
ENABLING EFFICIENT RESOURCE UTILIZATION
ON MULTITASKING THROUGHPUT PROCESSORS

by

Jason Jong Kyu Park

A dissertation submitted in partial fulfillment

of the requirements for the degree of

Doctor of Philosophy

(Computer Science and Engineering)

in the University of Michigan

2016

Doctoral Committee:

Professor Scott Mahlke, Chair

Assistant Professor Ronald G. Dreslinski, Jr.

Assistant Professor Yongjun Park, Hongik University

Professor Kevin P. Pipe

Associate Professor Thomas F. Wenisch

c© Jason Jong Kyu Park 2016

All Rights Reserved

To my family

ii

ACKNOWLEDGEMENTS

My sincere gratitude goes to my advisor, Professor Scott Mahlke for his constant en-

couragement and support during my Ph.D. He was one of the best mentors I had in my

entire life, and I would suggest anyone to do Ph.D. with him. I also would like to thank

Prof. Ronald G. Dreslinski, Prof. Yongjun Park, Prof. Kevin Pipe, and Prof. Thomas

F. Wenisch for their invaluable comments and suggestions that helped me to improve and

polish this dissertation.

My adventure for graduate research would have been so lonely without Compilers Cre-

ating Custom Processors (CCCP) members. Yongjun Park collaborated in all the projects,

and provided significant help in making my thesis more concrete. Janghaeng Lee and I

discussed a lot of research areas spanning across computer architecture and compilers. Fel-

low GPU guys, Ankit Sethia, Anoushe Jamshidi, and John Kloosterman, shared frustration

and joyfulness of doing GPU research. My everyday life in the office was fun thanks to

other current members and alumni of CCCP: Shantanu Gupta, Hyunchul Park, Hyoun Kyu

Cho, Gaurav Chadha, Daya S. Khudia, Andrew Lukefahr, Shruti Padmanabha, Babak Za-

mirai, Jiecao Yu, Sunghyun Park, Shikai Li, and Jonathan Bailey. They also broadened my

perspective with their own research. I also would like to thank other CELAB (formerly

ACAL) members including Neha Agarwal, Shaizeen Aga, and Doowon Lee for discussing

iii

research interests.

My graduate student life in Ann Arbor would have been miserable without my Korean

friends. Janghaeng Lee, and Eugene Kim were involved in all the sports activities, and all

the dinner I enjoyed in Ann Arbor. Won Choi and other fellow MESA friends, too many

to name them all, were my drinking buddies for the first two years. My later years were

shared with friends from playing soccer, tennis, rock climbing, and badminton.

My lifelong friends since high school were always behind me when I needed them.

The past 15 years, and my refreshing visits to Korea during Ph.D. would have been dull

without them. Although they would not understand nor want to understand anything from

my dissertation, they deserve a paragraph for my thanks.

Last but not least, my utmost gratitude goes to my family, parents, my sister, my grand-

parents, and my wife. My grandparents continously showed me the importance of consis-

tency and motivation. My father, Pyongwan Park, always supported my decisions, and my

mother, Sungwon Lee, helped me shape my own path by letting me study freely. I also

would like to thank other family members including my sister, Shin Young Park, for their

unconditional love and support. Finally, I appreciate the love, comfort, and encouragement

from my beloved wife, Jungim Min.

iv

TABLE OF CONTENTS

DEDICATION . ii

ACKNOWLEDGEMENTS . iii

LIST OF FIGURES . viii

LIST OF TABLES . xii

ABSTRACT . xiii

CHAPTER

I. Introduction . 1

1.1 Challenges . 4

1.2 Contributions . 6

1.2.1 ELF . 6

1.2.2 Chimera . 7

1.2.3 GPU Maestro . 7

II. Background . 9

2.1 Terminology . 9

2.2 GPU Architecture and Execution Model 10

2.3 Multitasking GPUs . 11

III. ELF: Maximizing Memory-Level Parallelism for GPUs with Coordi-

nated Warp and Fetch Scheduling . 15

3.1 Introduction . 15

3.2 Motivation . 18

3.2.1 Maximizing Memory-level Parallelism 18

3.2.2 Memory Conflicts and Fetch Stalls 20

3.3 Architecture . 21

v

3.3.1 Finding Program Points 22

3.3.2 Priority Calculator . 25

3.3.3 Fetch Scheduling in ELF 26

3.3.4 ELF with Cache Access Re-execution 27

3.3.5 ELF with Instruction Prefetch 29

3.4 Results . 30

3.4.1 ELF Performance . 32

3.4.2 Hardware Overhead 36

3.4.3 Comparison to Prior Works 37

3.5 Related Work to ELF . 39

3.5.1 Memory-Level Parallelism 39

3.5.2 GPU Scheduling . 40

3.6 ELF Conclusions . 42

IV. Chimera: Collaborative Preemption for Multitasking on a Shared GPU 44

4.1 Introduction . 44

4.2 Motivation . 47

4.2.1 Spatial Multitasking 48

4.2.2 Prior Preemption Techniques 48

4.2.3 SM Flushing . 50

4.2.4 Tradeoff . 50

4.2.5 Collaborative Preemption 52

4.3 Architecture . 53

4.3.1 GPU Scheduler with Preemptive Multitasking 55

4.3.2 Cost Estimation . 56

4.3.3 Preemption Selection 58

4.3.4 SM Flushing . 59

4.4 Results . 61

4.4.1 Periodic Task with Deadline 63

4.4.2 Impact of Preemption Latency Constraint 65

4.4.3 Relaxed Idempotence Condition in SM Flushing 66

4.4.4 Case Study . 67

4.5 Related Work to Chimera . 71

4.6 Chimera Conclusions . 73

V. Dynamic Resource Management for Efficient Utilization of Multitask-

ing GPUs . 75

5.1 Introduction . 75

5.2 Background . 79

5.2.1 Multikernel Metrics 79

5.3 Motivation and Challenges . 80

5.3.1 Spatial vs. Simultaneous Multikernel 80

5.3.2 Multitasking GPU Performance 82

vi

5.3.3 Interference and Dynamism 83

5.3.4 SMK Challenges . 85

5.3.5 Challenge 3: Starvation 88

5.4 GPU Maestro Design . 89

5.4.1 Dynamic Resource Partitioning 90

5.4.2 2-Way Resource Allocation 93

5.4.3 Kernel-aware Warp Scheduling 95

5.5 Results . 95

5.5.1 Resource Partitioning Performance 97

5.5.2 Kernel-aware Scheduling Performance 99

5.5.3 Repartitioning Analysis 101

5.5.4 Comparison to Prior Works 103

5.6 Related Work to GPU Maestro 105

5.6.1 Simultaneous Multithreading 105

5.6.2 GPU Multitasking . 105

5.7 GPU Maestro Conclusions . 107

VI. Conclusion . 108

BIBLIOGRAPHY . 112

vii

LIST OF FIGURES

Figure

1.1 Comparison of CPU and GPU peak single precision floating point perfor-

mance [19]. 2

1.2 Comparison of CPU and GPU energy efficiency. 3

2.1 GPU architecture and execution model. 10

2.2 A more detailed illustration of an SM. W[i] denotes a warp. 11

2.3 GPU architecture with multitasking support. 12

3.1 Execution timeline of (a) greedy-then-oldest (GTO) warp scheduling, and

(b) ELF warp scheduling for the given kernel program, where warps are

at different execution points. 18

3.2 Distribution of stalls in the GTO scheduler. Memory conflict stalls occur

when memory resources are saturated. Memory dependency stalls occur

when instructions are waiting for the memory requests to come back.

Fetch stalls happen when warps are waiting for instruction fetch. Other

stalls include conflict and dependency stalls in other functional units. . . 19

3.3 Overall architecture for ELF. There are two components in ELF: a pri-

ority calculator, and a warp priority table (WPT). The priority calculator

calculates the priority of a warp using the program points generated by

the compiler. The warp priority table stores the results from the priority

calculator, and directs the warp scheduler to issue accordingly. 21

3.4 Extending LSU with NewCAR. Structurally, NewCAR is almost identical

to CAR [75]. The key difference is more relaxed conditions on when and

how the NewCAR queue is controlled. 29

3.5 Allowed reordering of memory requests when a warp has (a) a load, and

(b) a store waiting in the NewCAR queue. W[0] denotes an example warp

that has a memory request in the NewCAR queue, and W[N] denotes

any other warp. Memory requests from other warps can always bypass

the memory request from the example warp. Loads from the example

warp can bypass the loads from itself, but not the stores. Stores from the

example warp cannot bypass any loads or stores from itself. 29

3.6 Performance improvement of NewCAR, instruction prefetch, ELF, and

ELF++ over the baseline GTO. ELF++ combines ELF with NewCAR

and instruction prefetch. 33

viii

3.7 Reduction of priority recalculation in ELF compared to the naive priority

recalculation. 33

3.8 Sensitivity of ELF++ to (a) the number of available program points, and

(b) the threshold for instruction prefetch. A geometric mean of IPC im-

provement for all the benchmarks is presented. 35

3.9 Comparison of ELF++ with prior works. GTO is the baseline. 36

3.10 Comparing ELF++ to prior works when different cache configurations

are used. GTO is the baseline. 38

4.1 Estimated preemption latency for each preemption technique. For drain-

ing, a uniform random distribution on the preemption point across thread

block execution is assumed. For flushing, zero preemption latency is as-

sumed. 48

4.2 Estimated throughput overhead for each preemption technique when thread

blocks running on an SM are assumed to be in sync. For flushing, a uni-

form random distribution on the preemption point across thread block

execution is assumed. 48

4.3 Theoretical cost of each preemption technique when preempting a thread

block at a given amount of execution progress. Context switching has

constant cost across the execution, draining has lower cost as a thread

block is near the end of execution, and flushing has lower cost as a thread

block is closer to the beginning of execution. 52

4.4 GPU scheduler with preemptive multitasking. The scheduler is two-level:

the kernel scheduler assigns SMs to each kernel that may involve preemp-

tion decisions, and the thread block scheduler executes the decision by

dispatching or preempting thread blocks from each SM. SMs can feed-

back the schedulers when an event that can change the scheduling deci-

sion occurs. 54

4.5 The percentage of preemptions that violate the deadline of a periodic,

real-time task when GPGPU benchmarks are run together. The preemp-

tion latency constraint is 15 µs. 63

4.6 Throughput overhead of each preemption technique when GPGPU bench-

marks are run with a periodic, real-time task. The preemption latency

constraint is 15 µs. Effective throughput is used to avoid giving unfair

advantage to the preemption techniques that frequently miss the deadline. 63

4.7 Impact of varying preemption latency constraint on (a) the percentage of

deadline violations, (b) throughput overhead, and (c) distribution of each

preemption technique used in Chimera. 65

4.8 The percentage of preemptions that violate a 15µs preemption latency

constraint when SM flushing uses strict or relaxed idempotence condition. 67

4.9 ANTT improvement over the non-preemptive FCFS when LUD is con-

currently executed with another benchmark. 68

4.10 STP improvement over the non-preemptive FCFS when LUD is concur-

rently executed with another benchmark. 68

ix

5.1 Normalized STP of SMK when fixed number of threads are assigned to

each kernel within an SM for representative examples. STP of spatial

multitasking is used as 1. (a) Even SMK is as good as the best performing

SMK, (b) large performance gap exists between the best performing SMK

and even SMK, and (c) spatial multitasking performs better than any SMK. 81

5.2 A trace of the instructions per cycle (IPC) within an SM using a 50k

instruction window when running SRAD and BFS together with SMK

(top), and when running them independently for the same interval (bot-

tom). Circles indicate the same interval, where the IPC trace shows dif-

ferent behavior between running alone, and SMK. 84

5.3 A trace of STP improvement over non-shared execution for Oracle and

Even thread block partition within an SM using 50k instruction window

when running SRAD and BFS together. Indicated sub-intervals are when

Oracle chooses different partition from Even. 85

5.4 An illustration of resource fragmentation problem for shared memory

when (a) a kernel terminates, and (b) a kernel is preempted. 86

5.5 A timeline of register fragmentation when running FDTD/LUD on an SM

with SMK. 86

5.6 An IPC trace within an SM using a 50k instruction window when running

LC/BS. LC is launched before BS. Sub-intervals, where BS starves, are

shown. 88

5.7 An architectural overview of GPU Maestro. PCntr refers to existing per-

formance counters on an SM. 90

5.8 An illustration of dynamic resource partitioning process in GPU Mae-

stro when two kernels are running on the GPU. GPU Maestro makes

repartitioning decisions at the end of every epoch, which may not result

in repartitioning if the previous preferred partition is the best. Follower

SMs follows the repartitioning decision including spatial multitasking,

which gives the best performance. Note that trial and follower SMs can

change to minimize the preemption overhead from repartitioning. Dedi-

cated SMs turn into follower SMs when a steady state is reached. 91

5.9 (a) The proposed 2-way allocation, where a kernel schedules thread blocks

in the opposite direction, and (b) the fixed preemption priority order im-

posed by the 2-way allocation. 93

5.10 ANTT increase and STP improvement of Spatial, SMK, and GPU Mae-

stro over non-shared execution. Spatial partitions resources evenly at the

SM granularity. SMK partitions resources evenly within the SMs. A

geometric mean of all combinations of co-running kernels from each cat-

egory is shown. ANTT is a lower-is-better metric, and STP is a higher-

is-better metric. 98

x

5.11 ANTT increase and STP improvement of various kernel-aware schedul-

ing techniques on GPU Maestro over non-shared execution. A geomet-

ric mean of all combinations of co-running kernels from each category

is shown. All the kernel-aware scheduling techniques are implemented

on top of GTO warp scheduling. None does not do any kernel-aware

scheduling. ANTT is a lower-is-better metric, and STP is a higher-is-

better metric. 99

5.12 (Left) The percentage of repartitioning decisions to use spatial multitask-

ing, SMK with even partitioning, and SMK with other non-even partition-

ing, and (Right) repartitioning overhead in GPU Maestro. An average of

all combinations of co-running kernels from each category is shown. . . 101

5.13 Thread block repartitioning timeline for ST/TPACF and LBM/TPACF. . . 102

5.14 ANTT increase and STP improvement of Spatial, SMK-(P+W), WS, and

GPU Maestro over non-shared execution. A geometric mean of all com-

binations of co-running kernels from each category is shown. ANTT is a

lower-is-better metric, and STP is a higher-is-better metric. 103

5.15 STP improvement of Spatial, SMK-(P+W), WS, and GPU Maestro over

non-shared execution for selected benchmark pairs. 104

xi

LIST OF TABLES

Table

3.1 System configuration . 30

3.2 Benchmark specifications to evaluate ELF. PP refers to the number of

program points before the merge. 32

3.3 Hardware overhead per SM from additional structures. 36

4.1 System configuration . 60

4.2 Benchmark Specification. IDPT denotes idempotence, and the percent-

age of idempotent region in a thread block execution for non-idempotent

kernels is also shown. 61

5.1 Resource trends in an SM on GPUs. 80

5.2 System configuration. 96

5.3 Benchmark specification. 97

xii

ABSTRACT

ENABLING EFFICIENT RESOURCE UTILIZATION ON MULTITASKING

THROUGHPUT PROCESSORS

by

Jason Jong Kyu Park

Chair: Scott Mahlke

Graphics processing units (GPUs) are increasingly adopted in modern computer systems

beyond their traditional role of processing graphics to accelerating data-parallel applica-

tions. The single instruction multiple thread (SIMT) programming model enabled program-

mers to easily offload data-parallel kernels to the GPUs, and achieve large performance

improvements and energy efficiency. As a result, many supercomputers, cloud services,

and data centers are utilizing GPUs as general-purpose throughput processors.

In these modern computer systems, achieving high resource utilization becomes impor-

tant, especially in the shared environment like cloud services, and data centers. To enable

efficient resource utilization of multitasking GPUs, new unique challenges like enabling

an efficient preemptive multitasking and resolving shared resource contention have to be

solved. Many traditional policies such as context switching or fine-grained multitasking

can incur a large overhead if blindly applied. To address these challenges with minimal

xiii

overhead, a framework that exploits both static characteristics of the SIMT programming

model and runtime properties of GPU execution is required.

This thesis proposes a framework with hardware/software extensions to enable efficient

resource utilization on multitasking GPUs. The framework identifies characteristics com-

ing from the SIMT programming model or determines the best policy based on multiple

candidates either at compile time or using runtime software. The framework is adaptive

and dynamic because it gathers runtime statistics using hardware performance counters

to guide the decisions in the runtime software, and implements individual mechanisms in

hardware with low overhead.

The framework consists of three components. The framework uses compiler hints to

improve utilization by an average of 11.9% when running memory-intensive kernels alone,

which can provide synergistic improvement when multitasking is enabled. The frame-

work further improves the system throughput by an average of 12.2% with a collabora-

tive preemption mechanism for efficient preemptive multitasking, which can handle both

latency-sensitive and throughput-oriented applications. This framework implements a dy-

namic resource management scheme to maximize the utilization by exploiting both spatial

multitasking, which partitions resources at the streaming multiprocessor (SM) granularity,

and simultaneous multikernel, which partitions resources within the SM. Combining all

the techniques in the framework, 45.0% better system throughput was achieved over single

kernel execution.

xiv

CHAPTER I

Introduction

GPUs have been traditionally used to process graphics, which require large memory

bandwidth and computing capability. With the introduction of the single instruction mul-

tiple thread (SIMT) programming model such as CUDA [48] and OpenCL [34], the com-

puting capability of GPUs became available to data-parallel applications. In the SIMT pro-

gramming model, a large number of threads are launched onto a GPU, where they perform

the same control-flow and data-flow execution on different data. To reduce the overhead

from synchronization, threads are further grouped into a thread block, which is the basic

unit of scheduling and can be synchronized with an explicit barrier.

Recent GPUs show about 10x peak performance for single precision floating point op-

erations, and 4x energy efficiency compared to recent CPUs, as shown in Figure 1.1, and

Figure 1.2. As a result, GPUs are becoming general-purpose throughput processors, and

prevalent from mobile devices to data centers. For example, many supercomputers in the

TOP500 [2] and the Green500 [1] are already composed of GPUs due to their high per-

formance and energy efficiency when running data-parallel applications. GPUs are also

readily available in cloud computing services like Amazon Web Services [4]. In these

1

Yorktown Sandy Bridge Haswell

SkylakeGTX 280
GTX 480

GTX 680

K80

P100

0

2000

4000

6000

8000

10000

12000

2006 2007 2008 2009 2010 2011 2012 2013 2014 2015 2016

P
e

a
k

 P
e

rf
o

rm
a

n
ce

 (
G

F
LO

P
S

)

Year

CPU GPU

Figure 1.1:
Comparison of CPU and GPU peak single precision floating point perfor-

mance [19].

systems, GPUs are used beyond their traditional role of processing graphics to more di-

verse applications, including image/video processing, computer vision, machine learning,

physical simulations, and big data analytics.

As GPUs are widely adopted in modern computer systems, achieving high resource

utilization becomes an important problem to address. For example, new challenges like

thread block scheduling [33, 40], and branch/memory divergence [18, 42, 36] were ad-

dressed to improve resource utilization for GPUs. Some of the research ideas are borrowed

from CPUs, however, GPUs present new challenges due to both the differences in the pro-

gramming model and the microarchitecture. For example, instruction issue [45, 68, 75],

prefetching [39, 74], cache bypassing [8, 92], and dynamic voltage and frequency scal-

ing [76] were modified to meet the GPUs’ needs. Achieving high resource utilization for

single kernel execution on GPUs still remains an important problem to address.

The fast adoption of GPUs in supercomputing, cloud services, and data centers poses

2

intro/figs/cpu_gpu_flops_cropped.eps

Yorktown
Sandy Bridge

Haswell

Skylake

GTX 280
GTX 480

GTX 680

K80

P100

0

5

10

15

20

25

30

35

40

2006 2007 2008 2009 2010 2011 2012 2013 2014 2015 2016

E
n

e
rg

y
 E

ff
ic

ie
n

cy
 (

G
F

LO
P

S
/W

a
tt

)

Year

CPU GPU

Figure 1.2: Comparison of CPU and GPU energy efficiency.

another dimension of problems: resource sharing becomes critical to achieving efficient re-

source utilization, similar to that shown for CPUs [88]. In these environments, multitasking

CPUs are used by default, where time-sharing of the processor between multiple programs

increases CPU utilization significantly, while maintaining the illusion that each program

has its own CPU for execution. Cooperative multitasking, where applications voluntarily

gave up the CPU to execute another application, was once widely used by many operating

systems, however, it eventually gave its way to preemptive multitasking as the decision can

be made dynamically without asking programmers to explicitly write multitasking code.

In multitasking CPUs, preemptive multitasking supported by context switching has been

standard for many years. Similarly, to support preemptive multitasking on GPUs, a new

approach, which addresses both hardware and software extensions, is required for efficient

preemption as GPUs have large states including registers and data in the scratchpad mem-

ory.

GPUs have multiple streaming multiprocessors (SM) on a single chip, which can be

3

intro/figs/cpu_gpu_energy_cropped.eps

thought of as GPU cores similar to the CPU cores. With preemptive multitasking sup-

port, GPUs can choose to divide resources among kernels in two ways: spatial multitask-

ing [3], which partitions at SM granularity, or simultaneous multikernel (SMK) [90], which

partitions within an SM. Spatial multitasking can be thought of as chip multi-processors

(CMPs) [53] on CPUs, and SMK can be thought of as simultaneous multithreading (SMT) [86]

on CPUs. Due to these similarities, shared resources like functional units, caches, mem-

ory controllers, DRAM bus, and on-chip networks are also points of contention on GPUs,

which has been extensively stuided on CPUs [97]. On top of these problems, there are new

challenges for multitasking GPUs. For example, a resource fragmentation problem can

be significant on multitasking GPUs, where a thread block cannot be scheduled because

resources are available in small chunks although there are enough resources on an SM in

total. To enable efficient multitasking GPUs, these new challenges have to be identified

and solved.

1.1 Challenges

There are three challenges with efficient resource utilizations on multitasking GPUs.

While similar challenges have been solved on CPUs, however, the same strategies cannot

be directly applied to the GPUs due to the differences in the programming model and the

architecture.

Efficient single kernel execution: CPUs have improved the single thread performance

primarily using out-of-order execution. GPUs have deliberately taken another approach to

achieve higher performance per watt efficiency. On GPUs, the issue unit switches between

4

thousands of threads to hide the latency of the individual operations. However, a memory

latency is still not hidden completely because the latency is in the range of hundreds of

cycles, which is difficult to hide with warps in the range of ten. This situation often occurs

for memory-intensive applications with intense memory operations. Another approach to

improve performance for memory-intensive kernels is required.

Efficient preemptive multitasking: Traditionally, CPUs utilized context switching to

enable preemptive multitasking, however, the same strategy can incur larger overhead for

GPUs due to the large states in a GPU kernel. This is due to the GPU programming model,

where thousands of threads are running together on a GPU core. Each thread on GPUs

can have more state than a CPU thread, and this is multiplied by the number of threads.

Another mechanism is required to enable efficient preemptive multitasking on GPUs.

Efficient resource management for multitasking GPUs: CMP adds more CPU cores

to run multiple threads concurrently. Simultaneous multithreading improved resource uti-

lization within a CPU core by sharing the processor between multiple threads in a more

fine-grained fashion. On GPUs, these ideas are called spatial multitasking, which parti-

tions resources at the SM granularity, and SMK, which runs multiple kernels concurrently

on a single SM. SMK can further improve resource utilization over spatial multitasking.

For example, compute-intensive kernels can utilize computational functional units on an

SM while memory-intensive kernels wait for the memory requests to come back. However,

spatial multitasking may provide better system performance when SMK results in higher

contention within the SM. Moreover, enabling SMK on GPUs requires additional hardware

extensions, and poses new problems like resource fragmentation. An efficient multitasking

GPU will only be available if these problems are addressed.

5

1.2 Contributions

This thesis designs and evaluates a framework with hardware/software extensions for

efficient resource utilization on multitasking GPUs. The hardware extensions are designed

to be simple, so that the hardware overhead can be minimized. Complicated functional-

ities are offloaded to the software extension, which includes both compiler and runtime.

The hardware extensions consist of various performance counters to monitor the runtime

properties, and the logic to carry out the decisions made by the software extensions. The

software extensions statically or dynamically analyze the execution state, and notify the

hardware extensions of what to do. As a whole, the framework can efficiently support

single kernel execution, preemptive multitasking, and simultaneous multikernel on GPUs.

1.2.1 ELF

GPUs rely on fast context switching between thousands of threads to hide long latency

operations, however, they still stall due to memory operations. To minimize the stalls,

memory operations should be overlapped with other operations as much as possible to

maximize memory-level parallelism (MLP). In order to deal with memory-intensive ap-

plications on GPUs, we propose Earliest Load First (ELF) warp scheduling [60], which

maximizes the MLP by giving higher priority to the warps that have the fewest instruc-

tions to the next memory load. ELF leverages compiler techniques to identify and transfer

necessary information to compute the number of remaining instructions to the next mem-

ory load, and suggests a simple hardware scheduler that can prioritize warps accordingly.

With ELF, memory-intensive applications on GPUs can transparently achieve better per-

6

formance. Chapter III discusses ELF in more detail.

