.aspx?pid=4047#sp.

10. (2011). LTE baseband targeted design platform. Xilinx prod-
uct brief. http://www.origin.xilinx.com/publications/prod mktg/
LTE-Baseband-SellSheet.pdf.

11. (2012). Designing basestation channel cards with FPGAs.
ALtera product brief. http://www.altera.com/literature/po/
wireless-channel-card.pdf.

12. (2012). NVIDIA GeForce GTX 680: The fastest, most efficient
GPU ever built. White Paper. http://www.geforce.com/Active/en
US/en US/pdf/GeForce-GTX-680-Whitepaper-FINAL.pdf.

13. (2013). CUFFT User Guide. http://docs.nvidia.com/cuda/cufft/
index.html.

14. Coleri, S., Ergen, M., Puri, A., Bahai, A. (2002). Channel esti-
mation techniques based on pilot arrangement in OFDM systems.
IEEE Transactions on Broadcasting, 48(3), 223–229.

15. Gardner, J.S. (2012). CEVA EXPOSES DSP SIX PACK-XC4000
family uses coprocessors to buff up the baseband. http://www.
linleygroup.com/mpr/article.php?url=mpr/h/2012/10864/10864.
pdf.

16. Huang, S., Xiao, S., Feng, W. (2009). On the energy effi-
ciency of graphics processing units for scientific computing. In:
IEEE international symposium on parallel distributed processing
(IPDPS’09) (pp. 1–8).

17. Larsson, E. (2009). MIMO detection methods: how they work
[lecture notes]. IEEE Signal Processing Magazine, 26(3), 91–95.

18. Lee, S., Ahn, C., Choi, S. (2011). Implementation of Software-
based 2X2 MIMO LTE base station system using GPU. In: SDR-
WInnComm.

21. Wu, M., Sun, Y., Wang, G., Cavallaro, J. (2011). Implementa-
tion of a high throughput 3GPP turbo decoder on GPU. Journal of
Signal Processing Systems, 65(2), 171–183. http://dx.doi.org/10.
1007/s11265-011-0617-7.

22. Zheng, Q., Chen, Y., Dreslinski, R., Chakrabarti, C., Anastasopou-
los, A., Mahlke, S., Mudge, T. (2013a). Architecting an LTE base
station with graphics processing units. In: 2013 IEEE workshop
on signal processing systems (SiPS) (pp. 219–224).

23. Zheng, Q., Chen, Y., Dreslinski, R., Chakrabarti, C., Anasta-
sopoulos, A., Mahlke, S., Mudge, T. (2013b). Parallelization
techniques for implementing trellis algorithms on graphics pro-
cessors. In: 2013 IEEE international symposium on circuits and
systems (ISCAS) (pp. 1220–1223).

24. Zheng, Q., Chen, Y., Dreslinski, R., Chakrabarti, C., Anastasopou-
los, A., Mahlke, S., Mudge, T. (2013c). WiBench: An open source
kernel suite for benchmarking wireless systems. In: 2013 IEEE
international symposium on workload characterization (IISWC)
(pp. 123–132).

Qi Zheng is a PhD candidate
in the Department of Electri-
cal Engineering and Computer
Science at the University of
Michigan, Ann Arbor. He
received the B.S.E degree in
electrical engineering from
Harbin Institute of Technol-
ogy, China, in 2010, and the
M.S.E degree in computer
engineering from University
of Michigan, Ann Arbor,
in 2012. His research inter-
ests include energy-efficient
computer architecture of
high throughput processor,
and wireless communication
system design.

