
Libra: Tailoring SIMD Execution using Heterogeneous Hardware and Dynamic Configurability∗

Yongjun Park Jason Jong Kyu Park Hyunchul Park† Scott Mahlke

Advanced Computer Architecture Laboratory

University of Michigan

Ann Arbor, MI, USA

{yjunpark, jasonjk, parkhc, mahlke}@umich.edu

Abstract

Mobile computing as exemplified by the smart phone has become

an integral part of our daily lives. The next generation of these de-

vices will be driven by providing an even richer user experience and

compelling capabilities: higher definition multimedia, 3D graphics,

augmented reality, games, and voice interfaces. To address these

goals, the core computing capabilities of the smart phone must be

scaled. However, the energy budgets are increasing at a much lower

rate, requiring fundamental improvements in computing efficiency.

SIMD accelerators offer the combination of high performance and

low energy consumption through low control and interconnect over-

head. However, SIMD accelerators are not a panacea. Many ap-

plications lack sufficient vector parallelism to effectively utilize a

large number of SIMD lanes. Further, the use of symmetric hard-

ware lanes leads to low utilization and high static power dissipation

as SIMD width is scaled. To address these inefficiencies, this paper

focuses on breaking two traditional rules of SIMD processing: ho-

mogeneity and static configuration. The Libra accelerator increases

SIMD utility by blurring the divide between vector and instruction

parallelism to support efficient execution of a wider range of loops,

and it increases hardware utilization through the use of heteroge-

neous hardware across the SIMD lanes. Experimental results show

that the 32-lane Libra outperforms traditional SIMD accelerators

by an average of 1.58x performance improvement due to higher loop

coverage with 29% less energy consumption through heterogeneous

hardware.

1. Introduction

Themobile devices market, including cell phones, netbooks, and per-

sonal digital assistants, is one of the most highly competitive busi-

nesses. The computing platforms that go into these devices must

provide ever increasing performance capabilities while maintaining

low energy consumption in order to support advanced multimedia

and signal processing applications. Application-specific integrated

circuits (ASICs) are the most common solutions for meeting these

requirements, performing the most compute-intensive kernels in a

high performance but energy-efficient manner. However, several fea-

tures push designers to a more flexible and programmable solution:

supporting multiple applications or variations of applications, pro-

viding faster time-to-market, and enabling algorithmic changes after

the hardware is constructed.

Processors that exploit instruction-level parallelism (ILP) provide

the highest degree of computing flexibility. Modern smart phones

employ a one GHz dual-issue superscalar ARM as an application

processor. Higher performance digital signal processors are also

∗To appear in the 45th International Symposium on Microarchitecture (2012).
†Currently with Programming Systems Lab, Intel Labs, Santa Clara, CA

available such as the 8-issue TI C6x. However, ILP processors

have scalability limits including many-ported register files (RFs) and

complex interconnects. Alternately, single-instruction multiple-data

(SIMD) accelerators provide high efficiency because of their regu-

lar structure, ability to scale lanes, and low control logic overhead.

They have long been used in the desktop space for high performance

multimedia and graphics functionality. But, their combination of

scalable performance, energy efficiency, and programmability make

them ideal for mobile systems [24, 9, 15, 27].

In order to fully utilize the SIMD hardware, it is necessary for the

programmer or compiler to extract sufficient data-level parallelism

(DLP). Automatic loop vectorization is available in a variety of com-

mercial compilers including offerings from Intel, IBM, and PGI.

Classic scientific computing (regular structure, large trip count loops,

and few data dependences) are naturally well-matched to SIMD ac-

celerators. But, in many respects, the mobile terminal has become

a general-purpose computer. Thus, like the desktop, only a small

percentage of mobile applications look like classic scientific com-

puting. The computation is not dominated by simple vectorizable

loops, but by loops containing significant numbers of control and

data dependences to handle the complexity of modern multimedia

standards. As a result, applications have varying amounts of vec-

tor parallelism ranging from none to some to large amounts. The

net effect is that SIMD hardware goes unused for a large fraction

of application execution and thus cannot be counted on to provide

significant performance gains.