1.2.2 Chimera

While single kernel execution can be explored for better performance, multi-kernel

execution can provide even more efficient resource utilization. Multitasking GPUs are in-

evitable. However, supporting preemptive multitasking on GPUs through context switch-

ing can incur a higher overhead compared to CPUs, where the context of an SM can be

as large as 256kB of register file and 96kB of on-chip scratch-pad memory on the recent

Maxwell architecture [50]. To overcome these challenges, Chimera [59], a collaborative

preemption approach for GPUs that can precisely control the preemption overhead, is pro-

posed. Chimera first introduces SM flushing, a GPU-specific preemption technique that is

enhanced to exploit the semantics of thread blocks in the GPU programming model and the

concept of idempotence to achieve low preemption latency. Furthermore, Chimera exploits

the fact that preempted thread blocks do not have to use the same preemption technique

because thread blocks are executed independent of each other. By recognizing the different

tradeoffs of three preemption techniques, namely, context switching, draining, and flush-

ing, Chimera can preempt each thread block with the most efficient preemption technique

by dynamically estimating the preemption costs. Chapter IV discusses Chimera in more

detail.

1.2.3 GPU Maestro

Depending on the application mixes, either running multiple kernels at an SM gran-

ularity on the shared GPUs or running multiple kernels within an SM can be more ad-

7

vantageous. Predicting which resource partition will perform the best is difficult because

of the dynamism within a kernel and interference between kernels. GPU Maestro, which

performs dynamic resource management for efficient utilization of multitasking GPUs, is

proposed to solve these problems. GPU Maestro addresses three challenges: (1) GPU

Maestro implements a lightweight dynamic scheduling framework that utilizes a direct

measurement with existing performance counters rather than a model-based prediction to

find the best performing resource partition, (2) GPU Maestro solves resource fragmentation

problem on SMK GPUs using 2-way resource allocation, and (3) GPU Maestro adopts a

simple kernel-aware warp scheduler to avoid starvation of one kernel. Chapter V discusses

GPU Maestro in more detail.

8

CHAPTER II

Background

This chapter introduces the GPU terminology, programming and execution models, and

the architecture. Nvidia’s terminology is used throughout the paper.

2.1 Terminology

The GPU programming model is based on a single instruction multiple thread (SIMT)

model to explicitly express the parallelism in the kernel code, which is the parallel code

section that runs on the GPUs. In the SIMT model, a programmer writes a code for a

thread. In the GPU hardware, the threads are executed in a group called a warp. A warp is

not an exposed concept to the GPU programming model, but rather a micro-architectural

decision to process threads efficiently. In Nvidia’s GPU architecture, a warp consists of

32 threads. The programmer also specifies a group of threads called a thread block. The

threads within the same thread block can be synchronized with an explicit barrier operation,

and have access to a common, fast, on-chip scratch-pad memory called shared memory.

Finally, a grid, which is a group of thread blocks, will be grouped to form a kernel.

9

Interconnect

SM
...

L1

SM

L1

SM

L1

SM

L1

SM

L1

SM

L1

L2

DRAM

L2

DRAM
...

GPU

Grid

... ...

Thread Block

...

Thread
SIMD

Thread Block Context

Shared

Memory

Registers

Registers

...

Warp:

Warp:

...
Figure 2.1: GPU architecture and execution model.

2.2 GPU Architecture and Execution Model

Figure 2.1 illustrates a GPU architecture and its execution model. The top left box

shows a kernel with the notion of a GPU programming model. The bottom box depicts the

GPU architecture with a memory hierarchy. The top right box represents a GPU execution

model with the contexts of running thread blocks. In a GPU, each streaming multiprocessor

(SM) has a private L1 data cache, a read-only texture cache, and a read-only constant cache.

The memory subsystem of the GPU consists of multiple memory partitions. Each memory

partition contains a shared L2 cache bank and a memory controller.

The GPU execution model relies on the notion of a thread block. Thread blocks from

a kernel can run in arbitrary order because thread block executions are independent from

each other. When a kernel is launched, each thread block is scheduled to one of the SMs.

Depending on the resource constraints, the number of thread blocks that can run simulta-

neously on an SM may vary. When a thread block is dispatched to an SM, the thread block

is split into groups of 32 threads called warps, where threads within a warp operate on a

single common instruction. Each warp has its own register contents, and shares the state

10

back/figs/exec_model_cropped.eps

I

C

N

T

L2

D
R
A
M

...

SM

Fetch & Decode

W[0]

Issue

Execute

WB

Shared

Memory

L1D

W[N]W[1] ...

L2

D
R
A
M

Figure 2.2: A more detailed illustration of an SM. W[i] denotes a warp.

of a shared memory if they are in the same thread block. Note that SMs do not share any

states among themselves.

Figure 2.2 illustrates the detailed execution pipeline of an SM. Instruction fetch, decode,

issue, and execute are performed at a warp granularity. Note that the figure neglects a

read-only texture cache and a read-only constant cache in each SM for simplicity as did

in Figure 2.1. In an SM, fetch and issue pipelines are shared by all the warps. Because

there is no dependency between the execution of the warps except for the synchronization

within thread blocks, deciding which warp should fetch or issue an instruction among ready

warps is an important problem in GPUs. Within an SM, there are typically multiple warp

schedulers, which issue from independent subsets of warps.

2.3 Multitasking GPUs

Figure 2.3 illustrates a baseline GPU architecture with multitasking support. At the

top, a command processor is shown, which receives the commands from the CPU and

controls the GPU accordingly, and updates memory-mapped registers when the command

is done. In the middle, the thread block scheduler is depicted with control information

11

back/figs/sm_cropped.eps

Interconnect

Memory

Partition
...

SM Status TableSM Status

Memory

Partition

SM SM...

Kernel
Control
Block

Commands from CPU

Thread Block Scheduler

Command
Processor

TB0

Shared Memory

..
.

TB1

W0

Register File

T0

..
.

W1

T31 R0

..
.

...

W0
W1

..
.

Register
Base Register

Shared Memory
Base Register

TB0
TB1

..
.

Figure 2.3: GPU architecture with multitasking support.

structures. At the bottom left, SMs and memory partitions are shown with an interconnect.

At the bottom right, shared memory and register file allocation within an SM is shown.

Both shared memory and register file are multi-banked structures although they are shown

as one structure for simplicity. The thread block scheduler determines how many thread

blocks from each kernel will be launched on each SM. A thread block is preempted if the

thread block scheduler decides to reduce the number of thread blocks running from one

kernel to allow thread blocks from other kernels to run. The thread block scheduler also

launches a thread block with the chosen partition when an SM has enough resources to

accept a new thread block. It has to remember the preempted thread blocks so that it can

relaunch those thread blocks later.

When a kernel is launched, the related information will be stored at a kernel control

block (KCB), whose name is borrowed from process control block (PCB) in the operat-

ing system [78]. Similar to PCB, the KCB stores the kernel-specific information, which

is necessary to launch and run a kernel on the GPU. The KCB contains which CPU pro-

12

back/figs/mk_arch_cropped.eps

cess launched the kernel, information on memory management structures (e.g. page table),

the grid size, the number of executed thread blocks, the resource requirement of a single

thread block, and runtime information such as instructions per cycle (IPC) and average

thread block execution cycles. The runtime information can be used to enable low over-

head preemption [59]. To support multitasking on GPUs, the KCB is extended to multiple

entries. Note that current generation GPUs are likely to have similar structures already if

they support Hyper-Q, which allows multiple independent kernels from the same process

to concurrently run on the GPU.

An SM status table (SMST) stores the current status of SMs. An SM status includes

kernels executing on the SM, the state of each thread block (free, running, or preempting),

the mapping between thread blocks and kernel, and remaining resources on the SM such as

registers, shared memory, the number of threads that can be launched concurrently on an

SM, and the number of thread blocks that can be launched concurrently on an SM.

As shown by the figure, the shared memory and register file are shared among the thread

blocks within an SM. Because shared memory is shared at a thread block granularity, each

thread block allocates a consecutive region in the shared memory. Because thread blocks

execute the same code to compute the shared memory address, physical address for shared

memory has to be differentiated between thread blocks. The shared memory base register

(SBR) contains the base shared memory address for each thread block. When a thread

block accesses shared memory at runtime, the address is computed by adding the virtual

address with the SBR. Similarly, consecutive registers are allocated to each warp. Note that

a physical register actually contains the same register index for 32 threads to reduce the

number of ports because a warp consists of 32 threads. When a warp is indexing register 0,

13

the physical register index is computed by adding the register index 0 with a warp’s register

base register (RBR).

Because there are multiple SMs on a GPU with no shared state among them, the eas-

iest way to schedule multiple kernels on a GPU is to run each kernel on different subsets

of SMs. Spatial multitasking [3] noticed this property, and explored possible SM parti-

tioning policies. Other prior works have shown that spatial multitasking is orthogonal to

preemptive multitasking, and can be used together to provide further benefits [83, 59].

Simultaneous multikernel (SMK) [90] or intra-SM slicing [93] proposed to further parti-

tion within the SMs. This thesis assumes that the baseline GPU is able to support all these

features with required extensions. On top of the baseline GPU, this thesis proposes a frame-

work with hardware/software extensions to further enable efficient resource utilization on

multitasking GPUs.

14

CHAPTER III

ELF: Maximizing Memory-Level Parallelism for GPUs

with Coordinated Warp and Fetch Scheduling

3.1 Introduction

The trend of using GPUs as throughput processors in modern computer systems is

constantly increasing as their computing capability and energy efficiency exceed that of

CPUs. GPU programming models such as OpenCL [34] or CUDA [48] launch thousands

of threads together to the hundreds of processing units on the GPU. By context switching

between this large number of threads quickly, GPUs can hide long latency operations and

achieve high throughput.

As more diverse applications adopt GPUs to exploit their computing capability, many

have reported the difficulty of achieving the peak performance [71, 72]. Many recent works

attempted to tackle this problem [45, 68, 29, 33, 28, 75]. CCWS [68] modified warp

scheduling to reduce L1 cache contention. DYNCTA [33] noted that reducing the number

of concurrently running thread blocks can reduce memory contention. MRPB [28] showed

the importance of prioritizing memory requests from the same warp. These works show

15

that cache/memory contention is one of the main reasons why GPUs are not achieving peak

performance.

Cache/memory contention often makes GPUs stall because memory operations have the

highest latency. GPUs schedule a single warp at a time to leverage data-level parallelism.

When a warp is blocked due to an operation that is dependent on a memory operation, the

warp is swapped for another warp until the memory request comes back. If all the warps

are blocked, GPUs can no longer hide the memory latencies. To reduce the impact of these

unhidden memory latencies, it is strongly suggested that memory operations are overlapped

with each other as much as possible. In other words, memory-level parallelism (MLP) has

to be maximized.

In this chapter, Earliest Load First (ELF) scheduling is proposed, which maximizes the

MLP by issuing memory operations as soon as possible. To maximize MLP, ELF gives

higher priority to the warps with fewer remaining instructions to reach the next memory

operation. The highest priority warp will continue to issue instructions until it issues the

next memory operation. ELF leverages compiler techniques to identify program points that

are needed to calculate the priority, and annotate that information in the binary to notify the

hardware.

In order to ensure that the highest priority warp continuously has instructions to issue,

the fetch unit also has to fetch according to the issue priorities. Otherwise, a warp scheduler

has to suffer because a lower priority warp will have to issue. By using the coordinated warp

priority between fetch and warp scheduling, the decision from warp scheduling becomes

more effective as the fetch unit supplies instructions to the warps that are trying to issue

with higher priority. Moreover, instruction prefetch is employed to reduce fetch stalls that

16

can prohibit the highest priority warp from making progress.

ELF can be limited by memory resource saturation when trying to issue a memory

request. However, with multiple independent warps concurrently running on GPUs, the

memory resource saturation from one warp does not necessarily mean that other warps will

experience the memory resource saturation as well because other warps may see hit-under-

miss or avoid associativity stalls. Without any solutions to allow ELF to issue memory

requests, even if the previous memory request is blocked due to memory resource satura-

tion, ELF may lose its effectiveness because it cannot further exploit MLP.

This chapter makes the following contributions:

• This chapter proposes ELF, a warp scheduling technique that maximizes the MLP by

prioritizing warps with fewer remaining instructions to the next memory operation.

Furthermore, this chapter also shows that the interplay between the warp scheduler

and fetch unit is important in ELF.

• This chapter introduces a compiler technique that analyzes the program and passes

the necessary information for priority calculation to the GPU hardware. With hard-

ware/software co-design, the overhead of priority calculation can be minimized.

• This chapter evaluates the use of ELF with other orthogonal techniques, which help

to avoid situations when the actual scheduling cannot follow the expected schedul-

ing from ELF. This chapter also discusses an extended version of cache access re-

execution (NewCAR) to handle memory conflicts, and an instruction prefetch to re-

duce stalls from the fetch unit.

17

Kernel Program

C0 M1 C2 M3 C4 C5 C6 C7 M8 C9

O
ld

e
r

W0:

W1:

W2:

C6 M8

C4 C5 C6 C7 M8

C7

M3

C9

C4 C5 C6 C7 M8 C9

Time

C9

C2

C

M

: Computation

: Memory operation

: Memory latency

W0:

W1:

W2:

W3:

W3: M1 C4 C5 C6 C7 M8 C9C0 M3C2

Next Instruction

C6

C4

C2

C0

(a) An example of GTO warp scheduling

O
ld
e
r

W0:

W1:

W2:

C6 M8

C4 C5 C6 C7 M8

C7

M3

C9

C4 C5 C6 C7 M8 C9

Time

C9

C2

W3: M1 C4 C5 C6 C7 M8 C9C0 M3C2

Speedup

(b) An example of ELF warp scheduling

Figure 3.1:
Execution timeline of (a) greedy-then-oldest (GTO) warp scheduling, and (b)

ELF warp scheduling for the given kernel program, where warps are at different

execution points.

3.2 Motivation

This section motivates ELF with examples. Although the problem of issuing warps

(or warp scheduling) has been studied extensively in the past [45, 68, 69, 29, 75], fetch

scheduling has received less attention [38]. In this chapter, both problems are addressed.

3.2.1 Maximizing Memory-level Parallelism

Figure 3.1 illustrates an example execution timeline when greedy-then-oldest (GTO)

scheduling [68] and ELF scheduling are applied. For simplicity, all the computations are

assumed to have a single cycle latency, and all memory operations have a four cycle latency.

Each instruction is also assumed to be dependent on the previous instruction. The top box

denotes a kernel program with 10 instructions. The top right box shows the next instruction

to be executed for each warp. Unless strict round-robin scheduling is used, it is likely that

18

elf/figs/sched_gto_cropped.eps
elf/figs/sched_mlp_cropped.eps

0%

20%

40%

60%

80%

100%

S
ta

ll
s

(%
)

Memory Conflict Memory Dependency Fetch Others

Figure 3.2:
Distribution of stalls in the GTO scheduler. Memory conflict stalls occur when

memory resources are saturated. Memory dependency stalls occur when in-

structions are waiting for the memory requests to come back. Fetch stalls hap-

pen when warps are waiting for instruction fetch. Other stalls include conflict

and dependency stalls in other functional units.

warps are executing different instructions.

In Figure 3.1 (a), the GTO scheduler selects an instruction from the warp which was

issued in the previous cycle. If the warp cannot progress because of a long latency memory

operation, GTO selects the oldest warp among the ready warps. Because GTO prioritizes

older warps, it cannot tolerate long memory latencies from younger warps. On the other

hand, ELF in Figure 3.1 (b) tries to issue memory instructions as early as possible. Be-

cause memory instructions are issued quickly, their long latencies are overlapped more

with themselves or other computations. As a result, ELF can achieve a better aggregate

throughput with higher MLP.

The intuition behind ELF scheduling is simple. GPUs become idle when there are

no ready instructions, which typically happens when warps are waiting for long latency

memory operations to finish. If these memory operations can be scheduled earlier than the

computations from other warps, their latency can be overlapped with these computations

and other memory operations. For example, W2 and W3 send out their memory requests

earlier in Figure 3.1 (b), which makes them ready for their compute-intensive phase (four

19

elf/figs/stalls_cropped.eps

consecutive computations) earlier. The illustrative example in Figure 3.1 shows the impor-

tance of issuing long latency memory operations as early as possible.

3.2.2 Memory Conflicts and Fetch Stalls

If GPUs have infinite memory resources, issuing memory operations as soon as possible

will always maximize the MLP. In reality, GPUs have limited memory resources, which can

result in memory conflicts that prohibit the MLP to be maximized.

Figure 3.2 illustrates the distribution of stalls with GTO, which is percentage of cycles

when a warp scheduler could not issue an instruction. The stalls are categorized into four

classes: memory conflict stalls, memory dependency stalls, fetch stalls, and other stalls.

Memory conflict stalls occur when a warp scheduler could not issue an instruction because

of memory resource conflicts. These stalls occur when the load/store unit cannot accept

any further instructions. Memory dependency stalls occur when a warp scheduler could

not issue an instruction because at least one of the source operands in the instruction are

waiting for the memory requests to come back. Fetch stalls occur when a warp scheduler

is waiting for instruction fetch. Other stalls include conflict and dependency stalls from

other functional units. For example, a dependency stall can occur for special function units

(SFUs) because they can take multiple cycles.

As shown in the figure, there are 27.2% memory conflict stalls, 17.5% memory depen-

dency stalls, 6.0% fetch stalls, and 8.4% other stalls on average. The results show that

memory conflict stalls are already a dominant source of stalls, and can be a limiting factor

when trying to maximize the MLP as in Figure 3.1 (b). Therefore, a strategy of maxi-

mizing the MLP should be accompanied by a technique, which can reduce the memory

20

Priority Calculator

Program

Point 0

Warp

Scheduler

WPT

Program

Point k
...

min

V Br PC Score

W0: Priority

WN: Priority

...

Program

Point 0

Program

Point k

Priority

Encoder

valids

...

Ordered by PC

Figure 3.3:
Overall architecture for ELF. There are two components in ELF: a priority

calculator, and a warp priority table (WPT). The priority calculator calculates

the priority of a warp using the program points generated by the compiler. The

warp priority table stores the results from the priority calculator, and directs the

warp scheduler to issue accordingly.

conflicts. Another important observation is that fetch stalls can take a large portion of stalls

for benchmarks such as FDTD, LC, and LUD. In such benchmarks, a strategy of maximiz-

ing the MLP is again limited by the fetch unit. Therefore, a technique that can reduce fetch

stalls should also be coupled with maximizing the MLP.

3.3 Architecture

ELF is a warp scheduling technique that utilizes both compiler and hardware to max-

imize MLP by prioritizing a warp that has the earliest memory load. ELF relies on the

program points that are necessary to compute the priority. A program point is defined as an

instruction that can change the distance to the next memory load. By definition, memory

loads are program points. Branch instructions are also program points because they alter

the control flow of the program. The remaining instructions are not program points.

21

elf/figs/system_cropped.eps

Figure 3.3 illustrates the overall architecture for ELF. At the top, a priority calculator

is shown, where program points and their related values are computed from the compiler

side, and conveyed to the hardware through the binary. On the right side of the top box,

an implementation of minimum functionality with a priority encoder is shown, which will

be discussed in detail in Section 3.3.2. At the bottom, the warp priority table (WPT) is

shown, which keeps the priority for each warp. In ELF, a priority equals the number of

remaining instructions to the next memory load, hence, lower value in the priority means

higher priority to issue an instruction. The priorities from the WPT are referenced by the

warp scheduler when it issues.

3.3.1 Finding Program Points

ELF generates the list of program points from the compiler. In ELF, each program point

is either a memory load operation or a branch. Among memory loads, shared memory

loads, constant memory loads, and parameter loads are not considered because they are

likely to be a cache hit, which will have similar latency as ordinary computations. In

ELF, backward branches are only considered to reduce the number of total program points,

however, forward branches could also be considered. These program points are notified to

the GPU hardware, and further used by the priority calculator to compute the priority for

each warp. Two hardware parameters are given to the compiler beforehand: the maximum

number of program points is restricted by the number of available program point slots in the

GPU, and the maximum score is limited by the bitwidth of the score field in the program

point slot.

Each program point in ELF is associated with a data called score. For a branch program

22

point, it stores the minimum distance to the next memory load considering all the possible

paths after the branch. For a load program point, score is meaningless and zero by default.

ELF utilizes the score field of memory loads to merge program points as described by

Algorithm 2 when the kernel has more program points than the available program points in

the hardware.

Algorithm 1 shows how the program points are generated by the compiler. The algo-

rithm starts by finding memory loads and branches to form initial program points (lines

1-9). Iteratively, ELF computes the score of branches by taking the minimum of the scores

from the taken path and the fall-through path (lines 10-24). The score of each path is the

addition of the number of instructions to the next program point in each path and the next

program point’s score (lines 36-45). If next program point does not exist, the maximum

score is returned (line 46). After the program points are resolved, meaningless program

points are first removed (lines 25-31). A branch program point is meaningless if it has the

maximum score or the score of the fall-through path. Lastly, the program points are merged

if they exceed the available slots in the GPU (lines 32-34).

Algorithm 2 shows how to merge program points. First, two program points are found,

where the distance between the two is the minimum (lines 1-15). When merging program

points, the program point that merges its previous program point has to be a memory load

(line 3). Then, the score field of the later program point is updated with the distance to the

previous program point (line 16). Note that the merged program point’s score is subtracted

if it is a branch (line 11). Finally, the merged program point is removed from the program

points, which reduces the number of program points by 1 (line 17).

23

Algorithm 1 Finding Program Points

findProgramPoints(Kernel):

Output: ProgramPoints[1..MaxProgramPoints]

1: for each inst in Kernel do

2: if inst is MemoryLoad then

3: inst.score = 0 ⊲ Lower score is higher priority

4: ProgramPoints.push(inst)

5: else if inst is Branch then

6: inst.score = MaxScore

7: ProgramPoints.push(inst)

8: end if

9: end for

10: changed = true

11: while changed do

12: changed = false

13: for each inst in ProgramPoints do

14: if inst is Branch then

15: nextScore = getScore(inst.nextInst) + 1

16: targetScore = getScore(inst.targetInst) + 1

17: minScore = min(nextScore, targetScore)

18: if minScore <inst.score then

19: inst.score = minScore

20: changed = true

21: end if

22: end if

23: end for

24: end while

25: for each inst in ProgramPoints do

26: if inst is Branch then

27: if inst.score == MaxScore or inst.score == getScore(inst.nextInst) + 1 then

28: ProgramPoints.remove(inst)

29: end if

30: end if

31: end for

32: while ProgramPoints.size() >MaxProgramPoints do

33: ProgramPoints.merge()

34: end while

35: return ProgramPoints[1..MaxProgramPoints]

getScore(inst):

Output: score

36: currInst = inst

37: score = 0

38: while currInst.valid do

39: if currInst in ProgramPoints then

40: score = min(score + currInst.score, MaxScore)

41: return score

42: end if

43: currInst = currInst.nextInst

44: score += 1

45: end while

46: return MaxScore

24

Algorithm 2 Merging Program Points

merge(ProgramPoints):

1: minDistance = MaxScore

2: for each inst in ProgramPoints do

3: if inst is MemoryLoad then

4: prevPoint = inst.getPrevProgramPoint()

5: currDistance = getScore(prevPoint.nextInst) + 1

6: if currDistance <minDistance then

7: minDistance = currDistance

8: memInst = inst

9: prevInst = prevPoint

10: if prevPoint is Branch then

11: minDistance -= prevPoint.score

12: end if

13: end if

14: end if

15: end for

16: memInst.score = minDistance

17: ProgramPoints.remove(prevInst)

3.3.2 Priority Calculator

The priority calculator loads the program points embedded in the binary when a kernel

is launched onto an SM. As shown by the top box in Figure 3.3, each program point has

a valid bit, a branch bit, PC, and a score. Using the PC and the score of a program point

with the PC of an instruction, a distance to a memory load can be calculated. A priority,

which is the minimum distance to the next memory load instruction, can be calculated by

taking the minimum of the distances to all the memory loads. As shown in Figure 3.3,

a priority encoder can practically implement the minimum functionality when program

points are ordered by PC because it is guaranteed that the closest program point will give

the minimum.

Given the instruction and a memory program point, it is possible to compute the num-

ber of instructions between the instruction and the memory load using the PC. Given the

25

instruction and a branch program point, the distance to the branch is first calculated using

the PC, and then the score field is added to give the distance to the memory load after the

branch. Note that a memory program point may also have a non-zero score if other pro-

gram points have been merged to that program point. In such a case, the calculated priority

is subtracted by the score if it is larger than the score to account for the merged program

point.

Naively computing priority every time when a warp issues an instruction can have sig-

nificant overhead. Because priority is the number of remaining instructions to the next

memory load operation, it can be decreased by one most of the time. To exploit this prop-

erty, the priority calculator is triggered only in two cases: when a memory load operation

is issued, or when a branch has altered the priority. For the second case, ELF extends the

instruction format of each branch with a recalculation bit. The recalculation bit indicates

whether the priority is altered when the branch is taken. If it is set, a taken branch triggers

the priority calculator. Otherwise, a branch triggers the priority calculator if it is not taken.

The compiler sets the recalculation bit when the taken path has fewer remaining instruc-

tions to the next program point than the fall-through path. Priorities of not issued warps are

not changed hence no computation is required.

