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ABSTRACT

To achieve high performance on many-core architectures like
GPUs, it is crucial to efficiently utilize the available mem-
ory bandwidth. Currently, it is common to use fast, on-chip
scratchpad memories, like the shared memory available on
GPUs’ shader cores, to buffer data for computation. This
buffering, however, has some sources of inefficiency that hin-
der it from most efficiently utilizing the available memory
resources. These issues stem from shader resources being
used for repeated, regular address calculations, a need to
shuffle data multiple times between a physically unified on-
chip memory, and forcing all threads to synchronize to en-
sure RAW consistency based on the speed of the slowest
threads. To address these inefficiencies, we propose Data-
Parallel DMA, or D2MA. D2MA is a reimagination of tradi-
tional DMA that addresses the challenges of extending DMA
to thousands of concurrently executing threads. D2MA de-
couples address generation from the shader’s computational
resources, provides a more direct and efficient path for data
in global memory to travel into the shared memory, and
introduces a novel dynamic synchronization scheme that is
transparent to the programmer. These advancements allow
D2MA to achieve speedups as high as 2.29x, and reduces the
average time to buffer data by 81% on average.

Categories and Subject Descriptors

C.1.2 [Processor Architectures]: Multiple Data Stream
Architectures (Multiprocessors)—Single-instruction-stream,
multiple-data-stream processors (SIMD)
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GPUs; DMA; Software-managed Caches; Shared Memory;
Dynamic Management; Throughput Processing

1. INTRODUCTION
In modern computing systems, graphics processing units

(GPUs) have become ubiquitous. While GPUs traditionally
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have been used to efficiently render graphics, over the last
decade major GPU vendors have unlocked the potential of
their high-throughput, many-core products to be used for
more general purpose, albeit massively data-parallel com-
putations. Systems ranging from smartphones [25] to su-
percomputers [26] can now use GPUs to accelerate appli-
cations in domains such as multimedia processing, machine
learning, financial modeling, linear algebra, and scientific
computing. Using programming models like CUDA [22] or
OpenCL [17], software developers can leverage the computa-
tional efficiency of many-core GPUs with their data-parallel
code across a broad spectrum of devices.

Many-core architectures like GPUs typically achieve high
performance when provided thousands of threads to con-
currently execute. Problems arise, however, when trying
to deliver enough data to these threads for them to com-
pute upon. There is a long latency when loading data from
a GPU’s off-chip memory, possibly greater than 400 cycles
on NVIDIA architectures [22]. Ideally, when threads stall
due to such long latency operations, there will be many
other threads that are schedulable for execution. While this
may be the case for applications that perform a great deal
of computation compared to memory transfers, in practice
there are many memory-intensive applications that have low
compute-to-memory characteristics. In such scenarios, most
threads may be requesting data from memory simultane-
ously, creating high contention for memory resources. These
applications will not have enough threads ready for execu-
tion, causing their performance to suffer, and simply adding
more threads will not necessarily improve this performance.

Simply expanding and improving the existing memory
subsystem in GPUs may not necessarily improve memory-
intensive application performance either. According to GPU
device specifications, there should be ample bandwidth to
quickly move data between off-chip memory and the core.
After all, most medium- to high-end GPUs are provisioned
with 100-300+ GB/s of memory bandwidth to their off-chip
global memories [24]. However, when memory-intensive ap-
plications attempt to fully utilize the GPU’s cores, they can
easily saturate the memory resources between the cores and
off-chip memory, such as buffers between core load/store
units and the memory interconnect or miss status holding
registers (MSHRs) in caches. Simply providing more band-
width or expanding existing memory resources are both too
costly and will not necessarily ameliorate this problem [16,
28]. To demonstrate this, a model of the NVIDIA GTX480
was augmented to have infinite memory resources (that is,
MSHRs and all buffers between shaders and DRAM), and
28 benchmarks from the NVIDIA SDK were simulated us-
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Figure 1: A balanced increase in the amount of memory re-
sources does not guarantee improved performance and band-
width utilization.

ing this model. Figure 1 shows that the mean speedups and
memory stall cycle reductions that this theoretical device
achieves for memory intensive applications are limited to
roughly 10%, while computationally intensive benchmarks
see marginal gains from such costly hardware over-provisioning.
Even with infinite memory resources, neither compute- nor
memory-bound applications see great improvements in their
performance as the number of cycles they stall for mem-
ory transfers are only slightly impacted. Thus, even with
a vast array of computational and memory hardware provi-
sions, a GPU’s performance can still suffer as it struggles to
efficiently fetch data from off-chip memory for processing.
Other approaches should be considered to better utilize the
existing memory resources.

Numerous techniques have been introduced that help im-
prove bandwidth utilization. One commonly used technique
is to buffer tiles or blocks of data from global memory in a
fast, on-chip shared memory [22]. Once the tile is in shared
memory, computation can continue quickly and many de-
lays associated with the GPU’s memory subsystem can be
greatly reduced. While this paradigm can easily be deployed
in software and works with modern GPUs, there are soft-
ware and microarchitectural inefficiencies that may hamper
the performance of applications using this scheme. These
include overheads from generating addresses for each load
and store instruction, redundancy of data as buffered data
will occupy space in both the L1 cache and the shared mem-
ory when both memories are in fact unified, coarse-grained
synchronization penalties in order to guarantee read-after-
write data consistency, and unnecessary register file usage
to move data from the global to the shared memory.

Other software techniques like CudaDMA [4] and Sponge [11]
attempt to improve this idea by using some GPU computa-
tion resources to help manage the buffering. They achieve
this by specializing threads to handle transfer of data from
global to shared memory, but by doing so they consume
computational hardware to generate addresses and perform
these transfers and limit the number of threads able to con-
currently perform computation. Furthermore, these works
do little to address the inefficiencies of the current buffering
paradigm on modern GPUs.

Other works have introduced novel GPU prefetching hard-
ware [19, 31] to help applications that do not have enough
threads to hide memory latency. Prefetching schemes how-
ever are speculative and can potentially degrade bandwidth
utilization due to inaccurate data prefetches. An alterna-
tive to prefetching is to decouple some memory accesses

from a processor’s datapath with some additional hardware
support. Direct memory access (DMA) controllers are one
such example of this. Some single- and multi-core archi-
tectures, like the IBM Cell BE [8], use direct memory ac-
cess (DMA) to move data between peripherals and memo-
ries asynchronously with respect to the CPU. By doing so,
the CPU avoids consuming execution resources to calculate
memory addresses and can reduce stalling when waiting for
data by overlapping computation with transfer. However,
as DMA was not envisioned for architectures that execute
on thousands of threads simultaneously, difficult challenges
prevent the direct adoption of DMA for GPUs. Such chal-
lenges include selecting which threads should begin a DMA
transaction, how to concurrently interleave transactions for
many threads, and how to inform threads that their transfer
is complete on a non-interruptible architecture. This work
addresses these challenges to bring the benefits of decoupled
memory accesses provided by traditional DMA-enabled de-
vices to many-core, heavily multi-threaded GPUs.

