
Path Sensitive Signatures for Control Flow
Error Detection

Ze Zhang
University of Michigan

Ann Arbor, Michigan, USA
zezhang@umich.edu

Sunghyun Park
University of Michigan

Ann Arbor, Michigan, USA
sunggg@umich.edu

Scott Mahlke
University of Michigan

Ann Arbor, Michigan, USA
mahlke@umich.edu

Abstract
Transistors’ performance has been improving by shrinking
feature sizes, lowering voltage levels, and reducing noisemar-
gins. However, these changes also make transistors more
vulnerable and susceptible to transient faults. As a result,
transient fault protection has become a crucial aspect of de-
signing reliable systems. According to previous research, it is
about 2.5x harder to mask control flow errors than data flow
errors, making control flow protection critical. In this paper,
we present Path Sensitive Signatures (PaSS), a low overhead
and high fault coverage software method to detect illegal
control flows. PaSS targets off-the-shelf embedded systems
and combines two different methods to detect control flow
errors that incorrectly jump to both nearby and faraway
locations. In addition, it provides a lightweight technique
to protect inter-procedural control flow transfers including
calls and returns. PaSS is evaluated on the SPEC2006 bench-
marks. The experimental results demonstrate that with the
same level of fault coverage, PaSS only incurs 15.5% average
performance overhead compared to 64.7% overhead incurred
by the traditional signature-based technique. PaSS can also
further extend fault coverage by providing inter-procedural
protection at an additional 3.6% performance penalty.

CCSConcepts: •Computer systems organization→Re-
liability.

Keywords: reliability, compiler, control flow error
ACM Reference Format:
Ze Zhang, Sunghyun Park, and Scott Mahlke. 2020. Path Sensitive
Signatures for Control Flow Error Detection. In Proceedings of the
21st ACM SIGPLAN/SIGBED Conference on Languages, Compilers,
and Tools for Embedded Systems (LCTES ’20), June 16, 2020, London,
United Kingdom. ACM, New York, NY, USA, 12 pages. https://doi.
org/10.1145/3372799.3394360

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are not
made or distributed for profit or commercial advantage and that copies bear
this notice and the full citation on the first page. Copyrights for components
of this work owned by others than ACMmust be honored. Abstracting with
credit is permitted. To copy otherwise, or republish, to post on servers or to
redistribute to lists, requires prior specific permission and/or a fee. Request
permissions from permissions@acm.org.
LCTES ’20, June 16, 2020, London, United Kingdom
© 2020 Association for Computing Machinery.
ACM ISBN 978-1-4503-7094-3/20/06. . . $15.00
https://doi.org/10.1145/3372799.3394360

1 Introduction
Transient faults, also called Single Event Upsets (SEUs) or
soft errors, are caused by environmental effects such as elec-
tromagnetic interference (EMI), power fluctuations, and high
energy particle strikes. With advancements of semiconduc-
tor technology, transistor size has reduced exponentially
in the past decades. Aggressive voltage scaling and noise
margin reduction have also emerged as effective methods
to improve energy efficiency on microprocessors. However,
this combination of techniques substantially weakens the
architectural reliability, causing transient faults to happen
more easily and frequently than ever before.
Transient faults do not cause permanent damage to the

hardware, but they may silently corrupt an application’s cor-
rectness during run time or even crash the whole system.
For example, HP [38] stated that the frequent failures of its
2048-CPU system deployed at the Los Alamos National Lab-
oratory were caused by high-energy cosmic rays. A study
[12] even showed that the BlueGene/L machine installed
in Lawrence Livermore National Labs suffered from soft er-
rors in every four hours. Given the fact that the estimated
reliability per bit drops roughly 8% per generation of proces-
sors [11], there is an urgent need to provide transient fault
protection schemes on both current and future systems.

Transient fault detection techniques rely on different forms
of redundant checking, either in hardware or software. Typi-
cal hardware solutions include DMR (dual-modular redun-
dancy), TMR (triple-modular redundancy), and watchdog
processors [34]. IBM Z-Series servers [6], HP NonStop sys-
tems [7], and Boeing 777 airplanes [59] are examples of sys-
tems incorporating hardware-based transient fault detection
and recovery mechanisms. Even if these hardware-based
solutions do not have a severe effect on performance, they
introduce unavoidable area and energy costs. Therefore, they
cannot be directly applied to commodity embedded systems.

Software-based redundant checking is more appealing for
transient fault detection since it is free of production costs
and offers more flexibility. Prior works [24, 56] report that
the masking rate of control flow errors is significantly less
than that of data flow errors. Consequently, securing control
flows becomes a crucial aspect of transient fault protection.
Traditional software methods [42, 55] perform verification
on every branch instruction to ensure correctness. Although
detailed-checking methods provide high fault coverage, a

Session: Reliability LCTES’20, June 16, 2019, London, United Kingdom

62

https://doi.org/10.1145/3372799.3394360
https://doi.org/10.1145/3372799.3394360
https://doi.org/10.1145/3372799.3394360

large number of validating instructions are injected into pro-
grams, resulting in moderate to large performance overhead.
More recent studies [24, 62] try to reduce this validation
overhead by injecting fewer instructions, but they sacrifice
fault coverage to different extents due to their heuristic ap-
proaches. Given that transient fault protections aim to detect
as many faults as possible, trading fault coverage for better
performance has inherent weaknesses.
In this work, we focus on rethinking the coverage versus

overhead trade-off to develop a new validation method that
provides high fault coverage while keeping low performance
overhead at the same time. With this motivation, we pro-
pose Path Sensitive Signatures for Control Flow Error Detection
(PaSS), an efficient software method to detect illegal control
flows caused by transient faults. PaSS creatively combines
two different checking methods to detect control flow errors
that incorrectly jump to both nearby locations and faraway
locations. We observe that it is relatively easy to track run-
time control flow history within a small region. Thus, instead
of validating every branch instruction like previous methods,
PaSS reduces the checking frequency by deferring the valida-
tion of this history until the control flow transfers to a new
region. In this way, PaSS minimizes the number of required
validation instructions without losing significant fault cover-
age. We also notice that previous works either cannot protect
inter-procedural control flow transfers [2, 43, 55] or protect
them with too much overhead [15, 24]. To solve this prob-
lem, PaSS introduces a novel, low cost technique to ensure
inter-procedural control flow transfers. In the Commercial-
Off-the-Shelf (COTS) embedded market, achieving high fault
coverage with minimal overhead has the foremost impor-
tance. PaSS is designed to satisfy both constraints and makes
the following contributions:

• Compared to traditional signature-based methods that
suffer from 64.7% run-time overhead, PaSS only has
an average performance overhead of 15.5%, achieving
76% reduction.

• PaSS can protect inter-procedural control flow trans-
fers with a low cost scheme that incurs only an addi-
tional 3.6% overhead.

• PaSS achieves 98.8% fault coverage for illegal control
flows on the SPEC2006 benchmark suite [22] (99.0%
with inter-procedural protection), maintaining the same
level of coverage as more detailed-checking methods.

2 Background and Motivation
2.1 Fault Detection Techniques
Fault detection is necessarily the first step to protect sys-
tems from transient faults. As we mentioned above, fault
detection can be achieved through redundant checking in
either hardware or software. Hardware-based redundant
checking involves executing extra validating instructions in
duplicated or specially designed hardware modules. These

0% 20% 40% 60% 80% 100%

Control Flow Error

Data Flow Error

Percentage of Runs (%)

Correct Executions Incorrect Executions

Figure 1. Percentage of incorrect executions caused by con-
trol flow errors and data flow errors.
solutions usually have broad fault coverage and low perfor-
mance overhead, but incur high area and energy costs. Fur-
thermore, they do not have any flexibility once the design is
deployed on chips. Due to these limitations, hardware-based
solutions are too expensive to be considered in embedded
microprocessors. In contrast, software-based techniques are
more appealing for embedded systems since they are flexible
and free of the production cost, but they generally suffer
from higher performance overheads.