3.3.3 Fetch Scheduling in ELF

Fetch scheduling can play an important role as the fetch unit is shared by the warps,

as discussed in Section 2.2. Instruction fetches also use the same priority as the warp

schedulers to prioritize warps. In Fermi, there are two warp schedulers, where each of

them schedules among an independent subset of the warps, while a single fetch unit exists.

26

To match the issue width, the fetch unit requests two instructions for one warp in a cycle.

To handle two distinct priority orders from the warp schedulers without starving one warp

scheduler, ELF constructs unified priority order by interleaving the priority orders from

each warp scheduler.

3.3.4 ELF with Cache Access Re-execution

ELF may not be able to maximize the MLP when memory conflicts occur. The problem

of memory conflicts can be more severe in GPU execution model, where warps share the

load-store unit (LSU), because not only the current memory request is blocked but also

other memory requests from other warps that may be totally independent can be blocked as

a result.

Prior works have proposed solutions that can mitigate the problem of memory con-

flicts. For example, MRPB [28] reported that GPUs can have an associativity stall because

of the allocate-on-miss policy on the L1 cache. In such a case, MSHRs and miss queues

cannot be utilized even though they are available. MRPB avoids such a problem with

bypassing. Mascar [75] reported the opportunity of hit-under-miss, and exploited the op-

portunity with the cache access re-execution (CAR). Another problem exists because the

LSU is shared among the constant, texture, and L1D cache. For example, when the LSU

is blocked by L1D cache, memory requests that can be served by constant or texture cache

are also blocked. Although the mentioned problems seem different, they can be solved at

the same time with any of the previous solutions.

Instead of devising a completely new way to overcome these problems, ELF adopts the

CAR with 32 entry re-execution queue from Mascar [75] with extensions. The NewCAR

27

is structurally similar to the CAR as shown in Figure 3.4. However, NewCAR operates

with more relaxed conditions compared to CAR, which can reduce more memory conflict

stalls. First, multiple memory requests per warp are allowed in NewCAR. This is intra-

warp optimization, which allows a warp to progress more even with the memory conflicts.

Second, memory requests in the queue can be processed out-of-order while preserving the

weak memory consistency semantics. This is both intra and inter-warp optimization, which

allows more freedom compared to CAR.

Figure 3.4 illustrates the extension of LSU with NewCAR. A NewCAR queue is at-

tached to the LSU, where a memory request can enter the queue from the LSU. A memory

request is inserted into the queue if one of the two conditions is met: 1) a memory request

was sent to one of the caches and not accepted, or 2) a memory request cannot bypass the

queue due to the memory consistency semantics. NewCAR always gives priority to the

memory request from the LSU. A memory request from the queue is processed if one of

the two conditions is met: 1) the queue is full, or 2) LSU is idle. Note that when the queue

is full, the LSU is prohibited from issuing a new memory request until the queue has an

empty slot.

Figure 3.5 shows which memory request reorderings are allowed when there is a prior

memory request from a warp in the NewCAR queue. Because memory requests are inde-

pendent between the warps, memory requests can always bypass another warp’s memory

requests. If a warp already has a load in the queue, it can issue a new load request ahead of

the prior load but not a store request. If a warp has a store in the queue, it cannot issue any

new memory request before the store has been processed. Whenever the memory request

is not allowed to bypass the queue due to the violation of memory consistency semantics,

28

LSU

L1D

Cache

NewCAR Queue

Constant

Cache

Texture

Cache

Figure 3.4:
Extending LSU with NewCAR. Structurally, NewCAR is almost identical to

CAR [75]. The key difference is more relaxed conditions on when and how the

NewCAR queue is controlled.

W[0] Load

NewCAR Queue

W[0] Load

W[0] Store

W[N] Load

W[N] Store

Allowed

Allowed

Allowed

(a)

W[0] Load

W[0] Store

W[N] Load

W[N] Store

Allowed

Allowed

W[0] Store

NewCAR Queue

(b)

Figure 3.5:
Allowed reordering of memory requests when a warp has (a) a load, and (b) a

store waiting in the NewCAR queue. W[0] denotes an example warp that has a

memory request in the NewCAR queue, and W[N] denotes any other warp.

Memory requests from other warps can always bypass the memory request

from the example warp. Loads from the example warp can bypass the loads

from itself, but not the stores. Stores from the example warp cannot bypass any

loads or stores from itself.

it goes straight into the NewCAR queue.

3.3.5 ELF with Instruction Prefetch

Fetch stalls can stop high priority warps from issuing instructions in ELF because

they need to wait for an L1I cache miss as discussed in Section 3.2.2. To reduce such

waits, a simple next line prefetcher [79] is employed for the L1I. However, naively using

29

elf/figs/newcar_cropped.eps
elf/figs/ld_consistency_cropped.eps
elf/figs/st_consistency_cropped.eps

System Parameters

SM 15 SMs, 1400 MHz, 32 SIMT width

32768 registers per SM

1536 maximum threads per SM

8 maximum thread blocks per SM

48 kB shared memory

Memory Subsystem 2 kB/4-way/128B L1I per SM

8 MSHRs per L1I

16 kB/4-way/128B L1D per SM

32 MSHRs per L1D

768kB/16-way/128B L2

32 MSHRs per L2 partition

6 memory partitions

FR-FCFS DRAM scheduler

177.4 GB/s bandwidth

Table 3.1: System configuration

a prefetcher on GPUs can increase the memory contention, which can negatively impact

the GPU performance as studied by prior work on data prefetchers [39, 74]. To avoid this

problem, the occupancy of MSHRs can be monitored to determine whether there is mem-

ory contention. The next line prefetcher for the L1I only issues a prefetch request when the

total number of occupied MSHRs in both L1I and L1D is less than a threshold. As shown

in Section 3.4.1, an instruction prefetch is issued only when the total number of occupied

MSHRs is less than 16.

3.4 Results

The GPGPU-Sim v3.2.2 [5] is extended to evaluate ELF. GPGPU-Sim only models the

GPU, where the host code and the overhead of data transfers between the CPU and the

GPU do not affect the simulation results. A Fermi [46] architecture is modeled, which is

similar to the Nvidia GTX480. The detailed configuration is listed in Table 3.1. For ELF,

30

32 program point slots were assumed to be available, and the score field is 8-bit, which can

store up to a distance of 256 instructions. The compiler part of ELF is implemented as a

part of the run-time system, which performs all the necessary analysis before the kernel is

launched and passes the generated information to the GPGPU-Sim.

A wide range of GPGPU applications from Nvidia SDK [51], GPGPU-Sim [5], Rodinia

v2.4 [7], and Parboil [82] benchmark suite are used for evaluation. Table 3.2 lists all the

evaluated benchmarks, their labels, and kernels with the number of program points before

merge. Trivial kernels from SDK were left out, and a few benchmarks from other suites

that took too much time to simulate even with the smallest input.

ELF and other two orthogonal techniques are first explored to illustrate their individ-

ual performance improvements over the baseline greedy-then-oldest (GTO) scheduling.

ELF++, which uses all the techniques together, is also evaluated to show whether the im-

provements are additive or have synergy when used together.

ELF++ is compared with three prior warp scheduling policies: 2-LV [45], CCWS [68],

and DYNCTA [33]. For 2-LV, the version provided with the GPGPU-Sim v3.2.2 is used.

For CCWS, we used publicly available version, which is based on a prior GPGPU-Sim

version than the one that evaluates ELF. The GPU configuration is modified to match the

baseline Fermi architecture that resembles the GTX480. To be fair, the GTO in CCWS

version was used as the baseline of CCWS. DYNCTA was implemented and verified with

the results from the prior published work.

31

Benchmark Label Kernel PP

Breadth First Search [7] BFS Kernel 9

Kernel2 1

Back Propagation [7] BP bpnn layerforward 2

bpnn adjust weights 12

BlackScholes [51] BS BlackScholesGPU 4

B+ Tree [7] BT findRangeK 22

findK 13

Coulombic Potential [82] CP cenergy 3

3D Finite-Difference Time-Domain [51] FDTD FiniteDifferences 60

Histogram [82] HIST prescan kernel 7

intermediates kernel 16

main kernel 15

final kernel 20

HotSpot [7] HS calculate temp 2

Heart Wall [7] HW kernel 94

Kmeans [7] KM invert mapping 2

kmeansPoint 3

Laplace-Boltzmann Method [82] LBM performStrideCollide 20

Leukocyte Tracking [7] LC GICOV kernel 4

dilate kernel 3

IMGVF kernel 10

LavaMD [7] LMD kernel gpu cuda 23

3D Laplace [5] LPS GPU laplace3d 5

LU Decomposition [7] LUD lud diagonal 16

lud perimeter 48

lud internal 3

Magnetic Resonance Imaging [82] MRIQ ComputePhiMag 2

ComputeQ 5

MUMmerGPU [7] MUM mummergpuKernel 9

printKernel 12

Needleman Wunsch [7] NW needle cuda shared 1 19

needle cuda shared 2 19

Particle Filter [7] PF likelihood 22

sum 2

normalize weight 8

find index 5

RadixSort [51] RS radixSortBlocks 2

findRadixOffsets 1

reorderData 4

Matrix Multiply [82] SGEMM mysgemmNT 20

Speckle Reducing Anisotropic Diffusion [7] SRAD srad cuda 1 9

srad cuda 2 10

Stencil [82] ST hybrid coarsen x 13

Sparse Matrix Vector Multiply [82] SpMV spmv jds 11

Two Point Angular Corr. Function [82] TPACF gen hists 8

Table 3.2:
Benchmark specifications to evaluate ELF. PP refers to the number of program

points before the merge.

3.4.1 ELF Performance

Figure 3.6 shows the individual performance improvement of NewCAR, instruction

prefetch, and ELF over the baseline GTO as well as ELF++, which uses the three tech-

niques together. On average, NewCAR, instruction prefetch, ELF and ELF++ improve

the performance by 2.5%, 4.9%, 4.1%, and 11.9%, respectively. While NewCAR and in-

32

-5%

0%

5%

10%

15%

20%

25%

30%

35%

40%

P
er

fo
rm

an
ce

 I
m

p
ro

v
em

en
t

(%
)

NewCAR Instruction Prefetch ELF ELF + NewCAR + Instruction Prefetch (ELF++)

%% %

Figure 3.6:
Performance improvement of NewCAR, instruction prefetch, ELF, and ELF++

over the baseline GTO. ELF++ combines ELF with NewCAR and instruction

prefetch.

0%

20%

40%

60%

80%

100%

P
ri

o
ri

ty
 R

ec
al

cu
la

ti
o
n

R
ed

u
ct

io
n
 (

%
)

Figure 3.7:
Reduction of priority recalculation in ELF compared to the naive priority re-

calculation.

struction prefetch are very effective for a few benchmarks, they do not provide consistent

benefit across all the benchmarks. On the other hand, ELF is broadly effective among

the benchmarks. Also, NewCAR may degrade the performance, as in the case of BS and

LBM, because the locality may be lost in the cache when there are many requests waiting in

the re-execution queue. FDTD and LC, which show large improvements from instruction

prefetch, correspond to the benchmarks with high fetch stalls from Figure 3.2. The result

illustrates that the fetch scheduling can be as important as the warp scheduling.

As shown in the figure, ELF performs better than the baseline GTO because the MLP

is maximized in warp scheduling as well as the fetch scheduling. Note that ELF improves

performance for not only the memory-intensive benchmarks like BFS and KM [68] but also

the compute-intensive benchmarks like CP and HS [33].

33

elf/figs/breakdown_cropped.eps
elf/figs/recalc_cropped.eps

When ELF is combined with NewCAR and instruction prefetch, they compensate each

other. As shown by the results, ELF++ shows additive improvements from the three tech-

niques, and a synergy of 0.4% additional improvement on average. The synergy mostly

comes from ELF and NewCAR, where ELF++ can exploit more MLP with NewCAR be-

cause NewCAR reduces memory conflict stalls.

Figure 3.7 illustrates the percentage of reduction in the number of priority recalculation

in ELF compared to the naive priority recalculation. The number of priority recalculation

can be reduced by 91.4% on average, by only invoking the recalculation when necessary.

Because a warp progresses by one instruction most of the time, which reduces the distance

to the next memory load by one, most of the priority recalculation can be avoided. The

reduction is bounded by the ratio of memory loads and branches in the total executed in-

structions as they are the only source of priority recalculation. For example, BT has less

reduction because it has more fraction of memory loads than the other benchmarks.

Figure 3.8 (a) depicts the sensitivity of ELF++ to the number of available program

points on a GPU. On average, performance is improved by 11.9%, 11.9%, 11.9%, and

12.1% when the number of program points is 16, 32, 48, and infinite, respectively. As

expected, the performance is dropped when the number of program points changes from

infinite to a finite number. Although performance on average slightly improves as the

number of program points is decreased, however, individual benchmark shows a random

trend. For example, HW, which has the largest number of program points, shows the peak

performance when the number of program points is 32. ELF chooses to merge the two

program points with the least distance between them, but the removed program point may

be an important load that should be considered for priority calculation. Although profiling

34

6%

7%

8%

9%

10%

11%

12%

16 32 48 Infinite

P
er

fo
rm

an
ce

 I
m

p
ro

v
em

en
t

(%
)

Number of Program Points

6%

7%

8%

9%

10%

11%

12%

0 4 8 12 16 20 24

P
er

fo
rm

an
ce

 I
m

p
ro

v
em

en
t

(%
)

Threshold for Instruction Prefetch

(a) (b)

Figure 3.8:
Sensitivity of ELF++ to (a) the number of available program points, and (b)

the threshold for instruction prefetch. A geometric mean of IPC improvement

for all the benchmarks is presented.

can help to identify the critical program points, but it is left as a future work because the

overall difference is small.

Figure 3.8 (b) shows the sensitivity of ELF++ to the threshold for instruction prefetch,

where an instruction is prefetched only when the number of occupied MSHRs in both L1I

and L1D is below the threshold. Instruction prefetch is disabled when the threshold is zero.

Performance is improved by an average of 6.7%, 10.8%, 11.2%, 11.4%, 11.9%, 11.9%, and

11.9% when the threshold is 0, 4, 8, 12, 16, 20, and 24, respectively. As discussed in Sec-

tion 3.3.3, blindly issuing instruction prefetch can increase the memory contention, which

can degrade the overall performance. Therefore, performance is expected to improve until a

certain threshold, where instruction prefetch provides benefit without congesting the mem-

ory too much. In the figure, the curve has the maximum improvement at threshold of 16

although the performance degradation is small afterwards. Looking at the performance of

individual benchmarks, a subset of benchmarks like MUM, which lose performance with

a larger threshold, only shows small performance degradation. Benchmarks like FDTD,

LC, and LUD, which obtain the most benefit from instruction prefetch, were not negatively

35

elf/figs/pp_sensitivity_cropped.eps
elf/figs/ipref_sensitivity_cropped.eps

Structure Storage # Entries Total

per Entry

Priority Calculator 42-bit 32 0.16 kB

Warp Priority Table 8-bit 48 0.05 kB

NewCAR 301-bit 32 1.18 kB

Table 3.3: Hardware overhead per SM from additional structures.

0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

N
o

r
m

a
li

z
e

d
 I

P
C

2-LV CCWS DYNCTA ELF++

Figure 3.9: Comparison of ELF++ with prior works. GTO is the baseline.

impacted by the increased threshold. Nevertheless, ELF++ chooses to use 16 as the thresh-

old in all the experiments because the performance improvement is maximized at the point

although the difference is small.

3.4.2 Hardware Overhead

Table 3.3 shows the hardware overhead of ELF++ per SM. Priority calculator has 32

program points, where each program point requires 1-bit for the valid field, 1-bit for the

branch field, 32-bit for the PC, and 8-bit for the score. The WPT requires 8-bit per warp

for the priority. GTX480 can have up to 48 warps per SM. NewCAR requires the same

overhead as the CAR [75]. In total, ELF++ only consumes 1.39kB extra storage space per

SM.

36

elf/figs/cmp_perf_cropped.eps

3.4.3 Comparison to Prior Works

Figure 3.9 compares the performance improvement of ELF++ over GTO with three

prior works: 2-LV [45], CCWS [68], and DYNCTA [33]. On average, 2-LV, CCWS,

DYNCTA and ELF ++ improves -3.2%, 0.1%, -2.3%, and 11.9% over the baseline GTO.

With the wide range of applications, 2-LV and DYNCTA perform worse than the GTO.

For example, BP, CP, HS, and RS show noticeable slowdown in 2-LV and DYNCTA. On

the other hand, ELF++ always shows either similar or better performance compared to the

GTO.

2-LV and DYNCTA perform slightly worse than GTO on average. The only difference

between 2-LV and GTO is that 2-LV continuously gives higher priority to the newer group

until it issues all the ready instructions while GTO switches back to the older group (thread

block) more quickly. Therefore, 2-LV and GTO provide similar performance on average.

In DYNCTA, fewer thread blocks are scheduled to an SM to reduce the memory contention.

Because warps are scheduled to an SM in a thread block granularity, GTO will schedule

the warps in the oldest thread block more frequently than the other warps achieving similar

effect to DYNCTA. As a result, DYNCTA performs similar to GTO.

CCWS reduces cache thrashing by limiting the number of warps that can send out

new memory requests. Therefore, CCWS provides performance improvement over for

cache-sensitive benchmark like KM, PF, and SpMV. However, in general, there are more

benchmarks that are not cache-sensitive. As a result, CCWS provides similar performance

to GTO on average.

In LBM, 2-LV and DYNCTA performs better than GTO while ELF++ performs slightly

37

0.95

1.00

1.05

1.10

1.15

2-LV CCWS DYNCTA ELF++

N
o

r
m

a
li

z
e

d
 I
P

C

16kB 48kB

Figure 3.10:
Comparing ELF++ to prior works when different cache configurations are

used. GTO is the baseline.

worse than GTO. LBM has a lot of memory resource conflicts all the time because twenty

memory loads are clustered back-to-back at the beginning of the program. These memory

loads show row locality on the DRAM side when the warps within a thread block issue

the same memory instruction. However, GTO and ELF++ will prioritize one warp until it

issues all the twenty memory loads, which takes more than half of the MSHRs. As a result,

GTO and ELF++ do not perform well as they lose the row locality on the DRAM side.

In fact, any warp scheduler that round-robins within a thread block performs better than

the warp schedulers that prioritize a warp in greedy fashion. For example, LRR scheduler

achieves similar performance to 2-LV and DYNCTA for LBM.

Figure 3.10 compares ELF++ with prior works when cache configuration is different.

GTX480 can be adjusted to have either 16kB L1D or 48kB L1D. As shown by the fig-

ure, all the techniques have slightly less improvement compared to the baseline GTO with

48kB L1D. On average, normalized IPC equals to 0.964, 0.986, 0.974, and 1.095 for 2-

LV, CCWS, DYNCTA, and ELF++ with 48kB L1D. This is because memory requests are

likely to have more L1D cache hits with a larger L1D as it can retain more data. Con-

sequently, the average memory latency is reduced with the larger L1D. ELF++ improves

over GTO and other prior works in both cache configurations because it can issue memory

38

elf/figs/cache_sensitivity_cropped.eps

requests faster than other schedulers, which can hide miss latencies better. As a result,

ELF++ overlaps more long latency memory operations with each other, which reduces the

number of memory-related stalls more than other schedulers.

3.5 Related Work to ELF

Since the emergence of GPUs as a general-purpose parallel computing platform, a sig-

nificant number of studies have been proposed to improve GPU performance. Prior works

that exploited memory-level parallelism in various platforms are first reviewed, and then

GPU-specific ideas that enhance GPU performance with alternative warp or thread block

scheduling are summarized.

3.5.1 Memory-Level Parallelism

Memory-level parallelism (MLP) was recognized as one of the key objectives in com-

puter architecture since CPUs’ performance overwhelmed the memory performance [21].

Pai and Adve [56] applied code transformations to cluster more read misses within the

same instruction window of an out-of-order processor. They also measured the improved

MLP by measuring MSHR utilizations. Many other works [81, 41] also used the number of

occupied MSHRs or stall cycles due to full MSHRs to measure MLP. Zhou and Conte [95]

used value prediction techniques to increase MLP by parallelizing loads that were sequen-

tially dependent. MLP-aware replacement [66] notes that an out-of-order processor can

exploit more MLP if the LLC misses occur in parallel. In that sense, it tries to remove

isolated misses in the LLC. Chou et al. [10] showed that runahead execution [15, 44], ef-

39

fective instruction prefetching, and accurate branch prediction can improve MLP, which in

turn enhances the overall performance. The challenge of achieving high MLP on GPUs is

different from the CPUs because latency hiding on GPUs is done by fast context switch

between warps, where inter-warp data locality is scarce.

Some prior works have studied data prefetching or direct memory access (DMA) on

GPUs, which essentially improves MLP on GPUs. MT-prefetching [39] prefetches data for

other threads rather than for itself. Also, it shows that throttling mechanism may be needed

for prefetching when prefetching is harmful because of low accuracy. APOGEE [74] in-

troduces timely prefetching by adjusting the distance of prefetching. APOGEE mainly

focuses on improving energy efficiency by reducing the number of thread contexts to hide

the memory latency with prefetching. D2MA [27] achieves MLP on GPUs by transferring

data from the global memory to the shared memory behind the scenes. ELF also tries to

maximize memory-level parallelism, but modifies the warp and fetch scheduler to achieve

the goal, which includes instruction prefetching.

3.5.2 GPU Scheduling

Early works have noticed that it is better to prioritize a group of warps rather than

giving equal priority to all the warps. Two-level warp scheduling [45] divides warps into

groups, where the scheduling algorithm is re-structured into scheduling warps within a

group and scheduling between the groups. Two-level warp scheduler only schedules from

another group when all the warps within one group are blocked by long latency operations.

Gebhart et al. [20] also utilize the two-level scheduling for energy-efficiency.

Some of the works have focused on utilizing warp scheduling to reduce cache con-

40

tention. CCWS [68] observes that intra-warp locality is dominant in the L1 data cache for

GPUs. By monitoring the L1 cache behavior, CCWS only allows a subset of active warps to

issue memory requests to exploit the intra-warp locality in the L1 data cache. DAWS [69]

also uses the idea of throttling a subset of warps from issuing requests, however, DAWS

is also aware of memory divergence, which occurs when memory requests from threads

within a warp cannot be coalesced. DAWS predicts a L1 cache footprint for each warp

either by profiling or run-time sampling, and uses the information to find the number of

warps to be throttled. OWL [29] proposes four schemes, which include thread block aware

warp scheduling, locality aware scheduling, bank-level parallelism aware scheduling, and

opportunistic prefetching.

Some other works have looked at controlling the number of scheduled thread blocks.

DYNCTA [33] shows that issuing maximum number of thread blocks to an SM is not al-

ways beneficial because memory-intensive applications create cache contention. By look-

ing at how many cycles are stalled by memory, DYNCTA tries to predict the optimal num-

ber of thread blocks to be scheduled. However, the choice of the thresholds is dependent

on micro-architecture. LCS [40] notes that GPUs are designed to hide latencies by leverag-

ing the thread-level parallelism (TLP). In that sense, the optimum number of thread blocks

to be scheduled on an SM is the number of thread blocks that can hide latencies until one

thread block finishes. LCS monitors the number of instructions issued for each thread block

during an execution of a single thread block, and calculates the number of thread blocks to

be scheduled.

More recent works have focused on prioritizing memory requests from one warp, and

explored a possibility of doing useful works when the load/store unit is stalled. MRPB [28]

41

prioritizes memory accesses from the same warp to preserve locality in the L1 data cache.

MRPB also notes that an associativity stall may occur because of the allocate-on-miss

policy on the L1 cache. Even if MSHRs and miss queues are available, the memory request

cannot be accepted because there is no more way to allocate. In such cases, MRPB bypasses

the L1 cache. Mascar [75] schedules the warps with outstanding memory requests first

when memory resources are saturated. Mascar also utilizes cache access re-execution to

enable hit-under-miss.

ELF shares the basic idea that the performance in GPUs can be improved by carefully

scheduling warps. However, ELF primarily differs with prior works by giving higher prior-

ity to the warps with sooner memory operations. Also, ELF shows that reducing memory

conflicts and fetch stalls can provide additional improvement.

3.6 ELF Conclusions

This chapter presented ELF, a GPU scheduling mechanism that maximizes the MLP as

fast as possible by scheduling a warp with an earliest memory load first. In order to achieve

the goal, ELF utilizes both compiler and hardware to give higher priority to the warps that

have fewer remaining instructions to the next memory load operation. The importance

of the interplay between the warp scheduler and the fetch scheduler was shown for ELF:

the fetch unit should prioritize according to the issue priorities. Moreover, two cases were

identified when ELF could improve the performance further by explaining when ELF is not

fully achieving its goal. First, memory conflicts can block new memory requests. An ex-

tended version of cache access re-execution (NewCAR) was introduced to reduce memory

42

conflicts and thus increase the MLP. Second, fetch stalls can block higher priority warps

from making progress because they are waiting for the instructions. A simple next line

prefetcher for the L1I cache was sufficient to reduce most of the fetch stalls. Evaluations

show that ELF can improve the performance by 4.1% over the greedy-then-oldest (GTO)

scheduler with only 1.39kB extra storage per SM. When used with other techniques like

NewCAR and instruction prefetching, ELF can achieve total speedup of 11.9% over the

GTO.