To improve bandwidth utilization as well as application
performance, we propose a decoupled memory access scheme
for GPUs called Data-Parallel DMA, or D2MA. D2MA pro-
vides an efficient path for tiles of data to travel from off-chip
global memory to fast access, on-chip shared memory, while
decoupling bulk address generation for these transfers from
the rest of the core’s pipeline. To accomplish this, a new
DMA engine is added to each shader core that is capable of
rapidly generating coalesced memory requests given a single
base address and the size of a buffer for each resident concur-
rent thread array (CTA)1. The engine is also capable of gen-
erating special addressing patterns that are frequently found
in data-parallel code, including tiles with a surrounding halo
and blank column insertion to avoid bank conflicts in shared
memory. When buffer transfers complete, threads waiting
for their data tile need to be signaled to continue execution.
We introduce a novel waiting scheme that is managed in
hardware and maintains read-after-write consistency while
being entirely transparent to the programmer. Finally, to
minimize the burden of using D2MA in GPU code, a few
simple API calls are introduced that allow the programmer
to provide the DMA engine with the necessary information
to buffer a tile of data in the shared memory.

Our results show that by decoupling coarse-grained mem-
ory buffering from the rest of the shader’s pipeline, D2MA
is able to drastically reduce the number of cycles where all
resident CTAs on a shader are stalled waiting for a mem-
ory transfer to less than 1%. On average, the duration of a
transfer of a tile of data from global to shared memory was
reduced by 81%. The geometric mean speedup accomplished
by reducing these stalls and transfer times was around 36%.

In summary, the main contributions of this work are:

• A simple new functional unit, the DMA engine, that
can rapidly generate coalesced memory requests to global
memory in bulk without using the shader’s computa-
tional execution units.

• Support for specialized address generation for data
with halos and for shared memory bank conflict avoid-
ance.

1In this paper, we will frequently use NVIDIA/CUDA ter-
minology to describe GPU hardware and programming. A
CUDA thread block is a collection of threads that maps to
a GPU CTA [27].



• An efficient path for responses from global memory to
flow to the shared memory that reduces data redun-
dancy and register usage.

• A novel hardware scheme that enforces read-after-write
consistency, is transparent to the programmer, and ob-
viates the need for coarse-grained synchronization.

2. BACKGROUND AND MOTIVATION
This section describes the ways that GPUs hide the mem-

ory access latencies and the inefficiencies of buffering data
into shared memory, and discusses the challenges of address-
ing them when using DMA, a tried-and-true solution to such
issues for CPUs, on multi-threaded GPUs.

2.1 Hiding GPU Memory Access Latency
One of the most important characteristics of data-parallel

programs that target GPUs is that they expose enough thread
level parallelism to hide the long latencies of global memory
accesses and some arithmetic operations. When the shader
core’s execution units are waiting for a long latency opera-
tion to complete, the shader’s warp2 scheduler will attempt
to find another warp that is ready for execution to run in the
meantime. When running applications with enough threads
and high compute-to-memory ratios, swapping warps may
be able to hide most long latency operations, but when an
application does not have enough threads or is too memory
intensive the scheduler may not have enough ready warps to
issue, thus stalling the shader core.

To prevent poor performance for such memory intensive
applications, many applications take advantage of low-latency
on-chip shared memory by buffering tiles of data from off-
chip global memory into it. Each shader core has a limited
amount of shared memory available – NVIDIA architectures
provide a maximum of 48KB per core, compared to giga-
bytes of off-chip memory. The scope of data sharing is lim-
ited to the threads within a CTA, and the amount of space
allocated to a CTA is limited by the number of CTAs that
are simultaneously issued to a shader.3 The programmer
must carefully account for this when utilizing shared mem-
ory, as the amount of data buffered into shared memory will
directly impact how many CTAs can be launched concur-
rently per shader core. While this may seem restrictive, the
shared memory is located so close to a shader’s functional
units that frequent random accesses to the tile are feasible
provided that care is taken to avoid bank conflicts. The
same random accesses of the data in global memory would
incur coalescing penalties and long round trip latencies to
transfer each segment of data [22]. When shared memory
buffering is applied, it can greatly improve performance by
reducing the cycles during which the shader stalls for global
memory accesses.

2.2 Inefficiencies when Buffering into Shared
Memory

While buffering data using shared memory can positively
impact application performance and off-chip bandwidth uti-
lization, there are inefficiencies in this process for modern
2In modern NVIDIA GPUs, a warp is a collection of 32
threads that execute the same instructions in lockstep on a
shader core [22].
3The NVIDIA Fermi architecture allows eight CTAs to be
simultaneously resident on a shader core, while Kepler per-
mits sixteen [23].
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Figure 2: An example illustrating inefficiencies while buffer-
ing data into the shared memory.

GPU hardware [4]. Figure 2 details the many steps required
to perform each transfer of data from global into shared
memory. Before any transfer can begin, the addresses of the
source data and the destination must be calculated. These
instructions are fetched, decoded and issued to ALUs for
computation (➊), and the results of execution are written
back to the register file (➋). While the ALUs are calculating
these addresses, the instructions that load from global mem-
ory are fetched and decoded and are waiting at issue for the
scoreboard to indicate that the addresses are ready as shown
by ➌. Once the scoreboard permits their issue, the loads use
the memory unit to generate coalesced memory requests.
These requests first probe the L1 data cache, where compul-
sory misses are very likely as each buffer transfer is fetching
a new and unique tile of data from global memory. After
missing in the L1 cache, the request is sent to the L2 cache
and global memory through the interconnect (➍). Mean-
while, the instructions that will store the fetched data into
shared memory have progressed to the issue stage, await-
ing the results of the loads (➎). After a few hundred shader
cycles, the memory responses for these loads will return to
the shader. When this happens (➏), the data updates the
shader’s L1 data cache (as shown by the cross-hatched box)
and are written back to the register file. Finally, ➐ shows
that the store instructions are issued to the memory unit,
and the results of the global loads in the register file are
stored into the shared memory. This process repeats until
the entire tile is transferred, that is, until all warps involved
have completed their stores to shared memory.