Specifically, software-based transient fault detection tech-
niques are classified into two categories: data flow protection
and control flow protection. From our opportunity tests, we
find most of data flow errors can be masked during program
executions, but control flow errors are difficult to hide. Fig-
ure 1 shows the percentage of program executions for which
incorrect behaviors result from injecting a single bit error in
a random register (data flow error) or in the branch target
address (control flow error) for the SPEC CPU 2006 bench-
marks [22]. From the result, nearly 80% of errors in data flow
have no effect on programs, but control flow errors cause
more than 75% of executions to behave incorrectly. Although
both control flow and data flow are equally important to be
protected, this work focuses on detecting illegal control flows
since control flow errors are more likely to cause programs
to behave incorrectly.

2.2 Signature-based Control Flow Protection
To detect control flow errors, extra checking instructions are
inserted into programs to make sure a control flow arrives at
the correct target. We will use CFCSS [42] as an example to
briefly introduce the fundamentals behind traditional control
flow protection schemes, including their limitations.

At compile time, CFCSS assigns a unique integer, known
as the signature Si, to every basic block in a program. A basic
block (BB) is a container for group of instructions with a
single entry and a single exit. For each control flow from
srcBB to destBB, a signature difference d = Ssrc 𝑥𝑜𝑟 Sdest is
also statically computed. Finally, a general purpose register
G is allocated to hold the signature of executing BB. During
run time, G is firstly initialized to the signature of entry BB.
Whenever control flow transfers from srcBB to destBB, G is
updated using G = G 𝑥𝑜𝑟 d. After this update, G should be
equal to the signature of destBB unless an error has occurred.
Therefore, a comparison between the updated G and Sdest
is inserted to validate the transfer. Figure 2 shows the basic
operation of CFCSS technique. For more complicated con-
trol flow patterns such as multiple predecessors, additional

Session: Reliability LCTES’20, June 16, 2019, London, United Kingdom

63

destBB:
G = G xor d

if (G != s2) → Error!

srcBB:
G = s1

s1

s2
d = s1 xor s2

Figure 2. Signature-based control flow checking.
updating instructions are inserted to make sure G gets the
correct value. Although CFCSS achieves high fault coverage
(around 99%), every basic block is instrumented with signa-
ture updating and validating instructions, causing significant
performance overhead (up to 130.8%, 64.7% on average).
More recent works [24, 62] try to cut down this huge

overhead by injecting fewer instructions into programs. Even
though these techniques bring overheads down to 25%, their
fault coverage are all compromised, only ranging from 92%
to 96%. For example, ACS [24] increments a simple counter
every time a branch instruction gets executed. Whenever
the control flow crosses two statically defined regions, the
counter is checked against a pre-calculated value to make
sure certain number of BBs has traversed. While achieving
less overhead, ACS loses coverage if control flows incorrectly
jump to any other path with the same counter value.
Since trading fault coverage for better performance is

not an optimal solution, our work strives to minimize over-
head without losing any coverage. Through experiments,
we found signature updating instructions (xor instruction
in CFCSS) only count for 30% of overhead. Because they are
simple ALU operations, their effects can be easily hidden
by the Instruction Level Parallelism (ILP). Hence, signature
checking instructions (cmp followed by bne) are the primary
source of overheads. To effectively reduce it, fewer checking
instructions should be used. As carelessly deleting checking
instructions hurts the coverage, a new validation method,
PaSS, is proposed. In next section, we will explain how PaSS
achieves low overhead while keeping high coverage.

3 Path Sensitive Signatures
Control flow errors can jump to both nearby locations (short-
distance control flow errors) and faraway locations (long-
distance control flow errors). To detect short-distance errors,
we must distinguish between valid and invalid control flow
paths that traverse a small code region. Fortunately, for small
code regions, there are few valid control flow paths, which
the compiler can statically enumerate. It is therefore possible
for us to minimize the validation overhead by comparing the
total executed path through a small region to this valid set
only after execution of the region is complete. However, this
method cannot be applied to long-distance control flow er-
rors, because enumerating all valid control flow paths across
large regions is not practical. Therefore, PaSS uses two differ-
ent algorithms to effectively detect both short-distance and

Sig Update
Interval A:

Interval B:

Sig Update Sig Update

Sig Update

Sig Check
Sig Update

Sig Update Sig Update

Sig Update

Figure 3. PaSS high-level operation (back edge is marked
by the hollow arrow).

BB1

BB4

BB2 BB3

Figure 4. Intra-interval errors (shown in dashed arrows).

long-distance control flow errors. To clearly categorize two
types of errors, we exploit the standard interval analysis. An
interval (shown as dashed region in Figure 3) is a maximal
group of basic blocks that satisfies the following properties:

• The header node of an interval dominates all other
nodes in the same interval. In other words, an interval
only has a single entry but can have multiple exits.

• Each interval contains atmost one loop, with back edge
pointing to interval’s header node. Note that nested
loops will be separated into multiple intervals.

With an application divided into intervals, its control flows
transfer either within the same interval or from the exit
block of one interval to the entry block of another interval.
Accordingly, control flow errors can be naturally classified
into intra-interval errors (short-distance errors) and inter-
interval errors (long-distance errors). As shown in Figure
3, PaSS constantly updates a signature to memorize current
control flow path. Whenever the control flow arrives at a
new interval, the signature is checked with a statically deter-
mined value to make sure no error happened in the previous
interval. Simultaneously, the checking also validates the con-
trol flow transferring across intervals. Thus, PaSS is able to
use a single checking instruction to detect both intra-interval
and inter-interval errors at the same time.

3.1 Intra-Interval Error Detection
Intra-interval errors occur when control flows incorrectly
transfer from srcBB to destBB, where both srcBB and destBB
are in the same interval. Examples are shown with dashed
arrows in Figure 4. Note that control flow errors that branch

Session: Reliability LCTES’20, June 16, 2019, London, United Kingdom

64

Algorithm 1: Pseudocode for SV Assignments
cur_SV = 1;
path_history = [];
for cur_BB in interval_DFS_traversal do

if !cur_BB.visited then
cur_BB.visited = true;
cur_BB.SV = cur_SV++;
if cur_BB is interval_exit then

while get_CS_value(cur_BB) in path_history do
cur_BB.SV = cur_SV++;

end
path_history.push(get_CS_value(cur_BB));

end
end

end

Sig == 6 ?

BB1

Sig = 11 1

BB3

Sig = Sig + 44 5
BB2

Sig = Sig + 22 3

BB4

Sig = Sig + 33 6

Sig == 5 ?

SV CS

Figure 5. Basic operation for intra-interval protection.
back to interval’s entry BB (from BB4 to BB1) are counted as
inter-interval errors, which will be discussed in next section.

To detect intra-interval errors, PaSS firstly assigns a unique,
non-negative integer to each basic block (BB) in the inter-
val, known as the Step Value (SV). Then, PaSS calculates the
Cumulative Sum(CS) for each BB. The Cumulative Sum is
computed by taking the maximum sum of all SVs from the
interval entry BB to current BB along control flow edges. In
other words, each BB’s CS is the maximum path sum accu-
mulated by SVs starting from the header node. Once these
two values are determined, PaSS inserts signature update in-
structions at the beginning of each BB, which will increment
the signature by corresponding BB’s SV. Finally, a checking
instruction is inserted when control flow leaves the current
interval to verify the signature matching with the CS value of
corresponding exit block. Considering an interval can have
multiple exit BBs with different CS values (BB3 and BB4 in
Figure 5), the signature is checked against different numbers
depending on which exit BB is taken during run time.
We notice that the intra-interval’s fault coverage is de-

pendent on the assignment of SV s to BBs. To maximize the
coverage, we decide to assign each BB with a unique SV, and
make every exit BB with a different CS, because making each
path sum unique can significantly reduce the probability
that an invalid control path produces a valid control flow
signature. To implement the proposed strategy, we use a
depth-first-search (DFS) algorithm shown in Algorithm 1.
The basic operation for intra-interval error detection is

shown in Figure 5. Numbers on the left side of blocks rep-
resent BBs’ SV and numbers on the right side represent the
CS. If an intra-interval error occurs during run time, one or
more blocks will be skipped or re-executed, making the final

BB1

Sig = 11 1

BB2

Sig = Sig + 22 3

BB4

Sig = Sig + 44 10

BB3

Sig = Sig + 33 6

Sig == 10 ?