43

CHAPTER IV

Chimera: Collaborative Preemption for Multitasking on a

Shared GPU

4.1 Introduction

Many modern computer systems are heterogeneous systems, where GPUs are attached

to CPUs for throughput-oriented workloads (or kernels). These systems often have mul-

tiple CPUs that share a single GPU. When multiple CPUs offload data-parallel kernels

simultaneously onto a shared GPU, multitasking must be supported. Recently, Nvidia’s

Kepler architecture [47] introduced the Hyper-Q feature to maintain multiple independent

kernel queues to concurrently execute independent kernels on a shared GPU. However, this

feature is limited to the kernels within a single process. Multi-Process Service (MPS) [52]

achieves multitasking with a software solution, but is limited to MPI applications. With

current generation GPUs, kernels have to wait until a previously running kernel finishes, if

multiple processes are trying to share a GPU.

Traditionally, preemptive multitasking on CPUs has been achieved through context

switching, which has a reasonable preemption latency and throughput overhead. How-

44

ever, supporting preemptive multitasking on GPUs through context switching can incur a

higher overhead compared to CPUs, where the context of an SM can be as large as 256kB

of register file and 48kB of on-chip scratch-pad memory [3, 55, 83]. Not only does a ker-

nel have to endure a long preemption latency, the GPU also wastes execution resources

while context switching. Although Tanasic et al. [83] has shown that the average normal-

ized turnaround time can still be improved with high context switching overhead, such

overhead wastes the GPU’s computing power and may be ineffective for latency-sensitive

applications [31, 32, 6].

To overcome these challenges, this chapter proposes Chimera, a collaborative preemp-

tion approach for GPUs that can precisely control the preemption overhead. Chimera

can achieve a specified preemption latency while minimizing throughput overhead. Since

GPUs consist of multiple SMs, a preemption request can have multiple solutions with di-

verse overheads by preempting different subsets of SMs with different preemption tech-

niques. Given a preemption request, Chimera explores the possible solutions to mini-

mize throughput overhead while conforming to the required preemption latency. Chimera

achieves the goal by intelligently selecting which SMs to preempt and how each thread

block will be preempted.

Chimera first introduces SM flushing, a GPU-specific preemption technique that is en-

hanced to exploit the semantics of thread blocks in the GPU programming model and the

concept of idempotence to achieve low preemption latency. A kernel is idempotent if it gen-

erates the same result even if it is restarted in the middle of its execution [35, 14, 17, 43].

Chimera further relaxes the idempotence condition to enable flushing for more kernels. A

thread block is defined to be idempotent at the time of preemption if it produces the same

45

result up to the preemption point even if it is restarted from the beginning. Thus, the context

of a thread block can be safely dropped with the relaxed idempotence condition even if the

kernel is non-idempotent. Because non-idempotent execution regions tend to be clustered

at the end of execution in GPU kernels, relaxed idempotence is effective for increasing the

opportunities for flushing.

In addition to flushing, Chimera has two other preemption techniques in its toolbox:

context switching, and draining. Context switching [43, 83] stores the context of currently

running thread blocks, and preempts an SM with a new kernel. Draining [31, 83] stops

issuing new thread blocks to the SM and waits until the SM finishes its currently running

thread blocks.

These three preemption techniques exhibit different tradeoffs between preemption la-

tency and throughput overhead. Context switching has an almost constant mid-range pre-

emption latency and throughput overhead. Draining has the least throughput overhead, but

preemption latency can be long if the preemption happens near the beginning of the thread

block execution. Flushing has almost zero preemption latency, but throughput overhead

can be large if the preemption occurs near the end of thread block execution.

Chimera recognizes the different tradeoffs of these three preemption techniques and

chooses which SMs to preempt and how each thread block will be preempted. Chimera

estimates the costs of the three preemption techniques for the candidate SMs, and intelli-

gently selects SMs and corresponding preemption technique by comparing the costs.

This chapter makes the following contributions:

• This chapter introduces SM flushing, a GPU-specific adaptation of a classic preemp-

46

tion technique that can instantly preempt an SM. This chapter combines the concept

of idempotence with the semantics of thread blocks in the GPU programming model

to enable efficient SM flushing.

• This chapter shows that relaxing the idempotence condition is essential for SM flush-

ing to achieve its promised preemption latency. Detecting the relaxed idempotence

condition can be done in software.

• This chapter shows that the three available preemption techniques for GPUs, namely

context switching, draining, and flushing, make different tradeoffs between preemp-

tion latency and throughput overhead. Moreover, these tradeoffs change as a thread

block makes execution progress on an SM.

• This chapter proposes Chimera, a collaborative preemption approach for a shared

GPU that achieves a specified preemption latency while minimizing throughput over-

head. Chimera recognizes tradeoffs of available preemption techniques, and makes

an intelligent decision as to which SMs to preempt and how to preempt each thread

block.

4.2 Motivation

This section introduces the three preemption techniques used in Chimera. This section

also motivates the need for collaboration among the preemption techniques.

47

1

10

100

1000

10000

B
S

.0

B
T

.0

B
T

.1

B
P

.0

B
P

.1

C
P

.0

F
W

T
.0

F
W

T
.1

F
W

T
.2

H
W

.0

H
S

.0

K
M

.0

K
M

.1

L
C

.0

L
C

.1

L
C

.2

L
U

D
.0

L
U

D
.1

L
U

D
.2

M
U

M
.0

M
U

M
.1

N
W

.0

N
W

.1

S
A

D
.0

S
A

D
.1

S
A

D
.2

S
T

.0

av
er

ag
e

P
re

em
p

ti
o

n
 L

at
en

cy
(u

s) Switch Drain Flush

Figure 4.1:
Estimated preemption latency for each preemption technique. For draining, a

uniform random distribution on the preemption point across thread block exe-

cution is assumed. For flushing, zero preemption latency is assumed.

0%

20%

40%

60%

80%

100%

B
S

.0

B
T

.0

B
T

.1

B
P

.0

B
P

.1

C
P

.0

F
W

T
.0

F
W

T
.1

F
W

T
.2

H
W

.0

H
S

.0

K
M

.0

K
M

.1

L
C

.0

L
C

.1

L
C

.2

L
U

D
.0

L
U

D
.1

L
U

D
.2

M
U

M
.0

M
U

M
.1

N
W

.0

N
W

.1

S
A

D
.0

S
A

D
.1

S
A

D
.2

S
T

.0

av
er

ag
e

T
h
ro

u
g
h
p

u
t

O
v
er

h
ea

d
 (

%
) Switch Drain Flush

Figure 4.2:
Estimated throughput overhead for each preemption technique when thread

blocks running on an SM are assumed to be in sync. For flushing, a uniform

random distribution on the preemption point across thread block execution is

assumed.

4.2.1 Spatial Multitasking

As described in Chapter II, SMs do not share any states among themselves. Spatial

multitasking [3] exploits this property to allow GPUs to run multiple kernels on different

subsets of SMs. Preemptive multitasking can also exploit the same property by preempting

only a subset of SMs to yield to a new kernel. Starvation can also be avoided by scheduling

at least one SM to each available kernel.

4.2.2 Prior Preemption Techniques

Supporting preemptive multitasking incurs overheads in terms of latency and through-

put. For example, context switching for preemption in CPUs involves saving the context

48

chimera/figs/motif_cropped.eps
chimera/figs/motif_tp_cropped.eps

of the currently running process/thread, running the operating system (OS) scheduler to

choose the next process/thread to run, and loading context of the selected process/thread.

Preempting a process/thread experiences increased response time due to preemption la-

tency. Also, system throughput is degraded because no progress is made during context

switching. The overhead of context switching is proportional to the size of the context.

Modern GPUs can have up to 2048 threads concurrently running on a single SM [47].

Because each thread accesses its own registers, the context size for an SM can grow quickly.

Moreover, each SM has its own on-chip scratch-pad memory, which is shared by the threads

within a thread block. For modern GPUs, the context of a single SM can be as large as

256kB of register file and 48kB of shared memory [3, 55, 83]. With such a large con-

text, preempting with context switching has high overhead in both preemption latency and

wasted throughput.

To avoid the throughput overhead of context switching, SM draining [83] has been

proposed. Because thread block executions are independent from each other in the GPU

execution model, a thread block does not have to remember its context when it finishes

execution. When an SM is preempted with draining, new thread blocks are no longer issued

to that SM. When the SM finishes all the running thread blocks, the SM is preempted and

can be assigned to another kernel. As the SM is continuously making progress during

preemption, throughput overhead of draining is much less than that of context switching.

Draining, however, does not solve the preemption latency problem. Because the pre-

emption latency of draining is dependent on the remaining execution time of thread blocks

in the SM, it can be much higher than that of context switching.

49

4.2.3 SM Flushing

To enable low preemption latency, SM flushing is introduced, which further exploits

the independence of thread block execution in the GPU execution model. Flushing drops

an execution of a thread block without context saving and re-executes the dropped thread

block from the beginning on another SM. Because thread block executions are independent,

other thread blocks do not notice whether a thread block has been rerun from the beginning.

Flushing reduces the preemption latency to almost zero. However, certain conditions have

to be met to ensure the correctness of the thread block execution that was dropped and rerun

from the beginning.

A GPU kernel is idempotent if it produces the same result regardless of the number of

times it is executed [35, 14, 17, 43]. Because there is no interaction between thread blocks,

idempotence conditions for a GPU kernel are much simpler than those in general CPU

applications. To be idempotent, a kernel should not have any 1) atomic operations, and 2)

overwrites to a global memory location that is read in the kernel. In the studied benchmarks,

12 out of 27 kernels were found to be idempotent. The idempotence conditions are listed

in Table 4.2. Without enabling flushing in all the kernels, flushing loses its effectiveness

because it cannot preempt non-idempotent kernels. The details of relaxing the idempotence

conditions, and implementation of flushing are further discussed in Section 4.3.4.

4.2.4 Tradeoff

Context switching, draining, and flushing make different tradeoffs between preemption

latency and throughput overhead. Figure 4.1 shows the estimated preemption latency for

50

each preemption technique. In the figure, the y-axis shows preemption latency on a loga-

rithmic scale, and the x-axis shows the kernels in the benchmarks. If multiple kernels are

launched in a benchmark, they are differentiated with numbers after the benchmark name

and a dot. All the labels and numbers for benchmarks and kernels are listed in Table 4.2.

To estimate the preemption latency of context switching, an SM is assumed to have only its

share of global memory bandwidth to save its context. Context size can be calculated from

the kernel’s resource usage even before the kernel launch. The same method was used in

[83] to project the estimated preemption latency for context switching. To estimate the pre-

emption latency for draining, the average time to execute a thread block is first measured

through simulation. Assuming uniform random distribution on the preemption point across

the execution of a thread block, the preemption latency for draining can be calculated. The

preemption latency for flushing idempotent kernels is assumed to be zero.

In Figure 4.1, context switching shows a relatively constant response time in the order

of 10 µs, while draining exhibits diverse response time ranging from 0.8 µs to 10212.8 µs.

On average, context switching, draining, and flushing require 14.5 µs, 830.4 µs, and 0 µs,

respectively, to preempt an SM. They are equivalent to an order of 10,000, 500,000, and 0

cycles, respectively, in current generation GPUs.

Figure 4.2 shows the estimated throughput overhead for each preemption technique. In

the figure, the y-axis shows the percentage of throughput overhead for each preemption

technique compared to the throughput without preemption. Thread blocks running on an

SM are assumed to be in sync. The throughput overhead of context switching is twice the

preemption latency divided by the thread block execution time, where the preemption la-

tency is doubled because throughput overhead comes both from context saving and context

51

Switch

Thread Block Progress (%)

C
o
st

Drain

Flush

100 %0 %

Optimal

Figure 4.3:
Theoretical cost of each preemption technique when preempting a thread block

at a given amount of execution progress. Context switching has constant cost

across the execution, draining has lower cost as a thread block is near the end

of execution, and flushing has lower cost as a thread block is closer to the

beginning of execution.

loading. SM draining is assumed to have zero throughput overhead because it continuously

does useful work until the thread block finishes. In reality, thread blocks can be out of sync,

which will cause draining to incur some throughput overhead. To estimate the throughput

overhead of flushing, a uniform random distribution on the preemption point across the

execution of a thread block is again assumed. The throughput overhead of flushing is inde-

pendent of the kernel, and is constant across all the benchmarks. Overall, context switching,

draining, and flushing have throughput overhead of 47.7%, 0%, and 30.7%, respectively.

4.2.5 Collaborative Preemption

Different tradeoffs from the three preemption techniques encourage using different pre-

emption techniques for each kernel. In fact, different tradeoffs can be further exploited by

using different preemption techniques within one preemption request. Because a preemp-

tion request would typically want multiple SMs at the same time, each SM can be pre-

empted with a different preemption technique. Moreover, each thread block in the SM can

be preempted with a different preemption technique.

52

chimera/figs/ideal_cropped.eps

Figure 4.3 depicts the theoretical cost of each preemption technique if a thread block

at a given progress is preempted. The cost can be thought of as an aggregate measure of

preemption latency and throughput overhead. The cost of context switching is dependent

on the context size and the available bandwidth for an SM, which is almost constant across

thread block execution. The cost of draining, which is primarily preemption latency, is

dependent on the remaining execution time of a thread block. It decreases toward the end

of the thread block progress. The cost of flushing, on the other hand, is primarily throughput

overhead, which is dependent on the work thrown away by flushing. More work is thrown

away as the thread block progresses; hence, the cost increases accordingly.

The figure motivates to preempt with flushing if a thread block is in the early stage of

execution, with context switching if a thread block is in the middle stage of execution, and

with draining if a thread block is near the end of execution. The exact points at which to

switch the preemption decision is based on the cost estimation of each preemption tech-

nique.

4.3 Architecture

Chimera is a collaborative preemption with three individual techniques: context switch-

ing, draining, and flushing. Context switching is implemented with a software trap routine.

Draining is performed by adding logic in a thread block scheduler that stops issuing new

thread blocks. Flushing requires reset logic in SMs, which clears all the states and in-flight

instructions in the SM. For context switching and flushing, an SM has to send the stopped

thread blocks’ IDs back to the thread block scheduler so that they can be re-issued to the

53

SM

Thread Block Scheduler

SM

Kernel Scheduler

Thread Block Queues per Kernel

...

Preempted TB

Next TB

SM-to-Kernel Mapping

Preempt

Chimera

SM

Scheduling

Policy

Cost

Estimation

Preemption

Selection

SM Drain

SM Flush

Context Switch

Preemption

Request

Figure 4.4:
GPU scheduler with preemptive multitasking. The scheduler is two-level: the

kernel scheduler assigns SMs to each kernel that may involve preemption de-

cisions, and the thread block scheduler executes the decision by dispatching

or preempting thread blocks from each SM. SMs can feedback the schedulers

when an event that can change the scheduling decision occurs.

other SMs.

Chimera decides which SMs to preempt and which preemption technique to use for

each thread block in the SMs, given the number of SMs to preempt. Chimera makes the

decision based on the upper bound for preemption latency given by the preempting ap-

plication or kernel. Chimera first estimates preemption latency and throughput overhead

for each thread block in an SM when it is preempted with each preemption technique.

Chimera chooses preemption techniques with the least throughput overhead that satisfy

the given preemption latency for an SM, which can give the total cost of preemption for

each SM. With the calculated costs, Chimera selects SMs which can minimize throughput

overhead while meeting the required preemption latency.

54

chimera/figs/scheduler_cropped.eps

4.3.1 GPU Scheduler with Preemptive Multitasking

Figure 4.4 illustrates the GPU scheduler with preemptive multitasking when multiple

GPU kernels are running concurrently. The scheduler is a two-level scheduler: the kernel

scheduler assigns kernels to each SM, which may involve preemption decisions, and the

thread block scheduler carries out the decision. The thread block scheduler dispatches a

new thread block to an SM, or preempts an SM with the given preemption techniques based

on the decisions from the kernel scheduler. The kernel scheduler is a part of an operating

system that manages a GPU device, while the thread block scheduler is a hardware module

in a GPU, which is an extension of GigaThread engine in Fermi [46] with preemption

support.

An SM partitioning policy in the kernel scheduler tells how many SMs each kernel will

run on. The policy is orthogonal to the preemption decisions. It may be dependent on a

characteristic of a kernel [3] or a priority of a kernel [83]. Chimera in the kernel scheduler

achieves an SM partitioning policy by making preemption decisions. The kernel scheduler

communicates to the thread block scheduler through SM-to-kernel mapping information

which contains per-SM information about which kernel to schedule, whether preemption

is necessary or not, and which preemption technique to use. The thread block scheduler al-

ways prefers to schedule the preempted thread blocks first so that the size of the preempted

thread block queue can be limited.

Chimera consists of two parts: estimating costs of preemption for each technique, and

selecting SMs to preempt with corresponding preempting techniques. To estimate the costs,

Chimera gathers statistics for SMs. The statistics are measured using hardware and re-

55

ported directly to Chimera. Based on these statistics, Chimera estimates preemption la-

tency in cycles, and throughput in the number of instructions rather than IPC. Chimera

can directly compare the estimated cost of each preemption technique because they are

calculated in the same units.

4.3.2 Cost Estimation

To distinguish different tradeoffs between different preemption techniques, Chimera

has to estimate the cost of each preemption technique precisely for each SM. First, Chimera

measures the total number of executed instructions for each thread block to determine the

progress of each thread block. Note that instructions are counted not in thread granularity,

but in warp granularity so that control divergence in a warp has minimal effect on the total

executed instructions. Second, Chimera also measures the progress of each thread block

in cycles. Chimera can calculate the average instructions-per-cycle (IPC) or cycles-per-

instruction (CPI) of a thread block with these two statistics.

The preemption latency of context switching is estimated using the same method as

detailed in Section 4.2.4. To estimate the throughput overhead of context switching, the

average IPC of the preempted kernel on a single SM is multiplied by twice the preemption

latency of context switching. Note that preemption latency is doubled because throughput

overhead not only comes from context saving, but also from context loading. The preemp-

tion latency of draining is estimated by multiplying the remaining instructions to execute

in a thread block by the average CPI of the preempted kernel. The average execution cy-

cles per thread block is not used directly because it has much larger variance compared

to the average executed instructions, leading to less accurate estimations. The throughput

56

Algorithm 3 Preemption Selection

Input: LatLimit, Kernel, NumPreempts ⊲ From SM Scheduling Policy

Output: SM Preemptions[1..NumPreempts]

1: for each SM in Kernel do

2: for each TB in the SM do

3: for each Preemption Technique do

4: TBCosts.push(EstimateCost(TB, Technique))

5: end for

6: end for

7: TBSorted = SortByThroughputOverhead(TBCosts)

8: while !TBSorted.empty() do

9: TBCandidate = TBSorted.pop()

10: if meets latency(TBCandidate) and TBCandidate.TB not in SingleSMCost then

11: SingleSMCost.add(TBCandidate)

12: end if

13: end while

14: for each TB not in SingleSMCost do

15: SingleSMCost.add(EstimateCost(TB, Switch))

16: end for

17: SMCosts.push(SingleSMCost)

18: end for

19: SMSorted = SortByThroughputOverhead(SMCosts)

20: for i = 1 to NumPreempts do

21: while !SMSorted.empty() do

22: SMCandidate = SMSorted.pop()

23: if meets latency(SMCandidate) then

24: SM Preemptions[i] = SMCandidate

25: break

26: end if

27: end while

28: end for

29: return SM Preemptions[1..NumPreempts]

overhead of draining is estimated by summing the difference between the number of exe-

cuted instructions for each thread block and the maximum number of executed instructions

among them. Flushing is always assumed to have zero preemption latency. The total num-

ber of executed instructions for thread blocks in the SM is used to estimate the throughput

overhead of flushing. When the cost cannot be estimated due to the lack of gathered statis-

tics, the maximum value is conservatively used as the estimated cost to avoid selecting

affected techniques.

57

4.3.3 Preemption Selection

Chimera is a collaborative preemption that achieves low overhead multitasking through

multiple preemption techniques with different overheads. SM scheduling policy, which is

independent of these decisions, provides Chimera a preemption latency constraint, a kernel

to preempt, and the number of SMs to preempt. Given the inputs, Chimera generates

combinations of which SM to preempt and how to preempt, while satisfying the latency

constraint.

Algorithm 3 illustrates how Chimera selects a subset of SMs and techniques to pre-

empt. The algorithm starts by estimating the cost of each preemption technique for the

thread blocks in an SM (line 2-6). The costs for the thread blocks are sorted by through-

put overhead (at line 7), and a preemption technique for a particular thread block is se-

lected if the preemption latency constraint is met and it is not already selected with another

preemption technique (line 8-13). If a thread block cannot meet the constraint with any

preemption technique, Chimera performs context switching for the thread block (line 14-

16). Now, Chimera knows the preemption costs for each SM that is running the given

kernel. It sorts all the costs by throughput overhead (at line 19). From the list of sorted

candidates, Chimera finalizes the preemption selection (line 20-28). When finalizing the

decision, Chimera checks whether the candidate satisfies the preemption latency constraint

(at line 23). Because only one candidate exists for an SM, Chimera does not have to check

whether the candidate SM is already selected.

The time complexity of Algorithm 3 is O(NTlogT +NlogN), where N is the number

of SMs that a kernel to preempt is occupying, and T is the number of available thread blocks

58

in an SM. The first term comes from the first loop (line 1-18), where preemption techniques

are selected for particular thread blocks. Two loops (line 2-6 and line 8-13) take the linear

time complexity of O(PT), where P is the number of preemption techniques. In Chimera,

P is a maximum of 3. The third loop (line 14-16) only takes the linear time complexity

of O(T). Therefore, sorting (at line 7) defines the time complexity with O(PT logPT) =

O(T logT). Since the outer loop runs N times, the entire loop (line 1-18) takes O(NTlogT).

The second term, which is O(NlogN), comes from sorting for SMs (at line 19). The last

loop (line 20-28) only takes the linear time complexity of O(N). In general, N is in the

order of 10 for current GPU generations. Furthermore, N will be reduced as more kernels

run concurrently on the GPU because each kernel is likely to occupy a lower number of

SMs. Also, T is a fixed number (maximum of 16 in Kepler [47]), but is typically less than

the maximum (8 is the largest number of thread blocks per SM for simulated benchmarks

in Table 4.2). Thus, the impact of the selection algorithm in Chimera is negligible to the

preemption latency.

4.3.4 SM Flushing

SM flushing can be effective if it can preempt all kernels, whether they are idempotent

or not. Flushing may still violate the required preemption latency if it cannot preempt an

SM due to non-idempotence. Implementation of flushing is fairly straightforward as an SM

already has a circuit that resets or clears itself.

The idempotence condition can be relexed further by looking at thread blocks individu-

ally with the notion of time. A GPU thread block is idempotent at a given time if it neither

1) has executed any atomic operations yet, nor 2) has overwritten a global memory location

59

System Parameters

SM 30 SMs, 1400 MHz, 8 SIMT width

32768 registers per SM

8 maximum thread blocks per SM

48 kB shared memory

Memory Subsystem 6 memory partitions

177.4 GB/s bandwidth

Table 4.1: System configuration

that is read by the thread block. Because atomic operations or global memory overwrites

tend to be performed at the end of a thread block execution, a thread block can remain

idempotent for most of its execution time even if the kernel itself is non-idempotent.

With the relaxed idempotence condition, SMs have to notify the GPU scheduler when

thread blocks have progressed beyond the non-idempotent point. The notification is imple-

mented in software by inserting a store instruction in front of atomic operations or global

overwrite operations. The store is made to a pre-defined address, which is non-cacheable.

SMs will prepend their ID to the store so that the store address is unique for each SM. As

SMs are in-order cores, these inserted stores are guaranteed to take place before the atomic

or global overwrite operations. The GPU scheduler looks at these pre-defined addresses to

check whether each SM can be preempted with flushing.

As atomic operations are separate hardware instructions, they are trivial to find. Global

overwrite operations are found by compiler analysis to distinguish between global writes

and global overwrites. While pointer alias analysis is undecidable [24] in general, pointers

are used in a more restricted fashion in GPU kernels, which allows the compiler to find

global overwrites precisely in most cases.

