
Data Resource Management in Throughput Processors

by

John S. Kloosterman

A dissertation submitted in partial fulfillment

of the requirements for the degree of

Doctor of Philosophy

(Computer Science and Engineering)

in the University of Michigan

2018

Doctoral Committee:

Professor Scott Mahlke, chair

Professor Trevor Mudge

Professor Kevin Pipe

Assistant Professor Lingjia Tang

John S. Kloosterman

jklooste@umich.edu

ORCID iD: 0000-0001-8180-1237

© John S. Kloosterman 2018

ACKNOWLEDGMENTS

Completing this dissertation would not have been possible without the support of many people.

I would like to thank Scott Mahlke for making this research possible as my advisor; his insight

made an impact on every part of this dissertation. Alongside his research mentorship, he has also

helped me learn the other skills that make research successful – presenting my work in a way that

is understandable and convincing, as well as managing the different stakeholders in the work. I

also had the privilege of working with Trevor Mudge throughout my time at Michigan. Lingjia

Tang and Kevin Pipe have provided valuable insights as committee members that improved this

work.

I am proud to have been a part of the CCCP research group. As I started graduate school,

Ankit Sethia showed me how to be an effective graduate student during our meetings together with

Scott. Mehrzad Samadi, Hyoun Kyu Cho, Janghaeng Lee, Daya Khudia, Gaurav Chadha, Jason

Park, Shruti Padmanabha, and Andrew Lukefahr were a welcoming group of people who I had the

privilege of joining and working alongside. I enjoyed collaborating with Anoushe Jamshidi on our

GPU research; many of the ideas in Chapter 4 came out of our conversations. Jiecao Yu, Babak

Zamirai, Jon Bailey, Shikai Li, Sunghyun Park, Salar Latifi, Hossein Golestani, Ze Zhang, and

Pedram Zamirai have been a great group to work alongside these past years. Jonathan Beaumont

was also a pleasure to work with on the power models used in this dissertation.

I am grateful to my mentors through the different stages of my career so far. Joel Adams

gave me my first experience doing research with GPUs as an undergraduate, helped me through

the graduate school admissions process, and has continued being there throughout my Ph.D. As I

prepare for life after graduate school, Drew DeOrio has helped me through the job search process

and given me the nudges I needed to finish writing.

I could not be here without the support of my parents, John and Kim. From teaching me how

ii

to use DOS at four years old, to using the farm truck to pick up loads of free computer parts,

to giving me all that space in the basement to tinker, they have always been encouraging and

supportive. They have been patient through all the times I have had to stay in the States to work on

research.

Finally, I could not have made it through graduate school without the support of my wife Liz.

She has been there through all the exams, paper deadlines, conferences, and job interviews that

would otherwise have been too much for me. She’ll be glad I can finally get some rest.

iii

TABLE OF CONTENTS

Acknowledgments . ii

List of Figures . vii

List of Tables . xi

Abstract . xii

Chapter

1 Introduction . 1

1.1 Data Management Inefficiencies . 4

1.1.1 Memory Divergence and Cache Thrashing 5

1.1.2 Register File Energy Overhead . 5

1.1.3 Inter-Application Contention . 6

1.2 Contributions . 6

1.2.1 Increasing Memory Throughput . 6

1.2.2 Reducing Register File Energy and Storage 7

1.2.3 Controlling Interference in Shared GPUs 7

2 Background . 9

2.1 SM Design . 9

2.2 Memory System Design . 10

2.3 Programming Model . 11

2.4 Design Convergence in Desktop, Data Center, and Mobile 12

3 Inter-Warp Memory Request Merging and Prioritization 13

3.1 Introduction . 13

3.2 Background and Motivation . 15

3.2.1 Background . 15

3.2.2 Oversubscription of L1 Bandwidth . 18

3.2.3 Increasing Coalescing Window Size . 20

3.3 WarpPool Design . 21

3.3.1 Overview . 21

3.3.2 Instruction Queues . 23

3.3.3 Intra-Warp Coalescers . 24

3.3.4 Inter-Warp Coalescing Queues . 24

iv

3.3.5 Request Selector . 25

3.3.6 Metadata Tracker . 26

3.3.7 Writeback . 28

3.3.8 Stores and Memory Consistency . 28

3.3.9 Resource Configuration . 29

3.3.10 Verilog Implementation . 30

3.4 Evaluation . 32

3.4.1 Methodology . 32

3.4.2 Results . 33

3.4.3 Case Study . 36

3.5 Related Work . 37

3.6 Conclusion . 38

4 Register File Storage and Energy Reduction . 40

4.1 Introduction . 40

4.2 RF Replacement Challenges . 43

4.2.1 Capacity Allocation . 43

4.2.2 Memory Side Bandwidth . 45

4.2.3 L1 Cache Capacity . 46

4.3 Design Overview . 46

4.4 Compiler Code Generation . 48

4.4.1 Region Creation . 48

4.4.2 Region Creation Algorithm . 50

4.4.3 Register Lifetime . 50

4.4.4 Control Flow and Register Liveness . 52

4.5 Hardware Design . 53

4.5.1 Capacity Managers (CMs) . 55

4.5.2 Operand Staging Units (OSUs) . 55

4.5.3 Compressor . 58

4.5.4 Metadata Encoding . 59

4.6 Evaluation . 60

4.6.1 Methodology . 60

4.6.2 Area and Power . 61

4.6.3 Energy Savings . 62

4.6.4 Performance . 64

4.6.5 Register Preload Location, L1 Bandwidth 65

4.6.6 Region Sizes . 66

4.7 Related Work . 68

4.8 Conclusion . 70

5 Multi-Kernel Resource Management . 74

5.1 Introduction . 74

5.2 Background and Motivation . 77

5.2.1 GPU Architecture and Multitasking . 77

5.2.2 Disadvantages of Temporal and Spatial Partitioning 79

v

5.2.3 Interference under SMK . 79

5.2.4 Opportunities to Control Interference 81

5.3 Overview . 82

5.3.1 Online Performance Prediction . 83

5.3.2 Dynamic Resource Allocation . 83

5.3.3 Hardware Components . 84

5.4 Online Performance Prediction . 85

5.4.1 Determining Profile Length . 86

5.4.2 Detecting Phase Boundaries . 87

5.5 Performance Controllers . 89

5.5.1 Controlling Warps and Memory Requests 90

5.5.2 Controlling Thread Blocks and Preemption 92

5.5.3 Avoiding Throughput Loss . 94

5.6 Evaluation . 95

5.6.1 Methodology . 95

5.6.2 Hardware Implementation . 96

5.6.3 Performance Targets and Throughputs 97

5.6.4 Performance Predictor Accuracy . 99

5.6.5 Performance Targets Achieved . 100

5.6.6 Cloud Operator Revenue . 101

5.7 Related Work . 102

5.8 Conclusion . 104

6 Conclusion and Future Work . 105

6.1 Summary . 105

6.2 Future Work . 107

Bibliography . 109

vi

LIST OF FIGURES

1.1 Percentage of cycles any instruction was issued for a set of workloads from Parboil,

Rodinia, and the NVIDIA SDK. 2

1.2 Percentage of cycles the load/store unit was stalled, which indicates when throughput

is limited by the global memory system. 2

1.3 Major GPU components involved in data movement and storage. This thesis focuses

on three critical data management components: global memory merging and caching

in shader cores, register storage, and allocation of resources between multiple co-

running workloads. 4

2.1 Design of a GPU core, called a streaming multiprocessor (SM). GPUs are optimized

for throughput rather than individual thread latency and execute 32-wide vector in-

structions. 10

2.2 GPU system design, where SMs and memory partitions are on opposite sides of an

interconnect. The GPU communicates with a host system through PCI Express data

transfers to and from DRAM. 11

3.1 Diagram of GTX 480 memory system. Each SM has a load/store unit with a memory

coalescer which sends requests to a private L1 cache. Requests to shared L2 caches

and DRAM partitions are sent over an interconnect. 16

3.2 Memory request reduction for the spmv benchmark, showing the number of requests

remaining at each level of the memory hierarchy as the coalescer and caches convert

locality into fewer requests. 16

3.3 Memory throughput-limited workloads overwhelm the coalescing system either

though generating many requests with memory divergence or by causing cache re-

source shortages by saturating memory bandwidth. The kernel number is its sequence

in the kernel execution order in the benchmark. 17

3.4 A portion of the execution of the GEMM benchmark. The solid line is the number of

memory instructions waiting to be scheduled. The background is grey when the L1

cache resources are full. The bars at the bottom show when arithmetic is scheduled.

For the cache resource-bound benchmarks, there is little overlap of computation with

cache resource stalls. 17

vii

3.5 Many memory throughput-limited kernels show a large degree of inter-warp spatial

locality. Each cell corresponds to a kernel, and inside each cell the window size gets

larger from left (baseline window of only intra-warp coalescing) to right (window of

128 requests after intra-warp coalescing). As the window size increases the number

of requests that must be sent to the cache decreases. 19

3.6 Diagram of the WarpPool system. 22

3.7 A diagram of the inter-warp coalescing queues. Requests exiting the intra-warp coa-

lescers are merged with other requests to the same cache line in these queues. 25

3.8 Common mapping patterns from cache line words to threads 27

3.9 Relative occurrence of mapping patterns in benchmarks 28

3.10 Per-SM area breakdown of WarpPool components, with a total area of 0.36 mm
2 per

SM. (* = SRAM area calculated using CACTI) . 31

3.11 Speedup of GPU with banked cache, MRPB, and WarpPool over GTX 480 baseline. . 33

3.12 Average number of requests WarpPool coalesced into an L1 cache request, compared

against the number of requests an 8-bank cache serviced each cycle. 34

3.13 Number of misses per thousand instructions (MPKI) for MRPB and WarpPool, nor-

malized to the baseline. 35

3.14 Relative execution time of matrix transpose versions, normalized to naı̈ve global mem-

ory version. 36

4.1 Comparison of GPU register energy reduction techniques that change how execution

units (EUs) read operands from the register file (RF) 41

4.2 Average register working set in 100 cycle window for GTO and 2-level warp sched-

ulers in baseline 2048 KB register file for benchmarks in Rodinia [17] 43

4.3 Accesses to the register backing store per 100 cycles during the steady state of hotspot

for baseline, RF hierarchy [32] with 8-entry scratchpad, and RegLess with 8 entries

per warp . 45

4.4 Walkthrough . 47

4.5 Count of live registers for a portion of particle filter, with low live register

points highlighted . 49

4.6 Compiler annotations added on regions and instructions 51

4.7 Determining whether a definition is soft. A soft definition of a register might not kill

every thread’s values. 53

4.8 Block diagram of RegLess components in each SM 53

4.9 Capacity manager (CM) design. CMs track which warps have registers allocated in

the OSU and are ready to execute instructions. 56

4.10 Operand staging unit (OSU) design. OSUs store register values and service register

read and writes. 56

4.11 Area for RegLess configurations, normalized to 2048-entry baseline RF 61

4.12 Combined static and average dynamic power for RegLess configurations, normalized

to baseline RF . 61

4.13 Run time vs. GPU energy for RegLess configurations, normalized to baseline. The

line marks the Pareto frontier. 62

4.14 Register file energy for RFV [50], RFV [32], and RegLess, normalized to baseline . . 63

viii

4.15 Normalized total GPU energy, including added instruction and memory accesses. The

“No RF” entry is the upper bound for energy savings, which uses the baseline perfor-

mance and a register file that consumes no energy. 63

4.16 Run time (lower is better) for 512-register RegLess design normalized to baseline with

full RF. The geomean is compared with RegLess with no compressor, RFV, and RFH. 64

4.17 Location from which registers were preloaded. 0.9% of registers were preloaded from

L1 and 0.013% were preloaded from L2 or DRAM. 65

4.18 Average RegLess L1 requests per cycle . 66

4.19 Average number of preloads, average number of concurrent live registers, and standard

deviation of number of concurrent live registers per region 66

5.1 Diagram of GPU and SM design. In SMK [141, 146], the warp contexts are split

between applications. 77

5.2 Resource demands for GPU workloads (methodology in Section 5.6.1); workloads

on the left saturate compute resources, and workloads on the right saturate mem-

ory resources. Sharing an SM between complementary workloads increases overall

throughput. 78

5.3 Running multiple kernels using SMK results in interference. The SG benchmark is

run alongside three other benchmarks, sharing resources evenly. Interference causes

throughput loss for one or both workloads. 80

5.4 Timeline of % cycles arithmetic issued and load/store unit stalled, averaged over 100-

cycle windows, for a 20,000-cycle interval of BP. A co-running workload is able to

issue compute and memory instructions at times of low utilization. 80

5.5 Overview of the Scavenger system . 82

5.6 The Scavenger components in each SM, which use performance counters to deter-

mine resource allocations. The upper components (in orange) predict the primary

workload’s performance and detect when it has entered a new phase. The lower com-

ponents (in blue) adjust the resource allocation to achieve the primary workload target

and maximize secondary workload throughput. 84

5.7 Performance of excerpt of HS over time along with the difference between the mean

training and validation interval IPCs. To detect an appropriate profile length, Scav-

enger continues profiling until the difference stays below a threshold. 86

5.8 Feedback control system for active warps and outstanding memory requests. The

short-term and long-term difference between the predicted IPC and actual IPC is used

to adjust resource allocations using PID controllers. 90

5.9 The thread block controller preempts blocks to balance warp slack between the work-

loads. (a) Scavenger detects too little slack for primary workload, too much for sec-

ondary. (b) Blocks of secondary workload are preempted to make way for primary.

(c) Slack is more evenly distributed between workloads. 93

5.10 Secondary workload throughput with Scavenger compared to temporal partitioning,

by primary x secondary workload category. Pairs violating the primary kernel perfor-

mance target are excluded. 97

5.11 Geomean primary workload throughput by pair category and target 97

5.12 Total primary and secondary throughput with Scavenger compared to temporal parti-

tioning. Pairs violating the primary kernel performance target are excluded. 98

ix

5.13 Cumulative % error and % time profiling, averaged across benchmarks vs. maximum

difference between training and validation interval IPC while profiling 99

5.14 Percentage of pairs where the primary kernel’s performance was below the target with

1% error margin, and the average percentage by which pairs that did not achieve the

target were below the target performance . 100

5.15 Additional revenue per dollar realizable with Scavenger over leasing GPUs as a unit

or using temporal partitioning. 101

x

LIST OF TABLES

3.1 Per-SM storage and power overhead of WarpPool components 30

3.2 Resource configuration evaluated . 31

4.1 GPGPU-sim simulation parameters . 60

4.2 Average number of static instructions per region and average dynamic cycles per region 67

5.1 Performance predictor parameters . 89

5.2 Controller parameters . 94

5.3 Simulator configuration . 94

5.4 Benchmarks . 95

xi

ABSTRACT

Graphics Processing Units (GPUs) are becoming common in data centers for tasks like neural net-

work training and image processing due to their high performance and efficiency. GPUs maintain

high throughput by running thousands of threads simultaneously, issuing instructions from ready

threads to hide latency in others that are stalled. While this is effective for keeping the arithmetic

units busy, the challenge in GPU design is moving the data for computation at the same high

rate. Any inefficiency in data movement and storage will compromise the throughput and energy

efficiency of the system.

Since energy consumption and cooling make up a large part of the cost of provisioning and

running and a data center, making GPUs more suitable for this environment requires removing the

bottlenecks and overheads that limit their efficiency. The performance of GPU workloads is often

limited by the throughput of the memory resources inside each GPU core, and though many of

the power-hungry structures in CPUs are not found in GPU designs, there is overhead for storing

each thread’s state. When sharing a GPU between workloads, contention for resources also causes

interference and slowdown.

This thesis develops techniques to manage and streamline the data movement and storage re-

sources in GPUs in each of these places. The first part of this thesis resolves data movement

restrictions inside each GPU core. The GPU memory system is optimized for sequential accesses,

but many workloads load data in irregular or transposed patterns that cause a throughput bottle-

neck even when all loads are cache hits. This work identifies and leverages opportunities to merge

requests across threads before sending them to the cache. While requests are waiting for merges,

they can be reordered to achieve a higher cache hit rate. These methods yielded a 38% speedup for

memory throughput limited workloads.

xii

Another opportunity for optimization is found in the register file. Since it must store the regis-

ters for thousands of active threads, it is the largest on-chip data storage structure on a GPU. The

second work in this thesis replaces the register file with a smaller, more energy-efficient register

buffer. Compiler directives allow the GPU to know ahead of time which registers will be accessed,

allowing the hardware to store only the registers that will be imminently accessed in the buffer,

with the rest moved to main memory. This technique reduced total GPU energy by 11%.

Finally, in a data center, many different applications will be launching GPU jobs, and just as

multiple processes can share the same CPU to increase its utilization, running multiple workloads

on the same GPU can increase its overall throughput. However, co-runners interfere with each

other in unpredictable ways, especially when sharing memory resources. The final part of this

thesis controls this interference, allowing a GPU to be shared between two tiers of workloads: one

tier with a high performance target and another suitable for batch jobs without deadlines. At a 90%

performance target, this technique increased GPU throughput by 9.3%.

GPUs’ high efficiency and performance makes them a valuable accelerator in the data center.

The contributions in this thesis further increase their efficiency by removing data movement and

storage overheads and unlock additional performance by enabling resources to be shared between

workloads while controlling interference.

xiii

CHAPTER 1

Introduction

Graphics Processing Units (GPUs), although originally designed for accelerating 3D graphics in

desktop computers, have proven effective at other tasks that require high computational throughput

such as simulations, artificial intelligence, and image processing. Because of this, general purpose

GPUs are found not just in desktop PCs but in mobile devices and servers as well. GPUs are

optimized for throughput, using a highly multithreaded architecture that switches between threads

to hide stalls; this design allows them to be more efficient than CPUs at many tasks. For com-

parison, one current GPU, NVIDIA’s Tesla P100, can achieve 10 single-precision teraflops at 33

gigaflops/watt [44], compared to a large 24-core CPU, Intel’s Xeon E7-8870, that achieves 96

gigaflops at 7 gigaflops/watt [48].

In data centers, GPUs are used to complete tasks that need more performance than CPUs can

offer. GPUs are used in Google and Facebook data centers for artificial intelligence applications,

such as training neural networks [25, 72]. Databases accelerated by GPUs enable interactive anal-

ysis of very large data sets [91, 10]. GPUs are not only useful for large companies – public cloud

providers are responding to demand by offering virtual machines connected to GPUs. Amazon

offers instances with GPUs [11], and Google’s public cloud uses a PCIe switch system to connect

GPUs to any of its virtual machines [42].

The design constraints for a data center GPU differ from those for a desktop graphics card.

Energy efficiency is more important, as a large fraction of data center costs come from power

consumption and cooling [12]. To help achieve this, recent data center GPUs include accelerators

1

0%

20%

40%

60%

80%

100%

%
 c

y
cl

e
s

in
st

ru
ct

io
n

s

is
su

e
d

Figure 1.1: Percentage of cycles any instruction was issued for a set of workloads from Parboil,

Rodinia, and the NVIDIA SDK.

0%

20%

40%

60%

80%

100%

%
 c

y
cl

e
s

lo
a

d
/s

to
re

 u
n

it

st
a

ll
e

d

Figure 1.2: Percentage of cycles the load/store unit was stalled, which indicates when throughput

is limited by the global memory system.

for matrix operations and support for lower-precision floating-point calculations [101]. Also, in a

data center, multiple applications or users are scheduled on the same physical hardware to increase

utilization. Data center GPUs now include ways to share the same hardware between multiple

tasks and users: current hardware can expose multiple virtual devices per physical GPU that share

hardware with temporal partitioning [45], and other work has examined how to add memory virtu-

alization and protection to GPUs [15].

GPUs in mobile devices must be designed with similar constraints in mind. Energy efficiency is

visible to mobile users, as it determines battery life. Performance is also vital – mobile GPUs have

the opportunity to enable new types of applications that require heavy computation, but in order for

developers to justify the additional programming effort, the performance and efficiency difference

must be compelling. Sharing hardware between tasks is also important on mobile GPUs, as users

2

expect smooth graphics even while other types of computation, such as neural network inference,

are being run on the GPU [6].

Better reaching these goals of improved energy efficiency and support for sharing hardware

between multiple tasks requires focusing on data movement and storage. GPUs achieve their per-

formance by having many arithmetic units, but to keep them utilized, they must be supported by

a memory and register system that has equally high performance. Any data bottleneck in the sys-

tem leads to underutilization of computation resources, stalls, and lower efficiency. Adding more

arithmetic resources will only show performance gains if data movement capacity scales in step.

However, even current designs have difficulty keeping up with memory throughput demands. Fig-

ure 1.1 shows the percentage of cycles that any instructions were issued on a set of GPU workloads,

which is often below 50%. The major bottleneck often is the global memory system, as Figure 1.2

demonstrates by showing the load/store unit, responsible for interfacing with the global memory

system, is often stalled.

Alongside this performance bottleneck, there are also energy overheads in the GPU due to

data storage. Part of what makes GPUs efficient are strategies, such as grouping instructions into

SIMD vectors, that reduce the overheads required in more general-purpose processors like CPUs.

Although these strategies work for reducing computation overhead, the GPU execution model that

interleaves threads does not allow for similar straightforward ways to reduce data storage overhead

in the register file and scratchpad memories, since the data to be computed on must always stay

accessible should the instructions using it be scheduled.

This thesis manages data movement and storage resources in a way that improves energy effi-

ciency and makes GPUs more amenable to a shared data center environment. Intelligent manage-

ment of data resources is possible because GPUs have options between which work to schedule

and flexibility in which order to schedule it. Because GPUs run many threads at once, there are

options between which which threads to run, allowing the GPU to make priority decisions between

threads and workloads at a very fine granularity. There are also few ordering constraints between

threads, which gives the freedom to reorder and merge memory requests and start and stop portions

3

warp contexts ...

Register

File

(256 KB)
L1D (16-48KB)

Load/Store Unit

coalescer

SM

SM

SM

In
te

rc
o

n
n

e
ct Global

Memory

L2 (2MB)

DRAM

1. Memory request merging,

L1 cache thrashing

2. Register file storage

3. Multi-workload resource allocation

Figure 1.3: Major GPU components involved in data movement and storage. This thesis focuses

on three critical data management components: global memory merging and caching in shader

cores, register storage, and allocation of resources between multiple co-running workloads.

of workloads to adjust resources. This thesis uses these opportunities to unlock additional energy

efficiency and performance for data center and mobile GPUs.

1.1 Data Management Inefficiencies

There are three places where the management of data resources on a GPU is especially critical,

shown in Figure 1.3. The first is inside each of the 16 GPU shader cores, which have their own

load-store units and L1 cache. Even when running a single workload, the load-store units and L1

cache often do not have sufficient throughput due to memory divergence and cache thrashing. The

second is also inside the core, at the register file, which is very large as it is provisioned to hold

every register with similar access times. The third is the allocation of thread contexts in the cores

between workloads and the number of memory requests each workload can send to the global

memory system. This section will look at each of these places in turn.

4

1.1.1 Memory Divergence and Cache Thrashing

One data management inefficiency comes from the GPU processing cores being unable to issue

enough requests to the memory system. GPUs use SIMD vector instructions, including loads

and stores, that execute 32 lanes in parallel. This enables each lane in a vector load or store to

reference a different address. Often, the addresses in each lane will be consecutive words in the

same cache line, in which case loading that single cache line will be enough to complete the vector

load. However, when the lanes reference multiple cache lines, called memory divergence, multiple

requests must be sent to the memory system to satisfy the one load instruction. In the worst case,

one load requires 32 requests, creating a throughput bottleneck.

A related inefficiency comes from cache thrashing. Because GPU cores run many threads

simultaneously but have a small (32KB) L1 data cache, each thread can only store on the order

of bytes in the cache before evicting another thread’s data. While techniques to reduce thrashing

to improve performance are well-studied in previous work [117, 123, 51], thrashing also blocks

requests from leaving the core for the rest of the memory system by filling up MSHRs and using

scarce bandwidth to the L2 and DRAM. Therefore, inefficient use of the data cache not only causes

increased latency but also lower memory throughput.

1.1.2 Register File Energy Overhead

The register file is the largest data storage structure in a GPU and a source of energy overhead.

GPUs’ multithreaded architecture means that the register file needs to store the registers for every

thread. Because so many threads are active on each core, the register file is very large — 256KB

per core in recent designs. It also must support many accesses per cycle, as one vector instruction

may have three 128-byte input registers and produce a 128-byte output. This makes the register

file expensive to access, consuming up to 15% of total GPU power [77]. Since the register file only

provides value to the GPU as a support for computation, this power represents an overhead in the

GPU design that should be minimized.

5

1.1.3 Inter-Application Contention

GPU kernels consist of many threads, but each thread is identical to the others. This means the

resource demands for each thread are very similar, and a kernel while executing will tend to saturate

one resource and underutilize others. Running multiple workloads simultaneously on the same

GPU allows the workloads to saturate different resources, leading to a throughput boost. However,

during times when the workloads require the same resources, they interfere with each other. This

interference leads to some workloads choking others’ performance and other unpredictable effects.

In a data center or public cloud environment, controlling this interference will be necessary to

harness the throughput boost of sharing the GPU while providing performance targets that are

useful to customers.

1.2 Contributions

This thesis addresses these inefficiencies through intelligent management of data resources. Chap-

ter 3 describes a memory merging and prioritization system that increases memory throughput

inside a GPU core. Chapter 4 details a register file replacement that requires much less storage

and access energy while not impacting performance. Chapter 5 develops a system for controlling

the interference between kernels co-running on the same GPU, creating two tiers of service. To-

gether, these pieces attack the sources of energy inefficiency and low utilization in the GPU data

movement and storage systems.

1.2.1 Increasing Memory Throughput

Existing GPUs have a memory coalescer which merges requests to the same cache line in a vector

load instruction, as often each lane in a vector load accesses a different word in the same cache

line. This type of spatial locality, where nearby threads access nearby data, is also present between

lanes in different warps, but ignored by current hardware. By exploiting this locality, requests can

be merged across warps before those requests are sent to the cache. This helps mitigate throughput

6

loss due to memory divergence because effectively more than one request per cycle is being sent to

the cache. The same hardware used for merging requests can also be used to reorder requests to put

loads from the same warps closer together in time, increasing memory throughput by increasing the

L1 hit rate. Chapter 3 introduces the WarpPool system that finds these new merging opportunities

and queues memory requests to issue them in a more cache-friendly order, resulting in a 38%

speedup via an 8% increase in merges and a 23% reduction in L1 cache misses.

1.2.2 Reducing Register File Energy and Storage

Instead of having enough storage for every register, this thesis replaces the register file with a

staging unit which stores only the registers that will be imminently used by a small set of active

warps. Most registers have a short lifetime and only need a temporary allocation in the staging unit.

The few long-lived registers can be evicted from the staging unit to the L1 cache when they will

not be accessed. Compiler annotations enable this system, as they allow register usage information

gathered with static analysis to be visible by the hardware at run time to make allocations in the

staging buffer and transfer values in just as registers are about to be accessed. In Chapter 4, the

RegLess system implements this compiler-guided register buffer, reducing register storage to 25%

of its original size with no average-case performance loss.

1.2.3 Controlling Interference in Shared GPUs

Public cloud operators like Amazon’s AWS and Google’s GCP have multiple tiers of service in

order to increase utilization. For example, spot instances are sold to customers at a discount to

fill unused capacity, with the condition that they may be preempted at any time when that capac-

ity is needed. In Chapter 5, the Scavenger system controls the interference caused by sharing a

GPU between multiple workloads to create similar tiers: one tier with a high performance tar-

get for customers requiring maximum throughput, and a second lower-performance tier for batch

jobs. Because sharing the GPU will create a throughput surplus, the cloud operator can either

operate less physical hardware or capture the excess throughput as profit. Scavenger increases the

7

batch workload throughput by 1.35x compared to temporal partitioning while maintaining a 90%

performance target for the high-performance tier, increasing overall GPU throughput by 9.3%.

8

CHAPTER 2

Background

This thesis optimizes data movement and storage on graphics processing units (GPUs), throughput

processors that operate on thousands of threads in parallel. Because each GPU thread is indepen-

dent, instructions can be issued from any available thread, with the goal of keeping the functional

units utilized. GPU kernels are complete when every thread finishes, so maintaining maximum

utilization and throughput will finish the kernel in the minimum time possible. GPUs are opti-

mized for running workloads consisting of many identical threads, setting them apart from other

throughput-oriented processors like Niagara [68], because their original design was optimized for

graphics vertex and fragment shaders, where the same code executes on every vertex or pixel. This

chapter describes the baseline GPU architecture that the subsequent techniques in this thesis build

upon.