Close examination of the example in Figure 2 reveals a few
key sources of inefficiency during the transfer of a tile from
global to shared memory. The first occurs at the ISA level.
Each transfer is composed of numerous instructions to gen-
erate addresses, launch loads from global memory, and store
results to shared memory. The hardware must issue a batch
of these instructions for each cache block (128B) of data to
be transferred, and since applications buffering into shared
memory are likely to be memory-intensive, many instruc-
tion batches must be issued. However, the shape of the data
being transferred is typically very regular, e.g. data packed
in a 2-D matrix. With the existing ISA, there is no way
to exploit the regularity of this data without executing all
these instructions. The second inefficiency compounds the
first with structural hardware limitations – to calculate the
base addresses for the loads and stores, the shader’s ALUs
are consumed to perform additions and multiplications and
cannot be used by other warps to perform computations.



A third major inefficiency is caused by the microarchitec-
tural layout of the shared memory and L1 data cache. In the
NVIDIA Fermi architecture4, these two memories are actu-
ally unified and coexist in the same memory [10, 21]. As
shown by ➏, when the response from global memory returns
to the shader the L1 is updated, and later when the store to
shared memory occurs (➐) the data is again written to a dif-
ferent partition of the same, unified memory. This produces
redundant data existing in this unified shader memory, and
can pollute the L1 data cache as the recently transferred
tile of data is unlikely to be reused by other global memory
operations or future tile transfers. Furthermore, because
there is no direct path for the load’s memory response to
go to shared memory, it’s journey is lengthened by writing
the fetched data to the register file so that a future store
instruction can write this data into the shared memory.

One thing that is not pictured in Figure 2 is the synchro-
nization required to prevent read-after-write consistency er-
rors. As each warp is responsible for transferring a part of
each tile, some warps may finish their transfer before oth-
ers. If these warps attempt to continue execution and try to
access data in shared memory that is still being buffered by
other warps, they will not be computing on the desired tile
of data, but rather some stale or otherwise incorrect data.
To prevent this, the programmer must insert a barrier after
this transfer (i.e. syncthreads() in CUDA) which pre-
vents warps from continuing forward until all warps reach
this synchronization point. However, this implies that the
slowest warp determines the end time of the transfer, and
can prevent other warps that may be computing on data
independent of the transferred tile from continuing.

All these sources of inefficiency indicates that there is
some room for optimization in the GPU’s ISA and microar-
chitecture. To improve upon the modern state-of-the-art of
GPUs, we focus on adopting ideas from a well-established
feature of CPUs, Direct Memory Access.

2.3 Traditional DMA on CPUs
The problem of gathering data for computation in a timely

manner and without excessively consuming processing re-
sources has been a concern for architects since time im-
memorial. In the early 1980s, Direct Memory Access (DMA)
was pioneered by IBM to decouple long duration data trans-
fers between peripheral devices and main memory from the
CPU’s datapath. Before DMA, if a program requested data
from a peripheral, e.g. a floppy drive, it would either (a)
poll the device to determine when the transfer completes,
forcing the CPU to sit idle until the program can resume,
or (b) let the operating system schedule other tasks until
an interrupt signals that the data is ready. Both schemes
incur high overheads when reading large amounts of data
from devices as the CPU was spending a great deal of time
calculating new addresses, issuing commands to move the
data from a peripheral to memory, and performing book-
keeping to track the transfer’s progress. With DMA, the
program simply commands a DMA controller, a small hard-
ware addition next to the CPU, to start copying a certain
number of bytes between a specified memory address and
a selected device. The DMA controller is responsible for

4The programmer can set the partition size so that 48KB
is dedicated to shared memory and 16 to the L1 or vice
versa. NVIDIA’s Kepler architecture appears to have the
same unified shared & L1 data cache with an added 32KB
shared/32KB L1 configuration [23].

generating addresses for data to be transferred to/from, is-
suing commands to the two endpoints, and arbitrating for
the data bus, freeing the CPU’s computation resources for
other uses. Once a transfer completes, the DMA controller
interrupts the CPU to indicate that the program’s data is
ready in memory, and the program continues execution [12,
27].

Many of the inefficiencies of GPU buffer transfers de-
scribed in Section 2.2 seem like they could be solved using
DMA-style transfers. However, reusing existing DMA de-
signs and ideas for the GPU is not straightforward. As DMA
was originally created for systems with very few threads ex-
ecuting simultaneously, DMA requires a reimagining when
applied to a GPU capable of executing thousands of threads
at the same time. This poses a few major challenges, listed
below:

• Which CTA’s warps should command a DMA con-
troller to start a transaction?

• How can transactions from many warps be interleaved
to occur concurrently?

• How does the DMA engine keep track of such pending
transfers with reasonable overheads?

Furthermore, GPUs are not interruptible devices. If a mem-
ory transfer is offloaded to a DMA controller, it needs some
way to inform the program that its transfer is complete. All
of these challenges necessitate a rethinking of DMA before
it can be applied to a GPU architecture.

3. D2MA OVERVIEW
As discussed in Section 2, a number of inefficiencies in

modern GPUs are exposed when buffering global memory
data in a shader’s shared memory, which can prevent memory-
intensive applications that employ such buffering from achiev-
ing their potential performance. The goal of this work is to
address these bottlenecks by overlapping computation and
buffer transfers, creating a slipstream effect that permits fu-
ture computations to occur sooner than with the current
buffering paradigm. In order to accomplish this, this work
proposes a new direct memory access scheme that has been
reimagined for GPUs called Data-Parallel DMA, or D2MA.
D2MA accomplishes this by: a) decoupling address gener-
ation and memory accesses for data within the tile being
buffered from the ALUs and memory units of the shaders
by utilizing a new functional unit: the DMA engine; b) pro-
viding a direct path for data to travel from the off-chip global
memory to the on-chip shared memory; c) ensuring that a
pipelined stream of successive memory requests are issued
to the global memory in a timely manner; and d) permit-
ting warps to execute up to the point where an instruction
attempts to load data from in-progress buffer transfer be-
fore forcing the warp to stop execution and wait for the
completion of the transfer. In this section, we will discuss
these improvements. Their implementation details will be
explored in Section 4.

The current paradigm accomplishes data buffering into
the shared memory by performing many address calculations
and memory operations that consume the shader’s primary
functional units, depicted in Figure 2. To free these units
for other computation, D2MA decouples almost all buffering
operations from the shader pipeline by adding a DMA en-
gine to each shader core as shown in Figure 3. As multiple
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Figure 3: How a DMA engine can efficiently buffer data into
the shared memory.