60

Benchmark (Label) Source Kernel (Label) Average Context TBs Switching IDPT

[Input] Drain Time /TB /SM Time (Region)

BlackScholes (BS) Nvidia BlackScholesGPU (0) 60.9 µs 24 kB 4 17.0 µs Yes

[4M Options] SDK [51]

B+ Tree (BT) Rodinia findRangeK (0) 3.5 µs 46 kB 2 15.9 µs No (47%)

[1M Nodes] [7] findK (1) 2.8 µs 36 kB 3 18.7 µs No (46%)

Back Propagation (BP) Rodinia bpnn layerforward (0) 3.1 µs 12 kB 6 12.5 µs No (89%)

[128K Nodes] [7] bpnn adjust weights (1) 1.8 µs 22 kB 5 19.0 µs No (52%)

Coulombic Potential (CP) Parboil cenergy (0) 746.9 µs 7 kB 8 10.4 µs No (63%)

[2K on 256x256 Grid] [82]

Fast Walsh Transform Nvidia fwtBatch2Kernel (0) 2.3 µs 21 kB 5 18.2 µs No (52%)

(FWT) [8M] SDK [51] fwtBatch1Kernel (1) 7.2 µs 28 kB 3 14.5 µs No (90%)

modulateKernel (2) 321.8 µs 18 kB 6 18.7 µs Yes

Heart Wall Tracking (HW) Rodinia kernel (0) 5.2 µs 67 kB 2 23.4 µs No (90%)

[656x744 Pixels/Frame] [7]

HotSpot (HS) Rodinia calculate temp (0) 4.5 µs 38 kB 3 19.7 µs Yes

[1024x1024 Data Points] [7]

Kmeans (KM) Rodinia invert mapping (0) 424.3 µs 10 kB 6 10.4 µs Yes

[0.5M Data, 34 Features] [7] kmeansPoint (1) 118.8 µs 12 kB 6 12.5 µs Yes

Leukocyte Tracking (LC) Rodinia GICOV kernel (0) 1162.0 µs 17 kB 7 20.9 µs Yes

[640x480 Pixels/Frame] [7] dilate kernel (1) 391.7 µs 9 kB 8 13.5 µs Yes

IMGVF kernel (2) 10173.2 µs 87 kB 1 15.2 µs No (99%)

LU Decomposition (LUD) Rodinia lud diagonal (0) 17.4 µs 4 kB 8 5.6 µs No (97%)

[512x512 Data Points] [7] lud perimeter (1) 26.2 µs 5 kB 8 8.1 µs No (94%)

lud internal (2) 3.5 µs 16 kB 6 16.6 µs No (80%)

MUMmer (MUM) Rodinia mummergpuKernel (0) 10212.8 µs 18 kB 6 18.7 µs Yes

[50000 25-char. Queries] [7] printKernel (1) 76.4 µs 24 kB 5 20.8 µs Yes

Needleman-Wunsch (NW) Rodinia needle cuda shared 1 (0) 18.2 µs 8 kB 8 11.1 µs No (96%)

[4096x4096 Data Points] [7] needle cuda shared 2 (1) 18.7 µs 8 kB 8 11.1 µs No (96%)

SAD Parboil mb sad calc (0) 42.3 µs 7 kB 8 10.1 µs Yes

[1920x1072 Pixels] [82] larger sad calc 8 (1) 82.9 µs 8 kB 8 11.1 µs Yes

larger sad calc 16 (2) 19.7 µs 2 kB 8 2.8 µs Yes

Stencil (ST) Parboil block2D hybrid coarsen x 122.3 µs 11 kB 8 15.9 µs Yes

[512x512x64 Grid] [82] (0)

Table 4.2:
Benchmark Specification. IDPT denotes idempotence, and the percentage of

idempotent region in a thread block execution for non-idempotent kernels is

also shown.

4.4 Results

The GPGPU-Sim v3.2.2 [5] is extended to evaluate Chimera. GPGPU-Sim only mod-

els the GPU, while the host code runs natively on CPUs. GPGPU-Sim does not model the

overhead of data transfers between the CPU and GPU either. A Fermi [46] architecture with

30 SMs is modeled. All the system configuration parameters are summarized in Table 4.1.

Context switching is implemented by halting an SM for the estimated context switch time

instead of using a software trap routine. The result for context switching will be rather op-

timistic in the sense that the memory bandwidth consumed by context switching will affect

61

other SMs to slow down in reality and vice versa, whereas the evaluated implementation

does not account for the effect.

For all the preemption techniques, the same SM scheduling policy is used, which is sim-

ilar to the mix of Smart Even and Rounds in spatial multitasking [3]. SMs are distributed

evenly across the kernels except when the kernel requires less SMs than the even split. A

kernel can request less SMs than the even split for two reasons: if a kernel is size-bound,

where the grid size or the number of thread blocks for the kernel cannot fully occupy its

portion of SMs at its launch, or if the remaining number of thread blocks is insufficient to

fully occupy the given number of SMs near the end of execution.

A wide range of GPGPU applications from Nvidia Computing SDK [51], Rodinia [7],

and Parboil [82] benchmark suite are evaluated. Table 4.2 lists all the evaluated bench-

marks, their inputs, and their kernels with their characteristics. The estimated average drain

time, the size of the context for one thread block, the maximal number of concurrent thread

blocks per SM, the estimated context switch time, and idempotence of the kernel are shown

as well. The importance of relaxed idempotence condition in flushing is partly shown by

the percentage of idempotent region in a thread block execution for non-idempotent ker-

nels. Note that idempotent kernels have 100% idempotent region, and are not shown in

the table. A subset of benchmarks from each benchmark suite with diverse characteristics

in terms of the context switching time, draining time, and the idempotence condition were

selected for evaluation.

62

0%
20%
40%
60%
80%

100%

B
S

B
T

B
P

C
P

F
W

T

H
W H
S

K
M L
C

L
U

D

M
U

M

N
W

S
A

D S
T

av
er

ag
e

V
io

la
ti

o
n

s
(%

)

Switch Drain Flush Chimera

Figure 4.5:
The percentage of preemptions that violate the deadline of a periodic, real-

time task when GPGPU benchmarks are run together. The preemption latency

constraint is 15 µs.

0%
10%
20%
30%
40%
50%

B
S

B
T

B
P

C
P

F
W

T

H
W H
S

K
M L
C

L
U

D

M
U

M

N
W

S
A

D S
T

g
eo

m
ea

n

T
h
ro

u
g
h
p
u
t

O
v
er

h
ea

d

Switch Drain Flush Chimera

(%
)

Figure 4.6:
Throughput overhead of each preemption technique when GPGPU benchmarks

are run with a periodic, real-time task. The preemption latency constraint is

15 µs. Effective throughput is used to avoid giving unfair advantage to the

preemption techniques that frequently miss the deadline.

4.4.1 Periodic Task with Deadline

Each GPGPU benchmark is first concurrently run with a synthetic GPU benchmark,

which mimics a periodic, real-time task that has a hard deadline. The synthetic GPU bench-

mark is launched every 1ms, preempting half of the SMs, and executed for 200µs. The

deadline for the synthetic benchmark is the execution time plus the required preemption

latency. The synthetic benchmark is killed if it misses the deadline. The simulation is run

until a GPGPU benchmark executes 1 billion instructions or finishes its execution.

Figure 4.5 illustrates the percentage of preemptions that violate the deadline of the

synthetic benchmark when the preemption latency constraint is set to 15µs. On average,

context switching, draining, flushing, and Chimera miss the deadline for 56.0%, 61.3%,

63

chimera/figs/syn_violations_cropped.eps
chimera/figs/syn_tp_cropped.eps

7.3%, and 0.2% of preemptions, respectively. Flushing, despite its zero preemption latency,

violates the deadline for BT and FWT because these benchmarks have small idempotent

regions with short thread block execution time. In such cases, flushing is more likely to

miss the deadline because thread blocks have higher chances to be in a non-idempotent

region even with the relaxed idempotence condition. On the other hand, Chimera misses

the dealine in 0.2% cases only. These misses are primarily due to the incorrect estimation

of draining latency. However, the error is in the range of few hundred cycles (< 1µs), and

can be avoided by providing a margin to preemption latency constraint against the deadline.

Figure 4.6 shows the overhead on throughput for each preemption technique in the

same scenario. If the deadline of the synthetic benchmark is missed, the throughput addi-

tionally gained by running GPGPU benchmark more during that period is ignored so that

the measured overhead is fair among the preemption techniques. Also, the throughput of

the synthetic benchmark is neglected on purpose, to isolate throughput overhead of each

preemption technique. Overall, context switching, draining, flushing, and Chimera have

throughput overhead of 12.2%, 8.9%, 19.3%, and 10.1%, respectively. Draining does not

have zero throughput overhead as explained in Section 4.2.4 because the assumption that

thread blocks are running in sync is not true in practice. However, it still achieves the min-

imum throughput overhead compared to switching, and flushing. Chimera shows similar

throughput overhead with significantly fewer deadline misses. FWT, LUD, and NW show

least throughput overhead for Chimera because they include kernels that either have short

execution time (SMs will be quickly freed) or occupy less than half of all available SMs

from the beginning. In such case, preemption can be performed with low overhead since a

new kernel can be launched to the idle SMs.

64

0%

1%

2%

3%

5us 10us 15us 20us

V
io

la
ti

o
n

s
(%

)

Preemption Latency Constraint

(a)

0%

5%

10%

15%

20%

5us 10us 15us 20usT
h

ro
u

g
h

p
u

t
O

v
er

h
ea

d
 (

%
)

Preemption Latency Constraint

(b)

0%

20%

40%

60%

80%

100%

5us 10us 15us 20us

Preemption Latency Constraint

Switch Drain Flush

(c)

Figure 4.7:
Impact of varying preemption latency constraint on (a) the percentage of dead-

line violations, (b) throughput overhead, and (c) distribution of each preemption

technique used in Chimera.

As shown by the figures, Chimera can almost always meet the preemption latency con-

straint while individual preemption techniques cannot. Chimera achieves this goal while

maintaining the low throughput overhead of draining. In fact, Chimera can have lower

throughput overhead than individual preemption techniques, as in LUD, by collaboratively

utilizing all the techniques.

4.4.2 Impact of Preemption Latency Constraint

Chimera is a collaborative preemption with controlled overhead. Figure 4.7 demon-

strates the impact of the preemption latency constraint when it is varied from 5µs to 20µs.

The same multi-programmed workloads are used as in Section 4.4.1.

Figure 4.7 (a) shows the percentage of preemptions that Chimera violates the deadline

when the preemption latency constraint is varied from 5µs to 20µs. When the preemption

latency is 5µs, 10µs, 15µs, and 20µs, violations happen for 2.00%, 1.08%, 0.24%, and

0.00% of preemptions, respectively. As explained with Figure 4.5, flushing may fail to

meet the deadline if a kernel is non-idempotent, and has short thread block execution time.

Since flushing is what Chimera relies on to achieve low preemption latency, Chimera also

65

chimera/figs/violate_sensitivity_cropped.eps
chimera/figs/tp_sensitivity_cropped.eps
chimera/figs/dist_sensitivity_cropped.eps

suffers from the same problem when the preemption latency constraint is extremely low, as

in the case of 5µs.

Figure 4.7 (b) shows throughput overhead of Chimera when the preemption latency

constraint is varied from 5µs to 20µs. Again, effective throughput is used to measure

throughput overhead to avoid giving unfair advantage to the preemption techniques that

miss the deadline. Chimera has 16.5%, 12.2%, 10.0%, and 9.0% throughput overhead

when the preemption latency constraint is 5µs, 10µs, 15µs, and 20µs, respectively. As

shown in the figure, Chimera can reduce more throughput overhead when the preemption

latency constraint is increased. If only one preemption technique is utilized, the loose

deadline cannot be exploited.

Figure 4.7 (c) shows the distribution of each preemption technique used in Chimera

when the preemption latency constraint is varied from 5µs to 20µs. As the preemption

latency constraint is reduced, Chimera exploits flushing more because flushing is the only

preemption technique that provides low preemption latency at the expense of throughput

overhead. About 19% of preemptions constantly utilize draining because thread blocks

near the end of their execution always exist even for low preemption latency constraints.

Context switching has constant preemption latency regardless of the constraint, hence, its

utilization quickly drops as the preemption latency constraint is reduced.

4.4.3 Relaxed Idempotence Condition in SM Flushing

Figure 4.8 illustrates the effectiveness of relaxing the idempotence condition for flush-

ing. Strict refers to the original idempotence condition, and relaxed refers to the relaxed

idempotence condition. The percentage of preemptions that violate a 15µs preemption la-

66

0% 100%
0%

20%

40%

60%

80%

100%

V
io

la
ti

o
n

s
(%

)

Workloads

Strict

Relaxed

Figure 4.8:
The percentage of preemptions that violate a 15µs preemption latency con-

straint when SM flushing uses strict or relaxed idempotence condition.

tency constraint is shown for all the workloads used in Section 4.4.1. On average, flushing

violates the deadline for 50.0% and 0.2% of the total preemptions with strict and relaxed

idempotence condition, respectively.

When a strict idempotence condition is used, the kernel idempotence decides whether

an SM can be preempted with flushing or not. With the relaxed idempotence condition,

thread blocks in such kernel can still be preempted with flushing if they have not reached

the non-idempotent region. Without the relaxed idempotence condition, flushing cannot

achieve its promised low preemption latency because non-idempotent kernels cannot be

preempted. The violations for the strict idempotence condition will be the same regardless

of the preemption latency constraint. The results show that it is mandatory for flushing to

have the relaxed idempotence condition to provide instant preemption.

4.4.4 Case Study

This section further investigates Chimera when a combination of GPGPU benchmarks

without hard deadline is concurrently executed. Each multi-programmed workload is a

combination of LUD with one of the benchmarks in Table 4.2. LUD is chosen because it

launches multiple kernels that require different number of SMs, which results in numerous

67

chimera/figs/flush_violation_cropped.eps

0

5

10

15

20

25

L
U

D
/B

S

L
U

D
/B

T

L
U

D
/B

P

L
U

D
/C

P

L
U

D
/F

W
T

L
U

D
/H

W

L
U

D
/H

S

L
U

D
/K

M

L
U

D
/L

C

L
U

D
/M

U
M

L
U

D
/N

W

L
U

D
/S

A
D

L
U

D
/S

T

g
eo

m
ea

n

A
N

T
T

 I
m

p
ro

v
em

en
t

(t
im

es
) Switch Drain Flush Chimera

x125 x38 x270 x1476 x209

Figure 4.9:
ANTT improvement over the non-preemptive FCFS when LUD is concurrently

executed with another benchmark.

-10%

10%

30%

50%

70%

L
U

D
/B

S

L
U

D
/B

T

L
U

D
/B

P

L
U

D
/C

P

L
U

D
/F

W
T

L
U

D
/H

W

L
U

D
/H

S

L
U

D
/K

M

L
U

D
/L

C

L
U

D
/M

U
M

L
U

D
/N

W

L
U

D
/S

A
D

L
U

D
/S

T

g
eo

m
ea

n

S
T

P
 I

m
p

ro
v
em

en
t

(%
) Switch Drain Flush Chimera

Figure 4.10:
STP improvement over the non-preemptive FCFS when LUD is concurrently

executed with another benchmark.

preemption requests. GPGPU benchmarks do not have hard deadline hence preemption

latency constraint is chosen to be 30µs, which is the maximum possible preemption latency

for context switching in the current configuration.

Each simulation runs until all benchmarks either execute 1 billion instructions or finish

its execution. Among the benchmarks, FWT, HW, KM, LC, MUM, SAD, and ST run

more than 1 billion instructions. When one benchmark finishes earlier than the others, it

is restarted from the beginning to prohibit the last remaining benchmark from running on

its own. The reported results are gathered only for the first 1 billion instructions or first

execution whichever is reached first. All the benchmarks are started simultaneously at the

beginning. This is a typical setting for simulating multi-programmed workloads [84, 66,

87, 3, 83]. For the baseline, non-preemptive scheduling is used, where each kernel has

68

chimera/figs/ANTT_lud_cropped.eps
chimera/figs/STP_lud_cropped.eps

to wait until previous kernel has finished its execution. Kernels are launched following

first-come, first-serve (FCFS) policy.

To compare the performance of preemption techniques, the metrics suggested by Eyer-

man et al. [16] are used. Average normalized turnaround time (ANTT) quantifies the user-

perceived slowdown due to multitasking using Equation 5.1, where N denotes the number

of kernels, CPImulti
i is the CPI when a kernel is executed in the multi-programmed work-

load, and CPI
single
i is the CPI when the kernel is executed on its own. System throughput

(STP) measures the progress of the system under multitasking using Equation 5.2, where

parameters are the same as in ANTT.

ANTT =
1

N

N∑

i=1

CPImulti
i

CPI
single
i

(4.1)

STP =
N∑

i=1

CPI
single
i

CPImulti
i

(4.2)

Figure 4.9 presents the ANTT improvement of each preemption technique over the non-

preemptive FCFS. On average, context switch, draining, flushing, and Chimera improves

the ANTT by 20.9x, 19.3x, 23.6x, and 25.4x, respectively. HW, KM, LC, MUM, and

SAD have a kernel, whose execution time is extremely long. Preemptive multitasking

improves ANTT drastically over non-preemptive FCFS because non-preemptive FCFS has

to wait until these kernels finish their execution. Among single preemption techniques,

flushing has the most ANTT improvement as it has the least preemption latency. Chimera

can improve the ANTT more than flushing because it can preempt non-idempotent thread

blocks using other preemption techniques.

69

Figure 4.10 shows the STP improvement of each preemption technique over the non-

preemptive FCFS. Overall, context switch, draining, flushing, and Chimera improves the

STP by 16.5%, 36.6%, 31.4%, and 41.7%, respectively. Since LUD does not occupy all

the available SMs, STP is significantly improved despite the throughput overhead of pre-

emption techniques. Here, spatial multitasking is effectively improving STP. In LUD/SAD,

Chimera improves STP much less than the top single preemption technique, which is drain-

ing. Chimera shows such behavior when the cost estimation is not accurate enough for

context switching, and draining. Cost estimation is not precise if thread blocks have large

variations in the execution time or in the CPI. Again, Chimera achieves the most STP

improvement over any single preemption technique because Chimera can choose alterna-

tive low overhead preemption technique if one preemption technique incurs larger over-

head compared to the others while a single preemption technique is forced to endure the

overhead. There is larger difference in STP compared to throughput overhead in the Sec-

tion 4.4.1 because preemptions occur more frequently than 1ms interval in the simulated

multi-programmed workloads.

Chimera can improve ANTT and STP for GPGPU benchmarks without hard deadlines

as it utilizes adequate preemption technique when preemption request occurs. When all the

combinations of GPGPU benchmarks are used, Chimera improves ANTT and STP by 5.5x,

and 12.2%, respectively, on average. Other combinations of GPGPU benchmarks have

smaller number of preemption requests, which results in smaller improvement compared

to LUD combinations.

70

4.5 Related Work to Chimera

Multitasking on GPUs is receiving a lot of attention from the research community as

GPUs are becoming common in modern computer systems. First, recent works on en-

abling multitasking on GPUs are listed. Next, previous studies on reducing the overhead of

context switching on CPUs are presented. Lastly, prior research that exploit the notion of

idempotence are discussed.

Multitasking on GPUs: First attempts on GPU multitasking have been made on top

of current GPUs by providing an illusion of single process to GPU or using cooperative

multitasking. Context funneling [89] merges GPU contexts of multiple processes into a

shared GPU context so that they can run concurrently on a single GPU. KernelMerge [22]

makes GPUs only see a single scheduler kernel instead of individual independent kernels.

Ino et al. [26] used cooperative multitasking to allow the concurrent execution of scientific

and graphics applications on GPUs.

Some of the recent works study the scheduling policy when multitasking is enabled.

Elastic kernels [55] transform kernels to enable fine grain control over the resource usage

of kernels so that they can utilize SMs more efficiently. They study their scheme with

multitasking by timeslicing a kernel to launch only a range of thread blocks at a time. Lee

et al. [40] studies the interaction between thread block scheduling and warp scheduling.

They also propose to run multiple kernels on the same SM, but do not present any detailed

implementation.

Several works have paid attention to the independence of thread block execution. RGEM [31]

splits memory transfers to GPU into smaller chunks so that they can be preempted at the

71

chunk boundary. PKM [6] partitions a kernel into subkernels, where each subkernel exe-

cutes a subset of thread blocks. SM draining [83] stops issuing a thread block and waits

until all the running thread blocks are finished. Independence of thread block execution

is a unique property of GPUs and creates opportunities for efficient preemption specific

to GPUs. Chimera also utilizes the independence of thread block execution to enable SM

flushing.

Spatial multitasking [3] observes that kernels may not fully occupy all the available SMs

and shows that kernels can run on different subset of SMs. However, spatial multitasking

still requires preemption if one kernel wants to dynamically take SM that is already running

another kernel. Tanasic et al. [83] implement context switching to show that it still improves

ANTT, however, they do not solve the problems of long preemption latency and large

throughput overhead.

Chimera can control the overhead in preemptive multitasking with collaborative pre-

emption. Chimera is the only solution so far that can meet a given preemption latency with

minimized throughput overhead.

Context switching: Reducing the overhead of context switching has been researched

for CPUs as well. One approach is finding fast context switch points, where there are only

few live registers so that the amount of context to be stored can be reduced [80, 96]. But

they either achieve small amount of gain or require code specific to each switch point for

context switching. Another approach is to mark registers with additional bits to annotate

whether corresponding register should be stored during the context switch [54]. With tens

of thousands of registers in GPUs, the extra storage overhead is not acceptable. ASTI [77]

statically sets context switching points during compile time, thus needs to know which

72

applications will be running concurrently in advance.

All of these studies are limited in their applicability, and cannot be directly used in

GPUs for low overhead context switching. In Chimera, context switching collaborates with

preemption techniques that are specialized for GPUs to achieve low overhead preemption.

Idempotence: Idempotence has been primarily exploited to reduce the overhead of

checkpointing in hardware. Reference idempotency [35] optimizes speculative execu-

tion by not tracking idempotent references, thus reduces speculative storage. Idempotent

processor [14] and iGPU [43] implement low overhead exception support for CPUs and

GPUs, respectively. They reconstruct a consistent program state for precise exception by

re-executing from the beginning of idempotent region to the point of exception. Relax [13]

and Encore [17] recover from soft errors with low overhead by selectively rerunning the

idempotent regions rather than checkpointing all the states.

Chimera shares the idea of idempotence and is the first solution to try the notion of

idempotence to eliminate preemption latency on GPUs with flushing. Moreover, flushing

can be implemented with minimal overhead because the flush logic already exists, and

relaxed idempotence condition is detected in software.

4.6 Chimera Conclusions

This chapter presented Chimera, a collaborative preemption approach on a shared GPU,

that enables multitasking with controlled overhead. Chimera utilizes two GPU-specific

preemption techniques called draining and flushing on top of traditional context switch-

ing. Draining exploits the independence of thread block execution to allow low throughput

73

overhead preemption. Flushing brings the concept of idempotent execution to preemption,

which can be combined with the independence of thread block execution to enable low

preemption latency. By intelligently selecting a subset of SMs to be preempted as well as

the preemption techniques for thread blocks, Chimera can meet a given preemption latency

constraint with minimal throughput overhead. Evaluations show that Chimera violates a

15µs preemption latency constraint for only 0.2% of the preemption requests. For multi-

programmed workloads, Chimera can improve the average normalized turnaround time by

5.5x, which can go up to 25.4x when a large number of preemption requests occur. System

throughput can be improved by 12.2%, which can go up to 41.7% when a large number of

preemption requests exist. Chimera demonstrates that preemptive multitasking on a shared

GPU requires a different strategy from a traditional CPU, but is practical to implement.

74

CHAPTER V

Dynamic Resource Management for Efficient Utilization of

Multitasking GPUs

5.1 Introduction

The single instruction multiple thread (SIMT) programming model used by CUDA [49]

and OpenCL [34] unlocked the computing capability of GPUs for general-purpose applica-

tions. Many supercomputers in the TOP500 List [2] and the Green500 List [1] are already

composed of GPUs due to their high performance for data-parallel applications and en-

ergy efficiency. GPUs are also readily available in cloud computing services like Amazon

Web Services [4]. Supercomputers, cloud services, and data centers with GPUs will bene-

fit significantly with shared GPUs because resource sharing is critical to efficient resource

utilization in these environments [88].

To meet such demand, multitasking on GPUs began to receive a wide attention from

both academia and industry. Earlier attempts [70, 32, 6] were made on the software level to

provide a notion of fairness when multiple processes are trying to share a GPU. More recent

studies from academia have explored the possibility of alternative preemption techniques

75

specific to the GPUs to enable low overhead multitasking [83, 59]. Industry is also moving

in the similar direction. Although limited to the kernels within a single process, Hyper-

Q [47] in Nvidia’s Kepler architecture enables concurrent execution of independent kernels

on a single GPU with multiple independent queues. Nvidia also introduced Multi-Process

Service [52], which is a software support for MPI applications to multitask on a single

GPU.

Spatial multitasking [3], which divides resources at the streaming multiprocessor (SM)

granularity, was first studied for partitioning shared GPUs among multiple kernels. Re-

cently, simultaneous multikernel (SMK) [90] or intra-SM slicing [93] have been proposed,

which shares an SM between multiple kernels similar to simultaneous multithreading (SMT)

on CPUs. However, neither is superior over the other because their performance depends

on application mixes.

SMK performs better than spatial multitasking especially when kernels running on the

same SM have different characteristics: (1) when resource requirements of kernels are dif-

ferent so that more threads can be launched on an SM with SMK, or (2) when mainly

utilized functional units are different so that SMK can interleave instructions from the ker-

nels with small contention. On the other hand, spatial multitasking has advantage over

SMK when the co-running kernels interfere with each other significantly especially due to

load-store units or L1 cache. In such case, running these kernels separately on different

SMs can be more effective by avoiding contention. Note that the contention for compu-

tational units usually has less interference because they are abundant on the GPUs while

load-store units and L1 cache are more scarce resources. Because spatial multitasking and

SMK have their own advantages and disadvantages, a resource partition scheme for multi-

76

tasking GPUs should be able to exploit both.

Determining the best performing resource partition is further complicated due to the

difficulty in predicting the performance, e.g., predicting the performance of single kernel

execution with a regression model on GPUs [25, 94] has shown errors in the range of

10%. Moreover, multikernel execution entails more difficulties because of program phases

in kernels and the interference between kernels. Without addressing these problems, the

benefits from multitasking GPUs are limited.