2.1 SM Design

Figure 2.1 shows the design of a GPU core, or streaming multiprocessor (SM). Each hardware

thread, called a warp, is allocated a warp context. As one of the optimizations for running many

identical threads, warps issue 32-wide SIMD instructions. The warp contexts track the current PC

for each warp and can activate and deactivate individual threads in a warp to implement condi-

tional branches. The warp scheduler sends instructions to the functional units, selecting between

ready warps; it is divided into several independent schedulers to allow more than one warp to

be issued per cycle. The register file on a GPU is very large, in the hundreds of kilobytes per

9

32 lanes in warp

warp contexts

warp schedulers
R

e
g

is
te

r

F
il

e

shared

memory

RF Read

ALU
LD/ST

Unit
coalescer

ALU

RF Write

to global

memory

system

...

L1D

Figure 2.1: Design of a GPU core, called a streaming multiprocessor (SM). GPUs are optimized

for throughput rather than individual thread latency and execute 32-wide vector instructions.

SM, because each thread in each warp is allocated its own register context. The functional units

include floating-point ALUs and a load/store unit. The load/store unit handles requests to the dif-

ferent GPU memory spaces, including the shared memory scratchpad and global memory, which

is backed by data caches and DRAM. Global memory requests are sent through a coalescer, which

merges memory requests made by different threads in the same warp, and then are sent to an L1

data cache. The effectiveness of the L1 cache depends heavily on the workload, so some GPU de-

signs disable it by default. In this thesis, Chapter 3 is built on a GPU where the L1 cache is enabled

by default, and Chapters 4 and 5 model one where the L1 does not cache requests by default.

2.2 Memory System Design

The overall GPU system design, encompassing the SMs and the global memory system, is shown

in Figure 2.2. The SMs lie on one side of the interconnect with shards of L2 cache and DRAM

on the other. Neither the SMs or the L2 shards communicate with other units on their side of

the interconnect, as the tasks on one SM are independent of those on another, and the L2 shards

are partitioned by address. Each L2 shard includes a memory controller which communicates

with one of the two channels exposed by each GDDR DRAM chip. There is significant latency

communicating to L2, as graphics ROPs sit in front of the L2, so even L2 hits have high latency.

10

...

SM

SM

SM

SM

In
te

rc
o

n
n

e
ct

L2

DRAM

L2

L2

DRAM

L2

... PCI Express

connection

to host

Figure 2.2: GPU system design, where SMs and memory partitions are on opposite sides of an

interconnect. The GPU communicates with a host system through PCI Express data transfers to

and from DRAM.

This is not an issue in the GPU design because independent instructions from other threads can

hide the latency in any individual thread. Sustaining high bandwidth is more important – the L2

cache is more important for reducing duplicate requests than latency.

Data is transferred to and from the GPU though a PCI Express bus. There is a very large

bandwidth differential between DRAM and PCI Express, with the DRAM able to supply 224 GB/s

in the GPU models modelled in this thesis, whereas PCI Express 3.0 x16 has a limit of 16 GB/s.

In this thesis, the experiments assume that the data is already present in DRAM. Complementary

work [39, 19, 20] has examined how to overlap computation with memory transfers to reduce the

overall task turnaround time.

2.3 Programming Model

General purpose GPU applications are typically implemented in languages like CUDA [100] and

OpenCL [127], which are extensions to C++. In the programming model these use, programmers

write code from the perspective of one thread. Although each thread must largely be independent,

the programming model groups threads into blocks. The threads in a block are allocated the same

region of scratchpad shared memory and can synchronize using barriers. In hardware, this requires

that the warps in a block must run on the same SM and have their resources allocated as a group.

11

2.4 Design Convergence in Desktop, Data Center, and Mobile

There is increased convergence in GPU designs found in desktop PCs, servers, and mobile devices.

For example, NVIDIA’s Pascal architecture was used in GeForce gaming GPUs, Tesla compute

accelerators, and integrated in a mobile SoC used in the Jetson TX1 board. The same design is

scalable to these different environments by varying the number of SMs – the GTX 1080 has 20, the

Tesla P100 has 60, and the Jetson TX1 has 2. This convergence means that techniques optimizing

the GPU hardware in one setting can be applicable to the others, and that the same programming

model and kernels can be used in each of these different settings. In this thesis, desktop GPU

models like the GTX 480 and 980 are used for simulation, but because the techniques respect the

loose coupling between SMs, the techniques can be extended to server GPUs with larger number

of SMs and mobile GPUs with fewer without scalability issues.

12

CHAPTER 3

Inter-Warp Memory Request Merging and

Prioritization

3.1 Introduction

GPUs are throughput processors designed to hide memory latency using multithreading. During

the time some threads on the GPU are waiting for long-latency memory operations, others can

be scheduled to do computation. However, in order for this strategy to keep the utilization of the

arithmetic units high, data needs to come from the memory system fast enough to maintain a set of

threads that are ready to do computation. Therefore, keeping the arithmetic units utilized depends

on the throughput of the memory system matching the throughput of the compute pipelines.

However, previous studies have shown that for many benchmarks, the throughput of the global

memory system is not adequate to keep the GPU from stalling. This can be due to saturated

DRAM bandwidth [124], limited L1 cache resources such as MSHRs and cache sets [51], or small

per-thread cache capacity [118]. To achieve high throughput despite bandwidth limitations in the

global memory system, the GPU has a memory hierarchy that merges requests to the same cache

lines to reduce traffic.

On a GPU, threads in a 32-wide warp execute in lockstep, but the threads in one load can

generate accesses to many different cache lines. A memory coalescer is the first unit in the memory

hierarchy, responsible for combining memory accesses to the same cache line made by the 32

threads in a warp. This unit is effective because spatial locality is expressed in a GPU through

13

nearby threads accessing the same cache lines [46]. Combining requests early in the memory

pipeline is better for performance and energy efficiency than sending duplicate requests to the

higher-level caches and DRAM.

However, the coalescer can become the bottleneck in memory system throughput, which hap-

pens under memory divergence, where the threads in a warp request more than one cache line in a

load or store instruction. Because the L1 can only service one request per cycle, up to 32 requests

must be serialized over 32 cycles instead of being serviced simultaneously. Another throughput

problem is caused by limited cache resources, where the memory system stalls when the cache

cannot allocate a resource like an MSHR to issue another outstanding miss. In both of these cases,

the GPU becomes underutilized because the memory system cannot supply data fast enough to

keep the arithmetic units busy.

The current memory coalescer is limited to merging requests between threads in the same warp.

However, we show that spatial locality is not limited to threads in the same warp, so allowing the

coalescer to merge requests from threads in multiple warps would allow for for a greater reduction

in requests. If the coalescer were able to merge requests across warps using this inter-warp spatial

locality before they reach the L1 cache, it would increase the effective bandwidth of the cache by

relieving the one access per cycle bottleneck. During times when L1 resources are at a premium,

it would enable resources to service requests from as many warps as possible. As well, having

requests from multiple warps in scope allows the coalescer to act as a gatekeeper to the L1 cache

and reduce thrashing.

We propose a novel memory coalescer, WarpPool, which is able to find inter-warp spatial lo-

cality. It increases the effective throughput to the L1, uses cache resources more efficiently, and

reduces cache thrashing by prioritizing some warps’ access to the cache. After a first level of co-

alescing to find intra-warp spatial locality, requests are inserted into inter-warp coalescing queues

that merge requests from multiple warps. Doing both intra-warp and inter-warp coalescing reduces

the number of requests that need to be made to the L1 cache. Because the requests exiting the coa-

lescer now fetch data for more than one load, more than one load’s requests can enter the coalescer

14

per cycle, which will keep throughput high under memory divergence. When cache resources are

scarce, requests will build up in the inter-warp queues, which will increase the amount of inter-

warp coalescing and enable requests using cache resources to service multiple loads. Furthermore,

requests from the inter-warp queues can be selected to exit to the cache in an order that enhances

temporal locality in the cache.

In this work, we make the following contributions:

1. We characterize a class of inter-warp spatial locality that current coalescers are unable to

capture. We show that using this locality to merge requests would remove the bottleneck in

a class of workloads limited by memory system throughput.

2. We propose WarpPool, an inter-warp memory coalescer that is able to merge requests be-

tween warps to convert this locality into increased bandwidth to the L1 cache and more

efficient utilization of cache resources. It is also able to prioritize warps’ access to the L1

cache, which reduces cache thrashing.

3. We implement WarpPool in GPGPU-sim [8] and achieve a 38% geometric mean speedup

across a set of memory throughput-limited kernels. WarpPool increases the throughput to

the L1 cache by 8% and reduces the number of L1 misses by 23%.

4. We evaluate a case study demonstrating that WarpPool improves GPU programmability by

achieving a 2.0× speedup on straightforward code for which manual optimizations give a

2.6× speedup.

3.2 Background and Motivation

3.2.1 Background

GPUs are made up of multiple streaming multiprocessors (SMs), in Nvidia terminology. Inside

each SM, warp schedulers select threads with ready operands and issue them to functional units.

15

Scheduler

Coalescer

Load/Store

Unit

L1D

Scheduler

Coalescer

Load/Store

Unit

L1D

…

SM 0 SM 14

Interconnect

L2

DRAM
…L2

DRAM

L2

DRAM

Figure 3.1: Diagram of GTX 480 memory system. Each SM has a load/store unit with a memory

coalescer which sends requests to a private L1 cache. Requests to shared L2 caches and DRAM

partitions are sent over an interconnect.

Load/Store

Instructions

Intra-Warp

Coalescer
L1D

100% of requests 37%

L2

17%

DRAM

10%

Figure 3.2: Memory request reduction for the spmv benchmark, showing the number of requests

remaining at each level of the memory hierarchy as the coalescer and caches convert locality into

fewer requests.

Threads are scheduled as a group of 32, called a warp. Threads in a warp execute the same instruc-

tions in lockstep, but can supply different values as inputs to those instructions.

The load/store unit (LSU) is the functional unit responsible for loads, stores, and memory

barrier instructions. Like the other functional units, it is scheduled a warp of 32 threads at at time.

There are multiple memory spaces in the GPU, and some, like the shared scratchpad memory, have

enough throughput to service a different request from each of the 32 threads in a warp each cycle.

However, all the data sent to the GPU for computation needs to be loaded from global memory,

which can only process one request per cycle, and the final results of the GPUs computations also

need to be stored in global memory for transfer back to the CPU. Global memory is backed by

DRAM and implemented using a cache hierarchy similar to a CPU memory system, as shown in

Figure 3.1.

16

0

10

20

30

ATAX_1 kmeans_2 SYR2K pf_1 CORR_4 MVT_1 BICG_2 SYRK GESUMMV mri-g_3 spmv sc 3MM_1 GEMM 2MM_1 CORR_3 lbm

C
a

ch
e

 l
in

e
s

/

Lo
a

d
s

a
n

d
 s

to
re

s
Cache lines per load/store

Avg. loads/stores ready to issue

bandwidth-limitedmemory divergent

Figure 3.3: Memory throughput-limited workloads overwhelm the coalescing system either though

generating many requests with memory divergence or by causing cache resource shortages by

saturating memory bandwidth. The kernel number is its sequence in the kernel execution order in

the benchmark.

0

5

10

15

20

time

W
a

it
in

g
 M

e
m

o
ry

 I
n

st
ru

ct
io

n
s

Figure 3.4: A portion of the execution of the GEMM benchmark. The solid line is the number of

memory instructions waiting to be scheduled. The background is grey when the L1 cache resources

are full. The bars at the bottom show when arithmetic is scheduled. For the cache resource-bound

benchmarks, there is little overlap of computation with cache resource stalls.

The memory coalescer conserves bandwidth by merging requests to the same cache line made

by threads in a warp, taking advantage of spatial locality between the threads in a warp to reduce the

number of requests. When the warp scheduler sends a warp to the LSU, a load or store instruction

contains 32 addresses, one for each lane in the warp. The memory coalescer determines which of

the 32 addresses point to the same cache line and merges requests to the same line together. The

coalescer is effective at reducing requests because spatial locality is often expressed in a GPU as

nearby threads requesting nearby data.

Because there is high demand on the global memory system for limited bandwidth, each stage

of the memory system is designed to conserve bandwidth by using locality to merge requests.

Figure 3.2 shows the units in the GPU memory pipeline along with the percentage of requests that

make it through each stage for the spmv benchmark, representative of a set of memory divergent

17

benchmarks detailed in Section 3.2.2. The memory coalescer reduces the number of requests by

over 40%, only 17% of requests get past the L1 to the L2, and 10% of requests reach DRAM. Since

the bandwidth decreases as requests go further down the pipeline and the energy cost to make an

access increases at each stage, it is advantagous to merge requests as early as possible.

Since GPU cache lines are 128 bytes, designed so that each of 32 threads in a warp can request

a 4-byte word, all 32 requests in many loads and stores map to a single cache line. However, each

request may map to a number of different cache lines, called memory divergence. Under memory

divergence, the coalescer is unable to reduce the number of requests, and must make up to 32

serialized requests to the L1 cache in the worst case. The L1 is only able to service one request per

cycle, so a divergent load or store takes one cycle per distinct cache line to complete.

3.2.2 Oversubscription of L1 Bandwidth

Although the interface between the LSU and the L1 cache is the fastest link in the global memory

system, it is the link that must accept the largest number of requests relative to its output throughput

(32 to 1). The memory coalescer is responsible for matching the large throughput in to the small

throughput out. However, under two common scenarios it is not able to do so.

Figure 3.3 shows the average number of cache lines per memory operation and the average

number of waiting memory operations for kernels from the Parboil [128], Rodinia [18], and Poly-

Bench [37] benchmark suites. These kernels were selected because they had more memory in-

structions ready to issue than the LSU could process for over 90% of their execution time. These

instructions could be executed by the LSU if the memory system had higher throughput, so these

are the workloads for which improving the throughput of the memory system has the potential to

improve performance.

The first category of workloads are memory divergent, where the intra-warp coalescer requires

an average of 13 cycles to send a warp’s load or store instruction to the L1 because each thread

requested a different cache line. This can be as high as 32 for ATAX 1. The L1 cache needs to

service up to 32 times as many cache line requests for these workloads per load or store instruction,

18

SYR2K pf_1 SYRK mri-g_3 spmv sc 3MM_1 GEMM 2MM_1 CORR_3 ATAX_1 kmeans_2 CORR_4 MVT_1 BICG_2 GESUMMV lbm
0%

100%

memory divergent inter-warp bandwidth-limited inter-warp cache-limited

re
m

a
in

in
g

 r
e

q
u

e
st

s
window size

0 128

Figure 3.5: Many memory throughput-limited kernels show a large degree of inter-warp spatial

locality. Each cell corresponds to a kernel, and inside each cell the window size gets larger from

left (baseline window of only intra-warp coalescing) to right (window of 128 requests after intra-

warp coalescing). As the window size increases the number of requests that must be sent to the

cache decreases.

creating a bandwidth bottleneck at the L1 cache. The baseline memory coalescer is unable to merge

many requests for these workloads, so it is unable to handle the bandwidth demand. A better

coalescer would be able to reduce the effective level of divergence by finding locality between

multiple divergent loads before sending them to the L1 cache.

The second category are bandwidth-limited. These workloads have low memory divergence,

but due to high miss rate or high memory intensity saturate DRAM bandwidth and cause the L1

cache to run out of resources like MSHRs. Figure 3.4 shows how the execution of the GEMM

benchmark, with 8.9 average waiting memory operations, follows a cyclical pattern. Most of the

time, the cache has no resources to accept a new request, which causes ready memory instructions

to back up and no computation to be done. When data comes back from the higher levels of the

memory system, arithmetic begins to execute and new memory instructions are issued until the

cache stalls again. A better coalescer would be able to make better use of limited cache resources

by continuing to accept requests while the L1 cache’s resources are full, using the time the cache

is stalled to reduce the number of requests, and then making better use of the time the cache is

accepting new requests by having each request service multiple load or store instructions. This

way, more arithmetic can be done per request the L1 is able to service.

The benefits of a coalescer that is able to merge more requests propagate down to the rest of

the memory system, where performing the merging is more expensive. The more requests that can

be removed early in the pipeline, the fewer requests the later stages in the pipeline need to service.

19

3.2.3 Increasing Coalescing Window Size

The baseline coalescer can only merge requests between threads in one warp. To find more oppor-

tunities, the coalescer needs to look between requests made by different warps across multiple load

instructions, increasing its window from the threads in one warp to requests from multiple warps.

Figure 3.5 shows the relative reduction in memory requests made by the memory throughput-

limited kernels that could be achieved by increasing the coalescers window size to multiple warps,

analyzed using a trace of global memory requests made to the L1. The window size increases

from 0, equivalent to doing only intra-warp coalescing, to a window of 128 cache line requests

made to the L1. The kernels without inter-warp locality have been split into a new category of

cache-limited kernels that exhibit intra-warp temporal locality.

The memory divergent inter-warp workloads show inter-warp locality with larger window

sizes. Because divergence creates many requests, locality begins to show up only at larger window

sizes: if each load generates 32 requests, the window size of 128 is a window of 4 load instructions.

Patterns like indirect accesses (spmv) and large memory strides (SYRK) create divergence and

inter-warp locality. For these workloads, the spatial locality can only be found by having a larger

window size than one warp, because the only spatial locality is between warps.

The bandwidth-limited inter-warp workloads exhibit a high degree of inter-warp locality.

The locality is caused by the memory access patterns in these workloads, such as accessing a

matrix column-wise and row-wise, but contiguously inside a warp (GEMM) or repetition of the

same accesses in an inner loop across all threads (streamcluster). In these workloads, there

is spatial locality both within warps and between warps. A coalescer with a larger window size

will be able to find more coalescing opportunities in them.

A third category, cache-sensitive workloads, have low inter-warp spatial locality but exhibit

temporal locality inside warps. Much previous work has focused on this category of workloads,

by limiting access to the cache through scheduling [118] or bypassing [51]. A coalescer with a

larger window size will not be able to find more opportunity to merge requests, but it will have

more scope to prioritize requests. It will be able to choose a request from among multiple warps to

20

send to the cache, using that ability to prioritize certain warps’ access to the cache.

Therefore, by increasing the window size in which the coalescer can merge requests together

to include requests made by different warps, the coalescer is able to increase effective bandwidth

to the L1 cache and stop this link in the memory system from becoming the bottleneck for the

throughput of both the memory system and the entire GPU. A coalescer able to merge across

warps will be able find spatial locality that is out of the scope of the current intra-warp coalescer,

and has the opportunity to help even workloads without spatial locality.

To turn better coalescing into speedup, the improved coalescer will need to address the reasons

why L1 bandwidth limits performance for each category of workload. For memory divergent

inter-warp workloads, the coalescer will need to serialize divergent memory operations from more

than one warp in parallel. For the bandwidth-limited inter-warp workloads, the coalescer will

need to buffer requests received when cache resources are full. For the cache-limited workloads,

it will need to leverage the coalescing window to schedule requests in a way that reduces cache

thrashing.

3.3 WarpPool Design

3.3.1 Overview

The WarpPool system creates a window in which requests from multiple warps can be coalesced, in

order to capture inter-warp spatial locality. Requests are inserted into this window after intra-warp

coalescing, and requests removed from the window are sent to the L1 cache. In order for the inter-

warp coalescing window to yield speedup, it needs to be supported by an intra-warp coalescing

pipeline in the front end that can insert requests into the window at the same rate as they drain out.

On the other end of the pipeline, selecting requests from the window to send to the cache needs

to be done in a way that preserves intra-warp temporal locality, since reordering memory requests

can easily cause cache thrashing.

A high-throughput intra-warp coalescing pipeline, a window to capture inter-warp spatial local-

21

L1D

... ...

༃ Instruction

Queues
༅ Inter-Warp

Coalescing Queues

༆ Request

Selector

loads

stores

metadata

request

WarpPool Coalescer

LD/ST

Insns

LSU

W/B

༇ Metadata Tracker

...

༄ Intra-Warp

Coalescers

Figure 3.6: Diagram of the WarpPool system.

ity, and a selection policy that preserves intra-warp locality make up the substance of the WarpPool

system, shown in Figure 3.6. Instruction queues 1 hold load and store instructions issued by the

scheduler, to prioritize access to the coalescer and cache. These issue into the intra-warp coalescers

2 , which merge requests to the same cache line inside a warp. Inter-warp coalescing queues 3

combine requests between warps to find new inter-warp coalescing opportunities. Then, the re-

quest selector 4 determines which requests exit the inter-warp queues in a way that maximizes

coalesces while maintaining intra-warp spatial locality.

In the first stage, WarpPool queues load and store instructions. Loads and stores are inserted

into a queue 1 based on which warp they were issued from, which allows WarpPool to prioritize

some warps’ access to the intra-warp coalescers. In the next stage, WarpPool uses multiple intra-

warp coalescers 2 to capture intra-warp spatial locality. These coalescers are identical to the

baseline intra-warp coalescer, but there are more of them so that multiple divergent loads and

stores can be serialized in parallel.

After intra-warp coalescing, WarpPool captures spatial locality between threads from different

warps using inter-warp coalescing queues 3 . Requests are mapped to a coalescing queue based

on their address, similar to the way that requests are mapped to cache sets. Requests for the same

cache line from different load instructions are matched against each other and merged into one

request to be sent to the cache.

Requests stay in the queues until sent by a selector to the L1 cache 4 . The order that requests

22

are sent to the cache is crucial for maintaining the intra-warp temporal locality exhibited by many

benchmarks. WarpPool leverages having coalescing window containing many requests to schedule

requests in a way that maximizes the number of coalesces and prioritizes access to the L1.

After loads return from the L1, the data from the cache line needs to be written to the registers

of the threads that requested the line. WarpPool maintains metadata about the mapping of words in

the cache lines to threads in a load (stage 5 in Figure 3.6), which allows a request made on behalf

of multiple loads to be de-coalesced and written back to the correct registers. By taking advantage

of common mapping patterns, this metadata can be kept to a manageable size, as explained in

Section 3.3.6. WarpPool uses the crossbar already present in the GPU load-store unit to move the

data from the cache line to the threads for writeback. Although WarpPool adds more stages to the

GPU’s memory pipeline1, there are enough warps to hide this added latency with multithreading.

In the following sections, each part of the WarpPool system is described in greater detail. This

is followed by a discussion of how metadata mapping data to threads is stored, how stores are

handled by the system, and how memory consistency is maintained even as loads and stores are

reordered in the coalescing queues.

3.3.2 Instruction Queues

Queues at the front of the pipeline allow WarpPool to prioritize access to the coalescing resources,

which improves cache locality. These queues hold load and store instructions before address gen-

eration, so as to avoid storing 128 bytes of addresses. Loads and stores are mapped to one of these

queues based on which warp they were scheduled from, with lower warp IDs mapped to queues

with higher priority. In the configuration evaluated in Section 3.4.2, there are 16 of these queues

with 3 warps mapped to each queue. The queues are needed over and above the scheduler for

priority because in cases where the LSU has been stalled for several cycles then becomes available

again, the GTO scheduler will schedule from its current warp rather than the oldest warp. Using

these queues, WarpPool has more control of which warp can issue memory instructions, allowing

1The implementation in Section 3.3.9 has 6 pipeline stages.

23

it to prioritize warps to improve temporal locality. We use a fixed priority order for the queues,

which was proved effective by Jia et. al [51].

3.3.3 Intra-Warp Coalescers

The intra-warp coalescers merge requests in the same warp to the same cache lines. Intra-warp

coalescing is the bottleneck for the memory divergent benchmarks, because it takes multiple cycles

for each request to exit the coalescer. To relieve this bottleneck, WarpPool has multiple intra-warp

coalescers. Only one request for one cache line can exit an intra-warp coalescer per cycle, but each

coalescer can issue requests in parallel. The design of the intra-warp coalescers is detailed in [78].

When an intra-warp coalescer is ready to accept a new instruction, a load or store is popped

from the highest priority instruction queue. Before the instruction moves to the coalescer, its

registers are read and addresses are generated. Once in the intra-warp coalescer, one cache line

per cycle is issued. For loads, the intra-warp coalescer issues into the inter-warp coalescer, and

for stores, it issues directly to the cache. Metadata about which threads in the warp request which

parts of the cache line are passed along with the request.

3.3.4 Inter-Warp Coalescing Queues

The inter-warp coalescing queues make up the window in which requests from different warps are

merged. Requests coming from the intra-warp pipelines are map-ped to one of many queues based

on a subset of bits from their address. When a request is inserted into one of these queues, its cache

line is matched against cache lines already in the queue, and requests to the same line are merged

together.

Figure 3.7 shows the structure of the inter-warp coalescing queues. Inside each queue are two

tags identifying a cache line with slots underneath that accumulate requests to that cache line. For

each merged request, the queues need to track which warp they are from, which load instruction

in that warp needs the data, and metadata about how to map data in the cache line to the threads

in that warp. When a request is inserted into a queue, a lookup is done against the tags and the

24

Warp ID

Cache line tag

Sequence
Mapping

metadata

Cache line tag

Warp ID Sequence
Mapping

metadata

Cache line

requests from

intra-warp

coalescers

Request

selector drains

cache lines

Figure 3.7: A diagram of the inter-warp coalescing queues. Requests exiting the intra-warp coa-

lescers are merged with other requests to the same cache line in these queues.

request is inserted under a tag that matches. If no tag matches, a new tag will be allocated if free.

Note that in the evaluated configuration, there are only two tags per queue, so only two tags will be

searched per insertion. Previous work has found that the larger cache tag lookups (as part of GPU

cache power) make up a very small fraction of total GPU power [78].

The total number of tags across the queues is the window size across which requests can be

merged. Structuring these tags as two per queue with many queues minimizes the number of tag

lookups that need to be done and reduces the number of times intra-warp coalescers attempt to

insert into the same queue. Addresses are mapped to a queue based on bits in their address, using

the method described in [96]. The same bits are also used to map addresses to cache sets, and

matching the two hashes simplifies future designs where WarpPool issues to a cache banked by

sets.

3.3.5 Request Selector

Requests remain in the inter-warp queues until they are selected to be sent to the L1 cache. There

are three competing concerns that the request selection logic must balance: first, keeping requests

in the coalescing queues for longer leads to more coalescing, because requests can only merge

with requests in the queues. However, the second concern is latency, ensuring requests do not stay

25

in the queues so long that the coalescer adds latency to misses. Third, the order the requests are

sent to the cache must preserve temporal locality inside warps, so that reordering requests in the

inter-warp queues does not lead to cache thrashing.

For most benchmarks, the most effective strategy is to drain the oldest request in the queues.

This is implemented with a circular queue that saves the order requests were inserted into the

queues. Choosing the oldest request balances the three concerns: it keeps requests in the queues

for as long as possible without adding latency, and it follows the order produced by the GTO

scheduler and the queues in front of the intra-warp coalescers, both optimized to prioritize access

to the cache.

For extremely cache-sensitive benchmarks, an alternate strategy that prioritizes one warp’s re-

quests, the warp ID policy, leads to a lower miss rate. Because the inter-warp queues store accesses

to the cache at the granularity of individual requests rather than load instructions, WarpPool can

prioritize requests at a finer granularity than the warp scheduler can, similar to the opportunity

exploited by [51]. Being able to schedule requests rather than instructions allows newly issued

requests from the warp with access to the cache to interrupt requests from instructions issued by

other warps, leading to fewer requests by different warps between accesses by the prioritized warp

and causing less cache thrashing.

WarpPool uses performance counters to determine when to switch selection policies. The

benchmarks begin execution in oldest mode. During quanta of 100,000 cycles, each SM tracks

the L1 miss rate. If the miss rate is above 99% during a quantum, WarpPool toggles the policy for

the next quantum. This discovers whether one of the strategies causes thrashing for a benchmark

and switches if it does. Quanta of 100,000 were chosen to be sufficiently long for changes in the

miss rate to stabilize before a new policy decision is made.

3.3.6 Metadata Tracker

Because each thread in a SIMD load can request a different word in a cache line, the LSU needs to

keep metadata about which words in the requests cache line map to which thread in each outstand-

26

0x00 0x01 0x02 0x03load

0x00 0x01 0x02 0x03cache line

Consecutive

0x00

0x00 0x01 0x02 0x03

Single

0x00 0x00 0x00 0x00

0x00 0x01 0x02 0x03

Broadcast

0x00 0x01 0x02

0x00 0x01 0x02 0x03

Range

Figure 3.8: Common mapping patterns from cache line words to threads

ing load instruction. This way the LSU has enough information to write the correct word to the

correct threads registers when the data returns. To move the data to the correct thread, the baseline

load-store unit contains a crossbar that is able to move any word in the cache line to any thread.