+5
Sig == 3 ?

Figure 6. Intra-interval protection with the extra increment.

BB1

Sig = 11 1

BB2

Sig = Sig + 22 3

BB4

Sig = Sig + 3
Sig == 6 ?

3 6

BB3

Sig = Sig + 44 5

Sig == 5 ?

...

Figure 7. Extra checking instruction for loop interval.

signature value unequal to the CS value of the exiting BB.
For instance, assuming a control flow is supposed to transfer
from BB2 to BB4, but a transient fault causes the control
flow to branch to BB3 instead. Upon exiting the interval, the
control flow signature will be equal to 7 (1+2+4) rather than
6 (1+2+3) nor 5 (1+4). Thus, inserted checking instruction
detects this error. Similarly, if control flows incorrectly jump
to the middle of BBs, the signature updating instruction will
be skipped, resulting a mismatch again at the checking point.
If multiple paths exist between two BBs, one extra incre-

ment will be inserted right before entering the destBB among
other paths that are not the largest control flow path. The
value of the increment is the difference between destBB’s
CS (maximal path sum) and the path sums of other shorter
paths. Example is shown in Figure 6, with the extra increment
marked beside the target control flow edge. This technique
adds negligible overhead since each critical path needs at
most one extra increment to generate correct signature value.

The last special case we need to address is the loop inter-
val, where the signature gets re-initialized every time the
loop branches back to entry node, as shown in Figure 7. PaSS
cannot detect control flow errors within the loop body since
the signature value is not maintained across loop iterations.
To solve this problem, we insert a checking instruction in
the basic block that contains the back edge (bold instruction
in BB4). Before the signature gets re-initialized, we compare
it with the CS value of the latch block to make sure no er-
ror happened in the current loop iteration. Note that extra
increments may also be inserted inside the loop if necessary.

To summary, PaSS ensures intra-interval control flow cor-
rectness by verifying the signature in following intervals’

Session: Reliability LCTES’20, June 16, 2019, London, United Kingdom

65

Interval A:

BB1

BB4

BB2 BB3

Interval B:

BB0

...

Figure 8. Inter-interval errors (shown in dashed arrows).

header node and in latch block, which greatly reduces the
checking frequency compared to prior techniques that re-
quire the validation in every BB.

3.2 Inter-Interval Error Detection
Inter-interval errors are more likely to happen if control
flows mistakenly jump to faraway locations. As shown in
Figure 8, they either directly jump to themiddle of an interval
without traveling through the head node, or enter the inter-
val with an illegal predecessor. Since inter-interval errors
can jump to arbitrary locations, previously proposed method
is no longer acceptable because tracking entire program’s
control flows is almost impossible. Thus, a more conservative
checking algorithm is developed to guarantee every control
flow that crosses two intervals behaves correctly.
To detect inter-interval errors, PaSS statically assigns an

unique value, similar to each BB’s SV, to each interval in a
program, known as the Region Value (RV). Whenever control
flows enter a new interval, the control flow signature will be
compared with the interval predecessor’s RV to make sure
the branch comes from one of the legal predecessors. After
passing the checking instruction, current interval’s RV gets
assigned to the signature. Figure 9 shows inserted instruc-
tions for inter-interval error detection. Each interval’s RV is
represented by a letter on the upper left. If a branch arrives at
interval B but from somewhere other than its legal predeces-
sor, the error will be detected since the control flow signature
is not set to A. In addition, if control flows erroneously jump
to the middle of an interval, they will skip the signature
updating instruction located in the entry block. Therefore,
these errors will also be caught at the next signature check.
For intervals with more than one predecessors, the sig-

nature value needs to be checked against multiple RVs to
ensure control flow correctness, which incurs unnecessary
overheads. To simplify the checking process, we introduce a
new static value called the Region Difference (RD) for each
interval predecessor (excluding the first predecessor that the
compiler processes). The RD of a predecessor interval is cal-
culated by taking the xor value of the interval’s RV and the
first predecessor interval’s RV. Once the RD is determined, an
extra signature updating instruction is inserted in each pre-
decessor’s BB (except the first predecessor). The instruction

...

RV: A

...

BB1
Sig = A

BB2
Sig == A ?

Sig = B

RV: B

Figure 9. Basic operation for inter-interval protection.

...

RV: C

RV: B

BB2
Sig = B

Sig = Sig xor RD

RD = A xor BRV: A

BB1

Sig = A

BB3
Sig == A ?

Sig = C

BB4

Sig = Sig xor RD

RD = A xor C

Sig == C ?

Figure 10. Extra updating instructions for fan-in interval.
simply updates the signature to be the xor value of RD and
the signature itself, as shown in bold instruction of Figure 10.
In this way, whichever predecessor the control flow comes
from, the signature always equals to the first predecessor’s
RV upon reaching the destination. Consequently, a single
checking instruction is enough to detect all inter-interval
errors. In case one exit BB connects to multiple intervals
where RDs are needed, the extra updating instruction is in-
serted along exiting edges to make sure the correct signature
is used by different intervals. Lastly, if an interval contains
a loop, the latch block will also branch to interval’s header
node. In this case, we consider the current interval to be one
of its own predecessors and treat the interval same as the
fan-in interval. Thus, the signature should also be updated
with RD in the latch block, as illustrated in BB4 of Figure 10.

3.3 Integrating Two Checking Methods
Since both intra-interval and inter-interval error detection
rely on signature checkings and both of them perform vali-
dations in interval’s header node, we can combine these two
checking methods together to further reduce performance
overheads. To achieve this, we separate the control flow sig-
nature into two parts: the upper half is used for inter-interval
checking and the lower half is used to detect intra-interval
errors. The reason behind this partition scheme is because
updating the signature with blocks’ SVs will only change
the signature’s lower bits, having no effect on inter-interval
checking. According to our study, using a 32-bit integer as
the control flow signature is sufficient for error detection,

Session: Reliability LCTES’20, June 16, 2019, London, United Kingdom

66

...

BB1
Sig Check

Sig = A << 16 + 0
0 0

BB2
Sig = Sig + 11 1

RV: A

BB3
Sig == (A<<16+1) ?
Sig = B << 16 + 2

2 2

BB4
Sig = Sig + 33 5

BB6
Sig = Sig + 4

Sig == (B<<16+9) ?
Sig = Sig xor RD

4 9

RV: B

RD = (A<<16+1) xor
(B<<16+9)

BB5
Sig = Sig + 55 7

Sig == (B<<16+7) ?

Figure 11. Integrated solution for PaSS.
where bits[15:0] are reserved for intra-interval protection
and bits[31:16] store the information for inter-interval pro-
tection. Consequently, the final expected value at each inter-
val’s exit is equal to that interval’s RV left shifted by 16 bits
plus that interval exit’s CS (RV << 16 + CS(exitBB)).
Figure 11 illustrates PaSS’s integrated solution. Before a

program starts running, the control flow signature is firstly
initialized to RV(entry_interval) << 16 + CS(entry_block).
While traversing other blocks in the same interval, the signa-
ture is incremented by their corresponding SVs. Whenever
the control flow transfers to a new interval, for example, from
BB2 to BB3, the current signature will be checked against
the expected value of the interval exit. One thing to point
out is that with the integrated solution, the calculation for
Region Difference (RD) is based on the expected value of two
interval exits rather than their RVs, and the expected value
for the latch block in a loop is RV << 16 + CS(latch_block).

3.4 Inter-procedural Control Flow Protection
Transient faults can also happen to inter-procedural control
flows (e.g. call and return instructions). According to our
study, prior works either do not provide a solution [42, 43, 56]
or spend too much costs (about 15% performance overhead)
to protect it [15, 24]. To optimize this limitation, we propose
a lightweight technique to detect errors that occur when
control flows transfer between the calling and the callee site.