To that end, this chapter proposes GPU Maestro, which addresses these questions to

implement a dynamic resource management to efficiently utilize multitasking GPUs. A

lightweight dynamic scheduling mechanism is first proposed, which utilizes a direct mea-

surement of existing performance counters on GPUs rather than a model-based prediction

with complex regression models. Because complex interactions between kernels are em-

bedded in the direct measurement, GPU Maestro avoids the performance prediction errors

from the model-based approaches, or when using single kernel execution profiles. The key

idea of GPU Maestro is that GPUs are composed of multiple SMs, where each SM can be

allocated differently and monitored for performance. In each epoch, GPU Maestro tests the

performance of different configurations, whose results are used to find the best performing

resource partition. The selected resource partition will be used in the next epoch, and a

small subset of SMs are used to test different partitions again. After few epochs, GPU

Maestro converges to the best performing resource partition for the given kernel combina-

tion.

There are two additional challenges for realizing SMK: (1) a resource fragmentation

problem, where a thread block cannot be scheduled because resources are available in

77

small chunks although there are enough resources on an SM in total, and (3) a starvation

problem from existing warp scheduling on SMK GPUs.

GPU Maestro solves the resource fragmentation problem on SMK GPUs using 2-way

resource allocation, which forces thread blocks from the same kernel to allocate resources

consecutively in the opposite directions similar to how a stack and heap grow in the oppo-

site directions in a process’s virtual memory for CPUs. GPU Maestro also imposes a fixed

preemption priority order on the running thread blocks. With 2-way resource allocation,

GPU Maestro can avoid resource fragmentation.

GPU Maestro finally studies the interaction between warp scheduling and SMK GPUs.

GPU Maestro makes an observation that a newly launched kernel can have starvation pe-

riods as the greedy-then-oldest (GTO) warp scheduler favors the already running kernel.

Various kernel-aware warp scheduling methods are studied to avoid starvation.

This chapter makes following contributions:

• This chapter shows that system performance of multitasking GPUs can vary depend-

ing on the application mixes. This chapter illustrates when SMK performs better

than spatial multitasking, and vice versa. Furthermore, this chapter shows the diffi-

culties in predicting multitasking performance because of dynamism within a kernel

and interference between kernels.

• This chapter proposes GPU Maestro, which dynamically manages resource partition

on multitasking GPUs to maximize the system performance. This chapter shows a

lightweight implementation for GPU Maestro, which considers both dynamism and

interference by monitoring existing performance counters for different allocations

78

with a subset of SMs.

• This chapter presents how the resource fragmentation problem can manifest on SMK

GPUs. GPU Maestro solves resource fragmentation by using 2-way resource alloca-

tion, which restricts how a kernel allocates and releases resources when launching or

preempting a thread block.

• This chapter studies the interaction between warp scheduling and SMK GPUs, and

show that starvation can negatively impact the system. This chapter shows that

kernel-aware warp scheduling is critical to avoiding starvation, and a simple round

robin scheduling of kernels improves the system performance better than other com-

plex scheduling methods.

5.2 Background

5.2.1 Multikernel Metrics

Throughout the chapter, the multikernel performance is measured using the metrics

suggested by Eyerman et al. [16]: average normalized turnaround time (ANTT), and system

throughput (STP). ANTT represents the user-perceived response time, while STP portrays

the overall progress of the system. The following equations are used to calculate ANTT

and STP:

ANTT =
1

N

N∑

i=1

CPIMK
i

CPISKi

(5.1)

STP =
N∑

i=1

CPISKi

CPIMK
i

(5.2)

79

Fermi Kepler Maxwell Pascal

Threads 1536 2048 2048 2048

Thread Blocks 8 16 32 32

Registers 128kB 256kB 256kB 256kB

Shared Memory 48kB 48kB 64kB 64kB

of SMs 14 15 24 56

(Tesla Model) (M2050) (K40) (M40) (P100)

Table 5.1: Resource trends in an SM on GPUs.

where N denotes the number of benchmarks, CPIMK
i is the CPI when a benchmark is

executed in the multi-programmed workload, and CPISKi is the CPI when the benchmark

is executed alone.

ANTT is a lower-is-better metric and STP is a higher-is-better metric. ANTT and

STP may disagree on which multikernel scheduling is better because each metric reflects a

separate aspect of the whole system.

5.3 Motivation and Challenges

This section shows the opportunity and motivation for dynamic resource management

on multitasking GPUs. Two additional challenges in realizing SMK GPUs are also de-

scribed.

5.3.1 Spatial vs. Simultaneous Multikernel

Table 5.1 shows the trends according to the four generations of Nvidia GPUs, where the

resources on a single SM have increased as well as the number of SMs. This trend of hav-

ing more concurrency supports within an SM and across SMs indicates that multitasking

GPUs are promising. Concurrency across SMs favors spatial multitasking, while concur-

80

0.5

1

1.5

0% 50% 100%

N
o

rm
a

li
ze

d
 S

T
P

Threads assigned to ✁econd �✂✄☎✆✝✞✟✠

(a) COM/COM

0

1

2

0% 50% 100%

N
o

rm
a

li
ze

d
 S

T
P

Threads assigned to ✁econd �✂✄☎✆✝✞✟✠

(b) COM/MEM

0.9

1

1.1

0% 50% 100%

N
o

rm
a

li
ze

d
 S

T
P

Threads assigned to ✁econd �✂✄☎✆✝✞✟✠

(c) MEM/MEM

Figure 5.1:
Normalized STP of SMK when fixed number of threads are assigned to each

kernel within an SM for representative examples. STP of spatial multitasking

is used as 1. (a) Even SMK is as good as the best performing SMK, (b) large

performance gap exists between the best performing SMK and even SMK, and

(c) spatial multitasking performs better than any SMK.

rency within an SM favors SMK. To fully understand the benefit of multitasking GPUs,

the performance improvements from different resource partitions for varying application

mixes are studied.

Figure 5.1 depicts the normalized STP of SMK on a GTX980 when fixed numbers of

threads are assigned to each kernel within an SM. All the STP values are normalized to that

of spatial multitasking. Three representative benchmark pairs are shown to discuss oppor-

tunities: LC/BP for COM/COM, HS/SC for COM/MEM, and LMD/ST for MEM/MEM.

Details of benchmarks are listed in Table 5.3. Figure 5.1 (a) depicts a case where SMK

81

maestro/figs/lc_bp_motif_cropped.eps
maestro/figs/hs_sc_motif_cropped.eps
maestro/figs/st_lmd_motif_cropped.eps

with even partitioning, which gives equal number of resources to each kernel resulting in

50% on the x-axis, performs better than or similar to other SMK resource partitions as well

as spatial multitasking when both benchmarks are compute-intensive (COM). Figure 5.1

(b) illustrates a case where SMK with uneven partitioning benefits much larger than SMK

with even partitioning and spatial multitasking. This commonly occurs if one of the bench-

mark is memory-intensive (MEM) and the other is COM. By giving more thread blocks to

COM, they can utilize the idle cycles from MEM. Figure 5.1 (c) shows a case where spatial

multitasking performs better than any SMK. This commonly happens if both benchmarks

are MEM and the contention for the load/store unit or cache is high.

In general, SMK performs better than spatial multitasking when (1) SMK launches

more threads, or (2) co-running kernels have different execution unit utilizations or small

interference. For example, it is known that memory-intensive kernels cannot hide the mem-

ory latency even with thousands of threads because all the threads are likely to be waiting

for the memory as they run the same code [60]. In such cases, SMK can issue instructions

from compute-intensive kernels to improve compute resource utilization. On the other

hand, spatial multitasking can provide better performance when the interference between

kernels within an SM is large enough to degrade the system performance for SMK.

5.3.2 Multitasking GPU Performance

The system performance of a multitasking GPU is greatly impacted by how GPU re-

sources are partitioned among kernels because spatial multitasking and SMK have their

own advantages and disadvantages depending on the application mixes. A practical imple-

mentation of multitasking GPUs has to address how to find the best performing resource

82

partition exploiting both spatial multitasking and SMK. However, predicting multitasking

performance is difficult especially for SMK because of the complex interactions between

kernels.

5.3.3 Interference and Dynamism

To find the best performing resource partition, performance should be estimated for

different resource partitions. A regression model is often used to predict the performance of

a kernel [25, 94]. However, these models have errors in the range of 10%, which can be too

large to provide meaningful estimations for SMK. Moreover, these models assume single

kernel execution, which ignores the complex interaction when running multiple kernels on

the same SM, and cannot capture the dynamism when doing SMK execution.

Figure 5.2 shows an IPC trace within an SM using a 50k instruction window. From

16M to 80M instruction interval, Figure 5.2 (Top) shows the IPC trace of SRAD and BFS

when they are running together on an SM with SMK. Even thread allocation is assumed

between SRAD and BFS. Figure 5.2 (Bottom) illustrates the IPC trace for BFS and SRAD

when they are executed in isolation. To indicate interference, two sub-intervals are circled,

where the IPC trace is substantially different between running alone, and with SMK. In the

left circle, BFS has a program phase with high IPC when executed alone, which shows low

IPC when running together with SRAD through SMK. On the right circle, the IPC of SRAD

is less than half of independent execution due to memory and cache contention with BFS.

As illustrated by the figure, SMK performance should not be estimated based on single

kernel performance because interference can change the execution behavior significantly.

Figure 5.3 depicts a trace of STP improvement over non-shared execution for Oracle

83

0

25

50

75

100

1
6

M

2
4

M

3
2

M

4
0

M

4
8

M

5
6

M

6
4

M

7
2

M

8
0

M

In
st

ru
ct

io
n

s
/

C
y

cl
e

s
Instructions

SRAD BFS

�✁
✂

0

25

50

75

100

Instructions
0

25

50

75

100

Instructions

�✁
✂

Figure 5.2:
A trace of the instructions per cycle (IPC) within an SM using a 50k instruction

window when running SRAD and BFS together with SMK (top), and when

running them independently for the same interval (bottom). Circles indicate the

same interval, where the IPC trace shows different behavior between running

alone, and SMK.

and Even within an SM using 50k instruction window when running SRAD and BFS to-

gether with SMK. Oracle knows and chooses the best performing thread block partition for

each instruction window, and instantly switches between different thread block partitions

with zero overhead. Even always distributes threads evenly among SRAD and BFS. Oracle

can improve STP by 30.0% over Even across the shown trace. Sub-intervals drawn on the

figure illustrate a period when Oracle chooses different thread block partition from Even,

which has both phases where more resources are assigned to either SRAD or BFS.

To capture interferences and dynamism, a dynamic scheduling framework that utilizes

a direct measurement of the performance is necessary to maximize the performance benefit

from SMK.

84

maestro/figs/interference_phase_cropped.eps

-50%

50%

150%

250%

1
6

M

3
2

M

4
8

M

6
4

M

8
0

M

S
T

P
 I

m
p

ro
v
e

m
e

n
t

Instructions

Oracle Even

Figure 5.3:
A trace of STP improvement over non-shared execution for Oracle and Even

thread block partition within an SM using 50k instruction window when run-

ning SRAD and BFS together. Indicated sub-intervals are when Oracle chooses

different partition from Even.

5.3.4 SMK Challenges

The implementation of SMK GPUs itself has two additional challenges to be addressed:

(1) it has to solve resource fragmentation, which can become worse due to more preemp-

tions with dynamic scheduling, and (2) it should avoid the starvation problem, which comes

from the interaction between warp scheduling and multikernel execution.

5.3.4.1 Challenge 1: Resource Fragmentation

Shared memory and register file are shared among the thread blocks within an SM.

Because shared memory is shared at a thread block granularity, each thread block allocates

a consecutive region in the shared memory. Because thread blocks execute the same code

to compute the shared memory address, physical address for shared memory has to be

differentiated between thread blocks. The shared memory base register (SBR) contains the

base shared memory address for each thread block. When a thread block accesses shared

memory at runtime, the address is computed by adding the virtual address with the SBR.

Similarly, consecutive registers are allocated to each warp. Note that a physical register

85

maestro/figs/dynamism_cropped.eps

10kB

: Kernel 0 (2.5kB) : Kernel 1 (3kB)

(a)

Shared Memory

(b)

4kB
Kernel 0
finishes

2.5kB

Kernel 1
finishes

Preempted

Kernel 0
launches

Figure 5.4:
An illustration of resource fragmentation problem for shared memory when (a)

a kernel terminates, and (b) a kernel is preempted.

0%

5%

10%

15%

0k 200k 400k 600k 800k 1,000kF
ra

g
m

e
n

ta
ti

o
n

 (
%

)

Cycle

Figure 5.5:
A timeline of register fragmentation when running FDTD/LUD on an SM with

SMK.

actually contains the same register index for 32 threads to reduce the number of ports

because a warp consists of 32 threads. When a warp is indexing register 0, the physical

register index is computed by adding the register index 0 with a warp’s register base register

(RBR).

Figure 5.4 illustrates the resource fragmentation problem in SMK by showing an ex-

ample with shared memory. A thread block from kernel 0 uses 2.5kB of shared memory,

while a thread block from kernel 1 uses 3kB. The total size of the shared memory is 10kB.

A resource fragmentation can occur whenever there is resource allocation or release: when

a new kernel is launched, a kernel is terminated, or a preemption occurs due to dynamic

resource repartitioning. Two examples are illustrated in detail.

Figure 5.4 (a) shows how resource fragmentation occurs when a kernel terminates.

86

maestro/figs/frag_cropped.eps
maestro/figs/frag_timeline_cropped.eps

When kernel 0 finishes all of its thread blocks, 4kB of shared memory is released for

other kernels to use. In the given scenario, the released shared memory cannot be utilized

by kernel 1 because kernel 1 requires 3kB of consecutive shared memory, while the re-

leased 4kB is in chunks of 2.5kB and 1.5kB. Figure 5.4 (b) depicts how shared memory is

fragmented when a kernel is preempted partially. During the execution, the bottom thread

block from kernel 1 is preempted due to repartitioning. A thread block from kernel 0 is

launched instead. Later, kernel 1 eventually finishes, and thread blocks from kernel 0 will

fill in. However, it can issue only one thread block rather than two because 2.5kB is frag-

mented into chunks of 0.5kB and 2kB. Similar resource fragmentation problems can occur

for registers as well.

Figure 5.5 shows a timeline of fragmented registers when running FDTD/LUD on the

same SM. Resources within an SM are partitioned evenly among the kernels. The percent-

age of fragmentation refers to the number of under-utilized registers due to fragmentation

divided by the total number of registers in an SM. LUD launches three kernels with differ-

ent resource requirements, and repeatedly relaunches the three kernels in the same order.

As a result, similar fragmentation pattern is repeated around 600k cycles. LUD allocates

resources first at the beginning. The resource fragmentation mainly occurs because LUD

finishes earlier and launches a new kernel with a different resource requirement. The new

kernel observes resource fragmentation similar to Figure 5.4 (a) and cannot launch the

maximal number of threads that can fit in total available resources.

To avoid resource fragmentation, free resources should be to released resources when

a kernel finishes execution, and a thread block to preempt should be chosen with released

resources in mind.

87

0

25

50

75

100

0

1
0
M

2
0
M

3
0
M

4
0
M

IP
C

Instructions

LC BS

Figure 5.6:
An IPC trace within an SM using a 50k instruction window when running

LC/BS. LC is launched before BS. Sub-intervals, where BS starves, are shown.

5.3.5 Challenge 3: Starvation

The choice of warp scheduling can greatly impact SMK performance. For example,

greedy-then-oldest (GTO) gives higher probability of issuing an instruction to the kernel

that issued thread blocks earlier. This can lead to a starvation period for the other kernel.

The starvation problem can become worse with unequal resource partitioning because a

kernel with fewer warps will have even lower probability of issuing. Figure 5.6 shows an

IPC trace within an SM using a 50k instruction window when running LC/BS, where LC is

launched before BS. Even is used for thread block partitioning, and GTO is used for warp

scheduling. Note that both LC and BS do not show significant phase changes during iso-

lated execution. Because there is no phases nor thread block repartitioning, stable IPCs are

expected for both benchmarks. However, as shown in the figure, starvation periods exist,

where LC issues more instructions than its average while BS starves with lower IPC than

its average. Although the performance gap during the starvation periods becomes smaller

as the system progresses, they can take a large portion of execution, e.g., BS progresses by

50% near 30M instructions.

On the other hand, round-robin (RR) scheduling gives equal probability of issuing an

88

maestro/figs/starve_motif_cropped.eps

instruction to each warp. STP of SMK under RR is improved by 2.5%, on average, over

SMK under GTO when the proposed thread block partitioning in Section 5.4.1 is used.

While RR performs better than GTO for SMK in general, SMK under GTO may perform

better than SMK under RR for individual workloads because GTO performs better than RR

in most cases for single kernel execution [68]. To maximally benefit from SMK, the bene-

fits of GTO should be retained within a single kernel execution, while avoiding starvation

problem by allowing the other kernel to make progress.

5.4 GPU Maestro Design

This section introduces GPU Maestro, a dynamic resource management for efficient uti-

lization of multitasking GPUs. Figure 5.7 illustrates an architectural overview of the overall

system. The top of the figure illustrates 2-way resource allocation, where resources are pro-

vided to kernels from opposing ends of the resource pool. The bottom of the figure shows

that the dynamic resource management framework collects runtime performance statistics

from each SM using existing performance counters, and tells a thread block scheduler to

repartition for multitasking GPUs. The thread block scheduler preempts thread blocks to

achieve the desired resource partition similar to the prior works [83, 59]. GPU Maestro

is composed of three components: dynamic thread block partitioning framework, 2-way

resource allocation, and kernel-aware warp scheduling mechanism.

89

SM

Shared Memory Register File

Kernel 0

Kernel 1

: Kernel 0 : Kernel 1

Warps

...

Thread Block Scheduler

Dynamic Resource Partitioning Framework

SMSM

PCntr PCntr PCntr

Repartition?

Figure 5.7:
An architectural overview of GPU Maestro. PCntr refers to existing perfor-

mance counters on an SM.

5.4.1 Dynamic Resource Partitioning

Figure 5.8 illustrates how GPU Maestro performs dynamic resource partitioning when

two kernels are running on the GPU. At the top, the timeline of GPU Maestro is shown,

where repartitioning decisions occur at the end of every epoch using the monitored perfor-

mance. GPU Maestro uses 50k cycles for each epoch, which is long enough to minimize

the repartitioning overhead. Note that after repartitioning decisions, the next epoch is not

started until the preemptions take place and the desired thread block partition is achieved.

On the bottom of the figure, the process of how resource partitioning decisions are made is

shown. SMs are divided into three groups: dedicated, trial, and follower. Dedicated SMs

run each kernel without SMK, and are used to measure the single kernel performance as

well as the performance of spatial multitasking. Trial SMs test resource repartitioning pos-

sibilities for SMK GPUs. Follower SMs are partitioned with a resource partitioning that is

measured to provide the best performance from the previous epoch.

90

maestro/figs/smk_cropped.eps

...

: Kernel 0 : Kernel 1

Dedicated Trial Follower

E
p

o
ch

 N

Best

...

Follower

E
p

o
ch

 N
+

1

...
Epoch 0 Epoch 1 Epoch 2

Repartitioning Decisions

TrialTrial

...

Dedicated

...

Follower

E
p

o
ch

 N
+

2

TrialTrialFollower

Best

Figure 5.8:
An illustration of dynamic resource partitioning process in GPU Maestro when

two kernels are running on the GPU. GPU Maestro makes repartitioning deci-

sions at the end of every epoch, which may not result in repartitioning if the

previous preferred partition is the best. Follower SMs follows the repartition-

ing decision including spatial multitasking, which gives the best performance.

Note that trial and follower SMs can change to minimize the preemption over-

head from repartitioning. Dedicated SMs turn into follower SMs when a steady

state is reached.

GPU Maestro assigns two SMs to trial SMs. To determine the thread block partition for

trial SMs, GPU Maestro defines a trial kernel, which has larger resource requirements than

the other kernel. A kernel has larger resource requirements if it can launch fewer thread

blocks when having an SM entirely. The trial kernel assigns one more thread block for one

trial SM, and one fewer thread block for the other compared to followers. The other kernel

fills up the rest of the resources in the trial SMs. The initial partitioning state for follower

SMs is SMK with even partitioning by default. GPU Maestro uses a history-based partition

91

maestro/figs/maestro_cropped.eps

prediction from the previous SMK for the initial state in followers when a running kernel

was assigned fewer thread blocks than even partition during previous SMK.

When making repartitioning decisions, GPU Maestro tries to minimize the preemp-

tion overhead. In the figure, one of the trial SMs becomes a follower and vice versa from

epoch N to epoch N+1. When dedicated SMs show stable performance as the SMK parti-

tion reaches a steady state, GPU Maestro stores the performance of dedicated SMs to be

used in upcoming epochs, and turns dedicated SMs into follower SMs to maximize system

performance. Dedicated SMs are reassigned when either a new kernel is launched, thread

blocks are repartitioned, or once every hundred epochs. The last case ensures that the stored

performance is indeed stable.

To determine which resource partition performs the best, GPU Maestro first defines

the performance objective. As discussed in Section 5.2.1, there could be multiple metrics

for multikernel execution. GPU Maestro can set one of these metrics for the performance

objective. For example, when ANTT is set as the performance objective, GPU Maestro

computes ANTT for spatial multitasking using dedicated SMs and SMK with different

resource partition using trial and follower SMs. Whichever partition with the lowest ANTT

will be selected because ANTT is a lower-is-better metric. To compute these metrics,

CPIs for both multikernel execution as well as single kernel execution are required. GPU

Maestro uses the CPI of dedicated SMs to estimate CPI for the single kernel execution.

When spatial multitasking performs better than SMK, GPU Maestro adds one SM per

kernel from followers for spatial multitasking at each repartitioning epoch rather than turn-

ing all followers for spatial multitasking because additional SMs may not provide scalable

performance as the memory-intensive benchmarks in Table 5.3 show. This brings addi-

92

(a) 2-way allocation

Kernel 0

Kernel 1

(b) Preemption priority

Priority

PriorityBoundary TBs

Region

Kernel 0

Kernel 1

: Kernel 0 (2.5kB) : Kernel 1 (3kB)

Figure 5.9:
(a) The proposed 2-way allocation, where a kernel schedules thread blocks in

the opposite direction, and (b) the fixed preemption priority order imposed by

the 2-way allocation.

tional benefit to GPU Maestro by allowing trial and follower SMs to continuously provide

SMK performance with uneven partitioning, which may perform better than spatial multi-

tasking.

The proposed dynamic resource management framework requires 2-bits per SM to in-

dicate whether it is dedicated, trial, or follower. Although existing performance counters

are utilized, extra storage is also required to store dedicated SM’s performance from pre-

vious epoch when dedicated SMs are turned into followers. Comparing and deciding the

best performing partition are done in software running on the command processor.

5.4.2 2-Way Resource Allocation

By restricting the direction of allocation, kernels allocate resources consecutively in the

steady state, which avoids the resource fragmentation when one of the kernel is finished.

Figure 5.9 (a) shows the proposed 2-way allocation, where one-dimensional resources (RF,

shared memory, and etc.) are allocated either from top to bottom or from bottom to top.

Boundary thread blocks are defined as the thread blocks, where resource allocation meets

the other kernel or the free space. A region is defined to be a group of resources, where

kernels can safely launch its new thread blocks.

93

maestro/figs/2way_cropped.eps

A fixed preemption priority order is also imposed for each kernel. Figure 5.9 (b) il-

lustrates that the preemption priority is the reverse direction of the resource allocation di-

rection. By forcing the preemption priority in the reverse direction, the already launched

kernel can release resources adjacent to the free space, which will allow the other kernel to

start allocating resources in the opposite direction. Thus, the resource fragmentation com-

ing from both Figure 5.4 (a) and (b) can be avoided, and the other kernel can maximally

utilize the released resources. The preemption overhead from the fixed preemption priority

can be minimized by using prior work [59].

There is one limitation to 2-way allocation: the number of kernels running concurrently

on an SM is limited to two. However, this does not force the shared GPU to run only two

kernels because spatial multitasking can be mixed with 2-way allocation SMK to run more

than two kernels. For example, when four kernels are launched concurrently, one SM

may run first two kernels in SMK while other SMs can run other combinations of two

kernels. Combining spatial multitasking with SMK is likely to be better than having SMK

to support more than two kernels because the cost of avoiding resource fragmentation can

be significant. Note that when GPU Maestro does not have to deal with all the concurrent

kernels at once. GPU Maestro can take multiple steps to find the best performing resource

partition when running more than two kernels, where each step is used to find the best

partitioning for a single combination of two kernels to reduce the number of required SMs

for dedicated and trial sets.

94

5.4.3 Kernel-aware Warp Scheduling

To avoid the starvation problem, choosing which kernel to issue instructions becomes an

important problem in SMK GPUs similar to choosing which thread to fetch in SMT [85].

By having kernel-aware scheduling, each kernel can utilize GTO, which performs better

for individual kernels, and still have enough issue slots to avoid the starvation problem.

This chapter proposes to use loose round-robin (LRR). In LRR, kernel priority is flipped

whenever a lower priority kernel has a ready instruction to issue. LRR gives almost equal

opportunity for each kernel to progress. While LRR is the simplest mechanism, it achieves

the best performance compared to other more intelligent schemes as shown in Section 5.5.2.