In WarpPool, this metadata must be stored for every request in the inter-warp coalescing queues

as well for every request in the L1 cache’s MSHRs. Because the metadata needs to be stored for

so many requests, minimizing the size of the metadata is important to keep overhead reasonable.

To do this, common mappings of threads to words in a cache line are recognized by the intra-warp

coalescers and encoded in fewer bits.

There are four common mapping patterns that can be encoded by WarpPool, shown in Figure

3.8. In the consecutive mapping, the threads map 1-to-1 with the words in the cache line. In the

broadcast mapping, every thread requests the same word. In the single mapping, one thread in

a warp requests one word from a cache line. In the range mapping, a consecutive subset of the

threads request a consecutive subset of the words in a cache line. Figure 3.9 shows what percentage

of the memory requests across the benchmarks use each of these mappings. There are more single

mappings than the other types because one load can generate up to 32 single mappings, each

requesting one word for one thread, whereas the other types of requests are for multiple words

for multiple threads. Each of these encodings requires a maximum of 10 bits, as opposed to the

320 bits otherwise needed. In the case where none of these mappings apply, an 8-entry thread

map table entry is allocated to store the mapping. WarpPool’s intra-warp coalescers have an added

pipeline stage to identify a mapping pattern and allocate a table entry, if necessary.

27

0%

10%

20%

30%

40%

50%

60%

70%

80%

90%

100%

S
Y

R
2

K

p
f_

1

S
Y

R
K

m
ri

-g
_

3

sp
m

v sc

3
M

M
_

1

G
E

M
M

2
M

M
_

1

C
O

R
R

_
3

A
T

A
X

_
1

km
e

a
n

s_
2

C
O

R
R

_
4

M
V

T
_

1

B
IC

G
_

2

G
E

S
U

M
M

V

lb
m

T
o

ta
l

P
e

rc
e

n
t

o
f

R
e

q
u

e
st

s

Consecutive

Broadcast

Single

Range

Random

Figure 3.9: Relative occurrence of mapping patterns in benchmarks

Metadata needs to be stored for all requests sent to the memory system, including the requests

in MSHRs. As requests exit the coalescer to the cache, their metadata is stored in the MSHR

metadata table until the data comes back from the cache.

3.3.7 Writeback

When the data for a request comes back from the cache, the writeback unit uses the metadata in

the table to map the data to the correct registers. If a map table entry was allocated for request, it

is released at writeback. The mappings that do not require the map table can use simple selectors

to move the data, whereas the mappings from the map table require the pre-existing crossbar. The

registers for one warp can be written back to the registers at one time. Data returning from the

cache along with its coalescing metadata is stored in a 2-entry queue as the data for each warp is

sent to the register file. The cache stalls when this buffer is full.

3.3.8 Stores and Memory Consistency

WarpPool only performs inter-warp coalescing on loads. Stores progress through the instruction

queues and intra-warp coalescers like loads, but instead of issuing into the coalescing queues, they

issue directly to the L1 cache. Coalescing stores would require buffering the 128 bytes of data to

be stored, and because GPU L1 caches are no-write-allocate, stores can be issued without concern

28

about destroying any intra-warp locality. Each cycle, a selector chooses whether to allow a load

from the coalescing queues or a store directly from an intra-warp coalescer to drain to the L1 cache.

In order to reduce the miss penalty, this selector prioritizes loads.

CUDA has a weak memory consistency model where there are no inter-warp consistency guar-

antees except as provided for atomics and barriers. Inside a warp, the baseline GTO warp scheduler

always sends the loads and stores in program order, so any memory reordering in WarpPool needs

to guarantee the observed behavior is the same as executing the loads and stores in one thread in

program order. Previous work has maintained consistency either by flushing the reordering buffers

before a store is sent to the cache [51], or by reordering only loads [123]. Neither of these is an

option for WarpPool, as it would limit the coalescing window size to the interval between stores.

WarpPool guarantees memory consistency by using the warp scheduler to limit when stores

can be issued to the LSU. A counter for each warp is incremented when a load is inserted into the

instruction queues inter-warp coalescing queues and decremented when a request from that warp

is sent to the L1 cache. When the counter is 0, there are no loads from the warp in the inter-warp

coalescing queues. This counter needs to be 0 for a store to be issued, to ensure stores cannot

be reordered with loads in the inter-warp coalescer, and to ensure stores cannot be reordered with

other stores in the intra-warp coalescers. The scheduler will similarly wait for all stores to drain

before issuing a load. A flag encodes when the previous global memory operation was a load, in

which case it is safe to issue a load even when the counter is not 0.

3.3.9 Resource Configuration

We performed a design space sweep to determine the best number and size of each hardware

resource for our workloads. Each of these resources is present in each SM. The instruction queues

need to have at least 2 entries for each of 48 warps to allow for prioritization independent of

the scheduler, suggesting a configuration of 48 instruction queues with 2 entries each. However,

we found a configuration of 16 queues with 8 entries performed just as well but with much less

selector overhead. Two intra-warp coalescers were adequate for most kernels, although some

29

Type Entry Size Entries Total Storage Dynamic Power Static Power Total Power

Instruction queues 37 bits 128 592 bytes 41.4 mW 0.4 mW 41.8 mW

Intra-warp coalescers 256 bytes 2 512 bytes 24.1 mW 0.2 mW 24.3 mW

Inter-warp coalescing queues 124 bits 64 992 bytes 43.8 mW 0.5 mW 44.3 mW

Thread map table 321 bits 8 321 bytes 9.8 mW 0.1 mW 9.9 mW

MSHR metadata table 23 bits 1024 2.9 KB 19.9 mW 2.1 mW 22.0 mW

Total per SM 5.23 KB 139.0 mW 3.3 mW 142.3 mW

Table 3.1: Per-SM storage and power overhead of WarpPool components

with high memory divergence like SYRK can achieve improved performance with more intra-warp

coalescers. We used 32 coalescing queues with 2 tags each, as explained in Section 3.3.3, and

allowed up to 4 inter-warp coalesces per request sent to the L1; increasing the number of coalesces

increases the amount of metadata storage needed.

Table 3.1 describes the sizes of each of the hardware structures in our final configuration, per

SM. The total overhead is 5.23 KB of storage, with over half of that used to build the MSHR

metadata table.

3.3.10 Verilog Implementation

Since a substantial part of the hardware overhead of WarpPool is be the connections between

components on top of any storage overhead, we implemented WarpPool in Verilog to perform

synthesis and place-and-route to accurately determine power and area overhead. We synthesized

WarpPool in a 45nm process at 1.2GHz to best match the GTX 480 baseline system. The MSHR

metadata table can be implemented as a regular SRAM, so CACTI 5.3 [135] was used to estimate

its power and area. RC values from the routed design and traces of memory accesses from the

kernels were used to more accurately estimate dynamic power.

WarpPool as configured has an area of 0.36 mm
2 per SM, broken down by component in Figure

3.10. Routing accounts for 45% of the overall area, mostly in the intra-warp coalescers. This is

highest in the intra-warp coalescers because they work with full load and store instructions after

address generation. There is a wide bus necessary to move the addresses and store data into the

intra-warp coalescers from the address generation logic and register file, and a 160-bit bus from

the intra-warp coalescers to the thread map table to allow a load with a random mapping pattern to

30

μ

0

0.03

0.06

0.09

0.12

0.15

0.18

Instruction

Queues

Intra-Warp

Coalescers

Thread Map

Table

Inter-Warp

Coalescer

MSHR

Metadata

Table*

Total

A
re

a
 (

m
m

²)

Combinational Buffer Storage Routing

Figure 3.10: Per-SM area breakdown of WarpPool components, with a total area of 0.36 mm
2 per

SM. (* = SRAM area calculated using CACTI)

Architecture Fermi (GTX 480), 15SMs,

48 active warps per SM

L1 cache 32kB (64 sets, 128-byte

lines, 4-way associative),

32 MSHRS

Warp scheduler GTO

Instruction queues 16

Instruction queue entries 16

Intra-warp coalescers 2

Intra-warp

coalescing queues

32 queues with 2 tags each,

4 merges per tag

Max. inter-warp

coalesces/request

4

Table 3.2: Resource configuration evaluated

issue in one cycle.

Compared to the GTX 480, with a die size of 529 mm
2 [97], WarpPool adds 5.4 mm

2 or 1.0%

to the total GPU area. The added static and dynamic power of the routed netlist, shown in Table

3.1, is 142 mW per SM, or 0.8% of the GTX 480 TDP [98].

31

3.4 Evaluation

3.4.1 Methodology

We use GPGPU-sim 3.2.2 [8] with the simulation parameters in Table 3.2 to model a Fermi-class

GTX 480 GPU. Benchmarks were drawn from the Parboil [128], Rodinia [18], and PolyBench

[37] benchmark suites. Rodina and Parboil are used as a representative cross-section of GPU

workloads. The Polybench benchmarks are designed to test the effectiveness of memory access

optimizations, modelling commonly used linear algebra operations; they have been used in other

GPU memory optimization works such as [51]. Out of the kernels in these suites, we used a subset

that is limited by GPU memory throughput, as measured by having waiting memory requests for

more than 90% of execution time. Kernels were run until completion or for hundreds of millions

to billions of instructions in the steady state.

We compare WarpPool against other techniques for increasing L1 throughput and reducing the

L1 miss rate. Banking the L1 cache increases throughput by allowing multiple hits to be serviced

in parallel. We implemented an L1 cache banked eight ways, with eight cache sets per bank.

This cache could perform eight tag lookups and service up to eight hits per cycle, but can only

service one miss per cycle because of the need to search MSHRs. Eight banks was chosen as the

throughput did not increase with more banks. Each bank has a coalescing unit that selects a a line

each cycle from the active load instruction that maps to that bank, which allows eight requests to

be serviced in parallel by the cache.

We also compare against MRPB [51], which reorders memory requests to increase tempo-

ral locality by buffering memory requests going to the L1 cache. WarpPool is also able to re-

order requests using the instruction queues and request selector to increase temporal locality, but

adds the ability to combine requests across warps to exploit spatial locality between threads. We

implemented MRPB with the configuration evaluated in [51], and calibrated the implementation

against the results in that paper. The same paper also analyzes cache bypassing, which we do not

implement as the bypassing technique is orthogonal to the memory reordering technique. Warp

32

0

0.5

1

1.5

2

SYR2K pf_1 SYRK mri-g_3 spmv sc 3MM_1 GEMM 2MM_1 CORR_3 ATAX_1 kmeans_2 CORR_4 MVT_1 BICG_2 GESUMMV lbm GEOMEAN

S
p

e
e

d
u

p
 (

x)

8-way banked

cache

MRPB

WarpPool

memory divergent inter-warp bandwidth-limited inter-warp cache-limited

3.142.35 5.16

Figure 3.11: Speedup of GPU with banked cache, MRPB, and WarpPool over GTX 480 baseline.

scheduler-based techniques such as CCWS [118] and Mascar [123] also reduce cache thrashing,

but by reducing the number of active warps. For some workloads, adding CCWS-SWL, a warp

limiting technique, on top of WarpPool showed added benefit.

3.4.2 Results

3.4.2.1 Speedup

Figure 3.11 shows the speedup over the GTX 480 baseline of WarpPool, MRPB, and the 8-way

banked cache. WarpPool yields a better improvement than the other techniques with a geometric

mean 1.38× speedup. There were two mechanisms which produced this speedup.

The memory divergent inter-warp kernels benefitted from increased throughput to the L1

cache, created by inter-warp coalescing. The bandwidth-limited inter-warp kernels see speedup

from more efficient utilization of the cache resources, creating more overlap between computation

and L1 cache stalls. The cache-limited kernels see significantly fewer misses, caused by memory

request prioritization.

Despite higher bandwidth to the cache, banking is not able to achieve a speedup because miss

rates for GPU benchmarks are high and the banked cache could service only one miss per cycle. As

well, banking creates more cache stalls because the miss is made by some banks more frequently

than others, causing more cache line allocation stalls. MRPB gives a larger speedup on some of

the cache-limited kernels due to its larger queue sizes, but is not as effective as WarpPool on the

memory divergent or bandwidth-limited workloads. The following sections will examine the two

mechanisms by which WarpPool yields speedup: increased L1 throughput and reduced L1 misses.

33

0

0.5

1

1.5

SYR2K pf_1 SYRK mri-g_3 spmv sc 3MM_1 GEMM 2MM_1 CORR_3 ATAX_1 kmeans_2 CORR_4 MVT_1 BICG_2 GESUMMV lbm inter-warp

AVG

AVG

A
vg

.
R

e
q

u
e

st
s

S
e

rv
ic

e
d

/C
yc

le

8-way banked

cache

WarpPool

memory divergent inter-warp bandwidth-limited inter-warp cache-limited

Figure 3.12: Average number of requests WarpPool coalesced into an L1 cache request, compared

against the number of requests an 8-bank cache serviced each cycle.

3.4.2.2 L1 Throughput

Figure 3.12 shows the average number of load instructions coalesced into a request to the L1.

The baseline coalescer will always yield one instruction per request, so values greater than one

are due to inter-warp coalescing. The number of instructions per request can be interpreted as a

multiplier on the core-side throughput of the L1 cache, with the reciprocal showing the reduction

in L1 accesses. For the kernels with inter-warp spatial locality, WarpPool allowed the L1 cache to

service an average of 1.14 requests per cycle, with 1.08 across all the kernels.

The 8-way banked cache serviced an average 1.18 requests per cycle, but its increased through-

put was not effective at producing speedup. The difference from WarpPool was because WarpPool

uses locality to increase throughput whereas the banked cache increases throughput by looking up

requests from divergent loads in parallel. This allowed the banked cache to find opportunity in

the intra-warp workloads that WarpPool could not, but made it ineffective at increasing bandwidth

for workloads without much memory divergence like sc. The banked cache is not able to con-

vert increased throughput to performance for two reasons: first, the miss rate of GPU workloads

is high but only one miss could be serviced per cycle. Second, the banked cache is only able to

service requests from one warp at a time, so the banks are often idle. Unlike the banked cache,

WarpPool is able to merge misses and look across multiple warps to translate higher throughput

into performance.

The number of inter-warp coalesces found by WarpPool is limited by two factors: window size

and memory consistency. The window size limits how far apart merged requests can be. In the

tested configuration, the window size was 64 distinct cache lines, because the inter-warp queues

34

0%

50%

100%

SYR2K pf_1 SYRK mri-g_3 spmv sc 3MM_1 GEMM 2MM_1 CORR_3 ATAX_1 kmeans_2 CORR_4 MVT_1 BICG_2 GESUMMV lbm GEOMEAN

%
 B

a
se

li
n

e
 M

P
K

I

MRPB

WarpPool

memory divergent inter-warp bandwidth-limited inter-warp cache-limited

Figure 3.13: Number of misses per thousand instructions (MPKI) for MRPB and WarpPool, nor-

malized to the baseline.

have 64 tags. The kernels’ hit rate can also limit window size when requests drain too quickly

for the queues to fill with requests. This is why SYR2K has a higher number of instructions per

request than SYRK, which has a similar access pattern: the miss rate of SYR2K is higher, which

causes more backup in the coalescing queues and leads to more coalescing. Maintaining memory

consistency limited the window size for many kernels, especially for GEMM, 2MM 1, and 3MM 1,

which have a store for every two loads.

3.4.2.3 L1 Misses

Figure 3.13 shows the number of misses per thousand instructions for each kernel, normalized to

the misses in the baseline. The geometric mean is 77% of the baseline, showing WarpPool is able

to not only reduce the number of accesses from the SM to the L1 cache, but reduce the number of

requests the L1 made over the interconnect to the rest of the memory system.

This improvement is due to the prioritization schemes in WarpPool. The instruction queues

allow WarpPool to prioritize warps more effectively than the scheduler by buffering requests rather

than sending them immediately to the coalescer. The second prioritization scheme, using the warp

ID selection policy, reduced the number of misses even further in a number of kernels, including

ATAX 1, MVT 1, and BICG 2.

CORR 3 saw the number of L1 misses increase, and several others do not see a reduction in L1

misses. This is caused by WarpPool causing early cache evictions due to two effects. First, when

requests are coalesced together, the LRU is only updated once when multiple requests would have

updated the LRU status multiple times. Second, inter-warp coalescing can increase the number of

35

0

0.25

0.5

0.75

1

Global Memory Shared Memory Global Memory with

WarpPool

N
o

rm
a

li
ze

d
 R

u
n

ti
m

e
 (

x)

Figure 3.14: Relative execution time of matrix transpose versions, normalized to naı̈ve global

memory version.

unique requests in a given time interval, because duplicate requests are coalesced together, which

causes more capacity pressure on the cache.

WarpPool was able to reduce the MPKI more than MRPB. The behavior of MRPB is similar to

WarpPool always being in warp ID selection mode. This hurts SYR2K and SYRK, where temporal

reuse is between warps in a block more than inside a thread. kmeans 2 and pf 1 likewise have

reuse across warps which WarpPool’s oldest selection mode works better to find. MRPB reduced

the miss rate more than WarpPool for spmv, sc, MVT 1, and BICG 2, because it has 6× the

number of queue entries, and saw a corresponding speedup over WarpPool for those kernels.

3.4.3 Case Study

It can require a significant amount of programmer effort and expertise to make algorithms run

efficiently on a GPU. Matrix transposes require careful implementation for GPUs because they

load and store data along different dimensions of the matrix. A straightforward implementation of

matrix transpose that does not use shared memory [43] has poor performance because the global

memory loads are done in column-wise order, leading to high memory divergence for the loads.

Copying a block of the matrix to shared memory allows both the loads and stores to be well-

coalesced, although the shared memory implementation still requires padding to avoid bank con-

flicts.

For this benchmark, WarpPool runs the straightforward, unoptimized version using global

36

memory in 0.50× the time, which is near the runtime of the shared memory version, which runs in

0.38× of the baseline time. This shows that WarpPool is able to relieve the burden of programmers

to optimize for particular memory access patterns.

3.5 Related Work

CPU request merging and cache throughput: Juan et al. [62] investigated methods of improving

bandwidth for superscalar processors, including multi-porting and banking. Davidson et al. [24]

studied memory coalescing to widen memory requests for CPUs. Our work differs by needing L1

throughput to satisfy parallel threads rather than wider single thread execution. Olukotun et al.

[104] propose techniques that allow data returning from the cache to satisfy loads not yet issued to

it. WarpPool differs by merging requests before sending them to the cache, which takes advantage

of the GPU’s relative latency insensitivity. Rivers et al. [115] reorder and combine requests in a

CPU’s load-store queue to optimize requests to a banked cache. Our work differs because GPUs

do not have the same load-store queue structures. Quintana et. al [113] use a dual-banked cache to

allow unaligned loads on a vector unit integrated in a CPU to complete in one cycle.

Analysis of GPU Coalescing: Hestness et al. [46] analyze the benefits of intra-warp coalescing

in GPU memory systems, finding that increasing the window of threads inside a warp can lead to

a large reduction in memory accesses but little speedup. We get past this limitation by merging

requests across warps. Yang et al. [148] use compiler techniques to transform GPU kernels to use

memory accesses with better coalescing behavior. Baskaran et al. [14] use polyhedral analysis to

improve coalescing and locality in auto-parallelized code. Our work is able to optimize memory

accesses dynamically in hardware.

Improving Inter-Warp Locality: Lee et al. [73] use a block scheduling policy that assigns

nearby CTAs to the same SM, to capture inter-CTA spatial locality that is lost with a round-robin

warp scheduler. Jog et al. [60] show there is benefit to scheduling spatially nearby warps tempo-

rally distant from each other so that warps will prefetch data for each other. Jog et al. [58] also

37

propose a warp scheduling technique that divides CTAs into warp groups that have different prior-

ity access to the cache. Lee et al. [69] use compiler analysis to map patterns to GPUs in ways that

best preserve locality. Lee et al. [75] perform auto-parallelization for GPUs to improve inter-warp

locality. Our work builds on these techniques by providing another place where inter-warp locality

can improve performance.

Warp Throttling: Scheduling only a subset of ready warps can increase the amount of intra-

warp temporal locality, as it prevents cache thrashing. Rogers et al. [118] detect cache thrashing

and decrease the number of warps to prevent it. Later work by Rogers et al. [119] predicts how

many warps’ data will fit in the cache and limits the number of warps accordingly. Our work limits

access to the cache after warp scheduling, which allows for finer granularity when choosing re-

quests to send to the cache. Sethia et al. [124] use performance counters to detect cache sensitivity

in order to reduce the number of threads. Our work also detects cache sensitivity with performance

counters, but uses them to toggle the selection policy rather than the number of warps.

Cache Bypassing: Another technique to prevent cache thrashing is by routing requests from

only a subset of warps to the L1 cache, forcing other warps’ requests to bypass the cache. Chen et

al. [22] watch for early evictions to prevent thrashing of cache lines with high contention, using

bypassing to avoid the contention. Jia et al. [51] use a combination of request prioritization and

bypassing to reduce cache contention. Zheng et al. [151] separate warps into groups, only one

of which can access the cache. Cache bypassing is complementary to WarpPool’s prioritization

methods and can be added to it to further reduce cache thrashing.

3.6 Conclusion

Many memory throughput-limited benchmarks are constrained by the interface between the SM

and the L1 cache. We alleviate this bottleneck by extending the window size of the memory

coalescer from the threads in one warp to requests made by multiple warps. For workloads with

divergent requests, this reduces the cost of serializing multiple requests. For workloads limited

38

by memory bandwidth, this makes better use of cache resources. For cache-sensitive workloads,

the coalescing window enables finer-grained request scheduling which reduces cache thrashing.

This leads to a 38% speedup across a set of memory throughput-limited kernels. We also show

our technique can help GPU programmability by achieving high performance without the need to

optimize a workload’s memory access patterns. We implemented WarpPool in Verilog to show that

WarpPool achieves these benefits with minimal power and area overhead.

39

CHAPTER 4

Register File Storage and Energy Reduction

4.1 Introduction

As Graphics Processing Units (GPUs) proliferate from gaming desktops into datacenter and mo-

bile environments, they are required to be more energy-efficient than ever before. GPUs’ high

computational throughput comes from their massively multithreaded architecture, where stalls in

one thread are hidden by switching to another thread and many threads can issue each cycle. This

requires the GPU to store the context for every active thread in a way that makes it available at any

time.

Since registers make up most of each thread’s state, GPUs have very large register files. To

store the registers for the 32 SIMD lanes for each of the 64 hardware threads (called warps), each

core (called an SM) in NVIDIA’s Maxwell architecture has a 256KB register file. Because of its

size, on GPU architectures similar to the GTX 980, the register file consumes up to 13% of total

GPU power, nearly as much as the arithmetic units or DRAM [77]. As GPU designs provision

more concurrency, the register file will only grow. Therefore, reducing the size of the register file

and the energy used to access it is an important part of making GPUs more efficient.

Previous approaches have focused on optimizing register storage space, as shown in Figure

4.1. The baseline (a) reads all operands from the large register file (RF) and has a separate L1

data cache. By adding a smaller hardware [30] or software [32] managed cache in front of the

main register file (b), most register accesses can be filtered by a smaller structure. By dynamically

40

RF

EUs

L1

RF

EUs

L1RF cache

(a) Baseline (b) RF hierarchy [9,11] (c) RF virtualization [19]

(d) Unified RF/L1 [12, 23] (e) RegLess

½ size RF

EUs

L1

EUs EUs

L1RegLess

combined

RF/L1

Figure 4.1: Comparison of GPU register energy reduction techniques that change how execution

units (EUs) read operands from the register file (RF)

reusing register capacity otherwise used to store dead values, a smaller register file (c) can be

provisioned or portions of the register file can be power gated [50]. For applications that do not

use the entire register file, portions of the register file can be used as more L1 cache or scratchpad

memory (d) to increase occupancy and performance [33, 56].

Our technique, RegLess (e), reduces the amount of storage space by anticipating when registers

will be used in time. Instead of a full register file that contains every live value, RegLess maintains

a small operand staging unit. Code running on the GPU is divided into regions and just in time

for a region to begin execution RegLess allocates space for it in the staging unit. Most operands’

lifetimes are contained in one region, so when that region is finished executing, the staging unit

can reuse their storage. An operand value with a lifetime that spans regions can be evicted into

the memory hierarchy when no active region is using it, so before a region can begin executing,

RegLess fetches any needed long-lived registers from memory.

In order for the hardware to manage the operand staging unit effectively, it needs visibility

into future register usage, which is provided by the compiler with annotations in the instruction

stream. A hardware resource manager uses these annotations to anticipate which registers a warp is

about to access. The resource manager also controls which warps are eligible to issue instructions,

41

ensuring the warps allowed to execute always have their registers ready in the staging unit. Other

annotations inform the hardware when a register dies and can be erased from the staging unit or

memory system.

Only a few registers can be transferred between the staging unit and memory without incurring

performance loss. Because the L1 data cache in each SM can only service one request per cycle, the

bandwidth available to fill the staging unit is much smaller than the bandwidth needed to service

register reads and writes. To address this, the RegLess compiler divides regions at the points that

maximize the number of registers interior to one region, as the values in these registers will never

be transferred to or from memory. By creating regions that rarely need their operands fetched from

memory and managing staging unit capacity for these regions in hardware, RegLess can maintain

performance while vastly reducing register storage.

Our contributions in this work include:

• Replacing the GPU register file with a small operand staging unit that only holds values about

to be accessed.

• Designing compiler techniques for dividing kernels into regions that maximize the number of

registers interior to a region.

• Detailing hardware components for managing operand storage capacity, fetching operands

from memory just before they will be used, and minimizing the performance impact of storing

register values in memory.

• Analyzing the power and area required by RegLess with a placed-and-routed Verilog model.

• Demonstrating that the RegLess system can reduce register capacity by 75% with no average

performance loss.

42

0

5

10

15

20

25

30

35

40

R
e

g
is

te
r

W
o

rk
in

g

S
e

t
(K

B
)

GTO 2-Level

Figure 4.2: Average register working set in 100 cycle window for GTO and 2-level warp schedulers

in baseline 2048 KB register file for benchmarks in Rodinia [17]

4.2 RF Replacement Challenges

Replacing the register file with an operand staging unit smaller than needed to hold all live registers

presents several difficult challenges. Managing the staging unit must be done precisely, as exactly

the right operands need to be present in the staging unit at exactly the right time or performance

will suffer as warps stall for operands to become available. A first challenge is determining how

much of the staging unit each warp will have access to. Another comes from the limited mem-

ory bandwidth available for moving values in and out of the staging unit. A final challenge is

conserving memory system capacity to allow more cross-region registers to fit in the L1 cache.

4.2.1 Capacity Allocation

Because of the small capacity of the staging unit (25% of the baseline register file or less), only a

subset of registers can be stored in it at any one time. The staging unit will hold fewer registers than

might be live across all active warps, so not every warp can have all its live registers present in it.

However, because not all registers are accessed by every warp all the time, there is an opportunity

to store only the subset of registers that will be used in an interval of time. Figure 4.2 shows

the register capacity accessed in a 100-cycle window in each Rodinia [17] benchmark. For most

applications, this is 10% or less of the baseline register file’s 2048 KB capacity.

One approach to allocating capacity would be with standard spills and fills inserted by the

43

compiler. Each warp would have an allocation in the staging unit that it would manage using load

and store instructions. This strategy fails to take into account that warps are not equally likely

to issue instructions – dynamically, some warps will be stalled for long-latency operations and

their space in the staging unit would be better used by active warps. Another approach would

be modelling the staging unit after a cache, allocating space based on which registers are most

recently accessed. Although this works when the backing store for the cache is the main register

file, this reactive strategy would cause stalls for register fetches if the cache was backed by main

memory.

To allocate staging unit capacity only to active warps, RegLess coordinates the warps eligible

to issue instructions with the warps that are allocated space in the staging unit. Figure 4.2 shows

that the two-level warp scheduler from [30] reduces the amount of register space that is used in

each interval relative to the baseline GTO by scheduling instructions from only a subset of warps

at a time. Extending this insight, RegLess only allows warps that have an allocation in the staging

unit to issue instructions. In this way, all allocated space is useful to a running warp.

In order to know how much capacity to allocate to each running warp, the RegLess hardware

receives information from the compiler. Hardware by itself cannot know how much capacity each

warp will use, but the compiler has a global perspective of exactly which registers will be accessed

at which points in the program. The best allocation decision is a combination of the hardware’s

dynamic perspective of how much staging unit capacity is available and the compiler’s global

perspective of warps’ future needs. The RegLess compiler divides a kernel into atomic regions,

and the beginning of the region is annotated with how much capacity that region requires in the

staging unit in order to run. A hardware resource scheduler activates warps when their next region

is allocated capacity in the staging unit. In this way, RegLess anticipates warps’ future resource

needs in its allocation decision.