CTAs can be resident in a shader, each shader can be respon-
sible for at least one buffer transfer occurring for each CTA.
D2MA’s engine is capable of tracking not just one transfer
per CTA, but can also permit multiple transfers to occur
simultaneously for each CTA. Although DMA accesses are
decoupled from the shader’s pipeline, the DMA engine still
requires the shader’s ALUs to calculate two base addresses
per tile transfer for each CTA, one for the source and one
for the destination (①, ②). Once these two addresses are
computed, however, the shader’s functional units are never
used again to facilitate the buffer transfer for a CTA. In-
stead, the DMA engine is passed configuration parameters,
including the two base addresses, the size of each element
and the number of elements in the buffer, and information
describing the memory layout of the data being copied (i.e.
the access stride for 1D data, or the order and leading di-
mension of matrix data). These configuration commands
are implemented as two new instructions which are fetched,
decoded, and wait for their operands (the aforementioned
parameters) to be ready at the issue stage (③) like any other
warp instruction.

Once a CTA has configured the DMA engine, the en-
gine begins generating global memory addresses to load data
from in a pipelined fashion and wholly independent of the
shader’s ALUs. As the shape of the data being buffered is
very regular and is expected to be densely packed, at least
until it encounters a stride boundary, the addresses of suc-
cessive elements will naturally occur in a coalesced manner,
obviating extra coalescing logic that exists in the shader’s
memory unit for general global memory accesses. When ad-
dresses are ready, memory requests are directly issued to the
global memory through a shared memory port to the inter-
connect (④). As this memory request goes directly to the L2
and global memories, it bypasses probing the L1 data cache
entirely, where it is likely to miss for reasons described in
Section 2.2, and avoids modifying state in the L1.

During global address generation, the DMA engine con-
currently computes the shared memory addresses associated
with global addresses, and requests for data are sent to the
global memory. Once responses to DMA requests start re-
turning to the shader core (⑤), D2MA stores each responses’
data directly to the shared memory using the generated ad-
dresses. By selectively forwarding DMA responses to the
shared memory, the data will only exist once in this phys-
ically unified L1 and shared memory space. Furthermore,
the L1 will not be polluted with buffer data that should
only persist until the next tile is transferred.

In order to prevent read-after-write consistency errors dur-
ing buffering while remaining decoupled from the shader’s
pipeline, D2MA replaces the coarse-grained synchronization
instructions used in the current paradigm with a unique
warp waiting scheme that is entirely managed in hardware
and is transparent to the programmer. This scheme allows
warps to continue execution until an instruction attempts to
read data in shared memory that is currently being buffered.
When such an event occurs, the load from shared mem-
ory gets squashed and its warp’s next PC is rolled back to
that of the squashed instruction. The warp gets marked
as waiting for DMA, allowing the warp scheduler to issue
a different warp that is ready for execution to the shader’s
functional units. As many warps in a CTA may be waiting
for a DMA transfer to continue, the DMA engine tracks the
waiting warps per CTA, and when the transfer completes it
informs the scheduler that these warps may continue execu-
tion. When these warps are reissued, their next PC was re-
wound, allowing the load from shared memory to re-execute,
thus preserving program correctness while preventing the
shared memory from being read before a buffered tile was
ready.

4. IMPLEMENTATION AND DESIGN
In this section, we detail the hardware modifications and

additions to the shader core that are necessary to imple-
ment D2MA. At the heart of this work is the DMA engine,
as seen in Figure 3 and detailed in Figure 4. The DMA
engine manages the buffering operations for all CTAs is-
sued to a shader. Its key components include: an array of
DMA controllers which contain all necessary configuration
and bookkeeping metadata for buffer transfers (Section 4.1);
a specialized address generation unit capable of creating one
memory request for global data per cycle while concurrently
generating each datum’s associated shared memory address
(Section 4.2); and a mechanism to prevent RAW consistency
violations caused by attempted accesses to an incomplete
transfer’s data (Section 4.3). Section 4.4 details D2MA’s
programming model.

4.1 DMA Controllers
The DMA engine contains one DMA controller per resi-

dent CTA, empowering D2MA to manage simultaneous buffer-
ing operations for all the CTAs on a shader. Each con-
troller contains all the configuration and bookkeeping meta-
data necessary to facilitate a buffer transfer in a table called
the buffer management table. The tables are provisioned
with four entries, allowing each CTA to launch up to four
buffering operations at the same time.

When a DMA configuration instruction is issued to the
engine, it populates this metadata into entries in the buffer
management table, shown in Figure 4, associated with the
instruction’s CTA and the buffer specified by the instruc-
tion. Once configured, the table entry will contain the global
and shared base addresses of the tile (64b and 16b, re-
spectively), the number of elements to transfer (16b), the
byte size of an element (encoded into 2b5), the stride of the
data (16b), and flags that indicate the dimensionality of the
data (1b6) and if a special addressing mode is enabled (2b).
There are two supported special addressing modes, detailed
in Section 4.2.1. One of the addressing modes creates a halo
around the tile of data for stencil applications. This requires
extra configuration data as each buffer must know the num-
ber of halo rows (16b) and columns (16b) that surround the
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Figure 4: A DMA engine contains an array of DMA controllers, which store all information necessary to perform a buffer
transfer, and specialized address generation logic.

tile, an indicator as to the position of the tile relative to the
entire data (8b), as well as a constant to be stored in this
halo region around the tile’s data (16b). The other address-
ing mode is used to prevent shared memory bank conflicts,
and shares these configuration bits with the halo address-
ing mode to store the number of elements that get stored in
a shared memory bank. In total, each DMA controller re-
quires 692 bits (173 bits per buffer) of metadata to configure
and track a DMA transfer.

As all warps within a CTA execute the same configura-
tion instructions, once a particular CTA’s buffer is fully con-
figured, the engine will not modify the buffer’s table entry
again and will commit all future configuration instructions.7

When configured, the controller informs the DMA engine
that a buffer transfer is ready for ignition, and the engine
can commence this transfer.

4.2 DMA Memory Transaction Handling
When a transfer is ready, the DMA engine uses its address

generation logic to efficiently generate memory requests to
move this tile of data from global into shared memory. The
requests are sent through the shader’s existing memory sub-
system to the global memory, and when responses are re-
ceived, data is directly stored to the shared memory without
modifying the L1D or requiring any writeback to registers.