A second but inter-related problem with SIMD computing is low

hardware utilization even when vector loops are executed. The use

of homogeneous hardware (e.g, identical lanes) is one of the best ad-

vantages of SIMD datapaths by reducing design cost and complex-

ity. But, the utilization of the most complex components of a SIMD

lane is often disproportionally lower than the simple components.

For example, the H.264 video decoding application is dominated by

simple integer operations (adds, subtracts, shifts) and an average of

only 2.2% and 1.3% of the total dynamic instructions are multiplies

and divides [8]. This is not an outlying data point, most multimedia

and visual computing applications have small fractions of multiply,

divide and other expensive operators. For 128-bit SIMD (4 lanes),

such utilization rates may not matter, but as SIMD widths are scaled

to increase performance to 1024 bits (32 lanes) or more, the problem

becomes serious due to poor area utilization and high static power

dissipation.

To attack these problems, we propose a customizable SIMD accel-

erator that is capable of tailoring its execution strategy to the running

application, referred to as the Libra. Libra employs two key con-

cepts, heterogeneity and dynamic configurability, to achieve broader

applicability and better energy efficiency than traditional SIMD ac-

celerators. Heterogeneity allows lanes to have different functionali-

Scalar Pipeline

Scalar

Memory

Buffer

Bank

7

Bank

0

Bank

1

Bank

2

Bank

3

Bank

4

C

R

O

S

S

B

A

R

RF 0

Swizzle

Network

DMA

Controller

L1

Program

Memory

RF 4

RF 3

RF 1

RF 2

RF 31

RF 30

RF 28

RF 29

FU 0

FU 4

FU 3

FU 1

FU 2

FU 31

FU 30

FU 28

FU 29

Figure 1: A traditional 32-lane SIMD accelerator.

ties and better match functional capabilities with expected operator

distributions. Dynamic configurability enables lane resource to ex-

ecute as a traditional SIMD processor, be re-purposed to behave as

a clustered VLIW processor, or combinations in between. Dynamic

configurability also enables efficient sharing of expensive resources

between lanes (e.g., multipliers) by interleaving independent instruc-

tions with each lane’s expensive instruction so as to hide resource

contention. Libra consists of an array of simple processing elements

(PEs) that are tightly interconnected by a scalar operand network.

Groups of four PEs form PE groups that are normally driven by a

single instruction stream. Each group can behave as a building block

for a SIMD processor (e.g., PEs behave as SIMD lanes) or a VLIW

processor (e.g., PEs behave as a cluster of function units). The com-

piler maps 1 or more loops to the Libra accelerator by combining and

configuring clusters of PE groups to efficiently exploit the available

DLP and ILP.

This paper offers the following three contributions:

• An in-depth analysis of the available ILP/DLP parallelism and

its variability in three representative mobile application domains:

computer vision applications, commercial media applications op-

timized in industry level, and game physics engine applications.

• The design of a unified loop accelerator that can effectively sup-

port future mobile applications with varying performance require-

ments and characteristics. To achieve this objective, we offer

three key features:

1. Scalability: Libra can meet high performance requirements by

simply increasing the number of clusters, whereas most cur-

rent accelerators suffer from poor scalability.

2. Configurable performance: Libra can dynamically tune the

ILP/DLP-support capability in order to successfully support

ILP-intensive, DLP-intensive, and ILP/DLP-mixed applica-

tions, as well as tolerate performance degradation due to its

heterogeneity.

3. Energy efficiency: Simple hardware implementation achieves

high energy-efficiency with competitive performance.

• A light-weight design and organization of a configurable process-

ing element for supporting simple latency hiding techniques and

sharing expensive resources.

2. Background and Motivation

In this section, we examine the limitations of traditional SIMD ac-

celerators based on an analysis of various mobile applications. We

first introduce the target benchmarks and the baseline architecture,

and find two main sources of inefficiencies in SIMD accelerators.