In SMK, there are situations where warp scheduling priority should diverge from the

underlying warp scheduling policy. For example, when some of the warps are being pre-

empted with draining [83, 59], these warps should be given higher priority to issue instruc-

tions to reduce repartitioning time. Another example is when a kernel has no more thread

blocks to issue because it is near the end of execution. Again, the warps within the bound-

ary thread block should be given higher priority to issue instructions because resources

only become available to the other kernel when resources are released from the boundary

thread block.

5.5 Results

The GPGPU-Sim v3.2.2 [5] is extended to simulate GPU Maestro. The Nvidia GTX980

is modeled, which is based on the most recent Maxwell architecture [50]. The system con-

figuration is summarized in Table 5.2. A wide range of GPGPU applications from various

95

System Parameters

SM 16 SMs, 1126 MHz, 4 warp schedulers

2K threads, 32 thread blocks

64K registers, 96kB shared memory

2kB L1I, 48kB L1D

Memory 2MB L2, 4 memory partitions

Subsystem 224 GB/s bandwidth

Table 5.2: System configuration.

benchmark suites including Nvidia Computing SDK [51], Rodinia [7], and Parboil [82]

is used for evaluation. Table 5.3 lists all the evaluated benchmarks, and their types. The

types of the benchmarks are statically defined using their profiled performance with dif-

ferent numbers of SMs. COM, which is compute-intensive benchmarks, is defined as the

benchmarks with more than 12x speedup when the number of SMs is changed from one to

sixteen. MEM, which is memory-intensive benchmarks, is defined as the benchmarks that

show less than 12x speedup. Although the GTX980 does not cache global memory accesses

in the L1D by default, they are assumed to be cached at L1D using LDG intrinsic because

many of the simulated GPGPU benchmarks have intra-warp locality and benefit from the

L1D [68]. The performance objective of GPU Maestro is set to ANTT, and Chimera [59]

is used for preemption.

All possible pairs of GPGPU benchmarks are used to simulate multi-programmed work-

loads from Table 5.3. The typical evaluation method from prior GPU multitasking works

[3, 83, 59] and other CPU cache partitioning works [67, 61] is used. For each multi-

programmed workload, all the benchmarks start simultaneously in the beginning. Each

benchmark is run until it finishes its execution or 1 billion instructions. When one bench-

mark completes earlier than the other, it is restarted from the beginning to continuously

96

Benchmark Source Type

Breadth First Search (BFS) Rodinia [7] MEM

Back Propagation (BP) Rodinia [7] COM

BlackScholes (BS) Nvidia SDK [51] MEM

B+ Tree (BT) Rodinia [7] MEM

Coulombic Potential (CP) Parboil [82] COM

Finite-Difference Time-Domain Nvidia SDK [51] MEM

(FDTD)

Fast Walsh Transform (FWT) Nvidia SDK [51] MEM

HotSpot (HS) Rodinia [7] COM

Heart Wall (HW) Rodinia [7] COM

Kmeans (KM) Rodinia [7] MEM

Laplace-Boltzmann Method (LBM) Parboil [82] MEM

Leukocyte Tracking (LC) Rodinia [7] COM

LavaMD (LMD) Rodinia [7] MEM

LU Decomposition (LUD) Rodinia [7] MEM

Magnetic Resonance Imaging (MRIQ) Parboil [82] COM

MUMmerGPU (MUM) Rodinia [7] MEM

Needleman Wunsch (NW) Rodinia [7] MEM

SAD Parboil [82] COM

Streamcluster (SC) Rodinia [7] MEM

SRAD Rodinia [7] MEM

Stencil (ST) Parboil [82] MEM

Two Point Angular Corr. Function Parboil [82] COM

(TPACF)

Table 5.3: Benchmark specification.

stress the system. The reported results are gathered only for the first round of the execu-

tion, and the restarted executions are ignored.

5.5.1 Resource Partitioning Performance

In this section, GPU Maestro is compared to the baseline Spatial and SMK. Spatial

partitions resources evenly among the kernels at the SM granularity, while SMK partitions

resources evenly within the SMs. In both baselines, if resources are released from one

kernel, the other kernel fills up the remaining resources.

97

Spatial SMK GPU Maestro

0%

50%

100%

150%

A
N

T
T

 I
n

c
r
e

a
s
e

0%

20%

40%

60%

80%

S
T

P
 I

m
p

ro
v
e

m
e

n
t

Figure 5.10:
ANTT increase and STP improvement of Spatial, SMK, and GPU Maestro

over non-shared execution. Spatial partitions resources evenly at the SM gran-

ularity. SMK partitions resources evenly within the SMs. A geometric mean

of all combinations of co-running kernels from each category is shown. ANTT

is a lower-is-better metric, and STP is a higher-is-better metric.

Figure 5.10 shows ANTT increase and STP improvement of Spatial, SMK, and GPU

Maestro over non-shared execution. When sharing the GPU, ANTT, which measures re-

sponse time, is increased compared to running it on GPU in isolation. On average, Spatial,

SMK, and GPU Maestro increase ANTT by 72.2%, 99.1%, and 57.6%, respectively, while

improving STP by 20.7%, 27.3%, and 45.0%, respectively. In general, SMK is better than

Spatial for COM/COM and COM/MEM, but Spatial is better than SMK for MEM/MEM.

GPU Maestro outperforms both Spatial and SMK because it can exploit both schemes, and

also finds the best performing partition within SMK.

In COM/COM pairs, SMK with even partitioning performs similar to any other SMK

partitionings as discussed in Section 5.3.1. As a result, the performance gap between SMK

and GPU Maestro is small for COM/COM. However, the performance gap is much higher

for COM/MEM and MEM/MEM. Because GPU Maestro can adjust resource partitions

such that both SMK with uneven partitionings and Spatial are utilized, it can reduce the

effect of interference between kernels. The system performance is improved the most with

GPU Maestro.

98

maestro/figs/tb_legend_cropped.eps
maestro/figs/antt_tb_cropped.eps
maestro/figs/stp_tb_cropped.eps

None + GTO LRR + GTO IPR + GTO Fair + GTO

0%

20%

40%

60%

80%

100%

A
N

T
T

 I
n

c
r
e

a
s
e

0%

20%

40%

60%

80%

S
T

P
 I

m
p

ro
v
e

m
e

n
t

Figure 5.11:
ANTT increase and STP improvement of various kernel-aware scheduling

techniques on GPU Maestro over non-shared execution. A geometric mean

of all combinations of co-running kernels from each category is shown. All

the kernel-aware scheduling techniques are implemented on top of GTO warp

scheduling. None does not do any kernel-aware scheduling. ANTT is a lower-

is-better metric, and STP is a higher-is-better metric.

5.5.2 Kernel-aware Scheduling Performance

This section compares three kernel-aware scheduling techniques: LRR, issued-per-

ready (IPR), and Fair [90]. All the techniques are implemented on top of GTO warp

scheduling. To show the benefit of kernel-aware scheduling, None, which does not do any

kernel-aware scheduling, is also shown. All the techniques use GPU Maestro’s dynamic

thread block partitioning.

IPR: IPR mimics ICOUNT [85] for GPUs by using following metric for each warp

scheduler:

IPR =

∑
cycles# of issued warps

∑
cycles# of ready warps

(5.3)

IPR is cumulated over every cycle. A kernel with lower IPR has higher priority to issue an

instruction. This metric avoids starvation because IPR becomes smaller as a kernel waits

and does not issue instructions. IPR also favors compute-intensive kernels because they

have more ready warps compared to memory-intensive kernels, which makes IPR lower.

99

maestro/figs/kw_legend_cropped.eps
maestro/figs/antt_kw_cropped.eps
maestro/figs/stp_kw_cropped.eps

Fair: Fair uses following equation to compute quota for each kernel:

Quotak =
Ck∑
Ck

, Ck = x%×
Sk

Tk

(5.4)

where x% is the percentage of issued cycles, which is profiled from single kernel exe-

cution, and Tk is the number of thread blocks in an SM when the kernel is run in isolation,

and Sk is the number of thread blocks allocated in SMK for the kernel. This is equivalent

to SMK-W in [90] except for the thread block partitioning.

Figure 5.11 illustrates ANTT increase and STP improvement of None, LRR, IPR, and

Fair over non-shared execution. GPU Maestro’s dynamic resource partitioning is used for

all the kernel-aware scheduling techniques. On average, None, LRR, IPR, and Fair increase

ANTT by 73.4%, 57.6%, 59.6%, and 58.9%, respectively, while improving STP by 39.0%,

45.0%, 44.4%, and 40.8%, respectively. In general, all kernel-aware scheduling techniques

reduce ANTT and improve STP compared to not having kernel-aware scheduling.

Among LRR, IPR, and Fair, LRR performs the best for both ANTT, and STP. Inter-

estingly, the trend of improvement is the opposite of the implementation complexity. For

LRR, a single bit for each kernel is enough to notify whether it has a ready warp to issue.

For IPR, counters are needed to record the number of issued warps as well as the number

of ready warps, and a comparison logic. For Fair, extra logic is required to compute quota,

and the percentage of issued cycles has to be profiled or measured directly on the GPU for

each kernel. The main reason for the performance difference between these kernel-aware

scheduling techniques goes back to the starvation problem. For example, GPU Maestro

assigns fewer thread blocks to MEM application when running COM/MEM combinations.

100

0%
25%
50%
75%

100%

Spatial SMK:Even

SMK:�✁✂✄☎

0.00%

0.25%

0.50%

0.75%

1.00%

O
v
e
r
h
e
a
d

Figure 5.12:
(Left) The percentage of repartitioning decisions to use spatial multitasking,

SMK with even partitioning, and SMK with other non-even partitioning, and

(Right) repartitioning overhead in GPU Maestro. An average of all combina-

tions of co-running kernels from each category is shown.

When running COM/MEM combinations in Fair, the quota for MEM application will be

small because Sk becomes smaller due to GPU Maestro, and x% is already smaller than

the COM application. While Fair still allocates more issue slots to the MEM application

compared to not having kernel-aware scheduling, it is more unfair compared to LRR and

IPR. As a summary, kernel-aware scheduling is necessary in SMK, and the simplest LRR

kernel-aware scheduling in fact gives the best performance both in terms of ANTT and

STP.

5.5.3 Repartitioning Analysis

This section analyzes the dynamic thread block repartitioning in detail. Figure 5.12

(Left) illustrates the distribution of repartitioning decisions in GPU Maestro. Spatial is

when GPU Maestro chooses to use spatial multitasking instead of SMK. SMK:Even de-

notes when GPU Maestro chooses Even as the best performing thread block partition on

SMK, and SMK:Other refers to the decisions when GPU Maestro assigns unequal re-

sources to the kernels on SMK. On average, GPU Maestro decides to utilize spatial multi-

tasking for 13.0% of the time, SMK:Even for 32.2%, and SMK:Other for 54.8%. Among

101

maestro/figs/mode_cropped.eps
maestro/figs/overhead_cropped.eps

ST/TPACF LBM/TPACF

0%
25%
50%
75%

100%

0 100000 200000

A
ss

ig
n

e
d

 T
h

re
a

d
s

(T
P

A
C

F
)

Cycles

0%
25%
50%
75%

100%

0 100000 200000

Cycles

Figure 5.13: Thread block repartitioning timeline for ST/TPACF and LBM/TPACF.

SMK:Other, 29.4% of the time corresponds to having one thread block difference from

SMK:Even, and the remaining 70.6% comes from having more unequal resource assign-

ments. Analyzing each category, SMK:Even is utilized the most in COM/COM, while

SMK:Other is used the most in other categories. Also, spatial multitasking is used of-

ten for MEM/MEM. These results are consistent to the study of motivating examples in

Section 5.3.1.

Figure 5.12 (Right) depicts the repartitioning overhead in GPU Maestro. To measure

this overhead, an ideal case, where thread block repartitioning takes place with zero over-

head, was run to measure the STP. The overhead can be thought of as the frequency of

thread block repartitioning multiplied by how much system throughput is wasted during

the repartitioning. On average, GPU Maestro has 0.8% overhead from dynamic thread

block repartitioning, which is small. Also, the absolute difference of the overhead is small

across the categories.

Figure 5.13 depicts the thread block repartitioning timeline for two example benchmark

pairs. Because TPACF is COM and the paired benchmark is MEM, TPACF is assigned

more threads. However, the amount of unequal assignment can be different depending on

the interaction between the benchmarks on SMK GPUs.

102

maestro/figs/timeline_legend_cropped.eps
maestro/figs/timeline_st_tpacf_cropped.eps
maestro/figs/timeline_lbm_tpacf_cropped.eps

Spatial SMK-(P+W) WS GPU Maestro

0%

50%

100%

150%

A
N

T
T

 I
n

c
r
e

a
s
e

0%

20%

40%

60%

80%

S
T

P
 I

m
p

ro
v
e

m
e

n
t

Figure 5.14:
ANTT increase and STP improvement of Spatial, SMK-(P+W), WS, and GPU

Maestro over non-shared execution. A geometric mean of all combinations of

co-running kernels from each category is shown. ANTT is a lower-is-better

metric, and STP is a higher-is-better metric.

5.5.4 Comparison to Prior Works

This section compares GPU Maestro with three prior works: spatial multitasking [3],

SMK-(P+W) [90], and Warped-Slicer (WS) [93]. For spatial multitasking at the SM gran-

ularity, Smart is used as the SM partitioning heuristic, which partitions SMs evenly among

applications. However, it is guaranteed that no application is given more SMs than it can fill

up with thread blocks. SMK-(P+W) and WS partition resources within the SM granularity.

SMK-(P+W) uses the dominant resource share to partition resources within an SM, and ap-

plies fair warp scheduling. WS uses single kernel execution profiles to partition resources

within an SM.

Figure 5.14 illustrates ANTT increase and STP improvement of the prior works and

GPU Maestro over non-shared execution. On average, Spatial, SMK-(P+W), WS, and

GPU Maestro increases ANTT by 72.2%, 90.3%, 78.4%, and 57.6%, respectively, while

improving STP by 20.7%, 26.2%, 30.3%, and 45.0%, respectively. GPU Maestro outper-

forms Spatial, SMK-(P+W), and WS in both ANTT and STP.

For a further in-depth analysis, Figure 5.15 shows STP improvement of the techniques

103

maestro/figs/cmp_legend_cropped.eps
maestro/figs/antt_cmp_cropped.eps
maestro/figs/stp_cmp_cropped.eps

-50%

0%

50%

100%

150%

LC
/T

P
A

C
F

H
W

/M
R

IQ

C
P

/H
W

M
R

IQ
/S

A
D

B
P

/T
P

A
C

F

H
S

/T
P

A
C

F

T
P

A
C

F
/S

C

T
P

A
C

F
/B

F
S

LC
/B

F
S

H
W

/S
C

M
R

IQ
/S

C

C
P

/S
R

A
D

N
W

/S
C

F
D

T
D

/S
C

B
T

/S
C

B
F

S
/F

W
T

B
F

S
/S

T

B
F

S
/B

S

COM/COM COM/MEM MEM/MEM

S
T

P
 I

m
p

ro
v
e

m
e

n
t

Spatial SMK-(P+W) WS GPU Maestro

Figure 5.15:
STP improvement of Spatial, SMK-(P+W), WS, and GPU Maestro over non-

shared execution for selected benchmark pairs.

over non-shared execution for selected benchmark pairs. From each category, three pairs,

where the performance improvement of SMK with even thread block partitioning over

Spatial is the largest, and three pairs with opposite characteristics were selected. For the

COM/COM category, SMK always performs better than Spatial hence six pairs with the

former characteristic were picked. As shown by the figure, GPU Maestro performs simi-

lar or better than any prior works. Because GPU Maestro can select the best performing

resource partition regardless of whether Spatial or SMK is favored, it achieves better perfor-

mance compared to prior works that focus on one of the scheme. Moreover, GPU Maestro

can capture interference between kernels, which is not taken into account for WS, which

only utilizes single kernel execution profiles. For example, benchmark pairs including BFS,

which had the largest interference with the other kernel by slowing it down, do not perform

well for WS.

104

maestro/figs/cmp_detail_cropped.eps

5.6 Related Work to GPU Maestro

In this section, the prior works on SMT CPUs are first described. Then, the previous

studies on the GPU multitasking are discussed.

5.6.1 Simultaneous Multithreading

SMT [86] was first introduced to maximize throughput of superscalar, out-of-order pro-

cessors by allowing fine-grained multithreading within a CPU core. SMT was further ex-

tended by ICOUNT [85], which explored the instruction fetch and issue priorities between

the threads in an SMT core. SMT was successfully adopted by industry [30], which was

also renamed as hyperthreading in Intel CPUs [37, 84]. Unlike SMT CPUs, SMK GPUs

introduce new problems like thread block partitioning and resource fragmentation. GPU

Maestro addressed these new problems, and also dealt with the instruction issue priorities

by studying kernel-aware warp scheduling.

5.6.2 GPU Multitasking

The first attempts on GPU multitasking came from software approaches by merging

kernels at compile time [55] or providing abstractions at the operating system level [70].

These approaches often require modifications to the source code, which may not be ap-

plicable in general cases. More recently, hardware preemption mechanisms were studied.

Tanasic et al. [83] studied two preemption techniques: traditional context switching, and

SM draining. In SM draining, an SM is no longer scheduled with new thread blocks. When

the running thread blocks are finished, the SM can be preempted. Chimera [59] further en-

105

abled fast preemption with SM flushing, and demonstrated that more efficient preemptive

multitasking is possible by using different preemption techniques for each thread block. By

having hardware supports for multitasking GPUs, existing GPU kernels can be seamlessly

take advantage of them.

Elastic kernels [55] controls the resource usage of kernels in more fine-grained man-

ner so that resource utilization on SMs can be improved. However, their evaluation of

multitasking is limited to the timeslice of a kernel rather than preemptive multitasking.

Persistent threads [23, 91] are software approaches to enable spatial multitasking. How-

ever, persistent threads require the programmers to explicitly change the kernels to fit in

the framework with increased difficulty for debugging. Moreover, extra registers required

by the framework may not be acceptable for register-constrained kernels.

Spatial multitasking [3] proposed to run multiple kernels on shared GPUs at the SM

granularity. While spatial multitasking improved system throughput over single kernel

execution, it also showed that the performance difference between various SM partition-

ing schemes were relatively small. The idea of SMK [90] has been explored, however, it

only addressed DRF thread block partitioning, which focuses on fair resource allocation.

WS [93] improves by using single kernel execution profiles to consider uneven partition-

ing, however, it did not address the interference between kernels. Moreover, prior works

on SMK did not study resource fragmentation problem in depth. GPU Maestro addresses

these problems, and achieves better performance than these prior works by utilizing both

spatial multitasking and SMK.

106

5.7 GPU Maestro Conclusions

This chapter presented GPU Maestro, a dynamic resource management for efficient

utilization of multitasking GPUs. GPU Maestro identified that spatial multitasking and

SMK have their own advantages and disadvantages depending on the application mixes.

GPU Maestro explores which resource partition provides the best performance by testing

different partitions with a subset of SMs and directly measuring the performance of these

SMs. GPU Maestro also identified two challenges in implementing SMK GPUs. First,

it showed the existence of resource fragmentation problem, and proposed 2-way resource

allocation, which forces kernels to allocate and release resources consecutively in opposing

directions. Second, GPU Maestro also demonstrated that kernel-aware warp scheduling is

critical to fully benefit from SMK, and suggested that simple LRR kernel-aware scheduling

performs the best. Evaluations have shown that GPU Maestro increases the ANTT by

an average of 57.6% while improving the STP by an average of 45.0% over non-shared

execution.

107

CHAPTER VI

Conclusion

Heterogeneous systems are becoming increasingly popular in modern computer sys-

tems due to its high energy efficiency and performance. Additional to CPUs, many variants

of programmable accelerators have been studied: application-specific processors that are

targeting a specific application domain [9, 12, 73], field-programmable gate arrays [65],

extended coarse-grained reconfigurable architecture (CGRA) [57, 62, 58], extended SIMD

cores [11, 63, 64], or GPUs. Among them, GPUs are the first to be used in general-purpose

across mobile devices to data centers.

As GPUs are increasingly being adopted in modern computer systems beyond their tra-

ditional role of processing graphics to accelerating data-parallel applications, a scenario

of sharing an GPU among multiple applications is becoming viable. For example, cloud

computing services like AWS can save the infrastructure costs by having its customers to

share GPUs rather than assigning fixed set of GPUs to them. Any field-deployed devices

such as autonomous cars or internet of things (IoT), which exploit GPUs for data-parallel

processing, need to utilize shared GPUs because they are limited by power and cost bud-

gets.

108

This thesis proposed a framework with hardware/software extensions on GPUs, which

enables efficient resource utilization of multitasking GPUs. Chapter III presented ELF,

which is a GPU scheduling mechanism for single kernel execution. ELF utilizes both

compiler and hardware to give higher priority to the warps that have fewer remaining in-

structions to the next memory load operation. Evaluations show that ELF can improve the

performance by 4.1% over the greedy-then-oldest (GTO) scheduler with only 1.39kB extra

storage per SM. When used with other techniques like NewCAR and instruction prefetch-

ing, ELF can achieve total speedup of 11.9% over the GTO.

Chapter IV presented Chimera, a collaborative preemption to enable efficient preemp-

tive multitasking on GPUs. Chimera first proposed a preemption technique called flushing,

which combines the concept of idempotent execution to preemption with the independence

of thread block execution to enable low preemption latency. The key idea behind Chimera

is to preempt each thread block with the most efficient preemption technique by dynami-

cally estimating the preemption costs. Intuitively, Chimera should incur less overhead than

any single preemption technique if preemption costs are estimated correctly. Evaluations

show that Chimera violates a 15µs preemption latency constraint for only 0.2% of the pre-

emption requests. For multi-programmed workloads, Chimera can improve the average

normalized turnaround time by 5.5x, which can go up to 25.4x when a large number of

preemption requests occur. System throughput can be improved by 12.2%, which can go

up to 41.7% when a large number of preemption requests exist.

Chapter V presented GPU Maestro, a dynamic resource management framework for

efficient utilization of multitasking GPUs. GPU Maestro showed that unfair thread block

partitioning within SMK GPUs can benefit more than fair partitioning. Furthermore, GPU

109

Maestro illustrated when spatial multitasking can perform better than SMK GPUs. Due to

interference and dynamism within SMK GPUs, GPU Maestro suggested testing different

thread block partitioning with a subset of SMs to determine the best performing parti-

tion. GPU Maestro addresses two additional problems: resource fragmentation problem,

and starvation problem. GPU Maestro proposed 2-way resource allocation, which forces

kernels to allocate and release resources consecutively in opposing directions, to over-

come resource fragmentation. GPU Maestro also suggested that simple LRR kernel-aware

scheduling can avoid the starvation. Evaluations have shown that GPU Maestro increases

the ANTT by an average of 57.6% while improving the STP by an average of 45.0% over

non-shared execution. Compared to the baseline spatial multitasking and SMK approaches,

GPU Maestro improves average STP by 20.2% and 13.9%, respectively.

This thesis have introduced novel techniques to enable efficient resource utilization on

multitasking GPUs. The SIMT programming model has unique properties compared to the

programming models on CPUs, and this thesis showed to how to exploit these properties

to make multitasking GPUs more efficient. Moreover, the techniques are not limited to

the multitasking GPUs, but any large-state acclerators that utilize the SIMT programming

model.

While this thesis have addressed major challenges for efficient resource utilization on

multitasking GPUs, there are several opportunities still remaining for further investigation

that can extend the proposed framework. For example, other shared resources like the

memory partitions including the L2 cache, and DRAM controllers can be further examined

to reduce contention. Energy efficiency of multitasking GPUs can be also explored, and

can be taken into account as one parameter in the proposed framework. To maximize the

110

benefits from these opportunities, approaches from this thesis, which utilized both soft-

ware/hardware extensions to exploit unique characteristics of the GPU programming and

execution models, can still be promising.

111

BIBLIOGRAPHY

112

BIBLIOGRAPHY

[1] Green500 list, 2015. http://www.green500.org/lists/green201506. 1, 75

[2] Top500 list, 2015. http://www.top500.org/lists/2015/06/. 1, 75

[3] J. T. Adriaens, K. Compton, N. S. Kim, and M. J. Schulte. The case for GPGPU spa-

tial multitasking. In Proc. of the 18th International Symposium on High-Performance

Computer Architecture, pages 1–12, 2012. 4, 14, 45, 48, 49, 55, 62, 68, 72, 76, 96,

103, 106

[4] Amazon. Amazon web services. https://aws.amazon.com/ec2/. 1, 75

[5] A. Bakhoda, G. L. Yuan, W. W. L. Fung, H. Wong, and T. M. Aamodt. Analyzing

CUDA workloads using a detailed GPU simulator. In Proc. of the 2009 IEEE Sympo-

sium on Performance Analysis of Systems and Software, pages 163–174, Apr. 2009.

30, 31, 32, 61, 95

[6] C. Basaran and K.-D. Kang. Supporting preemptive task executions and memory

copies in GPGPUs. In 2012 24th Euromicro Conference on Real-Time Systems, pages

287–296, 2012. 45, 72, 75

[7] S. Che, M. Boyer, J. Meng, D. Tarjan, , J. W. Sheaffer, S.-H. Lee, and K. Skadron.