Once a CTA’s buffer is marked as ready for ignition and
the specialized address generation (AGEN) logic is avail-
able, the DMA engine routes the buffer’s metadata from
the associated controller’s buffer management table to the
address generation logic. The AGEN logic is controlled by
a byte counter (Figure 5a) that tracks if all addresses for
this transfer have been generated. The total size is calcu-
lated by shifting the number of elements by the encoded
size of each element and is stored in a register. The counter
is incremented depending on whether the buffer’s metadata
indicates the data stored in global memory is unit-strided,
or has a non-unit stride.

When data has a unit stride (Figure 5b), every element
is packed contiguously in global memory, so the AGEN logic
can easily generate global addresses based on segment bound-
aries.8 In this case, the engine’s AGEN logic can issue one
request for a segment of data per cycle. For the non-unit
stride case, data is still contiguous in global memory but
is not densely packed. The data that is of interest will ex-
ist with distance equal to the stride between each element.

5Two bits are needed to represent all data type sizes: 1B,
2B, 4B and 8B.
6D2MA currently supports 1D and 2D tile transfers.
7Configuration instructions can later change the buffer man-
agement table entries once a buffer transfer has completed.
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Figure 5: Specialized address generation logic allows D2MA
to rapidly issue memory requests and decouples all address
generation from the shader’s computational resources.

Because of this, some contiguous segments will not contain
data of interest, so the AGEN logic only sends requests for
those that do. As shown in Figure 5c, the address of the
current element is stored in a register. To extract the seg-
ment address from this, the lower seven bits are masked off
(&). Then, this segment address is compared to the one
generated in the previous cycle. If they are not equal, this
element is in a new segment and a new global memory re-
quest is ready to be issued. Because of this, it is possible
that it will take multiple cycles to generate a strided mem-
ory request for each segment. As global addresses are gen-
erated, the AGEN logic also generates the shared memory
addresses associated with each global segment (Figure 5d).
If no special addressing mode is specified, data is expected
to be contiguous and densely packed in shared memory. If
the global addresses are strided, then the shared memory
AGEN logic only issues a new shared memory address if the
strided AGEN circuit signals that it created a new request.

As discussed in Section 3, D2MA will write a response’s
data directly to shared memory and not to the L1D. In order

8Segments can be 32, 64 or 128B wide for NVIDIA archi-
tectures [22].
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Figure 6: The halo addressing mode must track which region
of the entire matrix a tile is coming from to determine what
data is stored in the halo. There are nine possible regions.

to accomplish this, the MSHRs in the L1D are shared be-
tween the DMA engine and memory unit, and each MSHR
has been provisioned with a 16b shared address field. When
both the global request and its associated shared memory
address(es) are generated by the AGEN logic, they are di-
rectly sent to the MSHR table, where the global and shared
addresses are written if an entry is available. If the global
address of a response from memory matches an MSHR entry
that also contains a shared memory address (identifying a
DMA response), the data gets stored to that location in the
shared memory rather than the in the L1D.

To avoid complications of adding more nodes to the in-
terconnect, the shader’s memory port to the on-chip inter-
connect is shared between the DMA engine and the shader’s
memory unit. In case of contention between the engine and
memory unit, all memory unit requests are given priority to
ensure that computation is given priority over DMA opera-
tion.

4.2.1 Special Addressing Modes

D2MA supports two special addressing modes. The first,
called bank conflict resolution, spaces data stored to shared
memory out so that when multiple threads access the buffer,
they do not all attempt to read from the same bank at the
same time. When shared memory addresses are generated,
the AGEN logic only permits n elements to be stored per
memory bank, as specified by buffer’s metadata.

The second addressing mode creates a halo surrounding
the buffered tile in shared memory. This is commonly used
in image processing and physics simulations to include neigh-
boring data when computing on a tile. This halo is either
filled with data from neighboring tiles or with a constant
value if that tile is on the border of the entire data. Fig-
ure 6 shows that every tile resides in a region that determines
what data needs to be stored in its halo in shared memory.
Interior tiles (region nine) will have halos that contain data
from neighboring tiles. Exterior tiles (regions one through
eight) have some rows and/or columns that will contain a
neighboring tile’s data and others that will contain the halo
constant. When a halo is applied to a tile, the AGEN logic
needs to know the region from which this tile belongs. The
programmer supplies the current tile’s region when config-
uring a new tile transfer. The size of the halo, the halo
constant, and the current tile’s region are loaded from the
buffer’s metadata for use by the AGEN logic. Based on the
region the tile is in and the number of halo rows and columns
for the tile, the AGEN logic will generate global and shared
memory addresses for the transfer. For the exterior regions
where some of the halo data is constant, the DMA engine
will store the halo constant to the exterior halo parts of these
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Figure 7: The DMA controller contains logic to check if a
read-after-write consistency violation will occur if a shared
load is issued that conflicts with an in progress DMA trans-
fer.

tiles in shared memory while the global memory requests are
in flight.

4.3 Dynamic Synchronization Support
One of the goals of this work is to obviate the need for

all warps to wait for a CTA’s transfer to complete. To ac-
complish this, D2MA dynamically monitors all instructions
that load from shared memory while DMA transfers are in
progress, and if loads are found to alias with a buffer in
transit, their warps are forced to wait until the buffer trans-
fer completes. This allows work independent of the buffered
data to continue to execute in these warps past a point where
a programmer would normally have forced a coarse-grained
synchronization to occur.

Dynamic synchronization is achieved by collaboration be-
tween the DMA engine and the warp scheduler. If transfers
are in progress and a load from shared memory instruction is
encountered at the issue stage, the source address of the load
is forwarded to the DMA engine. The DMA engine routes
this address to all of its DMA controllers, where Read-After-
Write (RAW) Consistency Logic (Figure 4) compares the
address to the ranges of possible shared memory addresses
for all in-flight buffers. The logic displayed in Figure 7 is
used to perform this checking. To determine buffer address
ranges, the total number of bytes transferred by a buffer
is added to that buffer’s shared base address. Two digital
comparators then check to see if the shared load’s address
is within this range. If both comparators return true, and
the associated buffer’s table entry was fully configured, this
indicates that a RAW consistency violation has occurred.
In this case, a signal is sent back to the issue stage, inform-
ing the scheduler that this load’s warp needs to wait. Upon
receipt of such a wait signal, the scheduler will mark this in-
struction’s warp as waiting for a DMA transfer to complete,
allowing a different warp to be issued, and the scheduler will
rewind the next PC of the shared load instruction’s warp so
that the load can re-execute when the warp is allowed to
continue.