We then propose high-level solutions to overcome these challenges

that facilitate designing efficient hardware and maximizing the uti-

lization of existing resources.

0%

20%

40%

60%

80%

100%

d
is

p
a
ri
ty

lo
c
a
liz

a
ti
o
n

s
ti
tc

h

s
v
m

tr
a
c
k
in

g

A
v
g

a
a

c

3
d

h
.2

6
4

A
v
g

c
o

n
ju

g
a

te

c
o
n
v
o
lu

ti
o
n

lin
e
O

fS
ig

h
t

A
v
g

Vision Media Game Physics

E
x
e
c
u

ti
o

n
 t

im
e
 r

a
ti

o

high-DLP low-DLP SWPable

0.99 0.83 0.74 0.86 0.87 0.86 0.58 0.85 0.70 0.71 1.00 1.00 1.00 1.00

Figure 2: Loop categorization: The components of the bar indicate ra-
tio of execution time in SWPable loops, low-DLP, and high-
DLP SIMDizable loops. The ratio of loop execution time
over total execution time is indicated as a number above
each bar.

2.1. Benchmarks Overview

Three classes of mobile benchmarks are used for this application

analysis that contain varying degrees of vector parallelism. The

benchmarks consist of:

• Vision benchmark: We evaluated a subset of the SD-VBS bench-

mark suite [26] for mobile vision applications. As these bench-

marks are not originally optimized for a specific target architec-

ture, we manually modified these benchmarks to increase the op-

portunities for efficient execution with function inlining and loop

unrolling. All the benchmarks are functionally verified on QCIF1

input data sizes, which is widely used on mobile devices.

• Media benchmark: Three mobile media applications are selected:

AAC decoder (MPEG4 audio decoding, low complexity pro-

file), H.264 decoder (MPEG4 video decoding, baseline profile,

qcif) [13], and 3D (3D graphics rendering) [3]. These benchmarks

are optimized for DSPs in the production-quality level and a large

portion of the loops have a high potential degree of ILP and are

software pipelinable.

• Game physics benchmark: Three common kernels are extracted

frommobile game applications [2]. First, lineOfSight plays an im-

portant role of separating visible objects and non-visible objects.

Sound effects, collision detection and other functions involving

linear equations often exploit convolution and the conjugate gradi-

ent method. The three kernels mostly consist of high DLP loops.

2.2. Baseline Architecture

A SIMD architecture that is based on SODA [15] is used as the base-

line SIMD accelerator. This architecture has both SIMD and scalar

datapaths. The SIMD pipeline consists of a multiple-lane datapath

where each lane has an arithmetic unit working in parallel. Each

datapath has two read-ports, one write-port, a 16 entry register file,

and one ALU with a multiplier. The number of lanes in the SIMD

pipeline can vary depending on the characteristics of the target appli-

cations. The SIMD Shuffle Network (SSN) is implemented to sup-

port intra-processor data movement. The scalar pipeline consists of

one 32-bit datapath and supports the application’s control code. The

scalar pipeline also handles DMA (Direct Memory Access) trans-

fers.

2.3. Limitations for Current SIMD Accelerators

2.3.1. Loop Characterization Applications typically have many

compute intensive kernels that are in the form of nested loops.

1We used QCIF (176x144) image size for uniformity of benchmarks, and the similar

trend appears on higher resolution images.

Vision Media Game Total

Avg ratio(MEM) 0.44 0.26 0.27 0.32

Avg ratio(MUL) 0.15 0.10 0.22 0.16

ratio of MEM loop 0.93 0.36 0.33 0.54

ratio of Mul loop 0 0.04 0 0.01

(b) (c)(a)

0

0.2

0.4

0.6

0.8

1

Vision Media Game

R
e

la
ti

v
e

 p
e

rf
o

rm
a

n
c

e

Performance degradation
@16-way SIMD

16

8

4

2

1
0

0.1

0.2

0.3

0.4

0.5

0 0.2 0.4 0.6 0.8 1

M
u

l
R

a
ti

o

Mem ratio

Loop distribution

lack of Mem units

lack of Mul units

Figure 3: Resource utilization: (a) average ratio of dynamic instruction count of expensive instructions and ratio of Mem/Mul dominant loops,
(b) loop distribution over ratio of Mem/Mul, and (c) performance degradation on a SIMD at different number of Mem/Mul resources.