44

0

100

200

300

400

500

600

700

B
a

ck
in

g
 S

to
re

 A
cc

e
ss

e
s

p
e

r
1

0
0

 C
y
cl

e
s

Time

Baseline RF Hierarchy RegLess

Figure 4.3: Accesses to the register backing store per 100 cycles during the steady state of hotspot

for baseline, RF hierarchy [32] with 8-entry scratchpad, and RegLess with 8 entries per warp

4.2.2 Memory Side Bandwidth

The second problem with eliminating the register file is that the backing store, global memory

through the L1, has limited bandwidth. In our model, only one access can be made to the global

memory system through the L1 cache per cycle. This is also more constrained than previous work,

which has recourse to a main register file with full bandwidth [30, 32]. In order for this not to limit

performance, fewer than one request per cycle can be made to transfer a register in or out of the

staging unit.

To reduce the number of accesses made to L1, the RegLess compiler creates regions with as

many interior registers as possible. Input and output registers hold values used to communicate

between regions, whereas the lifetime of an interior register lies entirely inside one region. By

guaranteeing each region the space it needs in the staging unit while it executes, any interior regis-

ters whose lifetime is contained in the region will never need to be transferred in or out of it. The

only registers that must be transferred in or out of the staging unit to the L1 are inputs and outputs

– the values communicated between regions. Therefore, when the compiler decides where to put

the boundaries between regions, it chooses points with the fewest number of live registers.

The other part of the solution is loading each regions’ input registers into the staging unit

sufficiently early that instructions do not stall waiting for their registers. Instead of loading registers

from L1 when they are first accessed, all the input registers for a region are fetched before any

45

instructions from that region can be issued. We call this register fetching process preloading. The

staging area needs enough capacity that several warps can be issuing from their regions while

other warps preload registers for their next region. Output registers can stay in the staging unit

until evicted, so RegLess prefers activating a region from a recently active warp in case an input to

the new region was an output of a recent one.

Together, these strategies mean there are far fewer requests made to the backing store than in

previous work. Figure 4.3 compares the number of accesses made to the main register file in the

baseline to the accesses made to the large register file in [32] and the accesses made to the L1 cache

in RegLess with the same capacity. Because so few accesses filter through RegLess to the L1, on

average 0.9%, it becomes feasible to use the low-bandwidth L1 to store cold registers.

4.2.3 L1 Cache Capacity

A final problem is that the staging unit and the L1 combined are smaller than the register working

set for many kernels. Because of this, registers and data in L1 would contend for space in L1 and

registers may be evicted across the interconnect to L2 or DRAM. It would take hundreds of cycles

to fetch these registers and they would contend for scarce L2 bandwidth. Previous work [74, 87]

has recognized that many registers hold values that have similar values for each 4-byte contribution

from each lane. This makes registers amenable to compression. RegLess compresses registers that

are evicted from the staging unit to the memory system, matching them against fixed patterns that

are intentionally simpler than full register file compression techniques, in order to fit more register

values in the limited L1 capacity.

4.3 Design Overview

In these ways, RegLess’ design overcomes the challenges of eliminating the register file using

hardware capacity management guided by compiler annotations. To further demonstrate how Re-

gLess operates, we will walk through each component of the system.

46

༃ Compiler divides code into regions and annotates region

input and output registers.

R1 R5

R6

region 0

R2
R3

region 1

༄ When①a①waƌp①staƌts①a①new①ƌegion,①ƌeƋuests①foƌ①that①ƌegion’s①
inputs are sent to the operand staging unit (OSU). Most will be

hits in the OSU; a small fraction may be requested from the L1

cache.

warp 0

region 0

warp 1

region 1
preload

R5, R3

L1

D$

addresses for

warp 1, register

R3

register value

operand

staging

unit

(OSU)

༅ As a region executes, all registers are serviced from the OSU.

When output values are produced, they are saved in the OSU

and may be eventually evicted to L1.

OSU

warp 1,

region 1

reserved

register

reads,

writes

L1

D$
evictions as

necessary

༆ The capacity manager, guided by compiler annotations,

manages which warps have access to space in the OSU.

warp 0

warp 1

warp 2

warp 3

ACTIVE

PRELOADING

INACTIVE

INACTIVE

warp 0

warp 1

OSUcapacity manager

active regs

free regs

hit for R5

Figure 4.4: Walkthrough

First, at compile time (part 1 in Figure 4.4), the kernel is divided into regions of instructions.

The compiler annotates the input and output registers of each region. Since the vast majority

of registers are intermediates with short lifetimes, these regions have a small number of input and

output registers compared to the number of registers which are both produced and consumed inside

the region.

At run time, registers are stored in a operand staging unit (OSU), with space allocated based

on compiler annotations on the regions. When a warp starts running a new region, that region’s

input registers need to be assembled in the OSU 2 . The OSU may already contain some of

47

these registers, and the others will be loaded from the L1 data cache. Not all of a warp’s registers

are loaded – only the ones that will be used in the next region. The instructions in a region are

guaranteed to have the registers they need available in the OSU as they execute. As values are used

for the last time in the region, they are erased from the cache or marked for eviction 3 .

RegLess orchestrates this process by actively managing the OSU capacity. A capacity manager

(CM) 4 makes warps eligible to issue instructions only when all the warp’s input registers are

present and there is space for all the warp’s interior registers in the OSU. As warps complete

regions, their registers are reclaimed and the CM uses the free capacity to preload registers for a

new region. The register working set often fits in the OSU, and any overflow almost always fits in

the L1 data cache and does not generate traffic at lower levels of the memory hierarchy.

Next, we will describe the compiler techniques and hardware implementation of RegLess.

4.4 Compiler Code Generation

In order for the hardware to make register allocation decisions, it needs to know which registers

to move into the staging unit and when those registers will no longer be needed. The compiler

provides this through metadata inserted in the instruction stream, as it has whole-program visibility

into when each register will be used. In order to do this, the compiler divides the kernel into regions

of instructions and annotates each region with data about which registers must be present to start

the region, the number of temporaries used in the region, and when the regions’ registers can be

erased or evicted from the staging unit and memory system.

4.4.1 Region Creation

Where the compiler chooses to create region boundaries affects how much data movement is nec-

essary when running a kernel. Registers that are produced outside the region but used inside it need

to be fetched from memory before the region can start running, but registers with their lifetime en-

tirely within one region are guaranteed to never be transferred to memory, as regions are scheduled

48

10

20

30

L
iv

e
 R

e
g

is
te

rs

Static Instruction

Figure 4.5: Count of live registers for a portion of particle filter, with low live register

points highlighted

atomically by the RegLess hardware. Therefore, the compiler should draw region boundaries to

minimize the number of registers communicated between regions and maximizing registers interior

to a region.

This matches register usage patterns in kernels. The number of live registers changes over time

in a program – for example, while a complex expression is being computed, there will be many

live registers to hold intermediate values, but these will be collapsed to a single value at the end.

These points with fewer live registers form natural seams in the program for region boundaries.

Figure 4.5 shows these seams in a portion of the particle filter application.

It is also important that a long-latency global load and its first use are not inside the same

region. If a warp were to stall on a long-latency load in the middle of a region, it would consume

space in the OSU while not being able to issue any instructions. Instead, long-latency operations

should happen on the edges between regions to overlap the time the register is waiting for the load

with the time it is waiting for capacity in the staging unit. To achieve this, the compiler splits

regions containing a load and its use.

Unlike the strands in [32], we do not allow regions to span basic block boundaries, which allows

the register management to be oblivious of control flow. This does not increase data movement,

since the OSU only evicts regions’ output registers when more capacity is needed – if two regions

from the same warp are scheduled close to each other in time, many of the input registers of the

second region are often still in the OSU and are never transferred from memory. RegLess’ register

usage annotations are more specific than those in Zorua [136] as RegLess manages exactly which

registers hold live values across region boundaries, not only how much register capacity is needed

49

overall.

4.4.2 Region Creation Algorithm

RegLess’ region creation algorithm is shown in Algorithm 1. The CreateRegions procedure

starts by creating a control flow graph with regions equal to basic blocks. It then iterates through

each region, determines whether it meets all constraints, and if not splits it into two regions. The

first new region from the split is guaranteed to be valid, but the second must be re-examined by the

algorithm.

The IsValid function determines whether a region is valid by checking whether the region

uses few enough registers to fit in the staging unit hardware. The maximum number of registers

used in the region is used to limit the amount of the staging unit one region can fill, so that one

region cannot take up too large a fraction of the OSU and limit concurrency (line 18). Because the

staging unit is split into multiple banks, the registers used by a region must fit inside those banks

(line 20). Finally, a global load and its first use may not be in the same region (line 22).

To determine where to split a region, the FindSplitPoint function identifies a window in

which the split should happen. The last instruction in this window (upperBound) is the first PC

where the first new region from the split would be invalid. The first instruction in this window

(lowerBound) is the place that would put the region boundary between the most global loads and

their first uses. The beginning of the window is adjusted to contain at least six instructions if

possible, to avoid degenerately small regions. Then, the region is split at the point in this window

where the split would create the least amount of input and output registers.

The annotations in Figure 4.6 that come from this compiler analysis are the bank usages of the

input and interior registers, as well as the registers to preload.

4.4.3 Register Lifetime

Because both the staging unit and L1 cache have very limited capacity, it is vital that no space

be consumed by dead registers. In order for the compiler to inform the hardware about when

50

bank usage: 1, 1, 1, 0, 0, 0, 0, 0

preload: r1, r2 (invalidate)

cache invalidate: r3

r0 = r1 + r2

r0 = r0 + r2
erase: r1

erase: r2, evict: r0

Figure 4.6: Compiler annotations added on regions and instructions

registers die, the compiler needs to take into account the two places where registers can be stored.

Both interior registers and inputs and outputs can be stored in the staging unit, but only inputs and

outputs can be evicted to L1. Therefore, the hardware structures in which a dead register needs to

be erased depends on whether it is interior to a region or not.

Since registers with their entire lifetime within one region will only be stored in the staging

unit, it is sufficient to mark the last use of the register in the region. In Figure 4.6, this is the erase

annotation. Input and output registers also have a lifetime in the staging unit while a region is

executing, in that there is some point in the region where they will be used for the last time in that

region. These last uses are marked by the evict annotation in Figure 4.6 – note this does not mean

the register must be evicted from the staging unit, only that it becomes eligible for eviction at that

point.

The lifetimes of registers that live longer than one region need to be tracked so they can be

erased from the L1 cache when no longer needed. These registers can either die when preloaded

for the last time or when control flow eliminates the possibility of another preload. In the case that

a preload is the last use of a register, the preload is set as an invalidating read, like r2 in Figure

4.6. Registers known to be dead due to control flow at the beginning of a region are marked for

cache invalidation, like r3 in Figure 4.6.

51

4.4.4 Control Flow and Register Liveness

Finding the correct location to insert register invalidations is non-trivial problem on a GPU, because

the threads in a warp can diverge for control flow. If not all lanes in a warp are active, a write to

a register will only write to some parts of the register. Therefore, standard liveness analysis will

produce incorrect results for GPU code, because it assumes that writing to a register kills the entire

value. We call a definition that may not redefine an entire register’s value a soft definition.

Tracking register liveness accurately is important for inserting cache invalidations in the correct

place. A cache invalidation annotation deletes the entire register, not just the values for active lanes,

so it is only safe to insert an invalidation when the entire register is known to be dead. Previous

work [50] recognized this and described how invalidations must be inserted in a postdominator of

both the definitions and uses in a live range. That is, the divergent control paths that use the register

must reconverge before the invalidation. We expand on this contribution with more details about

how to compute live ranges for GPU registers while accounting for control divergence.

To do so, liveness analysis must determine which definitions of a register are soft definitions.

Algorithm 2 decides whether an instruction insn that defines a register reg is a soft definition, which

is shown graphically in Figure 4.7. For a definition to be soft, there must be another definition that

reaches a use with different control conditions than the candidate soft definition. Therefore, first

the algorithm builds a list of the basic blocks that dominate the candidate soft definition, other than

its own basic block (lines 2-3). (A basic block dominates another if control must pass through

the dominator before the other basic block, and a basic block postdominates another if control

must pass through the postdominator after that basic block.) Then, for each dominator, it tests

whether there is a reconvergence point between the dominator and the candidate soft definition,

done by testing whether there are any basic blocks that postdominate the dominator that dominate

the definition (lines 6-8). This ensures that the dominating definition used is the nearest. Finally,

it tests whether there is a successor with different control conditions than the candidate soft defi-

nition (lines 10-11) that uses the dominating definition (lines 12-13). If so, the candidate is a soft

definition.

52

r1 =

r1 = = r1

live out of other

side of branch

dominating

definition

candidate

Figure 4.7: Determining whether a definition is soft. A soft definition of a register might not kill

every thread’s values.

warp contexts

capacity manager

warp scheduler

execution

units

reg read

reg w/b

bank

arbiter

per-bank

register

preload

queue

compressor

operand

staging unit

L1

D$

non-compressed

preload queuesinstruction issue

4 warp scheduling groups

Figure 4.8: Block diagram of RegLess components in each SM

To compute when values die, standard dataflow analysis is used to compute live ranges, with

the change that a live range does not end at a soft definition. Next, the death points of each live

range are determined – either a last use or a control flow edge out of a loop. To cover the case

where a register is defined but not used along a control flow path, the invalidation annotation is

places in the postdominator of all the definitions and death points of the live range. Registers with

a soft definition in a region are annotated for preloading, so that the values in lanes not taking the

control flow path are preserved.

4.5 Hardware Design

At run time, the hardware follows these compiler annotations to manage staging unit capacity.

Capacity managers (CMs) use the register usage annotations to make allocations for warps in the

staging units. The operand staging units (OSUs) store registers for active warps and transfers

53

registers to and from L1 as needed to run new regions. Compressor units compress registers

transferred to L1 to conserve capacity. Figure 4.8 shows how these RegLess components are

integrated into an SM.

There is a separate shard of RegLess for each of the four warp schedulers in the GTX 980. That

is, each of the schedulers has its own CM, OSU, and compressor unit. Multiple warp schedulers

allow the GPU to easily issue multiple instructions per cycle, so making independent register

scheduling decisions for each scheduler is important to keep this concurrency. No communication

between shards is necessary because warps cannot read each others’ registers. However, only one

shard can access the L1 at a time, as the L1 cache can only accept one request per cycle.

The CMs sit in front of the warp schedulers, allocating space in its OSU for warps as they

begin regions, and only allow the warp scheduler to issue instructions from warps that have their

registers ready. The CMs read from a metadata store, not shown, which is filled by the decode

stage. Active warps read their registers from an OSU. Before a warp can become active, it must

assemble its active registers in the OSU, either from registers already in the OSU or by loading

them from L1. Any unallocated OSU capacity is used to cache output registers for inactive warps

in case they are inputs to another region.

Each execution unit has a corresponding register read unit that assembles the source operands

from the OSU and reserves space for the destination registers for each instruction. After an instruc-

tion is finished executing, its value is written back to the OSU. Since instructions at the execution

units may be from any warp in any scheduling group, an arbiter directs register reads and writes to

the correct OSU.

In order to reduce the memory system throughput requirements of loading and storing registers

from memory, compressors identify common patterns in register values, storing a compressed

representation of a register if possible. The compressors contain a small amount of storage to

cache compressed values.

54

4.5.1 Capacity Managers (CMs)

The capacity manager is responsible for allocating OSU resources to active and preloading warps.

Figure 4.9 shows the components of the capacity managers. Each CM contains state machines

for its supervised warps that tracks whether they are in an inactive, active, or preloading state, as

well as counters tracking the number of preloads and evictions to determine when the states should

transition. They also maintain a list of inactive warps in the warp stack. The top warp in the stack

is the last one to have executed, so its input registers are the most likely to already be in the OSU.

Each cycle, the CM determines whether there is enough free capacity in its OSU to activate

the top warp on the stack, by comparing the registers needed by the warp’s next region against a

counter of free registers. If there is space in the OSU, the CM places the registers the compiler

annotated to be preloaded or evicted into queues to send to the OSU banks and updates the warp

stack and counters. There is a queue entry for each line in the OSU banks, so there is guaranteed to

be enough queue space to insert the preloads. The OSU notifies the CM as preloads and evictions

are processed, and once all of them are completed that region’s warp is activated and the warp

scheduler can issue instructions from that warp. The warp scheduler does not require any changes

from the baseline GTO policy.

When a region has issued its last instruction, there still may be registers that have yet to be

written back to the OSU. For example, if the last instruction in the region is a global load, the

value may take hundreds of cycles to be written back. While it waits, any other registers that were

allocated to that region can be freed for other warps, but the pending register must stay allocated.

The capacity manager tracks the number of outstanding writes for a region, and keeps its state

machine in a draining state until all of its registers are written. At that point, the final registers are

reclaimed and the warp is deactivated and pushed onto the warp stack.

4.5.2 Operand Staging Units (OSUs)

The operand staging units store the register values for active and preloading warps. Each OSU is

made of 8 independent banks, which are independently tracked by the CM. Each cycle, the register

55

state

prefetches remaining

active registers per bank
remaining

registers per bank

warp stack
warp 0 warp n

…

preload queues per OSU bank

…

Figure 4.9: Capacity manager (CM) design. CMs track which warps have registers allocated in the

OSU and are ready to execute instructions.

…

tags

8 banks

…

preloads per bank

free list

dirty list
clean list

lines

tags

free list

dirty list
clean list

lines

L1
read and

write

requests

Figure 4.10: Operand staging unit (OSU) design. OSUs store register values and service register

read and writes.

read and writeback units in the execution units arbitrate for access to the OSU banks of the warps

and registers that they need; each bank can process either a read or a write per cycle. To read a

register, the read units request a value from a bank. To write a register, the read units request an

OSU entry for the future writeback, which the writeback units provide once the instruction has

completed.

Figure 4.10 shows the structure of the OSUs. There are 8 banks in each OSU, with registers

assigned to a bank by taking the lower 3 bits of the sum of the warp ID and register number

(the compiler selects register numbers in a manner that reduces bank conflicts). Most instructions

require 2 register reads and 1 write, so it is possible for each OSU to service two instructions per

cycle, necessary to match the dual-issue capability of the GTX 980 schedulers. The tags in each

bank store the warp ID and register ID, matching those to a 128-byte line in the data store. Each

bank can complete one tag lookup per cycle, which is used when performing a register read or

56

preload. The OSU maintains three lists of lines that are not being used by an active region: the

free list tracks empty entries, the clean list tracks registers that have not changed value since being

read from L1, and the dirty list tracks lines written since their last read from L1. When a register

is allocated, an entry is used from the free list if possible, then from the clean list if necessary, then

from the dirty list if needed, which reduces the number of writebacks needed to the L1.

4.5.2.1 Preloads and Allocations

Registers are allocated in the OSU either through preloads or writes to interior registers. Preloads

are passed from the capacity manager for each bank in parallel. If the tag access for a bank was

not used by a register read in a cycle, the bank can process the preload by checking to see if the

register is present in the bank. If it is present, the register is removed from the clean and dirty lists;

if it is not, the bank passes the request on to the compressor. The compressor either replies with

the full register value or with a signal that the register was never compressed, in which case the

OSU fetches the value from L1. Cache invalidation requests are sent through this pipeline as well,

but are routed immediately to the L1 cache. For interior registers, space is allocated when a warp

writes to the register for the first time.

4.5.2.2 Evictions

The register lifetime annotations inserted by the compiler determine when register values are no

longer needed. Registers marked for invalidation are added to the free list to be recycled. Output

registers marked for eviction are placed in the clean or dirty list, depending on the value of a dirty

bit that is set if the register is written. When a register write is the last use of a register in a region,

the OSU passes a flag to the register read unit that reserved an entry for the write. This flag is later

passed with the write’s value, telling the OSU to mark the register as evictable and dirty as soon as

it is written.

57

4.5.2.3 Register to Memory Mapping

The memory space for registers is allocated by cudaMalloc(), similar to other global memory

buffers. Our CUDA API detects when the first kernel is launched in an application, and makes this

allocation automatically. The register base pointer is passed to hardware like a kernel parameter,

and the registers are laid out in memory in order of register number, such that all the values of R0

for every warp are sequential in memory, then all the values of R1, and so on. Because different

warps tend to access the same register numbers close to the same time, this minimizes cache set

conflicts.

The L1 cache is by default write-through and write-evict, which would prevent dirty register

values from being stored in the L1. We modify the L1 to be write-back for register values with the

added optimization that the old value does not need to be fetched from memory on a write, as we

guarantee the write will overwrite the entire cache line by preloading any register that may be only

partially written.

4.5.3 Compressor

Register compression is able to reduce the amount of memory traffic required to supply the OSU.

The goal of compression is to reduce both the number of accesses sent to the L1 and the space

each cold register consumes, as both L1 bandwidth and capacity are scarce. Instead of needing to

fetch or evict one cache line per register, many compressed registers can be stored in one line. As

registers move in and out of the OSU when preloaded or evicted, a compressor matches the register

value against a set of patterns and if possible moves only a compressed representation to and from

the L1 cache. The compressor also contains a small cache for compressed registers.

For preloads, the compressor is on the datapath between the CM and the OSU. The register

index is first matched against a bit vector which tracks whether a register is compressed. This

way, the compressor does not need to bring in a line of compressed registers from the L1 only

to determine whether a register is compressed. Evictions from the OSU first pass through the

compressor, where the value is matched against common patterns by a compression unit. Any

58

misses or incompressible evictions return to the OSU to be sent to the memory system.

Compression is effective due to the way kernels use registers. Previous work [74, 87] also took

advantage of this with a general-purpose compression scheme, but RegLess uses a simpler scheme

that matches a set of common use patterns. These patterns are constants, where all lanes of the

register have the same value, stride one values, stride four values, and half-warp versions of the

stride one and four patterns. For each compressed register, 8 bytes need to be stored for values for

the half warp cases and 4 for the others. There are 5 compression schemes and the uncompressed

state, so 3 bits per register are needed to store the state. This means that 15 compressed registers

can be stored in a 128-byte cache line. Compressed lines are mapped to a separate main memory

space adjacent to the uncompressed registers.

The compressor adds one extra cycle of latency for non-compressed preloads, to match against

the bit vector. Compressed registers require two more cycles to match against the compressor’s

tags then uncompress and return the value. This added delay is small compared to the benefit of

using less of the limited throughput to the L1, and preloading registers ahead of time allows this

latency to be hidden. The compressor also adds similar delay when compressing registers evicted

to L1, but this latency does not affect the rate warps become active.

4.5.4 Metadata Encoding

Metadata is inserted into the instruction stream by the compiler. With 10 bits of each 64-bit instruc-

tion used for the opcode [50], 54 bits of metadata can be passed per instruction. A region starts

with a flag instruction which includes the bank usage and up to 3 preloads and cache evictions;

more metadata instructions for preloads and cache evictions are emitted as necessary. For every 9

instructions in a region, a metadata instruction is emitted to mark when the last uses of registers:

1 bit to determine whether an operand is a last use, and a second for whether it is an erase or

invalidate flag. Some regions, especially in control-flow intensive code, have few instructions but

correspondingly few preloads and invalidations, so a single-instruction encoding is used for these

that can encode up to 2 preloads or invalidations and flags for up to 4 instructions.

59

SMs 16, 64 warps each, 4 schedulers

Warp scheduler GTO

L1 cache 48KB, 32 MSHRs, data accesses

bypassed [100]

L1 bandwidth one request per cycle

Memory system 2 MB L2, 4 memory partitions,

224 GB/s B/W

Compressor one read or write per cycle, 16

lines internal storage (48 per SM)

Table 4.1: GPGPU-sim simulation parameters

4.6 Evaluation

4.6.1 Methodology

RegLess was implemented in GPGPU-sim 3.2.2 [9], with the parameters in Table 4.1 based on the

GTX 980. Register assignment was done by ptxas and loaded into GPGPU-sim as PtxPlus, and

the compiler infrastructure used a custom framework built upon GPGPU-sim’s IR. Every bench-

mark in the Rodinia [17] benchmark suite was used, to evaluate against many different types of

GPU workloads. The simulation accounts for the performance and energy impact of the metadata

inserted into the instruction stream.

We implemented RegLess and the baseline register file design (including register banks, ar-

bitration logic for register read and write back units, and operand collectors) in Verilog and syn-

thesized it to a 28 nm technology netlist using Synopsys’ Design Compiler. Clock gating was

implemented in RegLess and the baseline to reduce power consumption during periods of inactiv-

ity. Interconnect overhead was estimated by using Cadence’s Encounter tool to place-and-route the

designs and extract the resistance and capacitance values of the circuits. Traces from the GPGPU-

sim simulations were used to stimulate the netlist running at 1GHz in order to produce power

metrics. Power information for added L1, L2, and DRAM accesses came from GPUWattch [77].

We compared the register file and overall GPU energy savings against two other register file

energy saving schemes. The first is Jeon et. al [50] (RFV), which reduces the size of the register

file by renaming short-lived registers. Our implementation assumes a half-size register file and a

negligible cost for the rename table and metadata instructions. The other technique, in Gebhart et.

al [32] (RFH) uses a compiler technique to place registers in one of two smaller structures instead

60

0

0.25

0.5

0.75

1

128 192 256 384 512 1024 2048
N

o
rm

a
li

ze
d

 A
re

a
 (

x)

Operand staging unit capacity per SM

Logic Storage Compressor

Figure 4.11: Area for RegLess configurations, normalized to 2048-entry baseline RF

0

0.2

0.4

0.6

0.8

1

1.2

128 192 256 384 512 1024 2048

N
o

rm
a

li
ze

d
 P

o
w

e
r

(x
)

Operand staging unit capacity per SM

OSU Compressor

Figure 4.12: Combined static and average dynamic power for RegLess configurations, normalized

to baseline RF

of the main register file when possible; we implemented the compiler technique and modelled the

register file and added component energy in the same process technology as RegLess. We do not

compare against works that repurpose unused register file space for other memory spaces, such as

[33, 56], because their benefit comes through increasing occupancy or L1 capacity.

4.6.2 Area and Power

We evaluated multiple capacities of RegLess to find the most energy-efficient design. The area and

average power of each capacity is shown in Figures 4.11 and 4.12. Both logic and storage area

scales with the capacity, as more logic is needed for tags and decoding. The average power also

scaled with the capacity, since more energy was required to access the larger hardware structures.

Because of the added tag and compressor logic, the RegLess designs require slightly more energy

61

128

192

256384
512

1024

0.87

0.89

0.91

0.93

0.95

0.95 1 1.05 1.1 1.15

N
o

rm
a

li
ze

d
 G

P
U

 E
n

e
rg

y
 (

x)

Normalized Run Time (x)

Figure 4.13: Run time vs. GPU energy for RegLess configurations, normalized to baseline. The

line marks the Pareto frontier.

and power than the baseline register file scaled to their capacity.

Although smaller capacities use less area and power, they can also affect performance if too

many registers must be transferred to L1. Figure 4.13 shows the geometric mean total GPU energy

and running time for different RegLess capacities across all Rodinia benchmarks. Small capacities

like 128 registers are Pareto-optimal in terms of energy, but our goal in RegLess was no average

performance loss, so we use the 512-register version in the remainder of our results as one optimal

tradeoff point between performance and energy; this capacity has better worst-case performance

than the 384-register version. Larger RegLess capacities see a slight speedup, which we discuss in

Section 4.6.4.

4.6.3 Energy Savings

RegLess significantly reduces the energy consumed both by the register structures and by the entire

GPU, as shown in Figures 4.14 and 4.15. Focusing first on register structure energy, RegLess

provided a 75.3% reduction, as compared to 45.2% for RFV and 62.0% for RFH; this added benefit

came from reducing the amount of register storage below what was possible with the previous

techniques. Because the register structures make up a significant amount of overall GPU energy,

this led to a 11% overall GPU energy savings for RegLess, compared to 3.7% for RFV and 2.9%

62

0

0.2

0.4

0.6

0.8
N

o
rm

a
li

ze
d

 R
F

 E
n

e
rg

y
 (

x)

RFH

RFV

RegLess

1.74

Figure 4.14: Register file energy for RFV [50], RFV [32], and RegLess, normalized to baseline

0
0.2
0.4
0.6
0.8

1
1.2

N
o

rm
a

li
ze

d
 G

P
U

 E
n

e
rg

y
 (

x)

No RF

RFH

RFV

RegLess

1.77 1.54 1.39

Figure 4.15: Normalized total GPU energy, including added instruction and memory accesses. The

“No RF” entry is the upper bound for energy savings, which uses the baseline performance and a

register file that consumes no energy.

for RFH. When computing the overall GPU energy for RegLess, the cost of added L1, L2, and

DRAM traffic was included. Figure 4.15 also shows how RegLess approaches the upper bound for

GPU energy savings from reducing register file energy, 16.7%, which comes from maintaining the

performance of the baseline while incurring no register file energy cost.