When a DMA transfer for a CTA has completed, the DMA
engine passes the CTA ID to the warp scheduler so that it
may release all warps within the CTA that may have been
waiting. Each DMA controller will contain one of the cir-
cuits shown in Figure 7 per buffer entry, for a total of four
RAW consistency checking circuits per controller. Imple-
menting this functionality in hardware allows a guarantee of
consistency while remaining transparent to the programmer.

4.4 D2MA Programming Model
To simplify the process of programming using D2MA, we

extend intrinsics that map directly to DMA engine configu-



1 __global__ void
2 sgemv_DMA(int n, int m, int n1, float alpha,

3 float *A, int lda, float *x, float *y)
4 {
5 __shared__ float buff[VEC_ELMTS];
6 dma_set_datatype_float();

7 dma_configure_flat_unit_stride(buff,
8 x,
9 VEC_ELMTS);

10

11 int ind = blockIdx.x * num_threads
12 + threadIdx.x;

13 A += ind;
14 float res = 0.f;
15 int k = 0;
16 for(int i=0; i<n1; i += VEC_ELMTS)

17 {
18 for(int j=0; j < VEC_ELMTS; j++)
19 {

20 res+=A[0]*buff[j];
21 A+=lda;
22 }

23 k += VEC_ELMTS;
24 if (k < n1)
25 dma_execute(buff, x+k, 0);

26 }
27

28 if (ind<n)
29 y[ind] = alpha * res;

30 }

Figure 8: A sgemv kernel written using D2MA.

ration instructions. Figure 8 shows a sgemv kernel written
using these intrinsics to enable DMA operation. Lines 6-9
show the initial configuration, where the buffer is config-
ured for source data which is a flat, unit-stride, 1D vec-
tor comprised of V EC ELMTS number of floats. The
dma set datatype float() intrinsic sets the data type of this
buffer, while the dma configure flat unit stride() sets the
global and shared base addresses and the size of the buffer.
After configuration, the DMA engine will start this trans-
fer, and the kernel’s execution will continue. Lines 10-19
are independent of the transfer in progress and can exe-
cute without waiting, and if the transfer is still in progress
at line 20, the DMA engine will stall the warp attempt-
ing to execute this load from the shared buffer. By using
D2MA, the programmer does not need to worry about plac-
ing syncthreads() in their code. At the end of the outer
loop, the dma execute() on line 25 begins the transferring
the next tile of data into buff . Shown here are only a subset
of the available intrinsics, other intrinsics permit configur-
ing 2D matrices and strided accesses, setting the data type
to be any possible data type, including packed floats, and
enabling the special addressing modes.

5. EXPERIMENTAL EVALUATION
We model D2MA’s engine and all necessary microarchi-

tectural modifications in GPGPU-Sim version 3.2.1 [3, 1].
Our baseline GPU is similar to the NVIDIA GTX480 [21]
architecture, and the configuration parameters passed to
GPGPU-Sim can be seen in Table 1. To evaluate D2MA, we
selected all benchmarks from the NVIDIA CUDA SDK [2]
and the Rodinia benchmark suite [6, 7] that contained ker-

Number of shaders 15
Threads per shader 1536
Threads per warp 32
SIMD lane width 32
CTAs per shader 8
Registers per shader 32768
Shared memory per shader 48KB
DMA engines per shader 1
Warp scheduling policy Greedy-then-oldest
L1 cache (size/assoc/block size) 16KB/4-way/128B
L2 cache (size/assoc/block size) 768KB/16-way/128B
Number of memory channels 8
Memory bandwidth 179.2 GB/s
Memory controller Out-of-order (FR-FCFS)

Table 1: GPGPU-Sim configuration

Abbr. Description Ref.
DCT Discrete cosine transform [2]
MM Matrix multiplication [2]
DWT 1D Haar wavelet transform [2]
TRANS1 Matrix transpose (coalesced) [2]
TRANS2 Matrix transpose (diagonal) [2]
FW Fast Walsh transform [2]
GAUSS Gaussian filter [2]
MEAN Mean filter [2]
SOBEL Sobel filter [2]
PATH Shortest path finding [6, 7]
SGEMV Matrix-vector mult. [4]
LUD1 LU decomposition (internal) [6, 7]
LUD2 LU decomposition (diagonal) [6, 7]

Table 2: Benchmarks used to evaluate D2MA

nels utilizing the current paradigm of buffering highly reg-
ular tiles of data into shared memory, and we created D2MA-
optimized versions of these kernels instrumented using D2MA’s
intrinsics discussed in Section 4.4. A list of the benchmarks
is shown in Table 2. Overall speedups achieved by using
D2MA are surveyed in Section 5.1. In Section 5.2, we an-
alyze the improvement in the duration of a buffer transfer
when using D2MA. We explore a breakdown of how D2MA
optimizes buffering with a case study in Section 5.3, and
compare D2MA to a software DMA scheme in Section 5.4.
Finally, we discuss the implementation overhead of D2MA
in Section 5.5.

5.1 Overall Performance
Figure 9 shows the overall speedup achieved when using

D2MA to optimize the transfer of data from off-chip global
memory to on-chip shared memory. By efficiently generat-
ing memory requests and forwarding responses directly to
the shared memory, D2MA is able to achieve up to 2.29x
and on average 1.36x speedup over kernels using the cur-
rent buffering paradigm on modern GPU hardware. All but
one D2MA-enabled kernels see some degree of speedup. As
D2MA automatically generates addresses and issues mem-
ory requests, the shader’s ALUs are not used for this task,
reducing the number of dynamic instructions executed as
shown by Figure 10. On average, D2MA reduces the num-
ber of instructions executed by 7%.
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Figure 9: Overall speedups from using D2MA.
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Figure 10: D2MA shifts instructions used to perform address
generation and memory transactions to dedicated hardware,
reducing the number of dynamic instructions executed when
performing a buffering operation.

The GAUSS, MEAN , and SOBEL kernels show ma-
jor benefits as these kernels utilize D2MA’s special halo ad-
dressing mode. The original code required conditional logic
to determine whether the threads needed to store a con-
stant or a neighboring tile’s data to the halo surrounding
the current tile being buffered. By allowing the DMA en-
gine’s specialized address generation logic to handle this
computation, the optimized kernels achieve 2.19x, 2.15x,
and 1.52x speedups, respectively. These speedups correlate
closely with their large reduction in the number of dynamic
instructions, which are reduced by up to 20%.