Among these kernels, we analyze the available ILP and DLP of the

innermost loops and find the maximum natural vector width that is

achievable. To extract the maximum degree of ILP, we found the

Software pipelinable innermost loops: 1) counted loop, 2) no subrou-

tine call, and 3) no multiple exits/backedges. Control flows inside

the innermost loops are solved using if-conversion. Among the soft-

ware pipelinable (SWPable) innermost loops, we also identify the

SIMDizable innermost loops which can utilize DLP. We apply the

conditions used by the Intel compiler [12] to determine if a loop is

SIMDizable and the minimum iteration count is set to the maximum

available SIMD width (natural SIMD width).

2.3.2. SIMD Width Variance over Loops Figure 2 shows the rela-

tive execution time of SWPable loops and SIMDizable loops to total

execution time on a simple 1-issue ARM processor. As we use a 16-

lane SIMD processor for this experiment, SIMDizable loops with

natural SIMD width smaller than 16 are categorized into low-DLP

loops. On average, there is a substantial amount of time (87%) spent

on SWPable or SIMDizable loops as expected. An interesting ques-

tion here is how many applications are not well-matched to a wide

SIMD accelerator. Unfortunately, 4 of 11 applications are highly

dependent on SWPable and low-DLP loops, which means that not

all the lanes can be utilized. For example, traditional SIMD cannot

decrease the execution time of an AAC application more than 60%

of the total loop execution time because around 40% of the time is

spent on SWPable loops. In general, the game physics benchmarks

have high levels of data parallelism, vision benchmarks have mod-

est data parallelism, and media benchmarks have low degrees of data

parallelism. Results in Figure 2 confirm that a simple SIMD accel-

erator cannot effectively support the range of mobile applications.

Even with a perfect support for DLP, SWPable and low-DLP loop

execution result in low utilization of SIMD resources. Therefore,

further consideration is required to fully utilize the SIMD resources

on the execution of non-fully SIMDizable loops.

2.3.3. Resource Utilization Variance To maximize the total utiliza-

tion of computation resources, the number of each resource should

be decided based on the average fraction of dynamic instructions.

While current CPUs solve these challenges by out-of-order exe-

cution of parallel instructions on multiple execution units, current

SIMD architectures cannot solve this problem due to its homoge-

neous nature: the datapath of each SIMD lane has the same function-

alities, even for expensive units such as memory and multiply units.

These characteristics are unfavorable in terms of efficiency because

not all execution units are active every cycle, and expensive units are

much less utilized (an average of only 32% for a memory unit and

16% for a multiply unit (Figure 3(a))). A traditional solution for this

problem is to turn off the unused resources by clock/input gating,

but this solution does not eliminate leakage power. Power gating is

unlikely a practical solution because idle periods for expensive units

tend to be relatively short.

Another challenge is the diversity of instruction distribution

across/inside applications. Even if we are somehow able to place

a specific number of each execution unit based on average fraction,

careful consideration is also required because the fraction varies

greatly. In Figure 3(a), for example, the ratio of multiply instruc-

tion varies from 10% to 22% across three application domains. We

also define a loop to be memory/multiplication dependent if the frac-

tion of memory/multiplication instructions are more than 33% of

the total instructions. Figure 3(b) shows a distribution of the loops

according to the ratio of memory/multiply instructions. Based on

Figure 3(a) and (b), more than 54% of the loops in the three bench-

mark sets highly depend on the memory instructions, and therefore,

normal ALU functional units can be idle due to the memory oper-

ation bottleneck if only 33% of memory resources exist. On the

contrary, multiplication is not the critical performance bottleneck if

33% of multiplication resources exist because only 1% of the loops

are multiplication dependent. As a result, the high diversity in the

instruction distribution will make most loops to not be effectively ac-

celerated due to the lack of enough resources, or to waste resources

due to the excess resources, if the SIMD accelerator simply allocate

resources based on specific rules such as average fraction or one per

four lanes.