Instead of using the control flow signature alone, our pro-
posed scheme relies on an additional signature, called the
function signature (F_Sig) to detect inter-procedural control
flow errors. At compile time, every function in a program
will be statically assigned a unique ID. To protect transfers
from caller to callee, PaSS updates F_Sig with the ID of the
called function just before the call instruction. At the begin-
ning of each function (except the main function), a checking
instruction is also inserted to verify F_Sig matches with the

...
Sig = Sig + 39

F_Sig = 13
call foo

Sig = Sig - 39
...

F_Sig == 13 ?
...

return;

foo (13):

...

...
Figure 12. Instructions for inter-procedural protection.

static ID of the corresponding function. Thus, if a call instruc-
tion jumps to the wrong function, the checking instruction
will detect a mismatch and report the error.

To protect transfers returning from callee to caller, two
instructions are inserted around the call instruction on the
caller side. Before the call instruction, the control flow signa-
ture will be incremented by a statically determined random
value which is greater than the interval’s largest CS to pre-
vent aliasing with our intra-procedural protection scheme.
After the call instruction, the control flow signature will
be decremented by the same number to restore the origi-
nal value. If a control flow returns to a wrong location, the
control flow signature will not be restored correctly. Con-
sequently, the error will be detected at next control flow
signature check. Figure 12 shows inserted instructions for
inter-procedural protection.
For the direct function call, the compiler can statically

access the called function. In such cases, PaSS will insert the
checking instruction in the callee function to make sure con-
trol flows arrive at the correct target. However, for indirect
calls where targets are unresolved at compile time (e.g. call
through pointers), PaSS cannot insert validating instructions.
Nevertheless, the increment and decrement instructions are
still inserted around the call instruction, guaranteeing that
the called function will eventually return to the correct place.
We choose this implementation strategy because the com-
piler has limited capability to analyze indirect function calls,
and the probability of a single bit flipping to result in the
start of a different function is nearly zero.
In our current design, the control flow signature is allo-

cated as a local variable inside of each function. When a
call instruction gets executed, the current signature will be
saved on the function stack and thus will not affect the sig-
nature allocated in the callee function. On the other hand,
the function signature needs to be a global variable since
every function needs to access it.

3.5 Discussion
We use the example shown in Figure 13 to distinguish PaSS
from CFCSS [42] and ACS [24]. In this instance, CFCSS needs
to insert validating instructions in every basic block (6 in
total), whereas both PaSS and ACS only requires a single
checking instruction because all BBs are grouped into an
interval. Since ACS only counts the number of traversed
BBs, it loses the coverage if erroneous control flows jump

Session: Reliability LCTES’20, June 16, 2019, London, United Kingdom

67

BB1

BB6

BB2 BB3

BB4 BB5

Figure 13. Control flow example.

to any other path with the same counter value (from BB3
to BB4 or from BB2 to BB5). However, PaSS still catches all
errors as each control flow path gets accumulated differently
(detailed evaluations are provided in Section 5). Given this,
we conclude PaSS reduces the overhead while keeping the
coverage same as the traditional methods.

4 Evaluation Methodology
4.1 PaSS Implementation
We implemented the PaSS scheme using the LLVM [28] com-
piler infrastructure. To apply PaSS, an application’s source
code is firstly compiled into LLVM Intermediate Represen-
tation (IR) with -O3 option. At this step, common compiler
optimizations are performed if necessary. For example, ir-
reducible patterns will be converted to reducible structures
through some code duplication. Then, intervals are internally
formed based on the program’s control flow graph (CFG). Ex-
ploiting the interval information, PaSS allocates signatures
and instruments initializing, updating, and checking instruc-
tions in corresponding basic blocks of the program. Finally,
binary executables are generated with the PaSS technique
embedded. We notice that some optimizations such as the
constant propagation may delay the signature initialization
until the second BB, leaving the entry BB unprotected. To
solve this, PaSS should be run as the last optimization step so
that it will not be overwritten by others. Since instrumented
instructions must be placed in exact BB, further compiler
optimizations are not allowed.

4.2 Statistical Fault Injection Model
Statistical Fault Injection (SFI) has been extensively used
[18, 24, 47, 61] to evaluate transient fault detection methods.
In this fault model, Single-Event-Upset (SEU) is assumed,
which means that an arbitrary bit will be flipped to simulate
a transient fault at a random time during application’s execu-
tion (the probability of happening more than one transient
faults per program’s execution is extremely small). Since
PaSS targets the control flow error detection, we only con-
sider faults that result illegal control flows. Note that similar
to other signature-based techniques [2, 24, 42], PaSS cannot
protect errors corrupting the value of a branch condition,

which will cause legal but incorrect control flow transfers.
However, these errors can be covered by combining PaSS
with other data flow protection solutions.

Transient faults can cause illegal control flows in multi-
ple ways, including but not limited to: 1) A transient fault
converts a normal instruction into a control flow instruction.
2) Conversely, a transient fault can also convert a control
flow instruction into a normal instruction. 3) A transient
fault affects one of the registers used in the computation of
a branch target address. 4) A transient fault directly changes
the branch target address or the program counter (PC). How-
ever, no matter where errors happen, they all share the iden-
tical symptom: incorrect branch targets. Therefore, in our
experiments, we choose to inject faults that directly change
the branch target address to guarantee every fault will result
a control flow error.

Errors are injected using GEM5 simulator [8]. First, GEM5
runs a program without any modification to collect the total
simulation cycle. A random cycle is then selected as the fault
injection point. Next, GEM5 will simulate the program again
with the fault injection enabled. Once the simulated pro-
gram reaches the fault injection point, the next control flow
instruction’s target address is chosen as the fault injection
target. To complete the fault injection, one random bit of this
address is flipped. The simulation continues until either the
PaSS reports the error, or the program exits. Although we
only inject faults to branch target addresses, our technique
should be able to detect faults in other places as well, as long
as the program’s control flow gets corrupted.

5 Evaluation Results
To evaluate PaSS, we collect all C benchmarks (12 in to-
tal) from the SPEC CPU 2006 [22], including both integer
and floating point suits, as our workloads. However, PaSS is
completely programming-language independent and should
have the same behavior no matter which language is used. To
compare PaSS with prior techniques, we also implemented
CFCSS [42] and ACS [24] as our baselines. As we mentioned
in Section 2.2, CFCSS performs conservative control flow
checking, which brings both high fault coverage and high
overheads. On contrary, ACS is a counter-based scheme that
tries to minimize the overhead by sacrificing some coverage.

5.1 Fault Coverage
To compare the fault coverage among evaluated methods,
we inject 1000 faults per benchmark per technique using the
method described in Section 4.2. The results of fault injection
experiments are classified into following categories:

• Masked: The injected fault has no effect on the pro-
gram due to masking. In this case, benchmarks will
execute as normal and generate correct outputs.

• SWDetect: The inserted checking instructions success-
fully detect incorrect control flows and report errors.

Session: Reliability LCTES’20, June 16, 2019, London, United Kingdom

68

0%
10%
20%
30%
40%
50%
60%
70%
80%
90%

100%

C
FC

SS
A

C
S

Pa
SS

Pa
SS

_I
nt

er

C
FC

SS
A

C
S

Pa
SS

Pa
SS

_I
nt

er

C
FC

SS
A

C
S

Pa
SS

Pa
SS

_I
nt

er

C
FC

SS
A

C
S

Pa
SS

Pa
SS

_I
nt

er

C
FC

SS
A

C
S

Pa
SS

Pa
SS

_I
nt

er

C
FC

SS
A

C
S

Pa
SS

Pa
SS

_I
nt

er

C
FC

SS
A

C
S

Pa
SS

Pa
SS

_I
nt

er

C
FC

SS
A

C
S

Pa
SS

Pa
SS

_I
nt

er

C
FC

SS
A

C
S

Pa
SS

Pa
SS

_I
nt

er

C
FC

SS
A

C
S

Pa
SS

Pa
SS

_I
nt

er

C
FC

SS
A

C
S

Pa
SS

Pa
SS

_I
nt

er

C
FC

SS
A

C
S

Pa
SS

Pa
SS

_I
nt

er

C
FC

SS
A

C
S

Pa
SS

Pa
SS

_I
nt

er

400.perl 401.bzip2 403.gcc 429.mcf 433.milc 445.gobmk 456.hmmer 458.sjeng 462.lib 464.h264ref 470.lbm 482.sphinx3 Average

Er
ro

r D
is

tri
bu

tio
n

Masked SW Detect HW Detect Abort SDC

Figure 14. Fault coverage for CFCSS, ACS, PaSS as well as PaSS_Interprocedural techniques.