Compared to RFV, RegLess can maintain a register structure of half the size of even the re-

duced register file because of the synergy between the compiler and hardware manager. As well,

some register-intensive benchmarks like dwt2d and hotspot saw performance degradation with

RFV due to register pressure, as noted in their paper [50]. Compared to RFH, RegLess is able to

eliminate the register file backing the compiler-managed buffer. Although RFH can save energy

by accessing the large main register file significantly fewer times than the baseline, each access

to that register file is more expensive than to RegLess’ staging units. A two-level warp scheduler

is integral to the RFH technique, which can cause performance loss relative to the baseline GTO

scheduler, causing RFH to consume more energy.

63

0

0.2

0.4

0.6

0.8

1

1.2

N
o

rm
a

li
ze

d
 R

u
n

 T
im

e
 (

x
)

Figure 4.16: Run time (lower is better) for 512-register RegLess design normalized to baseline

with full RF. The geomean is compared with RegLess with no compressor, RFV, and RFH.

4.6.4 Performance

Despite the much smaller register structure, RegLess is able to maintain application performance.

Figure 4.16 shows the performance impact of RegLess on the Rodinia benchmarks relative to the

baseline with a full register file, demonstrating that RegLess can match the baseline run time. Most

benchmarks, such as b+tree, myocyte, and streamcluster saw no performance change;

many of these have a small register working set that RegLess is able to easily manage. Three

benchmarks (gaussian, heartwall, and hybridsort) saw over 5% slowdown with Reg-

Less. hybridsort and heartwall have kernels with complex control flow structures; since

registers can often not be invalidated until their last use along all paths, there are a large amount

of potentially live registers that RegLess must manage. gaussian has many registers live across

global loads, which means that there are fewer opportunities for scheduling consecutive regions

from the same warp. Other benchmarks, like kmeans, leukocyte, and nn saw speedup, be-

cause RegLess activates fewer warps at a time than the baseline, increasing temporal locality be-

tween memory accesses. Other register file work has seen the same effect.

Figure 4.16 also compares the RegLess geometric mean performance with other configurations.

The first is the same size RegLess but without the compressor, which degrades performance by

10.2%. We also compare against the geometric mean performance of RFV and RFH, which are

slower than RegLess due to their use of a 2-level warp scheduler. RegLess is independent of the

64

0%

20%

40%

60%

80%

100%

%
 P

re
lo

a
d

s

OSU Compressor L1 cache L2/DRAM

Figure 4.17: Location from which registers were preloaded. 0.9% of registers were preloaded from

L1 and 0.013% were preloaded from L2 or DRAM.

choice of warp scheduler, allowing it to use the baseline GTO which is known to perform better

than 2-level schedulers due to better memory locality [117].

4.6.5 Register Preload Location, L1 Bandwidth

Although the memory system is the backing store for the OSUs, Figure 4.17 shows that preloads

very rarely need to access it. Some benchmarks, like bfs and nw never miss in the OSUs, because

their register working set is small. Others, like b+tree, hotspot, and pathfinder use the

extra capacity the compressors provide. Only an average of 0.9% of requests miss to the L1

cache and 0.013% miss to lower levels of the memory system. The only benchmarks that had a

non-negligible number of added L2 accesses were kmeans (0.5% added requests), hybridsort

(1.0%), and dwt2d (2.6%). For dwt2d and others, this is due to a large number of simultaneously

live registers, few of which are compressible.

Figure 4.18 shows the average amount of L1 bandwidth consumed by transfers to the compres-

sor and OSU per SM during the execution of each benchmark, out of the total L1 cache bandwidth

of 1 request per cycle. On average, fewer than 0.02 requests per cycle were used for RegLess trans-

fers. The benchmarks that do not miss in the OSU in Figure 4.17 do not consume any L1 band-

width. Both hybridsort and srad v2 issue more stores to L1 than loads; this occurs when

there are redefinitions of a register on a control path before the register is read. For hybridsort,

65

0

0.03

0.06

0.09

0.12

L1
 r

e
q

u
e

st
s/

cy
cl

e Preloads Stores Invalidations

Figure 4.18: Average RegLess L1 requests per cycle

0

1

2

3

4

5

6

7

R
e

g
is

te
rs

/R
e

g
io

n

Preloads Mean Std. Deviation

Figure 4.19: Average number of preloads, average number of concurrent live registers, and stan-

dard deviation of number of concurrent live registers per region

conservative liveness analysis again meant that more register values had to be stored than were

later read.

4.6.6 Region Sizes

Figure 4.19 shows the average number of input registers, average concurrent live registers, and

standard deviation of concurrent live registers for each benchmark. The number of registers re-

served for a region in an OSU is equal to the number of concurrent live registers in that region.

Non-overlapping short-lived registers can share the same allocation, and once an input is read for

the last time, its allocation can be reused by a short-lived register. Therefore, across the bench-

marks, not only is the number of concurrent live registers is consistently larger than the number of

input registers, but each entry made in the OSU can be reused for several registers, showing that

66

IŶsŶs.

CyĐles

IŶsŶs.

CyĐles

IŶsŶs.

CyĐles

ď+tree ϯ.ϳ ϭϱϬ hyďridsort ϲ.ϱ ϯϳϵ ŶŶ ϲ.ϯ ϵϰϬ
ďaĐkprop ϲ.ϳ ϯϮϯ kŵeaŶs ϯ.ϵ ϵϵϯ Ŷǁ ϭϬ.ϴ ϳϴ
ďfs ϯ.ϯ ϲϬ laǀaMD ϳ.ϱ ϭϲϬϭ partiĐle_filter ϭϬ.Ϭ ϮϬ
dǁtϮd ϵ.ϱ ϰϱϳ leukoĐyte ϳ.ϳ Ϯϵϳ pathfiŶder ϰ.ϵ ϳϮ
gaussiaŶ ϴ.ϭ ϭϮϬϳ lud ϭϲ.Ϭ ϴϭϲ srad_ǀϭ ϵ.ϭ ϯϱϬ
heartǁall ϰ.ϲ ϯϮ ŵuŵŵergpu ϲ.ϰ ϮϰϬ srad_ǀϮ ϲ.ϵ ϯϮϯ
hotspot ϲ.ϰ ϳϱ ŵyoĐyte ϵ.ϯ ϭϮϬ streaŵĐluster ϰ.ϯ ϭϲ

Table 4.2: Average number of static instructions per region and average dynamic cycles per region

most register lifetimes are inside a region.

The standard deviations show that the region size varies substantially within each benchmark.

Since the registers in each region cannot be negative, the standard deviations show a larger variation

than if that were possible. The heterogeneity in region sizes allows warps to have different-sized

register allocations at different points in execution. The region creation algorithm tends to creates

smaller regions in memory-intensive or control-intensive phases and larger regions when the work-

load is compute-intensive, leading naturally to a mixture of different region sizes. Several of the

benchmarks like dwt2d, hotspot, and myocyte had regions with 20 or more concurrent live

registers.

Table 4.2 shows the average number of instructions per region and the average number of cycles

each region was active for each benchmark. Larger regions allow there to be more interior registers,

and longer-running regions reduce the rate at which L1 transfers are made. The main factors that

limit region size are control flow and the restriction that global loads and uses cannot be in the

same region. Therefore, compute-intensive benchmarks like dwt2d, lud, and nw have the largest

region sizes, whereas memory-intensive benchmarks like bfs have smaller region sizes. There is

large variation in how long regions execute, influenced by the number of instructions in a region

and how many registers active regions use. When each warp has a large OSU allocation, fewer

warps will be active, so active warps will make more progress than if more warps with smaller

allocations were active. Therefore, memory-intensive bfs, with small regions with few registers

each, has a smaller execution time per region, whereas lavaMD with larger regions with many

registers switches regions less frequently.

67

4.7 Related Work

CPU virtual register files and instruction clustering: Oehmke et al. [103] created a virtual

context architecture for CPUs that serviced registers from cache of a register space in memory.

Because the amount of data in a GPU’s register working set is much larger because many threads

are active at the same time, our technique requires more active management of the register cache.

Roth [121] describes techniques for releasing virtual registers when they are no longer needed. Ar-

chitectures such as TRIPS [122, 34] and others using block-structured ISAs, described by Melvin

et al. [90], have executed blocks of code similar to our regions. Work such as by Ponomarev et

al. [112] have diverted short-lived values from handling like other registers. Yan et al. [147] allow

short-lived values to be communicated through a CPU’s forwarding network. We use regions as an

overlay of a traditional ISA.

GPU register caching and RF size reduction: Vijaykumar et al. [136] oversubscribe re-

sources, including registers, by annotating kernel phases. Our work focuses on reducing the size

of hardware structures, and uses a more precise set of registers that need to be present. RegLess

would be able to oversubscribe the register file without any design changes. Gebhart et al. [30]

proposed a register cache in front of the main register file and a 2-level scheduling scheme to con-

trol access to the cache, to save the dynamic power of accessing the main register file. Other work

by Gebhart et al. [32, 31] sorted registers at compile time into a 3-level register storage hierarchy,

also to save dynamic power. The novel contribution of our work is eliminating the main register

file as a level in the register hierarchy. Gebhart et al. [33] also propose sharing the same SRAM

structures between registers, shared memory, and L1 cache. Jeon et al. [50] allow new values to

replace other warps’ dead values in the register file, allowing the size of the register file to be re-

duced. By removing the main register file and caching the active set, our technique reduces the

register size to the minimum needed to maintain performance.

Compiler-assisted GPU scheduling: Park et al. [107] use compiler annotations so the warp

scheduler can prioritize warps with that will soon issue a load. Wu et al. [143] expose hardware

scheduling decisions on GPUs to programmers. Xie et al. [144] use a compiler to make opti-

68

mal register allocation and thread throttling decisions. We add a layer of scheduling that makes

dynamic decisions based on static analysis. Hsieh et al. [47] use compiler analysis to determine

offload candidates for near-data processing. Li et al. [82] use compiler analysis to place data in

different on-chip memory resources.

Resource-aware GPU scheduling: Jog et al. [61] classify warps into short and long latency

to determine memory scheduling policy. Jog et al. coordinate warp scheduling with DRAM bank-

level parallelism [59] and prefetching [60]. Li et al. [83] allocate cache space to a set of prioritized

warps. Narasiman et al. [93] describe two-level scheduling to allow for larger warp sizes. Pichai

et al. [111] show the need to coordinate warp scheduling and MMU designs. Pai et al. [105] use

elastic kernels in order to better utilize registers. Gregg et al. [38] merge kernels to increase register

utilization. Lee et al. [76] coordinate warp priority and access to cache resources, Liu et al. [86]

prioritize warps to reduce time waiting for barriers. Kayiran et al. [64] adjust TLP for highest

performance. Rogers et al. [116] use variable warp sizing and warp ganging to decrease the impact

of memory divergence. Ausavarungnirun et al. [7] change cache and memory controller policies

based on warp divergence.

Divergence-aware compiler techniques: ElTantawy et al. [28] track register dependencies for

control divergent threads separately in hardware, and use compiler analysis [27] to analyze control

divergence to eliminate deadlocks. Rhu et al. [114] analyze divergence patterns to allow for better

SIMD lane permutation. Anantpur et al. [5] transforms control divergence using linearization.

Jablin et al. [49] use traces for instruction scheduling on GPUs.

Value compression and scalarization: Lee et al. [74] compress register values using base-

delta-immediate encoding introduced by Pekhimenko et al. [110], which reduces the number of

register file banks needed to load and store registers. Gilani et al. [35] propose a GPU architecture

with scalar units and 16-bit register reads. Abdel-Majeed et al. [2] use the redundant computations

done between lanes for error detection. Kim et al. [67] exploit value structure using an affine

functional unit. Stephenson et al. [126] show that a large fraction of register writes are constant

across warps and threads. Pekhimenko et al. [109] compress data over the GPU interconnect while

69

minimizing the number of toggles. Vijaykumar et al. [138] propose using excess GPU computation

resources for memory compression. Keckler et al. [66] propose temporal SIMT, where scalar

computations do not need to be computed by all threads.

Register file implementation: Abdel-Majeed et al. [1] reduce register file dynamic and leak-

age power by adding a drowsy state to the storage circuits and only reading register values for

active lanes in a warp. Jing et al. [53] propose register file bank scheduling techniques that reduce

bank conflicts. Namaki-Shoushtari et al. [92] power gate unused register file banks. Other work

by Jing et al. [55] implemented the register file using eDRAM instead of SRAM and proposed re-

freshing the DRAM during bank bubbles [54]. Mao et al. [89] and Wang et al. [140] implement a

register file using racetrack memory, and Goswami et al. [36] implement it using resistive memory.

Tan et al. [132] implement the GPU register file using STT-RAM for energy savings, and Yu et

al. [149] implement it with an SRAM-DRAM hybrid memory. Tan et al. [131] develop a method

for classifying registers as fast or slow due to process variation, and Liang et al. [85] introduce a

variable-latency register file to mitigate process variation. Li et al. [84] implement register files

using a hybrid CMOS-TFET process. Our design because of its small size can be implemented

using conventional techniques.

Register file voltage: Kayiran et al. [65] tune down performance of GPU register file and

operand collector components to save energy. Tan et al. [133] reduce GPU register file energy with

aggressive voltage reduction. Leng et al. [80, 79] throttle the register file when it causes voltage

droop to reduce the GPU voltage guardband.

4.8 Conclusion

The register file is one of the structures on a GPU that consumes the most power. Our technique,

RegLess, can replace the register file with a smaller staging unit by actively managing the contents

at run time with the help of compiler annotations. The compiler divides the kernel into regions

and annotates input register and the points where register values are used for the last time. At

70

run time, the hardware allocates capacity in the staging unit just in time for a region to begin

execution. Short-lived registers spend their entire lifetime inside one region’s allocation. Longer-

lived registers can be evicted to memory, so the capacity manager must anticipate they will be used

in order to load them before a region becomes eligible to execute. When transferred to the L1, a

compressor can reduce the amount of storage needed for a register. Using RegLess instead of a

full register file reduced register access energy by 75% and total GPU energy by 11%.

71

Algorithm 1 Region Creation

1: function CREATEREGIONS(cfg)

2: regions ← ∅

3: worklist ← basic blocks in cfg

4: while worklist is not empty do

5: region ← worklist .pop()
6: if not IsValid(region) then

7: splitPc ← FindSplitPoint(region)

8: Split region at splitPc into firstRegion and secondRegion

9: region ← firstRegion

10: worklist .append(secondRegion)
11: end if

12: regions.append(region)
13: end while

14: return regions

15: end function

16:

17: function ISVALID(region)

18: if region.maxLiveRegs > maximum registers per region then

19: return false

20: else if region.maxRegsPerBank > registers in each OSU bank then

21: return false

22: else if region contains a global load and its first use then

23: return false

24: end if

25: return true

26: end function

27:

28: function FINDSPLITPOINT(region)

29: upperBound ← first PC where the first region becomes invalid

30: lowerBound ← PC <= upperBound where the number of global loads and uses in both new

regions is minimized

31: lowerBound ← min(max(region.startPC + 48, lowerBound), upperBound)

32: return PC such that lowerBound <= PC <= upperBound and splitting at PC results in the

fewest number of input and output registers in both new regions combined

33: end function

72

Algorithm 2 Identifying Soft Definitions

1: procedure ISSOFTDEF(insn , reg)

2: insnBB ← the BB containing insn

3: strictDoms ← dominators(insnBB)−insnBB

4: for all domBB in strictDoms do

5: strictPDoms ← postdominators(domBB) −domBB

6: if dominators(insnBB) ∩ strictPDoms 6= ∅ then

7: continue

8: end if

9: for all successorBB of domBB do

10: if successorBB dominates insnBB then

11: continue

12: else if reg is live on the edge from domBB to successorBB then

13: return true

14: end if

15: end for

16: end for

17: return false

18: end procedure

73

CHAPTER 5

Multi-Kernel Resource Management

5.1 Introduction

Public cloud services such as Amazon’s AWS, Google’s GCP, and Microsoft’s Azure allow users to

lease time on virtual servers, which frees them from operating their own data centers and operations

teams. Although these cloud services began with traditional virtual machines with allocations

of CPUs, memory, storage, and networking, providers now offer virtual machine instance types

that include accelerators and GPUs to meet customer performance demands for applications like

genomic analytics and neural network training.

Maintaining high utilization is a challenge for large data centers like public clouds. Even well-

managed data centers often operate between 10 to 50% utilization, because of overprovisioning to

cover failures or spikes in demand [13]. Public clouds are especially vulnerable to low utilization

because they must be ready for surges in customer demand [12, p. 98], increasing costs. As one

strategy for increasing utilization, cloud providers sell more virtual machines than there are physi-

cal CPUs backing them, as many servers spend most of their time waiting for network requests to

arrive or performing I/O. Cloud providers also have created several tiers of service, separating out

batch jobs into a spot instance tier which is packed into excess capacity and sold at a discount but

can be preempted at any time when that capacity is needed.

Although these strategies work well for CPU instances, increasing utilization on GPUs will

require a different set of techniques. Customers paying a premium for the use of an accelerator

74

are doing so to constantly take full advantage of its performance, so there are few idle periods to

fit another user’s tasks onto the GPU. As another challenge, GPU workloads do not have periods

where they wait for long-latency external events, like network requests or I/O, so interleaving

waiting applications across time like an operating system’s task scheduler is not effective.

Despite these challenges, previous work has developed ways to effectively share GPUs be-

tween multiple applications. NVIDIA’s GRID GPUs include a virtualization layer that can divide

a server GPU between multiple virtual desktops [45], and other NVIDIA GPUs also include the

capability to launch kernels from multiple work queues across processes [102]. Spatial partition-

ing techniques allow workloads to run on different cores in the same GPU [3], and simultaneous

multi-kernel (SMK) can further divide the resources inside cores [141, 146]. Sharing at these lower

levels unlocks more throughput than dividing the GPU across time, as workloads with complemen-

tary resource demands can together better utilize GPU resources than either could alone. However,

when workloads do not have perfectly complementary resource needs, they interfere, leading to

one or both applications running slower than they would alone even in cases where the overall GPU

throughput increases. Previous work controlling interference has optimized for metrics like system

throughput and turnaround time that do not capture the concerns of cloud customers seeking high

performance and low cost [106].

Instead, in this work, we leverage multi-kernel GPU execution to provide two tiers of service

that correspond to the needs of cloud customers, while still increasing overall throughput and

utilization to address the needs of the cloud provider. Traditional cloud instances are commonly

sold in at least two tiers: one with guaranteed provisioning and a high level of access to the CPU

suitable for latency-sensitive tasks, and another more suited to batch jobs that is cheaper but can

be preempted at any time. This work, Scavenger, translates these tiers to a GPU context. It

provides one tier of service with a high performance target, such as 90% of the performance of

running alone, and a second tier for batch tasks that takes advantage of any resources unused

by the performance tier. Because sharing the GPU between these tasks will often lead to extra

throughput, both tiers can be sold at a lower price than if they were run on dedicated GPUs and

75

still leave profit for the cloud operator.

Previous work [142] has divided resources within a core using SMK while still reaching

quality-of-service targets. This work assumed tasks were run by the data center operator who

could supply task deadlines and target performance ahead of time. In contrast, Scavenger focuses

on the different set of concerns that arise in the public cloud setting, where performance analy-

sis and resource allocation must occur online, as workloads and their target performance are not

known before they are launched by customers.

In order to create the two tiers of service when sharing GPU resources between two applica-

tions, Scavenger has two tasks to accomplish. First, it must determine the performance target for

the high-performance application. The cloud operator will be able to specify this target as a per-

centage of the performance that an application achieves when running alone, but the system must

translate this into a measurable metric like instructions-per-cycle (IPC). Second, the GPU com-

pute and memory resources inside each core must be allocated between the two applications. This

allocation must ensure the high-performance application meets its performance target while also

providing as many resources as possible to the lower-tier batch application to maximize overall

throughput.

Scavenger accomplishes both of these tasks online. To determine the performance target, the

high-performance workload is periodically run alone for short periods of time. Performance coun-

ters collected during these profile intervals are used to create a performance target during the longer

periods when the GPU is split between workloads, and to detect when new execution phases be-

gin. To allocate resources between the workload tiers, Scavenger uses two types of controllers.

For resources that have low overhead to adjust, PID controllers are used to control the allocation

to match performance to the target. For higher-overhead changes that require context switches,

a more conservative controller adjusts allocation to match actual resource usage over the long

term. Together, these techniques allow Scavenger to meet the performance target for the high-

performance workload while substantially increasing the throughput of the batch task relative to

temporal partitioning.

76

memory

partition

(L2, DRAM)

memory

partition

(L2, DRAM)

interconnect

SM SMSM SM...

...

warp contexts

...

ALU ALU LD/ST

warp scheduler

Figure 5.1: Diagram of GPU and SM design. In SMK [141, 146], the warp contexts are split

between applications.

The contributions of this work include:

• Demonstrating that the interference created when sharing a GPU between two workloads

using SMK requires a control mechanism suitable for a public cloud setting;

• Creating a system for performance prediction that achieves less than 5% average error when

profiling for less than 10% of run time;

• Building techniques for allocating active warps, memory requests, and thread blocks be-

tween workloads that meet a performance target while maximizing total throughput;

• Showing Scavenger increases the batch throughput 1.35x relative to temporal partitioning

while meeting a 90% performance target for the primary workload. This can be leveraged

by a cloud provider to increase revenue by up to $0.18 per dollar.

5.2 Background and Motivation

5.2.1 GPU Architecture and Multitasking

GPU design relies on overlapping the execution of many independent hardware threads. In the

architecture model used in this work shown in Figure 5.1, similar to the NVIDIA GTX 980, each

GPU core, called an SM, contains 64 hardware threads, called warps. Warps are assigned to an

SM in blocks which can synchronize with each other and share scratchpad memory. The system

77

0%

50%

100%

T
P

LK S
G

H
S

S
A

D B
S

H
W B
P

S
T

M
U

M

F
W

T

B
F

S

B
T

LB
M LM LU
D

K
M

 % Cycles Compute Issued % Cycles Memory Unit Stalled

Figure 5.2: Resource demands for GPU workloads (methodology in Section 5.6.1); workloads on

the left saturate compute resources, and workloads on the right saturate memory resources. Sharing

an SM between complementary workloads increases overall throughput.

is divided in two halves, with the SMs on one side of an interconnect and memory subpartitions,

made up of an L2 shard and DRAM controller, on the other. Inside each SM is a warp scheduler

that issues instructions to arithmetic and memory functional units.

Although the hardware is able to dynamically schedule instructions in a way that keeps the

functional units utilized, each thread in a kernel is identical and therefore has the same resource

demands. Because of this, the resource with the highest demand in the kernel becomes saturated

while other resources are underutilized. Figure 5.2 shows the resource utilization for a selection

of workloads on a GPU platform similar to the NVIDIA GTX 980 (for benchmarks and simulator

methodology, see Section 5.6.1). It shows the percentage of cycles compute instructions are issued

during execution as well as the percentage of cycles the load/store functional unit is stalled because

of resource limits in the memory system. While some workloads like SAD make heavy use of both

computation and memory resources, most either saturate one of compute or memory.

As a way to increase utilization, previous work has developed methods for running multiple

kernels on the same GPU. Simultaneous Multi-Kernel (SMK) [141, 146] is a technique allowing

multiple kernels to execute on the same SM, similar to the way simultaneous multi-threading on a

CPU allows multiple threads to execute on the same core. When workloads with complementary

resource demands are scheduled on the same core, the throughput of the GPU can be higher than

running the workloads sequentially. SMK does this by splitting the GPU’s warp contexts between

78

the workloads.

5.2.2 Disadvantages of Temporal and Spatial Partitioning

Besides SMK, temporal and spatial partitioning also allow a GPU to be divided between work-

loads. Temporal partitioning devotes the entire GPU to one application at a time. This method has

been used to share a GPU between compute tasks and high-priority graphics rendering tasks [63]

and in other situations where a GPU is split between short-lived tasks, such as rendering graphics

frames for multiple users on a server GPU [45]. For non-graphics workloads, sharing a GPU with

temporal partitioning allows for a precise split of GPU resources and time, since an allocation of

90% of the time on the GPU would correspond to 90% throughput of running alone. The draw-

back of temporal partitioning is that there is no throughput advantage from dividing the GPU. For

a public cloud provider, this offers no utilization advantage over selling GPUs as a unit.

In contrast, other methods of sharing the GPU are able to increase overall throughput, such

as spatial partitioning [3], which commits SMs to workloads as a unit. For workloads that do

not need all the SMs to achieve much of their performance, such as workloads that are limited by

memory bandwidth or have a limited number of threads, spatial partitioning shows benefits over

temporal partitioning. However, spatial partitioning can strand unused resources inside SMs and

can only allocate resources at the granularity of entire SMs. Unlike under temporal partitioning,

workloads can interfere with each other in the shared global memory resources.

5.2.3 Interference under SMK

Using SMK rather than temporal or spatial partitioning can lead to higher throughput when sharing

because it can partition resources in a very fine-grained way, but it also exposes the workloads to

more potential interference with their co-runners. Figure 5.3 shows the relative performance of

sgemm (SG) when co-running with other workloads with resources divided equally between them

using SMK. When running with LK, both SG and LK meet or exceed 50% of their performance.

However, when SG runs alongside SAD and MUM, although there is an overall throughput boost

79

0

0.5

1

1.5

SG x LK SG x SAD SG x MUM

T
h

ro
u

g
h

p
u

t
(x

)
SG Other Total

Figure 5.3: Running multiple kernels using SMK results in interference. The SG benchmark is run

alongside three other benchmarks, sharing resources evenly. Interference causes throughput loss

for one or both workloads.

0%

100%

0%

100%

a) % cycles arithmetic issued

b) % cycles load/store unit stalled

Figure 5.4: Timeline of % cycles arithmetic issued and load/store unit stalled, averaged over 100-

cycle windows, for a 20,000-cycle interval of BP. A co-running workload is able to issue compute

and memory instructions at times of low utilization.

from sharing resources, these other workloads are more aggressive and reduce its throughput. This

is consistent with studies of sensitivity and contentiousness in CPU SMT systems like [150].

Besides the ability of aggressive kernels to overwhelm others, interference is problematic be-

cause it is difficult to predict ahead of time. First, kernels have phases of execution, which makes

their resource utilization change over time. Figure 5.4 shows the resource demands of a fragment

of the BP benchmark. Although it issues arithmetic instructions most cycles and is limited by

memory throughput some cycles, there are also many other times were another application could

insert arithmetic or memory instructions of its own without interfering. Because of this variation,

the degree to which a co-running workload would be complementary or interfering is difficult to

predict.

The design of the global memory system also makes interference hard to determine. Memory

80

system resources are on the other side of the interconnect and the L2 is partitioned into several

shards in a decentralized way. There are many different queues in the memory system as well as

caches, MSHRs, and other shared resources. This means that the interference happens outside of

the SMs, and it may take on the order of hundreds of cycles for memory requests issued from an

SM to interfere in a queue or MSHR in the memory system.

5.2.4 Opportunities to Control Interference

In light of these challenges, interference must be controlled in particular ways to successfully share

a GPU between customers in a cloud environment in a way that benefits customers. Rather than

maximizing throughput or minimizing turnaround time, a useful scheme from the clients’ point of

view will offer a level of performance for shared workloads, so that when they purchase time on a

GPU they can rely on that performance. This level of service must be relatively high, such as 90%

of the throughput of running alone on the GPU, since customers are using GPUs because of their

high performance. In hardware, controlling interference means protecting this high-performance

workload from disruption from other workloads.

By running this primary workload at 90% rather than 100% of its baseline throughput, more

opportunities will open up for a secondary workload to find a throughput advantage using SMK.

With temporal partitioning, the secondary workload would achieve 10% of its baseline perfor-

mance, but because of the throughput benefit of SMK, more performance will often be possible.

Although the secondary workload will have much lower performance than if it ran alone, the cloud

operator can sell these cycles cheaply due to the surplus throughput, creating a tier of service like

spot instances which are useful for batch workloads. The extra 10% margin will also provide slack

for the runtime system to ensure the target is met.

