Approximating with Input Level Granularity

Parker Hill, Michael Laurenzano, Mehrzad Samadi
Scott Mahlke, Jason Mars, Lingjia Tang

ELECTRICAL ENGINEERING AND COMPUTER SCIENCE
UNIVERSITY OF MICHIGAN

ClarityLab
Computational Model

- Each operation executed with several inputs
Sensitivity to Input
Sensitivity to Input

Input

Gamma Filter
Sensitivity to Input

Input Gamma Filter (16x8 Tiling*) Approximation

*Samadi et al. ASPLOS 2014
Sensitivity to Input

Is this an acceptable approximation method?

*Samadi et al. ASPLOS 2014
Sensitivity to Input

Input

Gamma Filter

(16x8 Tiling*) Approximation

*Samadi et al. ASPLOS 2014
Sensitivity to Input

Input

Gamma Filter

(16x8 Tiling*) Approximation

*Samadi et al. ASPLOS 2014
Sensitivity to Input

Input | Gamma Filter | (16x8 Tiling*) Approximation

*Samadi et al. ASPLOS 2014
Previous Work

• Use some set of inputs to:
 – Determine if approximation is accurate enough
 – Pick fastest acceptable approximation

• Reuse the approximation for several inputs
Performance vs Accuracy

16x8 Tiling

Speedup: 49x

4x2 Tiling

Speedup: 5.9x
Performance vs Accuracy

16x8 Tiling 4x2 Tiling

Speedup 49x 5.9x
Performance vs Accuracy

16x8 Tiling

4x2 Tiling

Speedup

49x

5.9x
Trade-off with Many Inputs

4x2 tiling approximation (5.9x speedup)
Trade-off with Many Inputs

- Conservative approximation \rightarrow small speedup

4x2 tiling approximation (5.9x speedup)

- Missed Opportunity
- Fast + High Quality
- TOQ = 90%
- TOQ Violation

Output Quality

Proportion

0% 5% 10% 15% 20% 25% 30% 35% 100% 90% 80%

TOQ = 90%
Trade-off with Many Inputs

- Conservative approximation \rightarrow small speedup
- Cannot approximate more aggressively

4x2 tiling approximation (5.9x speedup)

8x8 tiling (22x speedup)
Trade-off with Many Inputs

- Conservative approximation → small speedup
- Cannot approximate more aggressively

4x2 tiling approximation (5.9x speedup)

8x8 tiling (22x speedup)
Trade-off with Many Inputs

- Conservative approximation → small speedup
- Cannot approximate more aggressively
- We would like to approximate inputs differently

4x2 tiling approximation (5.9x speedup)

8x8 tiling (22x speedup)
Dynamic Approximation Challenges

• Must analyze accurately
 – Cannot violate TOQ
 – Need to pick a fast approximation

• Must analyze quickly
 – Limits potential speedup
One Possible Dynamic System

1) Provide:
 - A set of approximations
 - Input

2) Apply analysis to each pair:
 - Performance
 - Output quality

3) Select best approximation:
 - Meets accuracy constraint
 - High performance

4) Apply approximation
One Possible Dynamic System

1) Provide:
 - A set of approximations
 - Input

2) Apply analysis to each pair:
 - Performance
 - Output quality

3) Select best approximation:
 - Meets accuracy constraint
 - High performance

4) Apply approximation
1) Provide:
 - A set of approximations
 - Input

2) Apply analysis to each pair:
 - Performance
 - Output quality

3) Select best approximation:
 - Meets accuracy constraint
 - High performance

4) Apply approximation
One Possible Dynamic System

1) Provide:
 - A set of approximations
 - Input

2) Apply analysis to each pair:
 - Performance
 - Output quality

3) Select best approximation:
 - Meets accuracy constraint
 - High performance

4) Apply approximation
One Possible Dynamic System

1) Provide:
 - A set of approximations
 - Input

2) Apply analysis to each pair:
 - Performance
 - Output quality

3) Select best approximation:
 - Meets accuracy constraint
 - High performance

4) Apply approximation
One Possible Dynamic System

1) Provide:
 - A set of approximations
 - Input

2) Apply analysis to each pair:
 - Performance
 - Output quality

3) Select best approximation:
 - Meets accuracy constraint
 - High performance

4) Apply approximation
One Possible Dynamic System

1) Provide:
 - A set of approximations
 - Input

2) Apply analysis to each pair:
 - Performance
 - Output quality

3) Select best approximation:
 - Meets accuracy constraint
 - High performance

4) Apply approximation
One Possible Dynamic System

1) Provide:
 - A set of approximations
 - Input

2) Apply analysis to each pair:
 - Performance
 - Output quality

3) Select best approximation:
 - Meets accuracy constraint
 - High performance

4) Apply approximation
One Possible Dynamic System

1) Provide:
 - A set of approximations
 - Input

2) Apply analysis to each pair:
 - Performance
 - Output quality

3) Select best approximation:
 - Meets accuracy constraint
 - High performance

4) Apply approximation
Dynamic Oracle Selections

- Optimal choice depends heavily on input

![Bar Chart]

Proportion

- 16x16
- 8x16
- 16x32
- 8x32
- 32x32
- 4x16
- 8x8
- 16x64
- 32x64
- 64x128
- 4x8
- 4x32
- 16x128
- 32x128
- 8x64
- 8x4
- 24 others
Dynamic Oracle Performance

- Accuracy near TOQ
Dynamic Oracle Performance

- Accuracy near TOQ
- 61x average speedup
Dynamic Oracle Performance

- Accuracy near TOQ
- 61x average speedup (compared to 5.9x for 4x2 tiling)
Conclusion

• Adjusting approximation per input is important
 – 61x potential speedup for dynamic system
 – 5.9x potential speedup for static system

• To take advantage of this opportunity:
 – Dynamic system predicts approximation per input
 – High prediction accuracy
 – Quick predictions
Questions?