PATH shows a case that gets very little speedup (1.02x).
In this case, the buffering operation in PATH ’s kernel ac-
counts for a very small fraction of its total execution time,
so the speedup achieved by optimizing buffering is small.
MM and DWT also exhibit a similar compute-to-memory
characteristic as PATH and thus get limited speedups of
1.14x and 1.15x, respectively.

LUD1 is the only kernel that experiences slight loss in
performance. The code footprint of the baseline kernel is
very small, and only one transfer is performed per kernel
call. Every time the D2MA kernel is called, it must configure
the DMA engine, which causes 3% more instructions to be
executed compared to the baseline kernel. These factors
account for this kernel’s 7% performance degradation.

In order to analyze the performance of the remaining bench-
marks, we turn to a more detailed study of D2MA’s im-
proved buffer transfer performance.

5.2 Analyzing Buffering Performance
When analyzing the buffer transfers within kernels, we

found that D2MA is on average able to reduce the trans-
fer time by 81% when compared to the current buffering
paradigm. Figure 11 shows the breakdown of tile transfer
cycles into address generation (AGEN) and memory trans-
action (MEM) cycles. It also shows the average improve-
ment in overall transfer time for the D2MA-enabled kernels
normalized to that of the baseline kernels.

The significant improvements observed in both address
generation and memory transfer cycles are primarily due to
the decoupling of a buffering operation from dependencies
upon other instructions and the shader’s functional units.
D2MA’s dedicated address generation logic accounts for a
98% reduction in AGEN cycles. As the baseline scheme
requires each warp to transfer a part of a tile to shared
memory, a transfer’s performance becomes dependent on the
warp scheduler allowing every warp to fetch their portion of
the tile. On the contrary, once a DMA engine is config-
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Figure 11: By optimizing the buffering of data from global
into shared memory, D2MA on average more than halves the
cycles to transfer a tile of data. For each benchmark, the
left bar represents baseline results, and the right bar shows
D2MA results relative to the baseline. (Lower is better.)

ured, D2MA generates segment addresses and issues them
to memory wholly independent of the warp scheduler. This
accounts for the average reduction in MEM cycles of 66%.

Generally, all D2MA-optimized kernels see significant re-
ductions in transfer duration due to buffering. For some
benchmarks (MM , DWT , PATH), this did not necessarily
translate into an overall speedup in execution time. Al-
though SGEMV shows an improvement in transfer time
comparable to that of DWT and PATH , SGEMV per-
forms much simpler computation compared to these kernels,
allowing it to achieve a better overall speedup of 1.23x.

As discussed in Section 5.1, the three filters (GAUSS,
MEAN , and SOBEL) achieve very high speedups by al-
lowing the DMA engine to handle generation of their tile’s
halo addresses. Figure 10 supports these findings as it shows
that the baseline kernels spent a significant number of cy-
cles performing address generation. By allowing dedicated
logic to generate these special halo addresses and stream-
lining the issuing of their memory requests, D2MA greatly
reduces each of these kernel’s address generation cycles by
99%. Combined with the timely issue of memory requests
described in Section 5.1, these benchmarks see an average
transfer duration reduction of 96%.

The TRANS1 kernel performs a transpose of a large ma-
trix in a sequential, tile-by-tile fashion, while the TRANS2
kernel performs the transpose reordered along diagonal strips
of the original matrix. While both kernels have similar code,
they are buffering tiles in different orders. The baseline
sequential kernel (TRANS1) suffers from high miss rates
(about 50%) in the L2 cache, lengthening its transfer dura-
tion. The D2MA version of this kernel achieves limited im-
provement for this kernel because D2MA’s optimizations are
not meant to improve L2 caching performance. TRANS2’s
diagonal tile access pattern results in far fewer misses in the
L2 with a miss rate of just 4%, and this allows D2MA to
improve the reduction in this kernel’s transfer time by 17%
over that of TRANS1. The reduction in transfer time ac-
counts for the major overall speedup of the TRANS2 kernel.
For similar tile ordering reasons, the access patterns of the
two LUD kernels similarly account for one kernel performing
slightly better than the other.

We also examine how frequently the shader is forced to
stall due to memory operations in a buffer transfer com-
pared to the kernel’s whole execution time. Shaders are
forced to stall during a transfer when all threads amongst the
CTAs assigned to the shader are waiting for memory trans-



actions to complete. On average, the baseline benchmarks
spend about 7% of their cycles stalled due to buffering in-
efficiencies. By decoupling the buffering operation from the
shader’s ALUs and memory unit and more efficiently moving
data between the global and shared memories, D2MA nearly
eliminates these stall cycles. The D2MA-enabled kernels, on
average, stall for less than 1% of their total execution cycles.

5.3 Case Study: Breaking Down Transfer Times
To present a breakdown of transfer and compute times,

we examine the execution of SAXPY , a scaled vector ad-
dition benchmark from [4]. We run a version of the kernel
that buffers both vectors to be added into shared memory
as our baseline, and optimized this kernel using the D2MA
intrinsics. SAXPY contains fairly simple computations, as
each tile will contain two vectors that get added together.
This makes the buffering operation’s transfer time critical
when achieving good overall performance. The timelines
presented in Figure 12 are from simulated executions of the
two versions of the SAXPY kernel, both running two CTAs
(b0 and b1) on a single shader. Times are broken down
into cycles when address generation (agen), memory transfer
(mem), and computation (comp) occur.

In Figure 12a, we see the baseline’s execution timeline.
Each buffering operation has some overhead for address gen-
eration before a memory transfer can begin. Because all
threads in the CTA will be involved in the transferring of
each vector, the two transfers are serialized. Only after all
threads involved in the transfer complete can the baseline
kernel perform the actual vector addition. If we compare
this to the D2MA-optimized kernel’s execution, displayed
in Figure 12b, address generation is compressed by greater
than 2/3, allowing memory transfers to occur sooner. Fur-
thermore, both vectors are buffered simultaneously as each
CTA utilizes two of their DMA controller’s four available
buffers. By improving address generation and overlapping
these transfers, two periods of computation occur before cy-
cle 2000, compared to just one for the baseline. Also, the
computation in the DMA kernel is able to start slightly ear-
lier than the baseline version, as D2MA’s dynamic synchro-
nization does not force all threads to wait when some are
ready to continue.

5.4 Case Study: Comparing with CudaDMA
CudaDMA [4] is a software solution that provides DMA-

like emulation for CUDA kernels. Using fine-grained syn-
chronization, CudaDMA allows the majority of warps to fo-
cus on computation on data while a few warps are tasked
with buffering tiles of data from global into shared memory.