• HW Detect: The injected fault dumps the program by
triggering a page fault or an invalid instruction etc.

• Abort: The incorrect control flow causes an infinite
loop or jumps out of the memory address bound. In
this category, simulation will terminate incorrectly.

• Silent Data Corruption (SDC): The program finishes
execution without reporting any error but generates
wrong outputs due to the injected fault. Generally,
SDCs are the most harmful errors since the program
produces incorrect outputs without any hint.

Figure 14 shows the distribution of injected faults for each
technique. Like previous studies, we define the fault coverage
of a technique to be the percentage of faults that do not
result in SDCs, because errors in other categories can be
observed by end users. The fault coverage of PaSS as well as
other software-based techniques [2, 24, 42, 55] are not 100%
because they cannot protect pre-built library functions due
to lack of source codes. They will also miss the error if the
control flow incorrectly jumps to a specific place to skip the
signature check. As a result, these solutions should not be
used on mission-critical systems.
Comparing results, ACS shows the lowest coverage rate

among all evaluated methods. Even with its inter-procedural
protection scheme, the fault coverage only achieves 96.4%.
We observe that the share of SW Detect for ACS is signifi-
cantly smaller than other techniques. According to our anal-
ysis, incapable of detecting inter-interval errors is one of the
primary reasons resulting in ACS’s low coverage. In addition,
ACS will also miss some faults happen inside of loops and
large intervals as its counter-based approach causes aliasing
problems, like the example shown in Figure 13.

On the other hand, the fault coverage for CFCSS, PaSS and
PaSS with inter-procedural protection is 99.0%, 98.8%, and
99.0%, respectively. This result confirms that PaSS does not
hurt the coverage. We would like to point out although the
SW Detect part for PaSS is 5.6% less than CFCSS, the fault
coverage for both methods are identical because the control
flow error may immediately trigger a page fault (contributes

to HW Detect share) before reaching checking instructions
instrumented by PaSS. In summary, PaSS can offer the same
level of fault coverage as previously proposed conservative
solutions, whereas ACS is less effective while detecting long-
distance control flow errors.

5.2 Performance Overhead
The number of signature checking instructions inserted in a
program plays a decisive role in overall overheads. CFCSS
needs to insert the validation instruction in every basic block
but PaSS only requires the instrumentation at the interval
granularity. We collected the number of basic blocks and
intervals from all benchmarks used in experiments. On av-
erage, there are 21502 basic blocks but only 4329 intervals
per program. This result implies that PaSS will insert 4.97x
fewer validation instructions into applications. In real, this
number will be smaller considering the presence of loops. To
accurately measure the performance overhead, we recorded
the execution time for each benchmark using a desktop with
an Intel i7-6700 CPU clocked at 3.4GHz and 8GB of DRAM.
Figure 15 plots the performance overhead for each tech-
nique. The white part of the bar represents the overhead
for intra-procedural protection, and the gray part represents
the inter-procedural protection overhead. All experimental
results are normalized to original programs.
The first bar in each benchmark illustrates the perfor-

mance overhead of CFCSS technique. In this category, two-
thirds of benchmarks experience more than 50% overhead,
and three of them even have more than 100% overhead
(130.8% highest). On average, the performance overhead
for CFCSS is 64.7%. Since CFCSS does not support inter-
procedural protection, all of its overhead comes from intra-
procedural protection. The following two bars demonstrate
the overheads for ACS and PaSS techniques, respectively.
For intra-procedural protection, 403.gcc suffers the highest
overhead among all benchmarks (29.9% for ACS and 32.0%
for PaSS), whereas 433.milc and 470.lbm only shows 2-3%
overhead for both techniques because most of basic blocks

Session: Reliability LCTES’20, June 16, 2019, London, United Kingdom

69

1

1.2

1.4

1.6

1.8

2

2.2

2.4

CF
C

SS
A

C
S

Pa
SS

CF
C

SS
A

C
S

Pa
SS

CF
C

SS
A

C
S

Pa
SS

CF
C

SS
A

C
S

Pa
SS

CF
C

SS
A

C
S

Pa
SS

CF
C

SS
A

C
S

Pa
SS

CF
C

SS
A

C
S

Pa
SS

CF
C

SS
A

C
S

Pa
SS

CF
C

SS
A

C
S

Pa
SS

CF
C

SS
A

C
S

Pa
SS

CF
C

SS
A

C
S

Pa
SS

CF
C

SS
A

C
S

Pa
SS

CF
C

SS
A

C
S

Pa
SS

400.perl 401.bzip2 403.gcc 429.mcf 433.milc 445.gobmk 456.hmmer 458.sjeng 462.lib 464.h264ref 470.lbm 482.sphinx3GeoMean

N
or

m
ai

lz
ed

 P
er

fo
rm

an
ce

Intra-procedural Inter-procedural

Figure 15. Performance overhead for CFCSS, ACS, and PaSS techniques.
in these programs are covered by large intervals. On average,
the intra-procedural overhead for ACS and PaSS are 10.7%
and 15.5%, respectively. Both methods achieve significant
overhead reduction comparing to CFCSS. PaSS shows a 4.8%
higher overhead than ACS because it needs to perform the
signature check in every loop iteration, whereas ACS only
verifies the counter after exiting the entire loop. Although
ACS’s lazy-check method reduces the overhead, it hurts the
fault coverage as we described in the previous section. If
a program does not contain any loop or only has small to
medium iteration numbers, PaSS and ACS show the similar
overhead (429.mcf and 456.hmmer).
For inter-procedural protection, 400.perl and 403.gcc ex-

hibit the highest additional overhead (around 10%) with PaSS
technique, because both of workloads contain a lot of small
functions and involve frequent function calls and returns.
On average, PaSS incurs an additional 3.6% overhead, but it
is much more efficient than ACS, which suffers from 10.8%
overhead (3x higher than PaSS). The reason is because ACS
uses a couple of expensive modulo operations, in both caller
sides and callee sides, to catch inter-procedural errors. In
contrast, PaSS only needs to verify the callee side without
any costly instruction. Overall, the geomean performance
overhead for CFCSS, ACS, and PaSS techniques are 64.7%,
21.5%, and 19.1%. This result shows PaSS achieves roughly
3.39x less performance overhead than CFCSS. Comparing to
ACS, PaSS shows a slightly better performance improvement
(2.4%), but PaSS is a lot more effective since it keeps the same
level of fault coverage as conservative solutions.

5.3 Detection Latency
Although PaSS only detects control flow errors, it can easily
be combined with other software recovery mechanisms such
as Encore [19], Bolt [30], and InCheck [16]. Therefore, we
also evaluate the detection latency for each technique since
a longer latency generally increases the overhead for recov-
ery schemes. We do expect PaSS to have a higher detection
latency since it reduces the validation frequency. Figure 16 il-
lustrates each method’s detection latency.Within 2K,Within

5K, and Within 10K represent whether the detected error is
reported within 2K, 5K, or 10K cycles after the fault injec-
tion. For example, the third column in 400.perl shows that
among all errors detected by PaSS, 10.4% are found within 2K
cycles, 4.3% are found within 5K cycles, and the remaining
85.3% are detected within 10K cycles after the fault injection.
Comparing all benchmarks, 400.perl and 403.gcc exhibit the
longest detection latency among all evaluated methods be-
cause their basic blocks are larger than others. For remaining
benchmarks, most of errors are detected under 5K cycles.
Specifically, CFCSS shows the lowest detection latency

with 80.3% of errors detected under 2K cycles. This result
meets our expectation as CFCSS validates every branch in-
struction. We expect ACS and PaSS have similar detection
latency since both of them validate the signature at the in-
terval granularity. However, experiment results demonstrate
that ACS has a similar detection latency compared to CFCSS,
where 73.5% of errors are reported within 2K cycles and
25.7% are reported within 5K cycles. This short detection
latency confirms that ACS can only detect errors happened
very close to checking instructions. If the error happens in-
side of a loop or in the middle of a large interval, ACS has
very limited ability to catch the fault. This finding agrees
with our previous analysis in Section 5.1.