Scavenger implements a system for allocating access to SM resources between the primary

and secondary workloads. Since interference is caused by both workloads attempting to use the

same resources at the same time, controlling interference involves partitioning resources dynam-

ically between the workloads. In practice, this will mean allocating as few SM resources to the

81

IP
C

༃ Scavenger allocates all resources to primary workload to

determine its performance when run alone.

profiling interval

performance prediction

༄ Resource allocators distribute resources between

ǁorkloads①to①achieǀe①the①priŵarǇ’s①perforŵaŶce①target①ǁhile①
ŵaǆiŵiziŶg①the①secoŶdarǇ’s①throughput.

IP
C

༅ When performance counters signal a change in the

priŵarǇ①kerŶel’s①characteristics,①a①Ŷeǁ①profile①is①collected.

IP
C

phase change detected

running interval

Figure 5.5: Overview of the Scavenger system

primary workload as possible before dropping below the performance target, so that the secondary

workload can use more resources to increase its throughput. Every part of this system must be

performed online, as clients can provide any workloads to run on the cloud and cannot be counted

on to provide representative inputs for an offline profiling phase.

5.3 Overview

An overview of how Scavenger performs online resource allocation inside each SM is shown in

Figure 5.5. Execution is divided into two states, profiling and running. The first stage of execution

is a profiling interval, where the primary workload is run alone to measure its target IPC. Then,

during the following running interval, the target IPC is used as input to resource allocators which

partition compute and memory resources between the two workloads to both achieve the perfor-

mance target for the primary workload while maximizing the throughput of the secondary. Finally,

82

Scavenger must detect when the performance information from the profile interval no longer can

predict current performance and start a new profile phase. To implement this runtime system,

Scavenger has two components: a performance predictor and a set of resource allocators.

5.3.1 Online Performance Prediction

The first component, a performance predictor, determines the primary workload’s throughput to

achieve the performance target. The performance target is specified by the cloud operator as a

percentage of the workload’s throughput when running with all a GPU’s resources (e.g., 90% of a

dedicated GPU).

To translate the target percentage to a measurable target IPC, Scavenger runs the primary work-

load alone for a short period of time and extrapolates the average IPC forward. With this technique,

there is no throughput loss relative to temporal partitioning during profiling periods, although there

is also no throughput boost due to SMK. GPU kernels tend to have average IPCs that are even over

the long term, even if they show short-term oscillations or noise, allowing this technique to have

reasonable accuracy. However, it is important to detect when a new profile is needed should a new

kernel start or the current kernel change phases, for example when blocks have finished loading

data into shared memory and a computation phase begins. By tracking performance counters for

kernel characteristics that co-runners cannot interfere with, Scavenger is able to detect when a

phase change has occurred and collects a new profile in response.

5.3.2 Dynamic Resource Allocation

The second component of Scavenger allocates SM resources between the two workloads. The

two resources that need to be allocated are access to the computation units and access to memory.

Controlling access to computation resources requires adjusting how many thread contexts are al-

located to each kernel. Any changes to this allocation require costly context switches to memory.

Therefore, layered on top of thread block preemptions is a mechanism for deactivating some thread

contexts from either kernel. This allows Scavenger to adjust the ratio of thread contexts devoted to

83

•
•

•

•

•
•
•

What①I①doŶ’t①

performance

predictor

IPC

difference

memory

request

controller

active

warps

controller

thread

block

controller

used

warps

warp/memory

divergence,

PC histograms
SM Performance

Counters

SM Resource

Allocations

should

profile?

Figure 5.6: The Scavenger components in each SM, which use performance counters to deter-

mine resource allocations. The upper components (in orange) predict the primary workload’s

performance and detect when it has entered a new phase. The lower components (in blue) adjust

the resource allocation to achieve the primary workload target and maximize secondary workload

throughput.

each kernel that may issue instructions without the need for preemption.

The other resource, access to memory, is allocated as a number of requests each workload is

allowed to have outstanding in the memory system. This allows the SMs to control memory con-

tention without the need to communicate across the interconnect to the global memory resources

directly, following work by Dai et al. [23]. The system evaluated in this paper has the L1 cache

disabled as it is in the GTX 980 system that is modelled, so cache resources do not need to be al-

located; a system that distributed cache would need more complex compute and memory resource

allocation schemes because fewer resources would sometimes result in higher performance [52].

In GPU architectures, the L2 cache is used for filtering duplicate requests rather than reducing

latency, so it does not need explicit management.

5.3.3 Hardware Components

Figure 5.6 shows an overview of the Scavenger system, integrating both components for perfor-

mance prediction and resource allocation. The difference between the predicted and actual per-

84

formance for the primary workload informs the controllers whether to increase or decrease the

primary workload’s resource allocation. Interference-invariant statistics like warp and memory

divergence allow the predictor to detect new phases or restart the profiling process. Controllers

determine the allocation of resources in the SM – controllers for the number of memory requests

and number of active warps are used to react quickly to changing performance, whereas the thread

block controller tracks the longer-term number of warps issuing instructions in order to make pre-

emption decisions.

Scavenger is a decentralized system that controls each SM separately. Global coordination

between the SMs in a GPU is difficult because no mechanisms are provided for communication

between them in the baseline system, so this distributed design avoids adding new coordination

between SMs. Scavenger is also designed to share resources between exactly two workloads,

as the high performance target for the primary workload leaves few resources to divide among

multiple batch workloads. Other techniques, like selecting the most complementary workloads

to run on the same GPUs, can therefore improve utilization more effectively than increasing the

number of workloads that share the GPU.

The next sections will detail the two main systems in Scavenger: performance prediction and

resource allocation.

5.4 Online Performance Prediction

In order to meet the performance target for the primary kernel, Scavenger must determine what

the performance of a kernel running alone would be. Since the primary and secondary kernels

interfere in complex ways when running together, it would be difficult to infer what the primary

kernel’s performance would be if run alone from data collected while sharing the GPU between

workloads. The flexible scheduling between threads makes this especially difficult for a GPU,

since interference not only introduces latency and contention for functional units but also changes

the possible instruction interleavings between threads.

85

training validation

0

100

IP
C

0%

100%

time

threshold

T
ra

in
in

g
/v

a
li
d

a
ti

o
n

%
 d

if
fe

re
n

ce

Figure 5.7: Performance of excerpt of HS over time along with the difference between the mean

training and validation interval IPCs. To detect an appropriate profile length, Scavenger continues

profiling until the difference stays below a threshold.

Because of this, Scavenger analyzes the primary kernel’s performance during intervals of time

in which the primary kernel is given the full resources of an SM. The primary kernel is run alone

for enough time to account for performance volatility, then the mean profiled performance is used

as a prediction for future performance. Because kernels often have phases of execution, the profile

cannot be relied upon past the end of these phases. To detect when a phase ends, Scavenger uses

runtime counters to track statistics about kernel execution that cannot be affected by interference,

such as warp and memory divergence. Significant changes in these counters signal the beginning

of a new phase. However, a first challenge is determining a profile length that minimizes overhead

by not lasting any longer than is necessary to generate an accurate performance prediction.

5.4.1 Determining Profile Length

The number of cycles needed to profile a representative same of execution differs for each work-

load, as performance that is stable over the long term may nevertheless exhibit short-term noise.

As an example, in the 2000-cycle window of HS in Figure 5.7, the IPC varies significantly but

has a stable average. To discover the length of time needed to sample the long-term performance,

Scavenger divides the profiling state into two intervals, a training interval and a validation interval.

The mean IPC in the training interval is continuously compared to the mean IPC of the validation

86

interval. If they are far apart, more profiling is necessary. The bottom of Figure 5.7 shows how

Scavenger detected a reasonable profile length when the percent difference stayed below a thresh-

old for a minimum number of cycles. To avoid having earlier minima stop the profile too early and

create larger error later, profiles must exceed a minimum time (see Table 5.1 for parameters). The

training and validation IPC difference threshold is tunable to achieve a tradeoff between profiling

time and accuracy, as evaluated in Section 5.6.4.

Some workloads have unpredictable performance patterns. Scavenger detects this when the

difference between the training and validation interval IPC means does not settle below the thresh-

old. The means can also fail to stabilize when there is a phase change while profiling is taking

place. In these cases, after a maximum profiling time, the accumulated training data is discarded

and a new profile stage is started. The effect of this is that Scavenger does not attempt to share

GPU resources when the primary workload’s performance is unpredictable, in effect falling back

to temporal partitioning.

Because profiling does not require any instrumentation beyond hardware performance coun-

ters, no throughput is lost relative to temporal partitioning. However, while profiling there is no

throughput gain possible from sharing the SM, and there are preemption costs associated with

switching to the profiling state as all blocks of the secondary kernel must be context switched out.

5.4.2 Detecting Phase Boundaries

Predicting future performance based on a past profile period will only be accurate when current

execution is similar to the behavior during the profiling interval. Kernels often have phases of

execution, such as a phase where data is loaded into shared memory, a phase of computation, then

a phase storing the results. The performance can change dramatically between these phases, so

a profile collected during one phase should not be used to predict performance in another. Since

the IPC of the primary kernel running alone cannot be determined while both workloads share an

SM’s resources, Scavenger tracks statistics that are not affected by a co-runner to detect whether

the current behavior of a kernel is the same as when it was profiled. These statistics include

87

the number of active lanes in issued instructions, which is a measure of control divergence, the

degree of memory divergence in load and store instructions, and the PCs of the instructions being

executed. If any of these are markedly different than their values during profiling, a phase transition

has likely occurred. Run intervals are also ended after a maximum length of time.

During profiling, just as the average IPC is sampled, values for the average number of active

threads and loads/stores per memory instruction are collected along with a sample of the distribu-

tion of PCs executed. After profiling, during the run state, these same statistics are collected. Their

average values are compared periodically to the values found during profiling. If they differ by

more than some threshold, Scavenger detects a phase boundary and collects a new profile.

Some workloads have more variation in these values over time than others. The train and

validation interval mechanism used for performance also can be used to find useful thresholds

for when the change in these values indicates a new phase. At the end of profiling, the train

and validation intervals have a similar average IPC, so they can be assumed to be part of the

same phase. Therefore, the thresholds used to detect a phase change must be high enough that

the difference between the validation and train intervals does not trigger a boundary. The phase

detection thresholds are set to the difference between the average values of the train and validation

intervals, plus a 10% margin. To avoid spurious phase change detections, these thresholds have a

minimum value, the run state must last for at least as long as the profile state, and the values are

averaged inside a sliding window.

While control and memory divergence can be sampled with performance counters, determining

whether different distributions of PCs are executed in different intervals is a more difficult task.

Scavenger creates PC histograms to track these distributions. PC histograms are implemented as

a vector of 128 counters, with an instruction incrementing the counter for its PC divided by 8 (the

instruction size), modulus the number of counters. Each PC histogram also has a counter tracking

the total of all values in the counters, to allow for histograms to be normalized to each other.

88

Minimum profiling time 20000 cycles

Maximum profiling time before profile restart 200000 cycles

% of profile used as validation interval 50%

Minimum active thread difference threshold 8

Minimum memory divergence difference threshold 2

Minimum PC histogram difference threshold 12K of 64K range

Phase detector window size 128

Run length maximum 262144 cycles

Window size for phase boundary statistics 8192 cycles

Time above threshold to trigger phase 500 cycles

Table 5.1: Performance predictor parameters

5.5 Performance Controllers

Once the performance goal for the primary kernel has been determined, the allocation of SM re-

sources must be adjusted between the primary and secondary kernels to achieve the performance

target while maximizing the secondary kernel’s throughput. Because a kernel’s performance char-

acteristics and resource usage vary significantly over time, any resource allocation solution should

be dynamic, leveraging low resource utilization times in the primary kernel to boost the perfor-

mance of the secondary kernel.

Managing access to resources is done in two levels. The first level makes rapid adjustments to

lightweight resource allocations. To adjust access to compute resources, this first level activates

and deactivates individual warps to adjust the ratio of active warp contexts between workloads.

A similar controller adjusts memory resource by varying the number of memory requests each

workload can have outstanding in the memory system. On the second level, another controller

uses preemption to adjust the number of thread blocks to match the number of contexts needed in

the long term.

When finding a resource allocation, Scavenger must be careful not to take away resources from

the primary workload without a corresponding gain in performance in the secondary workload. As

an example, reducing the primary workload’s memory resources might bring it closer to a 90%

performance target, but the secondary workload would need to translate those memory resources

into 10% of its own baseline performance in order for there to not be overall throughput loss. To

ensure this does not happen, Scavenger measures slack, the amount of the resource allocated to the

89

performance

predictor

short- and

long-term

difference

active warps

PID controller
resource

allocations
SM

actual primary IPC
predicted

primary

IPC

memory request

PID controller

Figure 5.8: Feedback control system for active warps and outstanding memory requests. The short-

term and long-term difference between the predicted IPC and actual IPC is used to adjust resource

allocations using PID controllers.

primary kernel that is not used by it. The slack for each resource is tracked and used to determine

which resource allocations to adjust. Further, should Scavenger detect that sharing SM resources

is leading to throughput loss, it will fall back to temporal partitioning.

5.5.1 Controlling Warps and Memory Requests

The first level of resource allocations are made by feedback controllers that make frequent ad-

justments. These allocations, for the number of warps from each workload to activate and the

number of memory requests each workload can have outstanding in the memory system, can be

made using well-studied PID controllers for online feedback control. PID controllers take as input

the difference between an actual and desired output, and adjust an input value to minimize that dif-

ference. In this case, the difference between actual performance and the predicted performance is

used as input, with the resource allocation to the primary workload as output. Because the resource

allocation affects performance, this forms a closed-loop system.

Figure 5.8 shows the general form of each of the two feedback controllers. The performance

predictor provides a target IPC, which the PID controller seeks to match. Scavenger computes the

difference between the predicted IPC of the primary kernel and the measured IPC while running.

It computes two window sizes: a short-term error used for the proportional component of the PID

controller, and a long-term error used for the integral term instead of the controller having an

90

internal counter for integral state. No derivative component is used, because of the large amount

of noise in the input. The interval at which the PID controllers are cycled as well as empirically

found gains are listed in Table 5.2.

5.5.1.1 Active Warps

The thread block controller allocates warp contexts to workloads, but has to do so at the granularity

of entire thread blocks. A lighter-weight way to adjust the ratio of warps between workloads is

possible by enabling and disabling individual warp contexts. One PID controller outputs the num-

ber of the primary kernel’s warps to activate, with any remainder being allocated for the secondary.

Therefore, when performance is too low, more of the primary’s and fewer of the secondary’s warps

are activated, and the reverse when performance is too high.

5.5.1.2 Outstanding Memory Requests

To limit memory interference, another controller divides outstanding memory requests between the

two workloads. A workload is prevented from issuing global load or store instructions when it is at

or above its allocation of outstanding requests. The challenge making this allocation comes from

variation in the total number of outstanding requests due to workload characteristics. For example,

MSHR merges in the L2 cache allow for more outstanding requests. To overcome this, Scavenger

divides a fixed number of outstanding requests, 256 (found empirically as a maximum from the

baseline system), between the two workloads and each workload can send up to its allocation of

requests to the memory system. Unused requests are allocated to the primary kernel.

5.5.1.3 Weighting PID Control

Because both PID controllers have the same input signal, they would move in lockstep without a

mechanism to attribute slowdown or speedup to one resource rather than the other. As a mechanism

to detect whether the performance deviation from the estimate is due more to the allocation of

active warps or memory requests, slack metrics are used. Intuitively, when resources need to be

91

taken away from the primary kernel, the resource chosen should be the one with the most slack,

and when resources need to be added, the resource chosen should be the one with the least slack.

Therefore, when the primary kernel is running too fast and resources can be taken away, the PID

controller gains are scaled by the amount of slack, where more slack means a bigger change can

be made. When the primary kernel is running too slow, the weight is inverted and smaller slack

creates a larger change.

For the active warp controller, the slack metric is the average percentage of the primary kernel’s

warps that have an instruction ready to issue since the PID controller was last cycled. For outstand-

ing memory requests, since more outstanding requests can be allocated to the primary kernel than

are used, Scavenger records the total number of outstanding requests on cycles when the load/store

unit is stalled, as a way to determine the actual maximum number of outstanding requests for the

workload pair. The slack is this recorded number of outstanding requests minus the average num-

ber of outstanding requests for both primary and secondary workloads in the memory system, as a

percentage of the recorded number of outstanding requests.

5.5.2 Controlling Thread Blocks and Preemption

To distribute access to computation resources, Scavenger splits the warp contexts in an SM be-

tween kernels, allowing the warp scheduler to select which warps have access to ALUs in individ-

ual cycles. Switching which kernel occupies a warp context involves preempting the kernel at the

granularity of a thread block, since warps in a block can synchronize with each other and SM re-

sources like shared memory and registers are allocated to blocks, not individual warps. Preempting

a block involves saving tens of kilobytes of registers and shared memory state to global memory,

so it is important to minimize the amount of preemption done.

Scavenger uses a slack metric to determine how many blocks of each kernel should be running

at a given time. At an intuitive level, neither kernel should occupy warp contexts that are not

contributing to performance by issuing instructions. Therefore, the slack metric for warps tracks

how many warps allocated to a kernel did not issue any instructions in a previous window. If this

92

context saved to memory

primary workload secondary workload

1 warp not issued in last window 16 warps not issued in last window

6 warps not issued in last window 4 warps not issued in last window

(a)

new block

(b)

(c)

Figure 5.9: The thread block controller preempts blocks to balance warp slack between the work-

loads. (a) Scavenger detects too little slack for primary workload, too much for secondary. (b)

Blocks of secondary workload are preempted to make way for primary. (c) Slack is more evenly

distributed between workloads.

number is too high, then warps can be taken away from the kernel and given to the other. Figure 5.9

illustrates this process. In (a), the primary workload has too little slack, as all but one of its warps

was used in the last window. Therefore, Scavenger redistributes the blocks using preemption (b),

which results in a more even distribution of slack warps (c). The controller only selects between

allocations that do not have enough empty space for an additional block of either kernel and that

include at least one block of the secondary kernel; section 5.5.3 details how the system detects

when sharing with this allocation is not profitable.

The detailed algorithm is as follows: If the primary kernel’s slack is below a threshold (see

Table 5.2), then an additional block is allocated to it, to avoid starving the primary kernel and

leading to throughput loss. Otherwise, if the secondary kernel’s slack is below its threshold and the

secondary’s is above its threshold, the excess slack from the primary is allocated to the secondary

kernel. Finally, if the secondary has above its threshold of slack, the excess slack is allocated back

to the primary, to ensure that the secondary only has the least number of warps it will actually

use. The maximum change each time the thread block controller runs is one quarter the difference

in slack, to make sure the controller does not overshoot its target. After a transition back to the

93

Block controller interval 8192 cycles

Primary minimum warp slack 4 warps

Secondary maximum warp slack 8 warps

PID controller interval 100 cycles

PID controller proportional gain 1.5

PID controller integral gain 1.0

Table 5.2: Controller parameters

SMs 16 SMs, 4 LRR warp schedulers each, 64K registers,

96kB shared memory, 2kB L1I

Warps 64 warps per SM, 32 thread blocks

Memory system L1 cache bypassed, 2 MB L2, 4 memory partitions,

224 GB/s B/W

Performance predictor tolerance 7.5% IPC difference between training and validation

interval

Table 5.3: Simulator configuration

running state from profiling, the secondary kernel is allocated half the warps it did before profiling,

and allowed to discover a more aggressive allocation over time.

5.5.3 Avoiding Throughput Loss

Because at least one thread block of the secondary kernel is always provided by the thread block

controller, there can be cases where no resource allocation by the controllers can meet the perfor-

mance target. In these cases, continuing to attempt to share resources will lead to throughput loss,

so the best option is to fall back to temporal partitioning by devoting all SM resources to the pri-

mary workload. Scavenger detects this case with a performance counter that tracks the cumulative

difference between the predicted and actual IPC. If the actual number is too far below the estimate

for an extended period of time, this indicates the performance controllers were not able to achieve

the target by changing the resource allocation, and Scavenger preempts all warps of the secondary

kernel and run the primary kernel alone for a length of time before collecting a new profile and

trying to share resources again.

94

Name Type Source Name Type Source

BFS bfs MEM [17] LK leukocyte COM [17]

BP backprop MEM [17] LM lavamd MEM [17]

BS blackscholes MEM [99] LUD LUD MEM [17]

BT b+tree MEM [17] MUM mummerGPU MEM [17]

FWT fastWalshTransform MEM [99] SAD SAD COM [129]

HS hotspot COM [17] SG sgemm COM [129]

HW heartwall MEM [17] ST stencil MEM [129]

KM kmeans MEM [17] TP tpacf COM [129]

LBM LBM MEM [129]

Table 5.4: Benchmarks

5.6 Evaluation

5.6.1 Methodology

Scavenger was evaluated using an implementation in GPGPU-sim 3.2 [9] extended for multi-kernel

execution. The parameters used are shown in Table 5.3. Memory requests were set to bypass the

L1 cache, as is the default for the GTX 980. To add L1 cache allocation to a system like Scav-

enger, there would need to be compensation for speedups produced by reducing cache thrashing

by restricting the number of active threads; other work such as [139] has studied the considerations

needed when dividing cache resources. LRR warp scheduling is used instead of the usual GTO

because greedy scheduling algorithms do not divide access to compute resources in a way that re-

spects the proportion of warp contexts allocated to each workload. Other work [108] has proposed

methods to extend greedy schedulers to issue in a more proportional way. The time needed for

thread block preemption was modelled conservatively by assuming contexts are saved to DRAM.

The benchmarks evaluated are shown in Table 5.4. These workloads were selected to be sim-

ilar to previous work in GPU multitasking [108] and present a mix of workload characteristics.

Workloads are classified as compute-intensive (COM) if when run alone they issue compute more

than 50% of the time, as shown in Figure 5.2. Each benchmark was used as a primary workload,

with six secondary benchmarks selected randomly as co-runners – three with COM type and three

with MEM type. Each pair was run until completion or 500 million instructions of the primary

workload had retired; the secondary workload was repeated if it completed before the primary

workload. The measured performance includes both profiling and running intervals. As men-

95

tioned in Section 5.3.3, Scavenger focuses on the two-kernel case because reaching a high target

for the primary workload does not leave enough unallocated resources to divide among multiple

secondary workloads.

5.6.2 Hardware Implementation

Implementing Scavenger in hardware requires creating sliding windows, counters, and PC his-

tograms for both the profile and run states. Sliding window averages are implemented using shift

registers with a total, with each value in the shift register accumulated over a number of cycles. The

PC histograms are implemented with 128 buckets alongside a total counter. Because the profiling

state is a variable length, its counters and PC histograms are implemented using one large counter

or histogram for the first half of the profiling interval, and 4 smaller counters and histograms for

the second. The four smaller counters are arranged as a circular queue, with the tail counter com-

bined with the large first half counter when the counters are rotated. The amount of time between

rotations varies to keep the number of cycles of data represented in the large counter and the four

smaller counters the same.

Comparing PC histograms requires normalizing them, as the comparison is a test for whether

they form similar distributions rather than if the absolute values are similar. The comparison value

used is the sum of the differences of each bucket, with the histogram with the smaller total shifted

to match the same magnitude as the larger total. Because the need for comparisons are infrequent

(every 8192 cycles in the evaluated design), the difference can be computed over multiple cycles.

The total overhead is 1.6KB of storage per SM. 1.2KB is used for profiling (which includes

1KB for the 5 PC histograms). The performance validation logic requires two sliding windows

and a PC histogram, for a total of 338 bytes, and all other counters for the PID controllers, block

controller, and other counters require under 15 bytes. For perspective, each SM contains a 256KB

register file and hundreds of FPUs.

96

0

0.5

1

1.5

2

MEM x MEM MEM x COM COM x MEM COM x COM geomean

S
e

co
n

d
a

ry
 t

h
ro

u
g

h
p

u
t

m
u

lt
ip

li
e

r
(x

)

70% 80% 90% 95%

Figure 5.10: Secondary workload throughput with Scavenger compared to temporal partitioning,

by primary x secondary workload category. Pairs violating the primary kernel performance target

are excluded.

0

0.2

0.4

0.6

0.8

1

70% 80% 90% 95%

P
ri

m
a

ry
 w

o
rk

lo
a

d

th
ro

u
g

h
p

u
t

(x
)

MEM x MEM MEM x COM COM x MEM COM x COM

Figure 5.11: Geomean primary workload throughput by pair category and target

5.6.3 Performance Targets and Throughputs

Temporal partitioning can be used to achieve the primary workload’s performance target but limits

the secondary kernel’s throughput to 100% minus that target. Figure 5.10 shows the multiplier

on the secondary workload’s throughput supplied by Scavenger over temporal partitioning, as the

geometric mean of the pairs of workloads matching each category. As an example, for MEM x

MEM, Scavenger achieved 12.7% of the secondary workload’s performance when running alone

with a 90% performance target for the primary, leading to a 1.27x throughput multiplier. This can

be viewed as a return on the investment made with the primary kernel’s resources. Across the

categories at a 90% primary performance target, Scavenger unlocked 1.35x more throughput for

the secondary workload.

The tighter primary performance targets saw a larger throughput multiplier. This is because

part of the throughput increase is due to synergies that do not cause interference, such as a com-

97

1

1.1

1.2

1.3

MEM x MEM MEM x COM COM x MEM COM x COM geomean

T
o

ta
l

th
ro

u
g

h
p

u
t

(x
)

70% 80% 90% 95%

Figure 5.12: Total primary and secondary throughput with Scavenger compared to temporal parti-

tioning. Pairs violating the primary kernel performance target are excluded.

pute phase and memory phase running at the same time. These can be present regardless of the

resource allocation, but other gains come from times when resource allocation must control inter-

ference, which is why looser targets like 70% see higher overall throughput in Figure 5.12. The

COM x COM pairs sometimes show lower throughput than temporal partitioning. In these cases,

resource allocation is a nearly zero-sum partition between the workloads, and Scavenger allocates

slightly more resources to the primary workload than necessary because the design of the system

for avoiding throughput loss errs on the side of achieving the performance target for the primary

workload.

While Scavenger increases the secondary workload’s throughput, it must keep the primary

workload near its target performance. Figure 5.11 shows the geometric mean primary workload

throughput across each type of pair. Across every type of pair except MEM x MEM at 90% and

95%, where the throughput is within 2% of the target, this throughput is above the target. The

primary workload throughput may differ slightly from the target for a number of reasons. Since

the performance predictor only profiles for a segment of time, there is a small amount of error in its

predictions. The resource allocators attempt to match the prediction, so this error is propagated to

the final throughput. Second, the relationship between performance and resource allocation differs

widely between pairs, so it can take more time for the allocators, especially the block allocator, to

find an optimal resource allocation. In times where there is synergy independent of the resource

allocation, the resource allocators will not slow down the primary kernel when taking resources

98

0%

5%

10%

15%

1% 2.5% 5% 7.5% 10% 15%

A
v
g

.
%

 r
u

n
 t

im
e

p
ro

fi
li
n

g

Train/test interval max difference

0.0%

2.0%

4.0%

6.0%

1% 2.5% 5% 7.5% 10% 15%
A

v
g

.
%

 e
rr

o
r

Figure 5.13: Cumulative % error and % time profiling, averaged across benchmarks vs. maximum

difference between training and validation interval IPC while profiling

away, which leads to higher primary workload throughput than the allocators expect. From a cloud

client’s perspective, it is better to exceed the primary workload throughput than to be below it.

Figure 5.12 shows the overall throughput multiplier from using Scavenger to share the GPU

rather than temporal partitioning. Here, the lower performance targets are able to unlock more

total throughput as less of the potential throughput gain must be given over to maintaining the

performance target. The heterogeneous pairs (MEM x COM and COM x MEM) see the largest

gain as their complementary characteristics allow them to more fully utilize GPU resources. Both

the COM x COM and MEM x MEM pairings see a modest throughput increase, as although the

heterogeneity is limited, there is still more than when all the threads come from a single workload.

At the 90% primary performance target, Scavenger increased the GPU’s throughput by a geometric

mean 1.09x across the categories.

5.6.4 Performance Predictor Accuracy

The tradeoff between the amount of error and the percentage of time spent profiling can be con-

trolled by increasing or decreasing the tolerance for IPC difference between the training and valida-

99

0%

20%

40%

60%

80%

100%

70% 80% 90% 95%
%

 p
a

ir
s

m
e

e
ti

n
g

ta
rg

e
t

0%

5%

10%

70% 80% 90% 95%

A
v
g

.
%

 b
e

lo
w

 t
a

rg
e

t

if
 m

is
se

d

Primary workload performance target

Figure 5.14: Percentage of pairs where the primary kernel’s performance was below the target with

1% error margin, and the average percentage by which pairs that did not achieve the target were

below the target performance

tion intervals while profiling. Figure 5.13 shows how the profiling error and profiling time changes

as that tolerance changes, averaged across each primary workload. Increasing the tolerance de-

creases the percentage of execution spent profiling, but increases error. The tolerance used for the

throughput experiments in this section was 7.5%, as it had below 5% error while still profiling

less than 10% of the time. The amount of time the training-validation IPC difference must stay

below the threshold before ending the profile also has a major influence on both the amount of

error and the time spent profiling – this result used 128 cycles below the threshold, but 256 cycles

can decrease the error below 2% at the expense of nearly doubling the profile time.