19. Micikevicius, P. (2012). Multi-GPU programming. In: GPU
technology conference.

20. Proakis, J. G., & Salehi, M. (2008). In Digital Communications,
5th edn. New York: McGraw-Hill.

http://intel.com/design/intarch/applnots/307450.htm
http://intel.com/design/intarch/applnots/307450.htm
http://www.vanu.com/documents/technology/vanu-anywave-2006-05.pdf
http://www.vanu.com/documents/technology/vanu-anywave-2006-05.pdf
http://www.motorolasolutions.com/web/Business/Solutions/Industry%20Solutions/Service%20Providers/Wireless%20Operators/LTE/_Document/Static%20Files/6833_MotDoc_New.pdf
http://www.motorolasolutions.com/web/Business/Solutions/Industry%20Solutions/Service%20Providers/Wireless%20Operators/LTE/_Document/Static%20Files/6833_MotDoc_New.pdf
http://www.motorolasolutions.com/web/Business/Solutions/Industry%20Solutions/Service%20Providers/Wireless%20Operators/LTE/_Document/Static%20Files/6833_MotDoc_New.pdf
http://www.motorolasolutions.com/web/Business/Solutions/Industry%20Solutions/Service%20Providers/Wireless%20Operators/LTE/_Document/Static%20Files/6833_MotDoc_New.pdf
http://www.element14.com/community/servlet/JiveServlet/previe wBody/13380-102-1-42319/3GPPEVOLUTIONWP.pdf
http://www.element14.com/community/servlet/JiveServlet/previe wBody/13380-102-1-42319/3GPPEVOLUTIONWP.pdf
http://www.element14.com/community/servlet/JiveServlet/previe wBody/13380-102-1-42319/3GPPEVOLUTIONWP.pdf
http://www.ti.com/general/docs/lit/getliterature.tsp?baseLite ratureNumber=spry124&;fileType=pdf
http://www.ti.com/general/docs/lit/getliterature.tsp?baseLite ratureNumber=spry124&;fileType=pdf
http://www.accipitersystems.com/Files/Admin/wexford%20product%20brief%20final_4G_Proprietary_Removed_6_28_10.pdf
http://www.accipitersystems.com/Files/Admin/wexford%20product%20brief%20final_4G_Proprietary_Removed_6_28_10.pdf
http://www.accipitersystems.com/Files/Admin/wexford%20product%20brief%20final_4G_Proprietary_Removed_6_28_10.pdf
http://cache.freescale.com/files/32bit/doc/fact_sheet/LTEWIMA XFS.pdf
http://cache.freescale.com/files/32bit/doc/fact_sheet/LTEWIMA XFS.pdf
http://www.gigabyte.us/products/product-page.aspx?pid=4047#sp
http://www.gigabyte.us/products/product-page.aspx?pid=4047#sp
http://www.origin.xilinx.com/publications/prod_mktg/LTE-Baseb and-SellSheet.pdf
http://www.origin.xilinx.com/publications/prod_mktg/LTE-Baseb and-SellSheet.pdf
http://www.altera.com/literature/po/wireless-channel-card.pdf
http://www.altera.com/literature/po/wireless-channel-card.pdf
http://www.geforce.com/Active/en_US/en_US/pdf/GeForce-GTX-680-Whitepaper-FINAL.pdf
http://docs.nvidia.com/cuda/cufft/index.html
http://docs.nvidia.com/cuda/cufft/index.html
http://www.linleygroup.com/mpr/article.php?url=mpr/h/2012/108 64/10864.pdf
http://www.linleygroup.com/mpr/article.php?url=mpr/h/2012/108 64/10864.pdf
http://www.linleygroup.com/mpr/article.php?url=mpr/h/2012/108 64/10864.pdf
http://dx.doi.org/10.1007/s11265-011-0617-7
http://dx.doi.org/10.1007/s11265-011-0617-7


46 J Sign Process Syst (2015) 78:35–47

Yajing Chen is a PhD student
in Computer Science and
Engineering at the University
of Michigan, Ann Arbor. Her
research interests focus on
Software Defined Radio and
throughput computing. She
received MS in Electrical
Engineering Systems at the
University of Michigan, Ann
Arbor.

Hyunseok Lee is an Associate
Professor in the Department
of Electronics and Com-
munications Engineering
at Kwangwoon University,
Seoul, Korea. He received his
Ph.D. in Computer Science
and Engineering, University
of Michigan, Ann Arbor,
in 2007. He participated in
the development of IS-95,
cdma2000, WCDMA, and
mobile WiMAX systems at
Samsung Electronics, Suwon,
Korea from 1992 to 2008. His
research interest includes the
low power signal processing
architecture and embedded

systems for wireless communications.

Ronald Dreslinski received
the B.S.E. degree in electrical
engineering, the B.S.E. degree
in computer engineering, and
the M.S.E. and Ph.D. degrees
in computer science and engi-
neering from the University of
Michigan, Ann Arbor. He is
currently a research scientist
at the University of Michigan.
His research focuses on archi-
tectures that enable emerging
low-power circuit techniques.

Chaitali Chakrabarti
received the B.Tech. degree in
electronics and electrical com-
munication engineering from
the Indian Institute of Tech-
nology, Kharagpur, India, in
1984, and the M.S. and Ph.D.
degrees in electrical engi-
neering from the University
of Maryland, College Park,
in 1986 and 1990, respec-
tively. She is a Professor with
the Department of Electri-
cal Computer and Energy
Engineering, Arizona State
University (ASU), Tempe and
a Fellow of the IEEE. Her
research interests include the
areas of low power embedded

systems design including memory optimization, high level synthesis
and compilation, and VLSI architectures and algorithms for signal
processing, image processing, and communications. She is currently
an Associate Editor of the Journal of VLSI Signal Processing Systems,
the IEEE Transactions of VLSI Systems and on the Senior Editorial
Board of IEEE Journal on Emerging and Selected Topics in Circuits
and Systems.