PaSS has the highest detection latency among three evalu-
atedmethods. On average, 19.4% of errors are reportedwithin
2K cycles, and 65.6% are reported within 5K cycles. The re-
maining 15% of errors takes more than 5K but less than 10K
cycles to be detected (PaSS_Inter shows very similar results
as well). Although PaSS experiences the longest detection
latency, it can still report 85% of errors within a reasonable
time (5K cycles). Since architectural recovery mechanisms
generally perform the checkpoint per 100K instructions [53],
we believe PaSS adds negligible overhead to these methods.

6 Related Work
Software-based techniques for control flow error detection
have been well discussed in other works. In this paper, we re-
ported a detailed comparison among CFCSS, ACS, and PaSS.

Session: Reliability LCTES’20, June 16, 2019, London, United Kingdom

70

0%
10%
20%
30%
40%
50%
60%
70%
80%
90%

100%
CF

C
SS

A
C

S
Pa

SS
Pa

SS
_I

nt
er

CF
C

SS
A

C
S

Pa
SS

Pa
SS

_I
nt

er

CF
C

SS
A

C
S

Pa
SS

Pa
SS

_I
nt

er

CF
C

SS
A

C
S

Pa
SS

Pa
SS

_I
nt

er

CF
C

SS
A

C
S

Pa
SS

Pa
SS

_I
nt

er

CF
C

SS
A

C
S

Pa
SS

Pa
SS

_I
nt

er

CF
C

SS
A

C
S

Pa
SS

Pa
SS

_I
nt

er

CF
C

SS
A

C
S

Pa
SS

Pa
SS

_I
nt

er

CF
C

SS
A

C
S

Pa
SS

Pa
SS

_I
nt

er

CF
C

SS
A

C
S

Pa
SS

Pa
SS

_I
nt

er

CF
C

SS
A

C
S

Pa
SS

Pa
SS

_I
nt

er

CF
C

SS
A

C
S

Pa
SS

Pa
SS

_I
nt

er

CF
C

SS
A

C
S

Pa
SS

Pa
SS

_I
nt

er

400.perl 401.bzip2 403.gcc 429.mcf 433.milc 445.gobmk 456.hmmer 458.sjeng 462.lib 464.h264ref 470.lbm 482.sphinx3 Average

La
te

nc
y

D
is

tri
bu

tio
n

Within 2K Within 5K Within 10K

Figure 16. Detection latency for CFCSS, ACS, PaSS, and PaSS_Interprocedural techniques.

[2, 20, 55] are some classical works using run-time assertions
to protect control flows. Other works [3, 41, 51, 52] have de-
veloped different algorithms to detect transient faults, but
all of them need to validate the control flow correctness on
every branch instruction, causing too much overhead. Simi-
lar to ACS, [10, 15, 29, 50, 54] are examples of low overhead
techniques for control flow protection. However, they all
sacrifice the fault coverage to achieve better performance,
making them less desirable to the commodity embedded sys-
tems. Control flow integrity works [1, 9, 26, 58, 60] aim to
protect control flows from malicious attacks. Although PaSS
is not specifically designed from the security perspective,
we believe it is still effective to detect some attacks causing
illegal control flow transfers.

In addition to the control flow protection, previous works
also proposed solutions for data flow protections. EDDI [43],
SWIFT [47], and NEMESIS [17] check the data flow by du-
plicating program instructions. Later works such as PROFiT
[48] improves the SWIFT by adding the architectural vul-
nerability factor (AVF) analysis [40]. Others [13, 25, 37, 44]
focused on minimizing the overhead brought by instruction
duplication. PaSS does not support data flow protection, but
it can easily be combined with these techniques to further
extend the fault coverage.

Redundant Multi-threading (RMT) is another approach to
transient fault detection. AR-SMT [49] firstly introduce the
idea of using simultaneousmulti-threading for transient fault
detection. In this work, an active thread runs the program,
and a redundant thread checks the program’s correctness.
Following works [21, 39, 46] tried to optimize the overhead
caused by RMT. Software-based redundant multi-threading
for transient fault detection (SRMT) [57] is another software
solution that achieves redundant checking with multiple
threads. Using the adaptive multi-threading, [23, 61] success-
fully reduce the performance overhead. However, this type
of works relies on an extra thread to validate the correctness,
cutting processor’s throughput by half.

Typical hardware-based solutions for control flow protec-
tion use watchdog processors [27, 33, 34, 36]. A watchdog

processor is a simple co-processor alongside the main pro-
cessor to perform concurrent system-level checking. Other
hardware-assisted techniques [4, 5, 14, 45] suggest to modify
part of the processor hardware or add special instructions for
error detection. Argus [35] uses distributed checkers for var-
ious components in processors. More recent works [31, 32]
deploy acoustic wave detectors to catch soft errors. Never-
theless, all hardware-based solutions are too expensive to be
used in commodity embedded microprocessors since they
have substantial design and area costs.

7 Conclusion
With developments in semiconductor technology, transistor
size has reduced exponentially. In addition, increasing de-
mands for energy efficiency have driven aggressive voltage
scaling as well as noise margin reduction onmicroprocessors.
All of these make current systems less reliable and more
likely to get affected by transient faults. To keep control
flow safe from transient faults with minimal overhead but
maximal coverage, we propose Path Sensitive Signatures for
Control Flow Error Detection. PaSS achieves its high efficiency
by combining two different validation methods and reducing
the checking frequency to the interval granularity. PaSS also
offers a low overhead mechanism to protect inter-procedural
control flow transfers. Experimental results demonstrate that
PaSS brings down the performance overhead from 64.7% for
traditional control flow signatures to 15.5% on average while
maintaining the same level of fault coverage compared to the
prior approach [42]. Inter-procedural protection is provided
at the cost of an additional 3.6% overhead.

Acknowledgments
The authors would like to thank the anonymous reviewers
for their constructive comments for improving this work.
This research is supported in part by the U.S. Department of
Energy, Office of Advanced Scientific Computing Research
(ASCR), under the grant DE-SC0014134 and by the Office of
Naval Research under the grant N00014-18-1-2020.

Session: Reliability LCTES’20, June 16, 2019, London, United Kingdom

71

References
[1] Martín Abadi, Mihai Budiu, Úlfar Erlingsson, and Jay Ligatti. 2009.

Control-flow integrity principles, implementations, and applications.
ACM Transactions on Information and System Security (TISSEC) 13, 1
(2009), 1–40.

[2] Zeyad Alkhalifa, VS Sukumaran Nair, Narayanan Krishnamurthy, and
Jacob A. Abraham. 1999. Design and evaluation of system-level checks
for on-line control flow error detection. IEEE Transactions on Parallel
and Distributed Systems 10, 6 (1999), 627–641.

[3] Seyyed Amir Asghari, Hassan Taheri, Hossein Pedram, and Okyay
Kaynak. 2014. Software-based control flow checking against transient
faults in industrial environments. IEEE Transactions on Industrial
Informatics 10, 1 (2014), 481–490.

[4] Todd M Austin. 1999. DIVA: A reliable substrate for deep submicron
microarchitecture design. InMICRO-32. Proceedings of the 32nd Annual
ACM/IEEE International Symposium on Microarchitecture. IEEE, 196–
207.