5.6.5 Performance Targets Achieved

Figure 5.14 shows the percentage of pairs that met the primary performance target for each target

percentage, as well as the amount by which the workloads that missed the target were below it.

A 1% margin of error is used for determining whether the target was hit. For 70%, 80%, and

90%, Scavenger hits the target in between 86% and 91% of runs, whereas at the more aggressive

95% target, Scavenger achieves it 67% of the time. There are two mechanisms that can lead to

100

 $-

 $0.05

 $0.10

 $0.15

 $0.20

 $0.25

MEM x MEM MEM x COM COM x MEM COM x COM

A
d

d
it

io
n

a
l r

e
ve

n
u

e

p
e

r
$

1

70% 80% 90% 95%

Figure 5.15: Additional revenue per dollar realizable with Scavenger over leasing GPUs as a unit

or using temporal partitioning.

Scavenger missing the target. First, if the performance predictor provides too low a target to the

controllers, the controllers do not know that they should allocate more resources. Second, because

sharing must be attempted for a time before falling back to temporal partitioning, aggressive pri-

mary performance targets like 95% are missed because of the overhead of detecting the throughput

loss and of the preemptions needed to switch to temporal partitioning. As an online system, some

level of error is unavoidable. The 86% of the time Scavenger reaches the 90% QoS target is com-

parable to prior work [142] that meets this target approximately the same percentage of the time,

despite being supplied an IPC goal ahead of time.

5.6.6 Cloud Operator Revenue

The throughput gains achieved by Scavenger are able to supply a cloud operator with additional

profit over using temporal partitioning or selling time on GPUs as a unit. Figure 5.15 shows

how using Scavenger supplies additional revenue. This model assumes that the client with the

primary workload pays for their fraction of performance (e.g. $0.70 for 70% performance), even if

Scavenger exceeds that level of performance. For this simple model, the batch tier pays $0.01 per

percentage of its performance running alone that the system achieves. Some of the additional value

created could be used to discount batch tier service to compensate for decreased performance of

batch jobs relative to running them alone, with the rest captured as profit. The results show that

matching complementary workloads is key to realizing maximum revenue, with a COM workload

101

able to gain up to an extra $0.23 per dollar when matched with a MEM secondary as opposed to

another COM.

5.7 Related Work

Multi-Application GPUs: Several previous works have detailed how to run multiple applications

simultaneously on a GPU while optimizing for overall throughput or fairness. One line of research

uses compiler techniques to interleave instructions from multiple kernels. Guevara et al. [40]

merged the source code of multiple kernels into one. Another set of techniques scheduled data

transfers and kernel executions for multiple kernels or applications on a non-preemptible GPU.

Rossback et al. [120] created a dataflow programming model that can build schedules with fair-

ness guarantee. A third stream developed ways to execute multiple applications simultaneously

with hardware support. Adriaens et al. [3] showed throughput benefits with spatial partitioning.

Wang et al. [141] and Xu et al. [146] developed methods to share GPU resources inside SMs. Park

et al. [108] developed techniques for finding allocations that optimized throughput or fairness, Jog

et al. [57] create a fair DRAM scheduler for co-running applications, and Dai et al. partition mem-

ory requests [23], complementing work on CMP memory requests [26]. Preemption techniques

detailed by Tenasic et al. [134] and Park et al. [106] allow these resource partitions to be adjusted.

GPU QoS and performance targets: Previous work has implemented quality of service sup-

port either in software in the runtime system or device driver, and in hardware for spatial partition-

ing and SMK systems. On the software side, Kato et al. [63] uses the device driver to provide a

soft real-time guarantee for graphics workloads when running with a compute task. Lee et al. [70]

build a real-time scheduler for launching non-preemptible kernels, and Chen et al. [21, 20] create

systems for building kernel launch schedules that achieve QoS goals while maximizing utilization.

In hardware, Aguilera et al. [4] develop a QoS system for spatial multitasking, and Wang et al.

[142] create a QoS system for SMK GPUs by adjusting the thread block allocation while tracking

performance quota. Scavenger manages not only thread blocks but also active warps and memory

102

resources, and can determine the IPC goal at run time without it being provided by an OS-level

scheduler.

CPU resource partitioning: Multi-core CPUs share memory system resources, including

cache capacity and bandwidth. Guo et al. [41] provide a quality-of-service framework that steals

resources from jobs with excess resource allocations in CMPs. Nesbit et al. [94] create virtual pri-

vate caches that prevent threads from interfering with other threads’ cache bandwidth, and extend

their concepts to virtual private machines in [95]. Xu et al. [145] create a performance model that

finds cache allocation sizes for multiple processes online. Lee et al. [71] measure the resource

allocations needed to reach a given QoS goal in a CMP. GPUs have different memory access char-

acteristics and caching is useful for different purposes on GPUs, requiring different approaches.

Feedback control has been used for resource allocation in data centers and CPUs. In data center

scheduling, Lo et al. [88] use feedback control and offline profiling data to maintain a latency

quality of service target while batch tasks also execute, managing cache, bandwidth, network, and

power resources. Sharifi et al. [125] use feedback control in the operating system to manage

resources inside of a CMP, including cores, cache capacity, and memory bandwidth. Li et al. [81]

also integrate feedback control into a CMP. Scavenger’s feedback controllers partition resources

inside of cores in a finer-grained way, are found in hardware rather than the OS, and are designed

for the decentralized GPU architecture.

Online performance estimation: Subramanian et al. [130] estimate performance of applica-

tions when run alone on CMPs using cache metrics and memory controller priority. Eyerman et

al. [29] track waiting cycles for applications co-running using SMT to estimate alone execution

time. Besides alone execution time, online techniques have estimated power consumption [16]

using performance counters.

103

5.8 Conclusion

Data center and public cloud operators must maximize the utilization of their hardware, which

increasingly includes accelerators and GPUs. Sharing a GPU between multiple workloads is able

to increase their throughput and utilization, but the interference between the workloads must be

controlled. Scavenger is a system that controls interference to create two tiers of service on a shared

GPU while still increasing throughput: one with a performance target and one for batch jobs. The

key techniques enabling Scavenger are an online performance predictor for the primary workload

and a set of dynamic resource allocation controllers. Scavenger can increase the throughput of the

batch tier by 1.35x relative to temporal partitioning while maintaining a primary workload at 90%

of its performance relative to running alone, for an overall GPU throughput increase of 9.3%.

104

CHAPTER 6

Conclusion and Future Work

6.1 Summary

Since workloads like neural network training and computer vision require both energy efficiency

and high performance, accelerators like GPUs have an important role in modern data centers.

GPUs are throughput processors optimized for tasks decomposed into thousands to millions of

identical threads. Their performance comes from an execution model that allows them to select in-

structions from any ready thread to keep their functional units highly utilized, since each thread is

independent. Their significant efficiency advantage over CPUs comes from minimizing overhead

through grouping instructions into vectors and avoiding the need for complex out-of-order execu-

tion logic. Although this design can be effective for many workloads, the overhead of moving and

storing on-chip data as well as managing access to off-chip memory resources between running

applications is often what limits GPU performance and efficiency.

This thesis addressed these data management overheads and bottlenecks by targeting the places

where these inefficiencies are most critical in GPU architectures. One of these bottlenecks came

from duplicate memory requests issued across different threads, where they could not be merged

together before being sent to the L1 cache. Chapter 3 created new opportunities to merge these

requests by expanding the window in which nearby requests could be found. The WarpPool sys-

tem this chapter described merged requests made by different load instructions, made possible by

the freedom in the GPU programming model to reorder requests made by different independent

105

threads. Merging these additional requests was able to address the inefficiencies caused by mem-

ory divergence and to more efficiently utilize cache resources. As well, queuing requests while

they waited for merges allowed prioritizing some warps’ access to the cache, reducing thrashing.

Across a set of memory throughput limited workloads, WarpPool produced a 38% speedup.

Another overhead for GPUs comes from storing the large number of registers needed for the

thousands of threads active on each SM. Since the schedulers can interleave instructions from

different threads, each thread must have all its state available at any time. Most of a thread’s state

consists of registers, which means the GPU’s register file is very large, up to 256KB per core,

at the same time it must be able to sustain many reads and writes per cycle. Chapter 4 of this

thesis described a technique, RegLess, which reduces the size of register storage. Building on

the insight that not all registers are equally likely to be accessed at every point in time, RegLess

coordinates which registers are stored in a smaller high-bandwidth structure with the warps eligible

to be issued. Registers that are not immediately about to be accessed can be moved into the global

memory system via the L1 cache. To coordinate register movement from memory, hardware needs

to know which registers will be accessed in the future, which is supplied by compiler directives

inserted into the instruction stream. RegLess was able to replace the register file with a structure

25% of the size without affecting average case performance, reducing total GPU energy by 11%.

Finally, in a data center or public cloud setting, increasing GPU utilization is important as low

utilization not only leads to extra hardware being purchased but also the ongoing additional elec-

tricity expenses to run and cool it. Sharing the resources in a GPU between multiple workloads

improves utilization and overall throughput, because complementary workloads can saturate differ-

ent resources. However, there is difficulty leveraging this technique because co-running workloads

can interfere with each other and cause uncontrolled slowdown. Chapter 5 described the Scavenger

system, which controls interference to create two tiers of service: one with high performance, and

one with low cost for batch jobs. To achieve this, Scavenger predicted the performance of the

high-performance workload online and used dynamic resource allocators to achieve that target

while maximizing the resources provided to the batch tier. Scavenger increased GPU throughput

106

by 9.3% and the batch workload throughput by 1.35x while achieving a 90% primary workload

performance target.

Together the techniques in this thesis comprise a system that improves both the energy effi-

ciency and performance of data center GPUs, increasing their potential to accelerate workloads

like neural network training which require ever-increasing amounts of computation.

6.2 Future Work

The directions explored in this thesis open avenues for future work in GPU memory access analy-

sis, cooperation between hardware and software using compiler directives in the instruction stream,

multi-kernel execution, and broader GPU architecture.

The memory request merging and prioritization in WarpPool depended on characteristics of

GPU workloads that are qualitatively different than those in CPU workloads. As an example from

this work, because CPU threads often are not running the same code as each other, unlike on a GPU,

there would be few to no opportunities to merge requests between threads. For single-threaded

workloads, static analysis such as polyhedral compiler optimizations can be used to find the kinds

of reuse patterns across time that WarpPool found dynamically across space at run time. Although

there has been work on polyhedral analysis when translating sequential loops to parallel processors

like GPUs [14], there is opportunity for better compiler analysis of GPU memory requests across

threads and transformations to restructure accesses for locality and contiguity across the spatial

dimension on GPUs that does not exist on CPUs.

The hardware-software synergy used in RegLess, where the global perspective from software

allowed the hardware to make precise dynamic allocations, has applicability beyond register stor-

age. Other work has used this style of technique to annotate coarser-grained performance phases

with multiple resource requirements [137]. Other opportunities could include annotating compu-

tation and memory-intensive sections of code, to give the warp scheduler better ability overlap

regions with different characteristics or select warps to activate from a larger set to meet dynamic

107

resource needs. This could also be applicable in a multi-kernel setting, where small parts of many

different workloads could form a work pool, with annotations about each segment’s characteristics,

and an SM could pick complementary sets of segments from this pool at run time.

For multi-workload execution in a public cloud, finding practical ways to co-locate workloads

from different host machines is a promising direction for future work. Google uses large PCIe

switches in its cloud infrastructure to connect GPUs with different host machines [42], but cur-

rently supports only mappings of 1 host to some number of GPUs. To find complementary work-

loads to co-locate using SMK, workloads may need to come from multiple host systems. This

poses a challenge for moving data to and from the GPU as well as analyzing and matching work-

loads from a large pool. Motivating this problem, Chapter 5 describes how effective matching of

workloads leads to the greatest cloud operator profit.

For GPU designs in general, there is much future work to be done about how to continue to

move GPUs from their roots as gaming graphics cards repurposed for other tasks into acceler-

ators for different niches. Deep learning has been one of these applications that has influenced

GPU design, with recent NVIDIA architectures including tensor cores specialized for matrix mul-

tiplication [44]. Other architectural additions will be profitable for other problem domains like

computer vision and database acceleration. Another change to GPUs’ design that could increase

their applicability to more tasks could be tighter coupling between a GPU and a CPU, decreasing

the amount of time needed to move data to the GPU, allowing memory management hardware to

be shared between the CPU and GPU and decreasing the size of jobs needed to yield a speedup on

the GPU. Although this kind of design has been explored for mobile and embedded systems, there

is potential for larger systems to be integrated this way as well.

This thesis showed how managing data movement and storage improved both performance and

energy efficiency for GPUs, and lays the groundwork for capturing even more of this large space

of opportunity.

108

BIBLIOGRAPHY

[1] M. Abdel-Majeed and M. Annavaram. Warped register file: A power efficient register file

for gpgpus. In High Performance Computer Architecture (HPCA2013), 2013 IEEE 19th

International Symposium on, pages 412–423. IEEE, 2013.

[2] M. Abdel-Majeed, W. Dweik, H. Jeon, and M. Annavaram. Warped-re: Low-cost error

detection and correction in gpus. In 2015 45th Annual IEEE/IFIP International

Conference on Dependable Systems and Networks, pages 331–342. IEEE, 2015.

[3] J. T. Adriaens, K. Compton, N. S. Kim, and M. J. Schulte. The case for gpgpu spatial

multitasking. In High Performance Computer Architecture (HPCA), 2012 IEEE 18th

International Symposium on, pages 1–12. IEEE, 2012.

[4] P. Aguilera, K. Morrow, and N. S. Kim. Qos-aware dynamic resource allocation for

spatial-multitasking gpus. In Design Automation Conference (ASP-DAC), 2014 19th Asia

and South Pacific, pages 726–731. IEEE, 2014.

[5] J. Anantpur and R. Govindarajan. Taming control divergence in gpus through control flow

linearization. In International Conference on Compiler Construction, pages 133–153.

Springer, 2014.

[6] Apple. An on-device deep neural network for face detection. Apple Machine Learning

Journal, 1(7), 2017.

[7] R. Ausavarungnirun, S. Ghose, O. Kayiran, G. H. Loh, C. R. Das, M. T. Kandemir, and

O. Mutlu. Exploiting inter-warp heterogeneity to improve gpgpu performance. In 2015

International Conference on Parallel Architecture and Compilation (PACT), pages 25–38.

IEEE, 2015.

[8] A. Bakhoda, G. Yuan, W. Fung, H. Wong, and T. Aamodt. Analyzing cuda workloads

using a detailed gpu simulator. In Performance Analysis of Systems and Software, 2009.

ISPASS 2009. IEEE International Symposium on, pages 163–174, April 2009.

[9] A. Bakhoda, G. L. Yuan, W. W. Fung, H. Wong, and T. M. Aamodt. Analyzing cuda

workloads using a detailed gpu simulator. In Performance Analysis of Systems and

Software, 2009. ISPASS 2009. IEEE International Symposium on, pages 163–174. IEEE,

2009.

109

[10] P. Bakkum and K. Skadron. Accelerating sql database operations on a gpu with cuda. In

Proceedings of the 3rd Workshop on General-Purpose Computation on Graphics

Processing Units, pages 94–103. ACM, 2010.

[11] J. Barr. New p2 instance type for amazon ec2 - up to 16 gpus.

https://aws.amazon.com/blogs/aws/

new-p2-instance-type-for-amazon-ec2-up-to-16-gpus. Accessed:

May 2017.

[12] L. A. Barroso, J. Clidaras, and U. Hölzle. The datacenter as a computer: An introduction to

the design of warehouse-scale machines. Synthesis lectures on computer architecture,

8(3):1–154, 2013.

[13] L. A. Barroso and U. Hölzle. The case for energy-proportional computing. Computer,

40(12), 2007.

[14] M. M. Baskaran, J. Ramanujam, and P. Sadayappan. Automatic c-to-cuda code generation

for affine programs. In R. Gupta, editor, Compiler Construction, volume 6011 of Lecture

Notes in Computer Science, pages 244–263. Springer Berlin Heidelberg, 2010.

[15] M. Becchi, K. Sajjapongse, I. Graves, A. Procter, V. Ravi, and S. Chakradhar. A virtual

memory based runtime to support multi-tenancy in clusters with gpus. In Proceedings of

the 21st international symposium on High-Performance Parallel and Distributed

Computing, pages 97–108. ACM, 2012.

[16] W. L. Bircher and L. K. John. Complete system power estimation using processor

performance events. IEEE Transactions on Computers, 61(4):563–577, 2012.

[17] S. Che, M. Boyer, J. Meng, D. Tarjan, J. W. Sheaffer, S.-H. Lee, and K. Skadron. Rodinia:

A benchmark suite for heterogeneous computing. In Workload Characterization, 2009.

IISWC 2009. IEEE International Symposium on, pages 44–54. IEEE, 2009.

[18] S. Che, M. Boyer, J. Meng, D. Tarjan, J. W. Sheaffer, S.-H. Lee, and K. Skadron. Rodinia:

A benchmark suite for heterogeneous computing. In Proceedings of the 2009 IEEE

International Symposium on Workload Characterization (IISWC), IISWC ’09, pages

44–54, Washington, DC, USA, 2009. IEEE.

[19] S. Che, J. W. Sheaffer, and K. Skadron. Dymaxion: optimizing memory access patterns for

heterogeneous systems. In Proceedings of 2011 international conference for high

performance computing, networking, storage and analysis, page 13. ACM, 2011.

[20] Q. Chen, H. Yang, M. Guo, R. S. Kannan, J. Mars, and L. Tang. Prophet: Precise qos

prediction on non-preemptive accelerators to improve utilization in warehouse-scale

computers. In Proceedings of the Twenty-Second International Conference on

Architectural Support for Programming Languages and Operating Systems, pages 17–32.

ACM, 2017.

110

https://aws.amazon.com/blogs/aws/new-p2-instance-type-for-amazon-ec2-up-to-16-gpus
https://aws.amazon.com/blogs/aws/new-p2-instance-type-for-amazon-ec2-up-to-16-gpus

[21] Q. Chen, H. Yang, J. Mars, and L. Tang. Baymax: Qos awareness and increased utilization

for non-preemptive accelerators in warehouse scale computers. ACM SIGARCH Computer

Architecture News, 44(2):681–696, 2016.

[22] X. Chen, L.-W. Chang, C. I. Rodrigues, J. Lv, Z. Wang, and W.-M. Hwu. Adaptive cache

management for energy-efficient gpu computing. In Microarchitecture (MICRO), 2014

47th Annual IEEE/ACM International Symposium on, pages 343–355. IEEE, 2014.

[23] H. Dai, Z. Lin, C. Li, C. Zhao, F. Wang, N. Zheng, and H. Zhou. Accelerate gpu

concurrent kernel execution by mitigating memory pipeline stalls. In High Performance

Computer Architecture (HPCA), 2018 IEEE International Symposium on. IEEE, 2018.

[24] J. W. Davidson and S. Jinturkar. Memory access coalescing: A technique for eliminating

redundant memory accesses. In Proceedings of the ACM SIGPLAN 1994 Conference on

Programming Language Design and Implementation, PLDI ’94, pages 186–195, New

York, NY, USA, 1994. ACM.

[25] J. Dean, G. Corrado, R. Monga, K. Chen, M. Devin, M. Mao, A. Senior, P. Tucker,

K. Yang, Q. V. Le, et al. Large scale distributed deep networks. In Advances in neural

information processing systems, pages 1223–1231, 2012.

[26] E. Ebrahimi, C. J. Lee, O. Mutlu, and Y. N. Patt. Fairness via source throttling: a

configurable and high-performance fairness substrate for multi-core memory systems. In

ACM Sigplan Notices, volume 45, pages 335–346. ACM, 2010.

[27] A. ElTantawy and T. M. Aamodt. Mimd synchronization on simt architectures. In

Proceedings of the 49th annual IEEE/ACM International Symposium on Microarchitecture,

2016.

[28] A. ElTantawy, J. W. Ma, M. O’Connor, and T. M. Aamodt. A scalable multi-path

microarchitecture for efficient gpu control flow. In 2014 IEEE 20th International

Symposium on High Performance Computer Architecture (HPCA), pages 248–259. IEEE,

2014.

[29] S. Eyerman and L. Eeckhout. Per-thread cycle accounting in smt processors. ACM Sigplan

Notices, 44(3):133–144, 2009.

[30] M. Gebhart, D. R. Johnson, D. Tarjan, S. W. Keckler, W. J. Dally, E. Lindholm, and

K. Skadron. Energy-efficient mechanisms for managing thread context in throughput

processors. In ACM SIGARCH Computer Architecture News, volume 39, pages 235–246.

ACM, 2011.

[31] M. Gebhart, D. R. Johnson, D. Tarjan, S. W. Keckler, W. J. Dally, E. Lindholm, and

K. Skadron. A hierarchical thread scheduler and register file for energy-efficient

throughput processors. ACM Transactions on Computer Systems (TOCS), 30(2):8, 2012.

[32] M. Gebhart, S. W. Keckler, and W. J. Dally. A compile-time managed multi-level register

file hierarchy. In Proceedings of the 44th annual IEEE/ACM international symposium on

microarchitecture, pages 465–476. ACM, 2011.

111

[33] M. Gebhart, S. W. Keckler, B. Khailany, R. Krashinsky, and W. J. Dally. Unifying primary

cache, scratch, and register file memories in a throughput processor. In Proceedings of the

2012 45th Annual IEEE/ACM International Symposium on Microarchitecture, pages

96–106. IEEE Computer Society, 2012.

[34] M. Gebhart, B. A. Maher, K. E. Coons, J. Diamond, P. Gratz, M. Marino, N. Ranganathan,

B. Robatmili, A. Smith, J. Burrill, S. W. Keckler, D. Burger, and K. S. McKinley. An

evaluation of the trips computer system. In Proceedings of the 14th International

Conference on Architectural Support for Programming Languages and Operating Systems,

ASPLOS XIV, pages 1–12, 2009.

[35] S. Z. Gilani, N. S. Kim, and M. J. Schulte. Power-efficient computing for

compute-intensive gpgpu applications. In High Performance Computer Architecture

(HPCA2013), 2013 IEEE 19th International Symposium on, pages 330–341. IEEE, 2013.

[36] N. Goswami, B. Cao, and T. Li. Power-performance co-optimization of throughput core

architecture using resistive memory. In High Performance Computer Architecture

(HPCA2013), 2013 IEEE 19th International Symposium on, pages 342–353. IEEE, 2013.

[37] S. Grauer-Gray, L. Xu, R. Searles, S. Ayalasomayajula, and J. Cavazos. Auto-tuning a

high-level language targeted to gpu codes. In Innovative Parallel Computing (InPar), 2012,

pages 1–10, May 2012.

[38] C. Gregg, J. Dorn, K. Hazelwood, and K. Skadron. Fine-grained resource sharing for

concurrent gpgpu kernels. In Presented as part of the 4th USENIX Workshop on Hot Topics

in Parallelism, 2012.

[39] C. Gregg and K. Hazelwood. Where is the data? why you cannot debate cpu vs. gpu

performance without the answer. In Performance Analysis of Systems and Software

(ISPASS), 2011 IEEE International Symposium on, pages 134–144. IEEE, 2011.

[40] M. Guevara, C. Gregg, K. Hazelwood, and K. Skadron. Enabling task parallelism in the

cuda scheduler. In Workshop on Programming Models for Emerging Architectures,

volume 9, 2009.

[41] F. Guo, Y. Solihin, L. Zhao, and R. Iyer. A framework for providing quality of service in

chip multi-processors. In Microarchitecture, 2007. MICRO 2007. 40th Annual IEEE/ACM

International Symposium on, pages 343–355. IEEE, 2007.

[42] J. Hansbrough. Fuzzing pci express: security in plaintext.

https://cloudplatform.googleblog.com/2017/02/

fuzzing-PCI-Express-security-in-plaintext.html. Accessed: May

2017.

[43] M. Harris. An efficient matrix transpose in cuda c/c++. http://devblogs.nvidia.

com/parallelforall/efficient-matrix-transpose-cuda-cc.

Accessed: April 2015.

112

https://cloudplatform.googleblog.com/2017/02/fuzzing-PCI-Express-security-in-plaintext.html
https://cloudplatform.googleblog.com/2017/02/fuzzing-PCI-Express-security-in-plaintext.html
http://devblogs.nvidia.com/parallelforall/efficient-matrix-transpose-cuda-cc
http://devblogs.nvidia.com/parallelforall/efficient-matrix-transpose-cuda-cc

[44] M. Harris. Inside pascal: Nvidias newest computing platform.

https://devblogs.nvidia.com/parallelforall/inside-pascal.

Accessed: May 2017.

[45] A. Herrera. Nvidia grid: Graphics accelerated vdi with the visual performance of a

workstation. Tech. Rep., 2014.

[46] J. Hestness, S. Keckler, and D. Wood. A comparative analysis of microarchitecture effects

on cpu and gpu memory system behavior. In Workload Characterization (IISWC), 2014

IEEE International Symposium on, pages 150–160, Oct 2014.

[47] K. Hsieh, E. Ebrahimi, G. Kim, N. Chatterjee, M. OConnor, N. Vijaykumar, O. Mutlu, and

S. W. Keckler. Transparent offlloading and mapping (tom): Enabling

programmer-transparent near-data processing in gpu systems. In Proceedings of the 43rd

Annual International Symposium on Computer Architecture, pages 204–216, 2016.

[48] Intel. Intel xeon processor e7-8800 series.

https://www.intel.com/content/dam/support/us/en/documents/

processors/xeon/sb/xeon_E7-8800.pdf. Accessed: March 2018.

[49] J. A. Jablin, T. B. Jablin, O. Mutlu, and M. Herlihy. Warp-aware trace scheduling for gpus.

In Proceedings of the 23rd international conference on Parallel architectures and

compilation, pages 163–174. ACM, 2014.

[50] H. Jeon, G. S. Ravi, N. S. Kim, and M. Annavaram. Gpu register file virtualization. In

Proceedings of the 48th International Symposium on Microarchitecture, pages 420–432.

ACM, 2015.

[51] W. Jia, K. Shaw, and M. Martonosi. Mrpb: Memory request prioritization for massively

parallel processors. In High Performance Computer Architecture (HPCA), 2014 IEEE 20th

International Symposium on, pages 272–283, Feb 2014.

[52] W. Jia, K. A. Shaw, and M. Martonosi. Mrpb: Memory request prioritization for massively

parallel processors. In High Performance Computer Architecture (HPCA), 2014 IEEE 20th

International Symposium on, pages 272–283. IEEE, 2014.

[53] N. Jing, S. Chen, S. Jiang, L. Jiang, C. Li, and X. Liang. Bank stealing for conflict

mitigation in gpgpu register file. In Low Power Electronics and Design (ISLPED), 2015

IEEE/ACM International Symposium on, pages 55–60. IEEE, 2015.

[54] N. Jing, H. Liu, Y. Lu, and X. Liang. Compiler assisted dynamic register file in gpgpu. In

Proceedings of the 2013 International Symposium on Low Power Electronics and Design,

pages 3–8. IEEE Press, 2013.

[55] N. Jing, Y. Shen, Y. Lu, S. Ganapathy, Z. Mao, M. Guo, R. Canal, and X. Liang. An

energy-efficient and scalable edram-based register file architecture for gpgpu. In ACM

SIGARCH Computer Architecture News, volume 41, pages 344–355. ACM, 2013.

113

https://devblogs.nvidia.com/parallelforall/inside-pascal
https://www.intel.com/content/dam/support/us/en/documents/processors/xeon/sb/xeon_E7-8800.pdf
https://www.intel.com/content/dam/support/us/en/documents/processors/xeon/sb/xeon_E7-8800.pdf

[56] N. Jing, J. Wang, F. Fan, W. Yu, L. Jiang, C. Li, and X. Liang. Cache-emulated register

file: An integrated on-chip memory architecture for high performance gpgpus. In

Microarchitecture (MICRO), 2016 49th Annual IEEE/ACM International Symposium on,

pages 1–12. IEEE, 2016.