113

Rodinia: A benchmark suite for heterogeneous computing. In Proc. of the IEEE

Symposium on Workload Characterization, pages 44–54, 2009. 31, 32, 61, 62, 96, 97

[8] X. Chen, L.-W. Chang, C. I. Rodrigues, J. Lv, Z. Wang, and W.-M. Hwu. Adaptive

cache management for energy-efficient GPU computing. In Proc. of the 47th Annual

International Symposium on Microarchitecture, pages 343–355, 2014. 2

[9] S. Choi, J. J. K. Park, M. Koo, D. Kim, and S.-I. Chae. A 40 mbps H.264/AVC

CAVLC decoder using a 64-bit multiple-issue video parsing coprocessor. In Proc. of

the 23rd SOC Conference, pages 105–108, 2010. 108

[10] Y. Chou, B. Fahs, and S. Abraham. Microarchitecture optimizations for exploiting

memory-level parallelism. In Proc. of the 31st Annual International Symposium on

Computer Architecture, pages 76–87, June 2004. 39

[11] N. Clark, A. Hormati, S. Yehia, S. Mahlke, and K. Flautner. Liquid SIMD: Abstract-

ing SIMD hardware using lightweight dynamic mapping. In Proc. of the 13th Inter-

national Symposium on High-Performance Computer Architecture, pages 216–227,

2007. 108

[12] G. Dasika, A. Sethia, V. Robby, T. Mudge, and S. Mahlke. Medics: Ultra-portable

processing for medical image reconstruction. In Proc. of the 19th International Con-

ference on Parallel Architectures and Compilation Techniques, pages 181–192, 2010.

108

[13] M. de Kruijf, S. Nomura, and K. Sankaralingam. Relax: An architectural framework

114

for software recovery of hardware faults. In Proc. of the 37th Annual International

Symposium on Computer Architecture, pages 497–508, June 2010. 73

[14] M. de Kruijf and K. Sankaralingam. Idempotent processor architecture. In Proc.

of the 44th Annual International Symposium on Microarchitecture, pages 140–151,

2011. 45, 50, 73

[15] J. Dundas and T. Mudge. Improving data cache performance by pre-executing in-

structions under a cache miss. In Proc. of the 1998 International Conference on

Supercomputing, pages 68–75, 1997. 39

[16] S. Eyerman and L. Eeckhout. System-level performance metrics for multiprogram

workloads. IEEE Micro, 28(3):42–53, 2008. 69, 79

[17] S. Feng, S. Gupta, A. Ansari, S. Mahlke, and D. August. Encore: Low-cost, fine-

grained transient fault recovery. In Proc. of the 44th Annual International Symposium

on Microarchitecture, pages 398–409, 2011. 45, 50, 73

[18] W. W. L. Fung, I. Sham, G. Yuan, and T. M. Aamodt. Dynamic warp formation and

scheduling for efficient GPU control flow. In Proc. of the 40th Annual International

Symposium on Microarchitecture, pages 407–420, 2007. 2

[19] M. Galloy. CPU vs GPU performance, 2013.

http://michaelgalloy.com/2013/06/11/cpu-vs-gpu-performance.html. viii, 2

[20] M. Gebhart, D. R. Johnson, D. Tarjan, S. W. Keckler, W. J. Dally, E. Lindholm, and

K. Skadron. Energy-efficient mechanisms for managing thread context in through-

115

put processors. In Proc. of the 38th Annual International Symposium on Computer

Architecture, pages 235–246, 2011. 40

[21] A. Glew. MLP yes! ILP no!, 1998. In ASPLOS Wild and Crazy Idea Session’98. 39

[22] C. Gregg, J. Dorn, K. Hazelwood, and K. Skadron. Fine-grained resource sharing for

concurrent GPGPU kernels. In Proc. of the 4th USENIX Workshop on Hot Topics in

Parallelism, page 10, 2012. 71

[23] K. Gupta, J. A. Stuart, and J. D. Owens. A study of persistent threads style GPU

programming for GPGPU workloads. In innovative parallel computing(InPar), pages

1–14, 2012. 106

[24] M. Hind. Pointer analysis: Haven’t we solved this problem yet? In Proc. of the

2001 ACM SIGPLAN-SIGSOFT Workshop on Program Analysis for Software Tools

and Engineering, pages 54–61, June 2001. 60

[25] S. Hong and H. Kim. An analytical model for a GPU architecture with memory-level

and thread-level parallelism awareness. In Proc. of the 36th Annual International

Symposium on Computer Architecture, pages 152–163, 2009. 77, 83

[26] F. Ino, A. Ogita, K. Oita, and K. Hagihara. Cooperative multitasking for GPU-

accelerated grid systems. Concurrency and Computation: Practice & Experience,

24(1):96–107, 2012. 71

[27] D. A. Jamshidi, M. Samadi, and S. Mahlke. D2MA: Accelerating coarse-grained

data transfer for GPUs. In Proc. of the 23rd International Conference on Parallel

Architectures and Compilation Techniques, pages 431–442, 2014. 40

116

[28] W. Jia, K. A. Shaw, and M. Martonosi. MRPB: Memory request prioritization for

massively parallel processors. In Proc. of the 20th International Symposium on High-

Performance Computer Architecture, pages 272–283, Feb. 2014. 15, 27, 41

[29] A. Jog, O. Kayiran, N. C. Nachiappan, A. K. Mishra, M. T. Kandemir, O. Mutlu,

R. Iyer, and C. R. Das. OWL: Cooperative thread array aware scheduling techniques

for improving gpgpu performance. In 18th International Conference on Architectural

Support for Programming Languages and Operating Systems, pages 395–406, Mar.

2013. 15, 18, 41

[30] R. Kalla, B. Sinharoy, and J. M. Tendler. IBM Power5 chip: A dual-core multi-

threaded processor. IEEE Micro, 24(2):40–47, 2004. 105

[31] S. Kato, K. Lakshmanan, A. Kumar, M. Kelkar, Y. Ishikawa, and R. Rajkumar.

RGEM: A responsive GPGPU execution model for runtime engines. In 2011 IEEE

32nd Real-Time Systems Symposium, pages 57–66, 2011. 45, 46, 71

[32] S. Kato, K. Lakshmanan, R. R. Rajkumar, and Y. Ishikawa. TimeGraph: GPU

scheduling for real-time multi-tasking environments. In Proc. of the USENIX Annual

Technical Conference (USENIX ATC’11), pages 17–30, 2011. 45, 75

[33] O. Kayiran, A. Jog, M. T. Kandemir, and C. R. Das. Neither more nor less: Op-

timizing thread-level parallelism for GPGPUs. In Proc. of the 22nd International

Conference on Parallel Architectures and Compilation Techniques, pages 157–166,

2013. 2, 15, 31, 33, 37, 41

117

[34] KHRONOS. OpenCL - the open standard for parallel programming of heterogeneous

systems, 2014. 1, 15, 75

[35] S. W. Kim, C.-L. Ooi, R. Eigenmann, B. Falsafi, and T. Vijaykumar. Reference idem-

potency analysis: A framework for optimizing speculative execution. In Proc. of the

6th ACM SIGPLAN Symposium on Principles and Practice of Parallel Programming,

pages 2–11, 2001. 45, 50, 73

[36] J. Kloosterman, J. Beaumont, M. Wollman, A. Sethia, R. Dreslinski, T. Mudge, and

S. Mahlke. WarpPool: Sharing requests with inter-warp coalescing for throughput

processors. In Proc. of the 48th Annual International Symposium on Microarchitec-

ture, pages 433–444, 2015. 2

[37] D. Koufaty and D. T. Marr. Hyperthreading technology in the netburst microarchitec-

ture. IEEE Micro, 23(2):56–65, 2003. 105

[38] N. B. Lakshminarayana and H. Kim. Effect of instruction fetch and memory schedul-

ing on GPU performance. In Workshop on Language, Compiler, and Architecture

Support for GPGPU, pages 1–10, 2010. 18

[39] J. Lee, N. Lakshminarayana, H. Kim, and R. Vuduc. Many-thread aware prefetch-

ing mechanisms for GPGPU applications. In Proc. of the 43rd Annual International

Symposium on Microarchitecture, pages 213–224, 2010. 2, 30, 40

[40] M. Lee, S. Song, J. Moon, J. Kim, W. Seo, Y. Cho, and S. Ryu. Improving gpgpu

resource utilization through alternative thread block scheduling. In Proc. of the 20th

118

International Symposium on High-Performance Computer Architecture, pages 260–

271, 2014. 2, 41, 71

[41] A. Lukefahr, S. Padmanabha, R. Das, F. M. Sleiman, R. Dreslinski, T. F. Wenisch,

and S. Mahlke. Composite cores: Pushing heterogeneity into a core. In Proc. of the

45th Annual International Symposium on Microarchitecture, pages 317–328, 2012.

39

[42] J. Meng, D. Tarjan, and K. Skadron. Dynamic warp subdivision for integrated branch

and memory divergence tolerance. In Proc. of the 37th Annual International Sympo-

sium on Computer Architecture, pages 235–246, 2010. 2

[43] J. Menon, M. de Kruijf, and K. Sankaralingam. iGPU: Exception support and spec-

ulative execution on GPUs. In Proc. of the 39th Annual International Symposium on

Computer Architecture, pages 72–83, June 2012. 45, 46, 50, 73

[44] O. Mutlu, J. Stark, C. Wilkerson, and Y. N. Patt. Runahead Execution: An Alternative

to Very Large Instruction Windows for Out-of-Order Processors. In Proc. of the 9th

International Symposium on High-Performance Computer Architecture, pages 129–

140, Feb. 2003. 39

[45] V. Narasiman, M. Shebanow, C. J. Lee, R. Miftakhutdinov, O. Mutlu, and Y. N. Patt.

Improving GPU performance via large warps and two-level warp scheduling. In Proc.

of the 44th Annual International Symposium on Microarchitecture, pages 308–317,

2011. 2, 15, 18, 31, 37, 40

[46] NVIDIA. Fermi: Nvidias next generation cuda compute architecture,

119

2009. http://www.nvidia.com/content/PDF/ fermi white papers/NVIDIA Fermi -

Compute Architect - ure Whitepaper.pdf. 30, 55, 61

[47] NVIDIA. NVIDIA’s next generation CUDA compute architecture: Kepler GK110,

2012. www.nvidia.com/content/PDF/kepler/NVIDIA-kepler-GK110-Architecture-

Whitepaper.pdf. 44, 49, 59, 76

[48] NVIDIA. NVIDIA CUDA C Programming Guide, version 5.5, 2013. 1, 15

[49] NVIDIA. CUDA C Programming Guide, 2014. http://docs.nvidia.com/cuda. 75

[50] NVIDIA. NVIDIA GeForce GTX 980: Featuring Maxwell, the most ad-

vanced GPU ever made, 2014. http://international.download.nvidia.com/geforce-

com/international/pdfs/GeForce GTX 980 Whitepaper FINAL.PDF. 7, 95

[51] NVIDIA. NVIDIA GPU Computing SDK, 2014. http://developer.nvidia.com/gpu-

computing-sdk. 31, 32, 61, 62, 96, 97

[52] NVIDIA. Sharing a GPU between MPI processes: Multi-process service (MPS)

overview, 2014. http://docs.nvidia.com/deploy/mps/index.html. 44, 76

[53] K. Olukotun, B. A. Nayfeh, L. Hammond, K. Wilson, and K. Chang. The case for

a single-chip multiprocessor. In Seventh International Conference on Architectural

Support for Programming Languages and Operating Systems, pages 2–11, Dec. 1996.

4

[54] A. Padegs, B. B. Moore, R. M. Smith, and W. Buchholz. The IBM system/370 vector

120

architecture: Design considerations. IEEE Transactions on Computers, 37(5):509–

520, 1988. 72

[55] S. Pai, M. J. Thazhuthaveetil, and R. Govindarajan. Improving GPGPU concurrency

with elastic kernels. In 18th International Conference on Architectural Support for

Programming Languages and Operating Systems, pages 407–418, Mar. 2013. 45, 49,

71, 105, 106

[56] V. S. Pai and S. Adve. Code transformations to improve memory parallelism. In Proc.

of the 32nd Annual International Symposium on Microarchitecture, pages 147–155,

Nov. 1999. 39

[57] H. Park, K. Fan, S. Mahlke, T. Oh, H. Kim, and H. seok Kim. Edge-centric modulo

scheduling for coarse-grained reconfigurable architectures. In Proc. of the 17th In-

ternational Conference on Parallel Architectures and Compilation Techniques, pages

166–176, Oct. 2008. 108

[58] J. J. K. Park, Y. Park, and S. Mahlke. Efficient execution of augmented reality ap-

plications on mobile programmable accelerators. In Proc. of the 2013 International

Conference on Field Programmable Logic and Applications, pages 176–183, 2013.

108

[59] J. J. K. Park, Y. Park, and S. Mahlke. Chimera: Collaborative preemption for multi-

tasking on a shared GPU. In 20th International Conference on Architectural Support

for Programming Languages and Operating Systems, pages 593–606, Mar. 2015. 7,

13, 14, 76, 89, 94, 95, 96, 105

121

[60] J. J. K. Park, Y. Park, and S. Mahlke. ELF: Maximizing memory-level parallelism

for GPUs with coordinated warp and fetch scheduling. In Proceedings of SC15: the

International Conference on High Performance Computing, Networking, Storage and

Analysis, Nov. 2015. 6, 82

[61] J. J. K. Park, Y. Park, and S. Mahlke. Fine grain cache partitioning using per-

instruction working blocks. In Proc. of the 24th International Conference on Parallel

Architectures and Compilation Techniques, pages 305–316, Oct. 2015. 96

[62] Y. Park, J. J. K. Park, and S. Mahlke. Efficient performance scaling of future CGRAs

for mobile applications. In Proc. of the 2012 International Conference on Field Pro-

grammable Logic and Applications, pages 335–342, Dec. 2012. 108

[63] Y. Park, J. J. K. Park, H. Park, and S. Mahlke. Libra: Tailoring SIMD execution using

heterogeneous hardware and dynamic configurability. In Proc. of the 45th Annual

International Symposium on Microarchitecture, pages 84–95, 2012. 108

[64] Y. Park, S. Seo, H. Park, H. K. Cho, and S. Mahlke. SIMD defragmenter: Efficient

ILP realization on data-parallel architectures. In 17th International Conference on

Architectural Support for Programming Languages and Operating Systems, pages

363–374, 2012. 108

[65] A. Putnam, A. M. Caulfield, E. S. Chung, D. Chiou, K. Constantinides, J. Demme,

H. Esmaeilzadeh, J. Fowers, G. P. Gopal, J. Gray, M. Haselman, S. Hauck, S. Heil,

A. Hormati, J.-Y. Kim, S. Lanka, J. Larus, E. Peterson, S. Pope, A. Smith, J. Thong,

P. Y. Xiao, and D. Burger. A reconfigurable fabric for accelerating large-scale data-

122

center services. In Proc. of the 41st Annual International Symposium on Computer

Architecture, pages 13–24, 2014. 108

[66] M. K. Qureshi, D. N. Lynch, O. Mutlu, and Y. N. Patt. A case for MLP-aware cache

replacement. In Proc. of the 33rd Annual International Symposium on Computer

Architecture, pages 167–178, June 2006. 39, 68

[67] M. K. Qureshi and Y. N. Patt. Utility-based cache partitioning: A low-overhead,

high-performance runtime mechanism to partition shared caches. In Proc. of the 39th

Annual International Symposium on Microarchitecture, pages 423–432, 2006. 96

[68] T. G. Rogers, M. OĆonnor, and T. M. Aamodt. Cache-conscious wavefront schedul-

ing. In Proc. of the 45th Annual International Symposium on Microarchitecture,

pages 72–83, 2012. 2, 15, 18, 31, 33, 37, 41, 89, 96

[69] T. G. Rogers, M. O’Connor, and T. M. Aamodt. Divergence-aware warp scheduling.

In Proc. of the 46th Annual International Symposium on Microarchitecture, pages

99–110, 2013. 18, 41

[70] C. J. Rossbach, J. Currey, M. Silberstein, B. Ray, and E. Witchel. PTask: Operating

System Abstractions to Manage GPUs As Compute Devices. In Proc. of the 23rd

ACM Symposium on Operating Systems Principles, pages 233–248, 2011. 75, 105

[71] M. Samadi, A. Hormati, M. Mehrara, J. Lee, and S. Mahlke. Adaptive input-aware

compilation for graphics engines. In Proc. of the ’12 Conference on Programming

Language Design and Implementation, pages 13–22, 2012. 15

123

[72] N. Satish, C. Kim, J. Chhugani, H. Saito, R. Krishnaiyer, M. Smelyanskiy, M. Girkar,

and P. Dubey. Can traditional programming bridge the ninja performance gap for par-

allel computing applications? In Proc. of the 39th Annual International Symposium

on Computer Architecture, pages 440–451, 2012. 15

[73] A. Sethia, G. Dasika, T. Mudge, and S. Mahlke. A customized processor for energy

efficient scientific computing. IEEE Transactions on Computers, 61(12):1711–1723,

2012. 108

[74] A. Sethia, G. Dasika, M. Samadi, and S. Mahlke. APOGEE: Adaptive prefetching on

GPUs for energy efficiency. In Proc. of the 22nd International Conference on Parallel

Architectures and Compilation Techniques, pages 73–82, 2013. 2, 30, 40

[75] A. Sethia, D. A. Jamshidi, and S. Mahlke. Mascar: Speeding up GPU warps by

reducing memory pitstops. In Proc. of the 21st International Symposium on High-

Performance Computer Architecture, pages 174–185, Feb. 2015. viii, 2, 15, 18, 27,

29, 36, 42

[76] A. Sethia and S. Mahlke. Equalizer: Dynamic tuning of GPU resources for efficient

execution. In Proc. of the 47th Annual International Symposium on Microarchitec-

ture, pages 647–658, 2014. 2

[77] S. Shivshankar, S. Vangara, and A. G. Dean. Balancing register pressure and context-

switching delays in ASTI systems. In Proc. of the 2005 International Conference on

Compilers, Architecture, and Synthesis for Embedded Systems, pages 286–294, Sept.

2005. 72

124

[78] A. Silberschatz et al. Operating System Concepts. John Wiley and Sons, Inc, Indi-

anapolis, IN, 2001. 12

[79] J. E. Smith and W.-C. Hsu. Prefetching in supercomputer instruction caches. In

Proceedings of the 1992 ACM/IEEE conference on Supercomputing, pages 588–597,

1992. 29

[80] J. S. Snyder, D. B. Whalley, and T. P. Baker. Fast context switches: Compiler and

architectural support for preemptive scheduling. Microprocessors and Microsystems,

19(1):35–42, 1995. 72

[81] D. J. Sorin, V. S. Pai, S. V. Adve, M. K. Vernon, and D. A. Wood. Analytic eval-

uation of shared-memory systems with ilp processors. In Proc. of the 25th Annual

International Symposium on Computer Architecture, pages 380–391, June 1998. 39

[82] J. A. Stratton, C. Rodrigues, I.-J. Sung, N. Obeid, L.-W. Chang, N. Anssari, G. D. Liu,

and W. mei Hwu. Parboil: A revised benchmark suite for scientific and commercial

throughput computing. Technical Report IMPACT-12-01, University of Illinois at

Urbana-Champaign, Mar. 2012. 31, 32, 61, 62, 96, 97

[83] I. Tanasic, I. Gelado, J. Cabezas, A. Ramirez, N. Navarro, and M. Valero. Enabling

preemptive multiprogramming on GPUs. In Proc. of the 41st Annual International

Symposium on Computer Architecture, pages 193–204, 2014. 14, 45, 46, 49, 51, 55,

68, 72, 76, 89, 95, 96, 105

[84] N. Tuck and D. M. Tullsen. Initial observations of the simultaneous multithread-

125

ing pentium 4 processor. In Proc. of the 12th International Conference on Parallel

Architectures and Compilation Techniques, pages 26–34, 2003. 68, 105

[85] D. M. Tullsen, S. J. Eggers, J. S. Emer, H. M. Levy, J. L. Lo, and R. L. Stamm. Ex-

ploiting choice: Instruction fetch and issue on an implementable simultaneous multi-

threading processor. In Proc. of the 23rd Annual International Symposium on Com-

puter Architecture, pages 191–202, May 1996. 95, 99, 105

[86] D. M. Tullsen, S. J. Eggers, and H. M. Levy. Simultaneous multithreading: Maxi-

mizing on-chip parallelism. In Proc. of the 22nd Annual International Symposium on

Computer Architecture, pages 392–403, June 1995. 4, 105

[87] J. Vera, F. J. Cazorla, A. Pajuelo, O. J. Santana, E. Fernandez, and M. Valero. FAME:

Fairly measuring multithreaded architectures. In Proc. of the 16th International Con-

ference on Parallel Architectures and Compilation Techniques, pages 305–316, 2007.

68

[88] A. Verma, L. Pedrosa, M. Korupolu, D. Oppenheimer, E. Tune, and J. Wilkes. Large-

scale cluster management at Google with Borg. In Proc. of the 10th European Con-

ference on Computer Systems, 2015. 3, 75

[89] L. Wang, M. Huang, and T. El-Ghazawi. Exploiting concurrent kernel execution on

graphic processing units. In 2011 International Conference on High Performance

Computing and Simulation, pages 24–32, 2011. 71

[90] Z. Wang, J. Yang, R. Melhem, B. Childers, Y. Zhang, and M. Guo. Simultaneous mul-

tikernel GPU: Multi-tasking throughput processors via fine-grained sharing. In Proc.

126

of the 22nd International Symposium on High-Performance Computer Architecture,

pages 358–369, Mar. 2016. 4, 14, 76, 99, 100, 103, 106

[91] B. Wu, G. Chen, D. Li, X. Shen, and J. Vetter. Enabling and exploiting flexible task

assignment on GPU through SM-centric program transformations. In Proc. of the

2015 International Conference on Supercomputing, pages 119–130, June 2015. 106

[92] X. Xie, Y. Liang, Y. Wang, G. Sun, and T. Wang. Coordinated static and dynamic

cache bypassing for GPUs. In Proc. of the 21st International Symposium on High-

Performance Computer Architecture, pages 76–88, Feb. 2015. 2

[93] Q. Xu, H. Jeon, K. Kim, W. W. Ro, and M. Annavaram. Warped-slicer: Efficient

intra-SM slicing through dynamic resource partitioning for GPU multiprogramming.

In Proc. of the 43rd Annual International Symposium on Computer Architecture, page

To appear, 2016. 14, 76, 103, 106

[94] Y. Zhang and J. D. Owens. A quantitative performance analysis model for GPU

architectures. In Proc. of the 17th International Symposium on High-Performance

Computer Architecture, pages 382–393, Feb. 2011. 77, 83

[95] H. Zhou and T. M. Conte. Enhancing memory-level parallelism via recovery-free

value prediction. IEEE Transactions on Computers, 54(7):897–912, 2005. 39

[96] X. Zhou and P. Petrov. Rapid and low-cost context-switch through embedded proces-

sor customization for real-time and control applications. In Proc. of the 43rd Design

Automation Conference, pages 352–357, 2006. 72

127

[97] S. Zhuravlev, J. C. Saez, S. Blagodurov, A. Fedorova, and M. Prieto. Survey of

scheduling techniques for addressing shared resources in multicore processors. acm

computing surveys, 45(1):4:1–4:28, 2012. 4

128

	DEDICATION
	ACKNOWLEDGEMENTS
	LIST OF FIGURES
	LIST OF TABLES
	ABSTRACT
	Introduction
	Challenges
	Contributions
	ELF
	Chimera
	GPU Maestro

	Background
	Terminology
	GPU Architecture and Execution Model
	Multitasking GPUs

	ELF: Maximizing Memory-Level Parallelism for GPUs with Coordinated Warp and Fetch Scheduling
	Introduction
	Motivation
	Maximizing Memory-level Parallelism
	Memory Conflicts and Fetch Stalls

	Architecture
	Finding Program Points
	Priority Calculator
	Fetch Scheduling in ELF
	ELF with Cache Access Re-execution
	ELF with Instruction Prefetch

	Results
	ELF Performance
	Hardware Overhead
	Comparison to Prior Works

	Related Work to ELF
	Memory-Level Parallelism
	GPU Scheduling

	ELF Conclusions

	Chimera: Collaborative Preemption for Multitasking on a Shared GPU
	Introduction
	Motivation
	Spatial Multitasking
	Prior Preemption Techniques
	SM Flushing
	Tradeoff
	Collaborative Preemption

	Architecture
	GPU Scheduler with Preemptive Multitasking
	Cost Estimation
	Preemption Selection
	SM Flushing

	Results
	Periodic Task with Deadline
	Impact of Preemption Latency Constraint
	Relaxed Idempotence Condition in SM Flushing
	Case Study

	Related Work to Chimera
	Chimera Conclusions

	Dynamic Resource Management for Efficient Utilization of Multitasking GPUs
	Introduction
	Background
	Multikernel Metrics

	Motivation and Challenges
	Spatial vs. Simultaneous Multikernel
	Multitasking GPU Performance
	Interference and Dynamism
	SMK Challenges
	Challenge 1: Resource Fragmentation

	Challenge 3: Starvation

	GPU Maestro Design
	Dynamic Resource Partitioning
	2-Way Resource Allocation
	Kernel-aware Warp Scheduling

	Results
	Resource Partitioning Performance
	Kernel-aware Scheduling Performance
	Repartitioning Analysis
	Comparison to Prior Works

	Related Work to GPU Maestro
	Simultaneous Multithreading
	GPU Multitasking

	GPU Maestro Conclusions

	Conclusion
	BIBLIOGRAPHY