[5] Saurabh Bagchi, Balaji Srinivasan, Keith Whisnant, Zbigniew Kalbar-
czyk, and Ravishankar K Iyer. 2000. Hierarchical error detection in a
software implemented fault tolerance (sift) environment. IEEE Trans-
actions on Knowledge and Data Engineering 12, 2 (2000), 203–224.

[6] Wendy Bartlett and Lisa Spainhower. 2004. Commercial fault tolerance:
A tale of two systems. IEEE Transactions on dependable and secure
computing 1, 1 (2004), 87–96.

[7] David Bernick, Bill Bruckert, Paul Del Vigna, David Garcia, Robert
Jardine, Jim Klecka, and Jim Smullen. 2005. NonStop/spl reg/advanced
architecture. In Dependable Systems and Networks, 2005. DSN 2005.
Proceedings. International Conference on. IEEE, 12–21.

[8] Nathan Binkert, Bradford Beckmann, Gabriel Black, Steven K Rein-
hardt, Ali Saidi, Arkaprava Basu, Joel Hestness, Derek R Hower, Tushar
Krishna, Somayeh Sardashti, et al. 2011. The gem5 simulator. ACM
SIGARCH Computer Architecture News 39, 2 (2011), 1–7.

[9] Tyler Bletsch, Xuxian Jiang, Vince W Freeh, and Zhenkai Liang. 2011.
Jump-oriented programming: a new class of code-reuse attack. In
Proceedings of the 6th ACM Symposium on Information, Computer and
Communications Security. 30–40.

[10] Edson Borin, Cheng Wang, Youfeng Wu, and Guido Araujo. 2006.
Software-based transparent and comprehensive control-flow error
detection. In proceedings of the international symposium on Code gen-
eration and optimization. IEEE Computer Society, 333–345.

[11] Shekhar Borkar et al. 2004. Microarchitecture and design challenges
for gigascale integration. In MICRO, Vol. 37. 3–3.

[12] Greg Bronevetsky, B de Supinski, and Martin Schulz. 2009. A foun-
dation for the accurate prediction of the soft error vulnerability of sci-
entific applications. Technical Report. Lawrence Livermore National
Lab.(LLNL), Livermore, CA (United States).

[13] Zhi Chen, Alexandru Nicolau, and Alexander V Veidenbaum. 2016.
SIMD-based soft error detection. In Proceedings of the ACM Interna-
tional Conference on Computing Frontiers. ACM, 45–54.

[14] Eric Cheng, Shahrzad Mirkhani, Lukasz G Szafaryn, Chen-Yong Cher,
Hyungmin Cho, Kevin Skadron, Mircea R Stan, Klas Lilja, Jacob A
Abraham, Pradip Bose, et al. 2016. CLEAR: C ross-L ayer E xploration
for A rchitecting R esilience-Combining hardware and software tech-
niques to tolerate soft errors in processor cores. In Proceedings of the
53rd Annual Design Automation Conference. ACM, 68.

[15] Kiho Choi, Daejin Park, and Jeonghun Cho. 2019. SSCFM: Separate
Signature-Based Control Flow Error Monitoring for Multi-Threaded
and Multi-Core Environments. Electronics 8, 2 (2019), 166.

[16] Moslem Didehban, Sai Ram Dheeraj Lokam, and Aviral Shrivastava.
2017. InCheck: An in-application recovery scheme for soft errors.
In Design Automation Conference (DAC), 2017 54th ACM/EDAC/IEEE.
IEEE, 1–6.

[17] Moslem Didehban, Aviral Shrivastava, and Sai Ram Dheeraj Lokam.
2017. NEMESIS: A software approach for computing in presence

of soft errors. In Computer-Aided Design (ICCAD), 2017 IEEE/ACM
International Conference on. IEEE, 297–304.

[18] Shuguang Feng, Shantanu Gupta, Amin Ansari, and Scott Mahlke.
2010. Shoestring: probabilistic soft error reliability on the cheap. In
ACM SIGARCH Computer Architecture News, Vol. 38. ACM, 385–396.

[19] Shuguang Feng, Shantanu Gupta, Amin Ansari, Scott A Mahlke, and
David I August. 2011. Encore: low-cost, fine-grained transient fault
recovery. In Proceedings of the 44th Annual IEEE/ACM International
Symposium on Microarchitecture. ACM, 398–409.

[20] Olga Goloubeva, Maurizio Rebaudengo, M Sonza Reorda, and Massimo
Violante. 2003. Soft-error detection using control flow assertions. In
Defect and Fault Tolerance in VLSI Systems, 2003. Proceedings. 18th IEEE
International Symposium on. IEEE, 581–588.

[21] MohamedAGomaa and TNVijaykumar. 2005. Opportunistic transient-
fault detection. In Computer Architecture, 2005. ISCA’05. Proceedings.
32nd International Symposium on. IEEE, 172–183.

[22] John L Henning. 2006. SPEC CPU2006 benchmark descriptions. ACM
SIGARCH Computer Architecture News 34, 4 (2006), 1–17.

[23] Saurabh Hukerikar, Keita Teranishi, Pedro C Diniz, and Robert F Lu-
cas. 2018. Redthreads: An interface for application-level fault detec-
tion/correction through adaptive redundant multithreading. Interna-
tional Journal of Parallel Programming 46, 2 (2018), 225–251.

[24] Daya Shanker Khudia and Scott Mahlke. 2013. Low cost control flow
protection using abstract control signatures. In ACM SIGPLAN Notices,
Vol. 48. ACM, 3–12.

[25] Daya Shanker Khudia and Scott Mahlke. 2014. Harnessing soft com-
putations for low-budget fault tolerance. In Proceedings of the 47th
Annual IEEE/ACM International Symposium on Microarchitecture. IEEE
Computer Society, 319–330.

[26] Volodymyr Kuznetzov, László Szekeres, Mathias Payer, George Can-
dea, R Sekar, and Dawn Song. 2018. Code-pointer integrity. In The
Continuing Arms Race: Code-Reuse Attacks and Defenses. 81–116.

[27] Stanford University. Computer Systems Laboratory and David Jun Lu.
1980. Watchdog processors and VLSI. Center for Reliable Computing,
Computer Systems Laboratory, Stanford University.

[28] Chris Lattner and Vikram Adve. 2004. LLVM: A compilation frame-
work for lifelong program analysis & transformation. In Proceedings
of the international symposium on Code generation and optimization:
feedback-directed and runtime optimization. IEEE Computer Society,
75.

[29] Liping Liu, Linlin Ci, Wei Liu, et al. 2016. Control-Flow Checking
Using Branch Sequence Signatures. In Internet of Things (iThings) and
IEEE Green Computing and Communications (GreenCom) and IEEE
Cyber, Physical and Social Computing (CPSCom) and IEEE Smart Data
(SmartData), 2016 IEEE International Conference on. IEEE, 839–845.

[30] Qingrui Liu, Changhee Jung, Dongyoon Lee, and Devesh Tiwari. 2016.
Compiler-directed lightweight checkpointing for fine-grained guaran-
teed soft error recovery. In Proceedings of the International Conference
for High Performance Computing, Networking, Storage and Analysis.
IEEE Press, 20.

[31] Qingrui Liu, Changhee Jung, Dongyoon Lee, and Devesh Tiwari. 2016.
Low-cost soft error resilience with unified data verification and fine-
grained recovery for acoustic sensor based detection. In The 49th
Annual IEEE/ACM International Symposium on Microarchitecture. IEEE
Press, 25.

[32] Qingrui Liu, Changhee Jung, Dongyoon Lee, and Devesh Tiwari. 2017.
Compiler-directed soft error detection and recovery to avoid due and
sdc via tail-dmr. ACM Transactions on Embedded Computing Systems
(TECS) 16, 2 (2017), 32.

[33] David J. Lu. 1982. Watchdog processors and structural integrity check-
ing. IEEE Trans. Comput. 31, 7 (1982), 681–685.

[34] Aamer Mahmood and Edward J McCluskey. 1988. Concurrent error
detection using watchdog processors-a survey. IEEE Trans. Comput.
37, 2 (1988), 160–174.