To compare D2MAwith CudaDMA, we optimized a matrix-
vector multiplication (SGEMV ) kernel for D2MA and ran it
along with kernels optimized using CudaDMA and the base-
line software buffering approach. All three kernels trans-
ferred the subsections of the vector into shared memory us-
ing a single buffer. While the CudaDMA-optimized code
achieved a 1.10x speedup over the baseline, D2MA surpassed
CudaDMA, achieving a 1.23x speedup over the baseline ker-
nel. CudaDMA’s warp specialization decouples memory ac-
cess instructions from those performing computation, allow-
ing for its gains over the baseline. As described in Sec-
tion 5.1, D2MA’s dedicated hardware DMA engine obviates
the need for these memory instructions and handles all ad-
dress generation and issuing of memory requests in a manner

Controller Array 45169.4 µm2 2.40 mW

AGEN Logic 2246.6 µm2 0.16 mW

RAW Consistency Logic 1493.8 µm2 0.29 mW

Total per shader 54604.3 µm2 3.72 mW

Table 3: DMA Engine Hardware Overhead

that is almost entirely decoupled from the shader’s existing
functional units and warp scheduling.

5.5 Implementation Overhead
Each shader is provisioned with one DMA engine, and all

of its controllers require a total of 692 bytes of storage space
to track buffering operations. Each of the shader’s shared
memory and L1D cache’s 32 MSHRs are provisioned with
16 bits to track which shared memory address is associated
with a memory response’s global address, requiring 64 bytes
of space. Compared to each shader’s 32768 32-bit registers
and 64KB shared memory/L1 data cache [21], the storage
overhead of D2MA is miniscule.

To estimate the total area overhead of the DMA engine,
we created a Verilog model and synthesized it using Synopsis
Design Compiler with a commercial 45 nm cell library. Ta-
ble 3 shows the area and power overheads of a single DMA
engine reported by the synthesis of our model. When each of
the GTX480’s 15 shaders is augmented with a DMA engine,
D2MA only requires about 0.016% of the total chip area and
increases power consumption by only 0.022%.9

6. RELATED WORK
There are several works that attempt to improve the GPU

performance by overlapping computation and memory ac-
cesses [4, 11]. Bauer et al [4] propose a software managed
approach to overlap compute with memory access. They di-
vide warps into computation and memory warps, where the
latter retrieves data for the former. Hormati et al [11] use a
high level abstraction to launch helper threads which bring
data from global memory to shared memory and overlap
computation. While these works improve upon the baseline
buffering paradigm in [22], they require some of the shader’s
computational resources to be used to buffer data, whereas
D2MA decouples almost all operations related to buffering
using a new functional unit, the DMA engine.

Memory prefetching is another way of improving memory
accesses for GPUs [19, 31]. MT [19] provides hardware and
software prefetching mechanisms designed for GPUs which
exploit the existence of common memory access behavior
among fine-grained threads. APOGEE [31] is another hard-
ware prefetching mechanism which adapts to the memory
access patterns found in graphics and scientific applications.
Jog et al [13] propose a prefetch-aware scheduling scheme
that enables a simple prefetcher to be effective in tolerating
memory latencies. D2MA differs from these works in that it
is not predictive and relies on explicit instructions to fetch
data. Due to this, D2MA does not suffer from inaccuracy
and only fetches data when instructed.

Different warp schedulers have also been introduced to
improve the utilization of GPU memory systems [18, 9, 15,
20, 30, 14]. Lakshminarayana and Kim et al [18] evalu-
ated various scheduling techniques for DRAM optimization.
For systems with no hardware-managed caches, they pro-
posed a scheduler which is fair to all warps. Gebhart et
al [9] proposed a two-level scheduling technique to improve

9The NVIDIA GTX480 architecture has a 529 mm2 die size
and a TDP of 250 W [5].
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Figure 12: When two CTAs of SAXPY are run with DMA support (12b), its transfer times are significantly reduced, allowing
more computation to occur in the same time frame when compared to the baseline (12a). bX,Y indicates the CTA ID (X)
and buffer number (Y ).

register file energy efficiency. Kayiran et al [15] reduced
the saturation of the memory subsystem by throttling the
number of CTAs that are active on a SM. Narasiman et
al [20] proposed a two-level warp scheduler which divided
warps into fetch groups, and first scheduled within the fetch
groups and then switched groups when all warps within a
fetch group were stalled. Rogers et al [30] have shown simi-
lar results for a two-level scheduler. Jog et al [14] proposed
a CTA-aware Locality BLP scheduler which reduced cache
contention and used memory-bank level parallelism to im-
prove performance. D2MA currently improves energy per-
formance independent of the warp scheduler, however new
scheduling schemes to further improve memory transaction
overlapping will be considered in future work.

Rogers et al [30] proposed a cache-conscious scheduling
mechanism which used locality detection hardware in the
cache to moderate the number of warps that accessed the
cache and controlled cache thrashing. Gebhart et al [10]
proposed a unified scratchpad, register file and data cache
to better distribute the on-chip resources depending on the
application. LAMAR [29] introduced a locality-aware mem-
ory hierarchy which provides the ability to tune the memory
access granularity. LAMAR used a hardware predictor to
predict when fine-grained accesses occurred, and optimized
bandwidth utilization for such accesses. Unlike LAMAR,
D2MA’s goal is to improve the memory utilization for coarse-
grained accesses.

7. CONCLUSION
In order to achieve high performance on GPUs, effectively

utilizing memory bandwidth is critical. One common tech-
nique to improve the memory utilization is have the pro-
grammer explicitly buffer tiles of data from off-chip mem-
ory into a fast on-chip memory for computation. Although
this technique improves the performance of memory-bound
applications, there is more room for improvement by reduc-
ing the overhead of generating addresses for each load and
store instruction, and eliminating the redundancy of data as
buffered data will occupy space in both the L1 cache and
the shared memory when both memories are in fact unified.

In this work, we propose D2MA to provide an efficient way
to buffer tiles of data from global memory into fast access
shared memory. This engine decouples the bulk address gen-
eration required to transfer tiles from the rest of the shader
pipeline. This way, shaders can continue execution while
DMA is transferring data from the global memory. It also
supports different special addressing modes that are com-
mon in various GPU applications. D2MA is also equipped
with a novel waiting scheme that is managed in hardware
and maintains read-after-write consistency while being en-
tirely transparent to the programmer. Across 13 different
kernels, D2MA yields an average of 36% performance im-
provement while reducing the duration of a transfer of a tile
of data from global to shared memory by 81%.
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