[57] A. Jog, E. Bolotin, Z. Guz, M. Parker, S. W. Keckler, M. T. Kandemir, and C. R. Das.

Application-aware memory system for fair and efficient execution of concurrent gpgpu

applications. In Proceedings of workshop on general purpose processing using GPUs,

page 1. ACM, 2014.

[58] A. Jog, O. Kayiran, N. Chidambaram Nachiappan, A. K. Mishra, M. T. Kandemir,

O. Mutlu, R. Iyer, and C. R. Das. Owl: Cooperative thread array aware scheduling

techniques for improving gpgpu performance. In Proceedings of the Eighteenth

International Conference on Architectural Support for Programming Languages and

Operating Systems, ASPLOS ’13, pages 395–406, New York, NY, USA, 2013. ACM.

[59] A. Jog, O. Kayiran, N. Chidambaram Nachiappan, A. K. Mishra, M. T. Kandemir,

O. Mutlu, R. Iyer, and C. R. Das. Owl: cooperative thread array aware scheduling

techniques for improving gpgpu performance. In ACM SIGPLAN Notices, volume 48,

pages 395–406. ACM, 2013.

[60] A. Jog, O. Kayiran, A. K. Mishra, M. T. Kandemir, O. Mutlu, R. Iyer, and C. R. Das.

Orchestrated scheduling and prefetching for gpgpus. In ACM SIGARCH Computer

Architecture News, volume 41, pages 332–343. ACM, 2013.

[61] A. Jog, O. Kayiran, A. Pattnaik, M. T. Kandemir, O. Mutlu, R. Iyer, and C. R. Das.

Exploiting core-criticality for enhanced gpu performance. In Proceedings of the 2016 ACM

SIGMETRICS International Conference on Measurement and Modeling of Computer

Science, pages 351–363. ACM, 2016.

[62] T. Juan, J. J. Navarro, and O. Temam. Data caches for superscalar processors. In

Proceedings of the 11th International Conference on Supercomputing, ICS ’97, pages

60–67, New York, NY, USA, 1997. ACM.

[63] S. Kato, K. Lakshmanan, R. Rajkumar, and Y. Ishikawa. Timegraph: Gpu scheduling for

real-time multi-tasking environments. In Proc. USENIX ATC, pages 17–30, 2011.

[64] O. Kayiran, A. Jog, M. T. Kandemir, and C. R. Das. Neither more nor less: optimizing

thread-level parallelism for gpgpus. In Proceedings of the 22nd international conference

on Parallel architectures and compilation techniques, pages 157–166. IEEE Press, 2013.

[65] O. Kayıran, A. Jog, A. Pattnaik, R. Ausavarungnirun, X. Tang, M. T. Kandemir, G. H. Loh,

O. Mutlu, and C. R. Das. µc-states: Fine-grained gpu datapath power management. In

2016 International Conference on Parallel Architecture and Compilation (PACT), 2016.

[66] S. W. Keckler, W. J. Dally, B. Khailany, M. Garland, and D. Glasco. Gpus and the future of

parallel computing. IEEE Micro, (5):7–17, 2011.

114

[67] J. Kim, C. Torng, S. Srinath, D. Lockhart, and C. Batten. Microarchitectural mechanisms

to exploit value structure in simt architectures. In ACM SIGARCH Computer Architecture

News, volume 41, pages 130–141. ACM, 2013.

[68] P. Kongetira, K. Aingaran, and K. Olukotun. Niagara: A 32-way multithreaded sparc

processor. IEEE micro, 25(2):21–29, 2005.

[69] H. Lee, K. Brown, A. Sujeeth, T. Rompf, and K. Olukotun. Locality-aware mapping of

nested parallel patterns on gpus. In Microarchitecture (MICRO), 2014 47th Annual

IEEE/ACM International Symposium on, pages 63–74, Dec 2014.

[70] H. Lee, A. Faruque, and M. Abdullah. Gpu-evr: Run-time event based real-time scheduling

framework on gpgpu platform. In Proceedings of the conference on Design, Automation &

Test in Europe, page 220. European Design and Automation Association, 2014.

[71] J. W. Lee and K. Asanovic. Meterg: Measurement-based end-to-end performance

estimation technique in qos-capable multiprocessors. In Real-Time and Embedded

Technology and Applications Symposium, 2006. Proceedings of the 12th IEEE, pages

135–147. IEEE, 2006.

[72] K. Lee. Introducing big basin: Our next-generation ai hardware.

https://code.facebook.com/posts/1835166200089399/

introducing-big-basin-our-next-generation-ai-hardware.

Accessed: May 2017.

[73] M. Lee, S. Song, J. Moon, J. Kim, W. Seo, Y. Cho, and S. Ryu. Improving gpgpu resource

utilization through alternative thread block scheduling. In High Performance Computer

Architecture (HPCA), 2014 IEEE 20th International Symposium on, pages 260–271, Feb

2014.

[74] S. Lee, K. Kim, G. Koo, H. Jeon, W. W. Ro, and M. Annavaram. Warped-compression:

enabling power efficient gpus through register compression. In Proceedings of the 42nd

Annual International Symposium on Computer Architecture, pages 502–514. ACM, 2015.

[75] S. Lee, S.-J. Min, and R. Eigenmann. Openmp to gpgpu: A compiler framework for

automatic translation and optimization. In Proceedings of the 14th ACM SIGPLAN

Symposium on Principles and Practice of Parallel Programming, PPoPP ’09, pages

101–110, New York, NY, USA, 2009. ACM.

[76] S.-Y. Lee, A. Arunkumar, and C.-J. Wu. Cawa: coordinated warp scheduling and cache

prioritization for critical warp acceleration of gpgpu workloads. In ACM SIGARCH

Computer Architecture News, volume 43, pages 515–527. ACM, 2015.

[77] J. Leng, T. Hetherington, A. ElTantawy, S. Gilani, N. S. Kim, T. M. Aamodt, and V. J.

Reddi. Gpuwattch: enabling energy optimizations in gpgpus. ACM SIGARCH Computer

Architecture News, 41(3):487–498, 2013.

115

https://code.facebook.com/posts/1835166200089399/introducing-big-basin-our-next-generation-ai-hardware
https://code.facebook.com/posts/1835166200089399/introducing-big-basin-our-next-generation-ai-hardware

[78] J. Leng, T. Hetherington, A. ElTantawy, S. Gilani, N. S. Kim, T. M. Aamodt, and V. J.

Reddi. Gpuwattch: Enabling energy optimizations in gpgpus. In Proceedings of the 40th

Annual International Symposium on Computer Architecture, ISCA ’13, pages 487–498,

New York, NY, USA, 2013. ACM.

[79] J. Leng, Y. Zu, and V. J. Reddi. Gpu voltage noise: Characterization and hierarchical

smoothing of spatial and temporal voltage noise interference in gpu architectures. In 2015

IEEE 21st International Symposium on High Performance Computer Architecture (HPCA),

pages 161–173. IEEE, 2015.

[80] J. Leng, Y. Zu, M. Rhu, M. Gupta, and V. J. Reddi. Gpuvolt: Modeling and characterizing

voltage noise in gpu architectures. In Proceedings of the 2014 international symposium on

Low power electronics and design, pages 141–146. ACM, 2014.

[81] B. Li, L.-S. Peh, L. Zhao, and R. Iyer. Dynamic qos management for chip multiprocessors.

ACM Transactions on Architecture and Code Optimization (TACO), 9(3):17, 2012.

[82] C. Li, Y. Yang, Z. Lin, and H. Zhou. Automatic data placement into gpu on-chip memory

resources. In Code Generation and Optimization (CGO), 2015 IEEE/ACM International

Symposium on, pages 23–33. IEEE, 2015.

[83] D. Li, M. Rhu, D. R. Johnson, M. O’Connor, M. Erez, D. Burger, D. S. Fussell, and S. W.

Redder. Priority-based cache allocation in throughput processors. In 2015 IEEE 21st

International Symposium on High Performance Computer Architecture (HPCA), pages

89–100. IEEE, 2015.

[84] Z. Li, J. Tan, and X. Fu. Hybrid cmos-tfet based register files for energy-efficient gpgpus.

In Quality Electronic Design (ISQED), 2013 14th International Symposium on, pages

112–119. IEEE, 2013.

[85] X. Liang and D. Brooks. Mitigating the impact of process variations on processor register

files and execution units. In Proceedings of the 39th Annual IEEE/ACM International

Symposium on Microarchitecture, pages 504–514. IEEE Computer Society, 2006.

[86] Y. Liu, Z. Yu, L. Eeckhout, V. J. Reddi, Y. Luo, X. Wang, Z. Wang, and C. Xu.

Barrier-aware warp scheduling for throughput processors. In Proceedings of the 2016

International Conference on Supercomputing, page 42. ACM, 2016.

[87] Z. Liu, S. Gilani, M. Annavaram, and N. S. Kim. G-scalar: Cost-effective generalized

scalar execution architecture for power-efficient gpus. In IEEE Int. Symp. on

High-Performance Computer Architecture (HPCA), 2017.

[88] D. Lo, L. Cheng, R. Govindaraju, P. Ranganathan, and C. Kozyrakis. Heracles: improving

resource efficiency at scale. In ACM SIGARCH Computer Architecture News, volume 43,

pages 450–462. ACM, 2015.

[89] M. Mao, W. Wen, Y. Zhang, Y. Chen, and H. Li. Exploration of gpgpu register file

architecture using domain-wall-shift-write based racetrack memory. In Design Automation

Conference (DAC), 2014 51st ACM/EDAC/IEEE, pages 1–6. IEEE, 2014.

116

[90] S. Melvin and Y. Patt. Enhancing instruction scheduling with a block-structured isa.

International Journal of Parallel Programming, 23(3):221–243, 1995.

[91] T. Mostak. An overview of mapd (massively parallel database). White paper.

Massachusetts Institute of Technology, 2013.

[92] M. Namaki-Shoushtari, A. Rahimi, N. Dutt, P. Gupta, and R. K. Gupta. Argo: aging-aware

gpgpu register file allocation. In Proceedings of the Ninth IEEE/ACM/IFIP International

Conference on Hardware/Software Codesign and System Synthesis, page 30. IEEE Press,

2013.

[93] V. Narasiman, M. Shebanow, C. J. Lee, R. Miftakhutdinov, O. Mutlu, and Y. N. Patt.

Improving gpu performance via large warps and two-level warp scheduling. In

Proceedings of the 44th Annual IEEE/ACM International Symposium on

Microarchitecture, pages 308–317. ACM, 2011.

[94] K. J. Nesbit, J. Laudon, and J. E. Smith. Virtual private caches. In ACM SIGARCH

Computer Architecture News, volume 35, pages 57–68. ACM, 2007.

[95] K. J. Nesbit, M. Moreto, F. J. Cazorla, A. Ramirez, M. Valero, and J. E. Smith. Multicore

resource management. IEEE micro, 28(3), 2008.

[96] C. Nugteren, G.-J. van den Braak, H. Corporaal, and H. Bal. A detailed gpu cache model

based on reuse distance theory. In High Performance Computer Architecture (HPCA),

2014 IEEE 20th International Symposium on, pages 37–48, Feb 2014.

[97] Nvidia. GeForce GTX 480. http://www.geforce.com/hardware/

desktop-gpus/geforce-gtx-480/specifications.

[98] Nvidia. GeForce GTX 680. http://www.geforce.com/Active/en_US/en_

US/pdf/GeForce-GTX-680-Whitepaper-FINAL.pdf.

[99] NVIDIA. Gpu computing sdk.

[100] Nvidia. Nvidia cuda programming guide. http://www.nvidia.com/content/

cudazone/download/OpenCL/NVIDIA_OpenCL_ProgrammingGuide.pdf.

Accessed: April 2015.

[101] Nvidia. Nvidia volta. https:

//www.nvidia.com/en-us/data-center/volta-gpu-architecture.

Accessed: May 2017.

[102] NVIDIA. Nvidia’s next generation cuda compute architecture: Kepler gk110.

[103] D. W. Oehmke, N. L. Binkert, T. Mudge, and S. K. Reinhardt. How to fake 1000 registers.

In Proceedings of the 38th annual IEEE/ACM International Symposium on

Microarchitecture, pages 7–18. IEEE Computer Society, 2005.

117

http://www.geforce.com/hardware/desktop-gpus/geforce-gtx-480/specifications
http://www.geforce.com/hardware/desktop-gpus/geforce-gtx-480/specifications
http://www.geforce.com/Active/en_US/en_US/pdf/GeForce-GTX-680-Whitepaper-FINAL.pdf
http://www.geforce.com/Active/en_US/en_US/pdf/GeForce-GTX-680-Whitepaper-FINAL.pdf
http://www.nvidia.com/content/cudazone/download/OpenCL/NVIDIA_OpenCL_ProgrammingGuide.pdf
http://www.nvidia.com/content/cudazone/download/OpenCL/NVIDIA_OpenCL_ProgrammingGuide.pdf
https://www.nvidia.com/en-us/data-center/volta-gpu-architecture
https://www.nvidia.com/en-us/data-center/volta-gpu-architecture

[104] K. Olukotun, M. Rosenblum, and K. Wilson. Increasing cache port efficiency for dynamic

superscalar microprocessors. In Computer Architecture, 1996 23rd Annual International

Symposium on, pages 147–147, May 1996.

[105] S. Pai, M. J. Thazhuthaveetil, and R. Govindarajan. Improving gpgpu concurrency with

elastic kernels. In Proceedings of the Eighteenth International Conference on Architectural

Support for Programming Languages and Operating Systems, ASPLOS ’13, pages

407–418. ACM, 2013.

[106] J. J. K. Park, Y. Park, and S. Mahlke. Chimera: Collaborative preemption for multitasking

on a shared gpu. ACM SIGARCH Computer Architecture News, 43(1):593–606, 2015.

[107] J. J. K. Park, Y. Park, and S. Mahlke. Elf: Maximizing memory-level parallelism for gpus

with coordinated warp and fetch scheduling. In Proceedings of the International

Conference for High Performance Computing, Networking, Storage and Analysis, page 18.

ACM, 2015.

[108] J. J. K. Park, Y. Park, and S. Mahlke. Dynamic resource management for efficient

utilization of multitasking gpus. In Proceedings of the Twenty-Second International

Conference on Architectural Support for Programming Languages and Operating Systems,

pages 527–540. ACM, 2017.

[109] G. Pekhimenko, E. Bolotin, N. Vijaykumar, O. Mutlu, T. C. Mowry, and S. W. Keckler. A

case for toggle-aware compression for gpu systems. In 2016 IEEE International

Symposium on High Performance Computer Architecture (HPCA), pages 188–200. IEEE,

2016.

[110] G. Pekhimenko, V. Seshadri, O. Mutlu, P. B. Gibbons, M. A. Kozuch, and T. C. Mowry.

Base-delta-immediate compression: practical data compression for on-chip caches. In

Proceedings of the 21st international conference on Parallel architectures and compilation

techniques, pages 377–388. ACM, 2012.

[111] B. Pichai, L. Hsu, and A. Bhattacharjee. Architectural support for address translation on

gpus: designing memory management units for cpu/gpus with unified address spaces. In

ACM SIGARCH Computer Architecture News, volume 42, pages 743–758. ACM, 2014.

[112] D. Ponomarev, G. Kucuk, O. Ergin, and K. Ghose. Reducing datapath energy through the

isolation of short-lived operands. In Parallel Architectures and Compilation Techniques,

2003. PACT 2003. Proceedings. 12th International Conference on, pages 258–268. IEEE,

2003.

[113] F. Quintana, J. Corbal, R. Espasa, and M. Valero. Adding a vector unit to a superscalar

processor. In Proceedings of the 13th international conference on Supercomputing, pages

1–10. ACM, 1999.

[114] M. Rhu and M. Erez. Maximizing simd resource utilization in gpgpus with simd lane

permutation. In ACM SIGARCH Computer Architecture News, volume 41, pages 356–367.

ACM, 2013.

118

[115] J. A. Rivers, G. S. Tyson, E. S. Davidson, and T. M. Austin. On high-bandwidth data cache

design for multi-issue processors. In Proceedings of the 30th annual ACM/IEEE

international symposium on Microarchitecture, pages 46–56. IEEE, 1997.

[116] T. G. Rogers, D. R. Johnson, M. O’Connor, and S. W. Keckler. A variable warp size

architecture. In ACM SIGARCH Computer Architecture News, volume 43, pages 489–501.

ACM, 2015.

[117] T. G. Rogers, M. O’Connor, and T. M. Aamodt. Cache-conscious wavefront scheduling. In

Proceedings of the 2012 45th Annual IEEE/ACM International Symposium on

Microarchitecture, pages 72–83. IEEE Computer Society, 2012.

[118] T. G. Rogers, M. O’Connor, and T. M. Aamodt. Cache-conscious wavefront scheduling. In

Proceedings of the 2012 45th Annual IEEE/ACM International Symposium on

Microarchitecture, MICRO-45, pages 72–83, Washington, DC, USA, 2012. IEEE.

[119] T. G. Rogers, M. O’Connor, and T. M. Aamodt. Divergence-aware warp scheduling. In

Proceedings of the 46th Annual IEEE/ACM International Symposium on

Microarchitecture, MICRO-46, pages 99–110, New York, NY, USA, 2013. ACM.

[120] C. J. Rossbach, J. Currey, M. Silberstein, B. Ray, and E. Witchel. Ptask: operating system

abstractions to manage gpus as compute devices. In Proceedings of the Twenty-Third ACM

Symposium on Operating Systems Principles, pages 233–248. ACM, 2011.

[121] A. Roth. Physical register reference counting. IEEE Computer Architecture Letters,

7(1):9–12, 2008.

[122] K. Sankaralingam, R. Nagarajan, H. Liu, C. Kim, J. Huh, D. Burger, S. W. Keckler, and

C. R. Moore. Exploiting ilp, tlp, and dlp with the polymorphous trips architecture. In

Computer Architecture, 2003. Proceedings. 30th Annual International Symposium on,

pages 422–433. IEEE, 2003.

[123] A. Sethia, D. Jamshidi, and S. Mahlke. Mascar: Speeding up gpu warps by reducing

memory pitstops. In High Performance Computer Architecture (HPCA), 2015 IEEE 21st

International Symposium on, pages 174–185, Feb 2015.

[124] A. Sethia and S. Mahlke. Equalizer: Dynamic tuning of gpu resources for efficient

execution. In Microarchitecture (MICRO), 2014 47th Annual IEEE/ACM International

Symposium on, pages 647–658, Dec 2014.

[125] A. Sharifi, S. Srikantaiah, A. K. Mishra, M. Kandemir, and C. R. Das. Mete: meeting

end-to-end qos in multicores through system-wide resource management. In Proceedings

of the ACM SIGMETRICS joint international conference on Measurement and modeling of

computer systems, pages 13–24. ACM, 2011.

[126] M. Stephenson, S. K. Sastry Hari, Y. Lee, E. Ebrahimi, D. R. Johnson, D. Nellans,

M. O’Connor, and S. W. Keckler. Flexible software profiling of gpu architectures. In ACM

SIGARCH Computer Architecture News, volume 43, pages 185–197. ACM, 2015.

119

[127] J. E. Stone, D. Gohara, and G. Shi. Opencl: A parallel programming standard for

heterogeneous computing systems. Computing in science & engineering, 12(3):66–73,

2010.

[128] J. A. Stratton et al. Parboil: A revised benchmark suite for scientific and commercial

throughput computing. Technical Report IMPACT-12-01, University of Illinois at

Urbana-Champaign.

[129] J. A. Stratton, C. Rodrigues, I.-J. Sung, N. Obeid, L.-W. Chang, N. Anssari, G. D. Liu, and

W.-m. W. Hwu. Parboil: A revised benchmark suite for scientific and commercial

throughput computing. Center for Reliable and High-Performance Computing, 127, 2012.

[130] L. Subramanian, V. Seshadri, A. Ghosh, S. Khan, and O. Mutlu. The application slowdown

model: Quantifying and controlling the impact of inter-application interference at shared

caches and main memory. In Proceedings of the 48th International Symposium on

Microarchitecture, pages 62–75. ACM, 2015.

[131] J. Tan and X. Fu. Mitigating the susceptibility of gpgpus register file to process variations.

In Parallel and Distributed Processing Symposium (IPDPS), 2015 IEEE International,

pages 969–978. IEEE, 2015.

[132] J. Tan, Z. Li, and X. Fu. Soft-error reliability and power co-optimization for gpgpus

register file using resistive memory. In 2015 Design, Automation & Test in Europe

Conference & Exhibition (DATE), pages 369–374. IEEE, 2015.

[133] J. Tan, S. L. Song, K. Yan, X. Fu, A. Marquez, and D. Kerbyson. Combating the reliability

challenge of gpu register file at low supply voltage. In Proceedings of the 2016

International Conference on Parallel Architectures and Compilation, pages 3–15. ACM,

2016.

[134] I. Tanasic, I. Gelado, J. Cabezas, A. Ramirez, N. Navarro, and M. Valero. Enabling

preemptive multiprogramming on gpus. In Computer Architecture (ISCA), 2014

ACM/IEEE 41st International Symposium on, pages 193–204. IEEE, 2014.

[135] S. Thoziyoor, N. Muralimanohar, and N. P. Jouppi. Cacti 5.0. HP Laboratories, Technical

Report, 2007.

[136] N. Vijaykumar, K. Hsieh, G. Pekhimenko, S. Khan, A. Shrestha, S. Ghose, A. Jog, P. B.

Gibbons, and O. Mutlu. Zorua: A holistic approach to resource virtualization in gpus. In

Proceedings of the 49th annual IEEE/ACM International Symposium on Microarchitecture,

2016.

[137] N. Vijaykumar, K. Hsieh, G. PekhimenW, S. Khan, A. Shrestha, S. Ghose, A. Jog, P. B.

Gibbons, and O. Mutlu. Zorua: A holistic approach to resource virtualization in gpus. In

Microarchitecture (MICRO), 2016 49th Annual IEEE/ACM International Symposium on,

pages 1–14. IEEE, 2016.

120

[138] N. Vijaykumar, G. Pekhimenko, A. Jog, A. Bhowmick, R. Ausavarungnirun, C. Das,

M. Kandemir, T. C. Mowry, and O. Mutlu. A case for core-assisted bottleneck acceleration

in gpus: enabling flexible data compression with assist warps. In ACM SIGARCH

Computer Architecture News, volume 43, pages 41–53. ACM, 2015.

[139] H. Wang, F. Luo, M. Ibrahim, O. Kayiran, and A. Jog. Efficient and fair

multi-programming in gpus via effective bandwidth management. In High Performance

Computer Architecture (HPCA), 2018 IEEE International Symposium on. IEEE, 2018.

[140] S. Wang, Y. Liang, C. Zhang, X. Xie, G. Sun, Y. Liu, Y. Wang, and X. Li.

Performance-centric register file design for gpus using racetrack memory. In 2016 21st

Asia and South Pacific Design Automation Conference (ASP-DAC), pages 25–30. IEEE,

2016.

[141] Z. Wang, J. Yang, R. Melhem, B. Childers, Y. Zhang, and M. Guo. Simultaneous

multikernel gpu: Multi-tasking throughput processors via fine-grained sharing. In High

Performance Computer Architecture (HPCA), 2016 IEEE International Symposium on,

pages 358–369. IEEE, 2016.

[142] Z. Wang, J. Yang, R. Melhem, B. Childers, Y. Zhang, and M. Guo. Quality of service

support for fine-grained sharing on gpus. In Proceedings of the 44th Annual International

Symposium on Computer Architecture, pages 269–281. ACM, 2017.

[143] B. Wu, G. Chen, D. Li, X. Shen, and J. Vetter. Enabling and exploiting flexible task

assignment on gpu through sm-centric program transformations. In Proceedings of the

29th ACM on International Conference on Supercomputing, pages 119–130. ACM, 2015.

[144] X. Xie, Y. Liang, X. Li, Y. Wu, G. Sun, T. Wang, and D. Fan. Enabling coordinated register

allocation and thread-level parallelism optimization for gpus. In Proceedings of the 48th

International Symposium on Microarchitecture, pages 395–406. ACM, 2015.

[145] C. Xu, X. Chen, R. P. Dick, and Z. M. Mao. Cache contention and application performance

prediction for multi-core systems. In Performance Analysis of Systems & Software

(ISPASS), 2010 IEEE International Symposium on, pages 76–86. IEEE, 2010.

[146] Q. Xu, H. Jeon, K. Kim, W. W. Ro, and M. Annavaram. Warped-slicer: efficient intra-sm

slicing through dynamic resource partitioning for gpu multiprogramming. ACM SIGARCH

Computer Architecture News, 44(3):230–242, 2016.

[147] J. Yan and W. Zhang. Exploiting virtual registers to reduce pressure on real registers. ACM

Transactions on Architecture and Code Optimization (TACO), 4(4):3, 2008.

[148] Y. Yang, P. Xiang, J. Kong, and H. Zhou. A gpgpu compiler for memory optimization and

parallelism management. In Proceedings of the 2010 ACM SIGPLAN Conference on

Programming Language Design and Implementation, PLDI ’10, pages 86–97, New York,

NY, USA, 2010. ACM.

121

[149] W.-k. S. Yu, R. Huang, S. Q. Xu, S.-E. Wang, E. Kan, and G. E. Suh. Sram-dram hybrid

memory with applications to efficient register files in fine-grained multi-threading. In ACM

SIGARCH Computer Architecture News, volume 39, pages 247–258. ACM, 2011.

[150] Y. Zhang, M. A. Laurenzano, J. Mars, and L. Tang. Smite: Precise qos prediction on

real-system smt processors to improve utilization in warehouse scale computers. In

Proceedings of the 47th Annual IEEE/ACM International Symposium on

Microarchitecture, pages 406–418. IEEE Computer Society, 2014.

[151] Z. Zheng, Z. Wang, and M. Lipasti. Adaptive cache and concurrency allocation on gpgpus.

Computer Architecture Letters, PP(99):1–1, 2014.

122

	Acknowledgments
	Table of Contents
	List of Figures
	List of Tables
	Abstract
	Introduction
	Data Management Inefficiencies
	Memory Divergence and Cache Thrashing
	Register File Energy Overhead
	Inter-Application Contention

	Contributions
	Increasing Memory Throughput
	Reducing Register File Energy and Storage
	Controlling Interference in Shared GPUs

	Background
	SM Design
	Memory System Design
	Programming Model
	Design Convergence in Desktop, Data Center, and Mobile

	Inter-Warp Memory Request Merging and Prioritization
	Introduction
	Background and Motivation
	Background
	Oversubscription of L1 Bandwidth
	Increasing Coalescing Window Size

	WarpPool Design
	Overview
	Instruction Queues
	Intra-Warp Coalescers
	Inter-Warp Coalescing Queues
	Request Selector
	Metadata Tracker
	Writeback
	Stores and Memory Consistency
	Resource Configuration
	Verilog Implementation

	Evaluation
	Methodology
	Results
	Speedup
	L1 Throughput
	L1 Misses

	Case Study

	Related Work
	Conclusion

	Register File Storage and Energy Reduction
	Introduction
	RF Replacement Challenges
	Capacity Allocation
	Memory Side Bandwidth
	L1 Cache Capacity

	Design Overview
	Compiler Code Generation
	Region Creation
	Region Creation Algorithm
	Register Lifetime
	Control Flow and Register Liveness

	Hardware Design
	Capacity Managers (CMs)
	Operand Staging Units (OSUs)
	Preloads and Allocations
	Evictions
	Register to Memory Mapping

	Compressor
	Metadata Encoding

	Evaluation
	Methodology
	Area and Power
	Energy Savings
	Performance
	Register Preload Location, L1 Bandwidth
	Region Sizes

	Related Work
	Conclusion

	Multi-Kernel Resource Management
	Introduction
	Background and Motivation
	GPU Architecture and Multitasking
	Disadvantages of Temporal and Spatial Partitioning
	Interference under SMK
	Opportunities to Control Interference

	Overview
	Online Performance Prediction
	Dynamic Resource Allocation
	Hardware Components

	Online Performance Prediction
	Determining Profile Length
	Detecting Phase Boundaries

	Performance Controllers
	Controlling Warps and Memory Requests
	Active Warps
	Outstanding Memory Requests
	Weighting PID Control

	Controlling Thread Blocks and Preemption
	Avoiding Throughput Loss

	Evaluation
	Methodology
	Hardware Implementation
	Performance Targets and Throughputs
	Performance Predictor Accuracy
	Performance Targets Achieved
	Cloud Operator Revenue

	Related Work
	Conclusion

	Conclusion and Future Work
	Summary
	Future Work

	Bibliography