Session: Reliability LCTES’20, June 16, 2019, London, United Kingdom

72

[35] Albert Meixner, Michael E Bauer, and Daniel Sorin. 2007. Argus:
Low-cost, comprehensive error detection in simple cores. In Microar-
chitecture, 2007. MICRO 2007. 40th Annual IEEE/ACM International
Symposium on. IEEE, 210–222.

[36] Thierry Michel, Régis Leveugle, and Gabriele Saucier. 1991. A new
approach to control flow checking without program modification. In
Fault-Tolerant Computing, 1991. FTCS-21. Digest of Papers., Twenty-First
International Symposium. IEEE, 334–341.

[37] Konstantina Mitropoulou, Vasileios Porpodas, and Marcelo Cintra.
2013. DRIFT: Decoupled compiler-based instruction-level fault-
tolerance. In International Workshop on Languages and Compilers for
Parallel Computing. Springer, 217–233.

[38] Shubu Mukherjee. 2011. Architecture design for soft errors. Morgan
Kaufmann.

[39] Shubhendu S Mukherjee, Michael Kontz, and Steven K Reinhardt.
2002. Detailed design and evaluation of redundant multi-threading
alternatives. In Computer Architecture, 2002. Proceedings. 29th Annual
International Symposium on. IEEE, 99–110.

[40] Shubhendu S Mukherjee, Christopher Weaver, Joel Emer, Steven K
Reinhardt, and Todd Austin. 2003. A systematic methodology to
compute the architectural vulnerability factors for a high-performance
microprocessor. InMicroarchitecture, 2003. MICRO-36. Proceedings. 36th
Annual IEEE/ACM International Symposium on. IEEE, 29–40.

[41] Hamed Nikookar and Ahmad Patooghy. 2017. A New Control Flow
CheckingMethod to Improve Reliability of Embedded Systems. Journal
of Advances in Computer Research 8, 2 (2017), 1–11.

[42] Nahmsuk Oh, Philip P Shirvani, and Edward J McCluskey. 2002.
Control-flow checking by software signatures. IEEE transactions on
Reliability 51, 1 (2002), 111–122.

[43] Nahmsuk Oh, Philip P Shirvani, and Edward J McCluskey. 2002. Error
detection by duplicated instructions in super-scalar processors. IEEE
Transactions on Reliability 51, 1 (2002), 63–75.

[44] Sunghyun Park, Shikai Li, Ze Zhang, and Scott Mahlke. 2020. Low-cost
prediction-based fault protection strategy. In Proceedings of the 18th
ACM/IEEE International Symposium on Code Generation and Optimiza-
tion. 30–42.

[45] Roshan G Ragel and Sri Parameswaran. 2006. Hardware assisted pre-
emptive control flow checking for embedded processors to improve
reliability. In Proceedings of the 4th international conference on Hard-
ware/software codesign and system synthesis. ACM, 100–105.

[46] Steven K Reinhardt and Shubhendu S Mukherjee. 2000. Transient fault
detection via simultaneous multithreading. Vol. 28. ACM.

[47] George A Reis, Jonathan Chang, Neil Vachharajani, Ram Rangan, and
David I August. 2005. SWIFT: Software implemented fault tolerance.
In Proceedings of the international symposium on Code generation and
optimization. IEEE Computer Society, 243–254.

[48] George A Reis, Jonathan Chang, Neil Vachharajani, Ram Rangan,
David I August, and Shubhendu S Mukherjee. 2005. Software-
controlled fault tolerance. ACM Transactions on Architecture and Code
Optimization (TACO) 2, 4 (2005), 366–396.

[49] Eric Rotenberg. 1999. AR-SMT: A microarchitectural approach to
fault tolerance in microprocessors. In Fault-Tolerant Computing, 1999.
Digest of Papers. Twenty-Ninth Annual International Symposium on.
IEEE, 84–91.

[50] Mohammad Abdur Rouf and Soontae Kim. 2015. Low-Cost Control
Flow Protection via Available Redundancies in the Microprocessor
Pipeline. IEEE Transactions on Very Large Scale Integration (VLSI)
Systems 23, 1 (2015), 131–141.

[51] H Severínová, J Abaffy, and T Krajčovič. 2015. Control-Flow Check-
ing Using Binary Encoded Software Signatures. In Innovations and
Advances in Computing, Informatics, Systems Sciences, Networking and
Engineering. Springer, 345–347.

[52] Aviral Shrivastava, Abhishek Rhisheekesan, Reiley Jeyapaul, and
Carole-Jean Wu. 2014. Quantitative analysis of control flow checking
mechanisms for soft errors. In Proceedings of the 51st Annual Design
Automation Conference. 1–6.

[53] Daniel J Sorin, Milo MK Martin, Mark D Hill, and David A Wood. 2002.
SafetyNet: improving the availability of shared memory multiproces-
sors with global checkpoint/recovery. In ACM SIGARCH Computer
Architecture News, Vol. 30. IEEE Computer Society, 123–134.

[54] Jens Vankeirsbilck, Niels Penneman, Hans Hallez, and Jeroen Boydens.
2017. Random Additive Signature Monitoring for Control Flow Error
Detection. IEEE Transactions on Reliability 66, 4 (2017), 1178–1192.

[55] Ramtilak Vemu and Jacob Abraham. 2011. CEDA: Control-flow error
detection using assertions. IEEE Trans. Comput. 60, 9 (2011), 1233–
1245.

[56] Rajesh Venkatasubramanian, John P Hayes, and Brian T Murray. 2003.
Low-cost on-line fault detection using control flow assertions. In On-
Line Testing Symposium, 2003. IOLTS 2003. 9th IEEE. IEEE, 137–143.

[57] Cheng Wang, Ho-seop Kim, Youfeng Wu, and Victor Ying. 2007.
Compiler-managed software-based redundant multi-threading for
transient fault detection. In Proceedings of the International Sympo-
sium on Code Generation and Optimization. IEEE Computer Society,
244–258.

[58] Zhi Wang and Xuxian Jiang. 2010. Hypersafe: A lightweight approach
to provide lifetime hypervisor control-flow integrity. In 2010 IEEE
Symposium on Security and Privacy. IEEE, 380–395.

[59] Ying C Yeh. 1996. Triple-triple redundant 777 primary flight computer.
In Aerospace Applications Conference, 1996. Proceedings., 1996 IEEE,
Vol. 1. IEEE, 293–307.

[60] Chao Zhang, Tao Wei, Zhaofeng Chen, Lei Duan, Laszlo Szekeres,
Stephen McCamant, Dawn Song, and Wei Zou. 2013. Practical control
flow integrity and randomization for binary executables. In 2013 IEEE
Symposium on Security and Privacy. IEEE, 559–573.

[61] Yun Zhang, Jae W Lee, Nick P Johnson, and David I August. 2012.
DAFT: decoupled acyclic fault tolerance. International Journal of
Parallel Programming 40, 1 (2012), 118–140.

[62] Zhiqi Zhu, Joseph Callenes-Sloan, and Benjamin Carrion Schafer. 2018.
Control Flow Checking Optimization Based on Regular Patterns Anal-
ysis. In 2018 IEEE 23rd Pacific Rim International Symposium on Depend-
able Computing (PRDC). IEEE, 203–212.

Session: Reliability LCTES’20, June 16, 2019, London, United Kingdom

73

	Abstract
	1 Introduction
	2 Background and Motivation
	2.1 Fault Detection Techniques
	2.2 Signature-based Control Flow Protection

	3 Path Sensitive Signatures
	3.1 Intra-Interval Error Detection
	3.2 Inter-Interval Error Detection
	3.3 Integrating Two Checking Methods
	3.4 Inter-procedural Control Flow Protection
	3.5 Discussion

	4 Evaluation Methodology
	4.1 PaSS Implementation
	4.2 Statistical Fault Injection Model

	5 Evaluation Results
	5.1 Fault Coverage
	5.2 Performance Overhead
	5.3 Detection Latency

	6 Related Work
	7 Conclusion
	Acknowledgments
	References