Achilleas Anastasopoulos
(S’97-M’99) was born in
Athens, Greece in 1971.
He received the Diploma in
Electrical Engineering from
the National Technical Uni-
versity of Athens, Greece
in 1993, and the M.S. and
Ph.D. degrees in Electrical
Engineering from University
of Southern California in
1994 and 1999, respectively.
He is currently an Associate
Professor at the University of
Michigan, Ann Arbor, Depart-
ment of Electrical Engineering
and Computer Science.

His research interests lie in the general area of communication the-
ory, with emphasis in channel coding, multi-user channels, as well
as connections between multi-user communications and decentralized
stochastic control. He is the co-author of the book Iterative Detection:
Adaptivity, Complexity Reduction, and Applications, (Reading, MA:
Kluwer Academic, 2001).

Dr. Anastasopoulos is the recipient of the “Myronis Fellowship”
in 1996 from the Graduate School at the University of Southern
California, and the NSF CAREER Award in 2004. He served as a
technical program committee member for ICC 2003 and Globecom
2004, and on the editorial board of the IEEE TRANSACTIONS ON
COMMUNICATIONS.



J Sign Process Syst (2015) 78:35–47 47

Scott Mahlke is a Professor in
the Electrical Engineering and
Computer Science Depart-
ment at the University of
Michigan where he leads the
Compilers Creating Custom
Processors group (http://cccp.
eecs.umich.edu). The CCCP
group delivers technologies
in the areas of compilers for
multicore processors, energy
efficient processor design,
and reliable system design.
Mahlke received the Ph.D.
degree in Electrical Engineer-
ing from the University of

Illinois at Urbana-Champaign in 1997. Mahlke’s achievements were
recognized by being awarded the Most Influential Paper Award from
the Intl. Symposium on Computer Architecture in 2007 and 2014
Monroe-Brown Foundation Education Excellence Award. He is a
senior member of the IEEE Computer Society and the ACM. Contact
him at mahlke@umich.edu.

Trevor Mudge received the
Ph.D. degrees in Computer
Sciencefrom the University of
Illinois, Urbana in 1977. Since
then, he has been on the
faculty of the University of
Michigan, Ann Arbor. In 2003
he was named the first Bredt
Family Professor of Electri-
cal Engineering and Computer
Science after concluding a ten
year term as the Director of the
Advanced Computer Archi-
tecture Laboratory–a group of
eight faculty and about 60
graduate students. He is author
of numerous papers on com-

puter architecture, programming languages, VLSI design, and com-
puter vision. He has also chaired about 50 theses in these areas.
His research interests include computer architecture,computer-aided
design, and compilers. In addition to his position as a faculty member,
he runs Idiot Savants, a chip design consultancy. Trevor Mudge is a
Fellow of the IEEE, a member of the ACM, the IET, and the British
Computer Society.

http://cccp.eecs.umich.edu
http://cccp.eecs.umich.edu
mailto:mahlke@umich.edu

	Using Graphics Processing Units in an LTE Base Station
	Abstract
	Introduction
	Baseband Processing in an LTE Base Station
	SC-FDMA
	Channel Estimation
	MIMO Detector
	Modulation Demapper
	Turbo Decoder



	Implementation of Key Kernels on GPU
	Implementation of Kernels in the Physical Layer
	User-Level Parallelism
	Antenna-Level Parallelism
	Symbol-Level Parallelism
	Subcarrier-Level Parallelism
	Algorithm-Level Parallelism
	SC-FDMA
	Channel Estimation
	MIMO Detector
	Modulation Demapper


	Turbo Decoder
	Codeword-Level Parallelism
	Subblock-Level Parallelism
	Trellis-Level Parallelism



	LTE Base Station Baseband on a Multi-GPU System
	Multi-GPU System
	GPUs within a Node
	GPUs Across Multiple Nodes


	Mapping Kernels on a Multi-GPU System
	Sequential Mapping
	Pipelined Mapping



	Results
	Experimental Environment
	Kernel Runtimes
	GPU-Based LTE Baseband System
	Power Consumption

	Related Work
	GPU-based Solutions
	DSP-based Solutions
	FPGA-based Solutions
	GPP-based Solutions



	Conclusion
	Acknowledgments
	References