2.4. Insights for the Traditional SIMD

Based on the application analysis, we found several fundamental

sources of SIMD inefficiency. First, a traditional wide SIMD accel-

erator may be over-designed since the overall performance will be

saturated at some point and limited by non-high-DLP loops where

the SIMD accelerator is poorly utilized. Second, lane uniformity

makes the SIMD datapath inefficient due to over-provisioning expen-

sive resources. Third, the high variation in the resource requirements

of loops makes the problem more difficult than simple sharing of ex-

pensive resources would accomplish. A central challenge here is

how to decrease over-provided resources on traditional SIMD accel-

erators and to overcome the inflexibility in order to more effectively

utilize the hardware.

3. Libra Architecture

3.1. Overview

The Libra accelerator presented here is a unified accelerator for mo-

bile applications that allows flexible execution of loops by customiz-

ing the configuration adaptive to their key characteristics. The Libra

(a) Program (b) Loop characterization

SIMD Resource
0 15

high DLP, no MulHot Loops

low DLP, no Mul

high DLP, Mul

(c) Dynamic lane mapping

no DLP, Mul

Expensive PE

Basic PE

Figure 4: Mapping loops to Libra: (a) identify hot loops, (b) find the
available DLP and resource requirement of each expensive
operation, and (c) change the configuration based on the
characteristics of each loop.

accelerator is based on traditional SIMD accelerators and has sev-

eral important extensions for providing both high energy-efficiency

and performance improvement. First, Libra is composed of a non-

uniform lane structure for power efficiency: only a subset of lanes

has expensive but infrequently used execution units. Furthermore,

dynamic configurability of logical lanes helps Libra in executing a

target loop in an efficient manner with high utilization. In Libra,

a group of logical lanes is executed in a SIMD manner, where the

logical lane is configured by a group of processing elements (PEs).

DLP is exploited in the form of parallel execution of logical lanes,

and ILP is exploited inside each logical lane in a way that each PE

execute different operations. Therefore, Libra is able to flexibly tune

the ILP/DLP-support capability by changing the logical lane config-

uration.

Figure 4 shows a conceptual view of the execution of Libra.

First, several hot loops are identified as candidates to be acceler-

ated utilizing the Libra architecture(Figure 4(a)). Second, software-

pipelinable loops are selected, and the DLP availability is also deter-

mined as discussed in Section 2.3.1(Figure 4(b)). In this step, several

additional key characteristics such as the amount of potential ILP in

the loopbody and the ratio of expensive instructions are also con-

sidered. Finally, a best matched logical lane configuration for each

loop is chosen by the compiler (Figure 4(c)). In Figure 4, we assume

a 16-lane heterogeneous SIMD including 12 basic and 4 expensive

PEs. Based on this, each PE constitutes one logical lane for full DLP

support to execute high-DLP loops having only simple instructions,

intermediate numbers of PEs form each logical lane for ILP/DLP

hybrid execution to support low-DLP loops or expensive operation-

intensive loops, and one large logical lane for full ILP execution

is configured for non-DLP loops. Note that fully exploiting SIMD

parallelism does not always outperform exploiting ILP on heteroge-

neous structures. Section 3.1.1 and 3.1.2 explain the core concept of

Libra in detail with evidence of its effectiveness.

3.1.1. Heterogeneity Heterogeneous lane organization, based on av-

erage fraction of resource utilization, is required in order to enhance

power efficiency: all the lanes support simple integer operations and

only a subset of the lanes support expensive operations. When an

expensive instruction is fetched, the accelerator stalls until this sub-

set of lanes generates results for all lanes, then resumes execution.

This structure delivers a high level of power efficiency due to the

expensive resource removal, but significant performance degrada-

tion will occur when executing expensive operation-intensive code.

Figure 3(c) illustrates the performance degradation as the number

0 1 2 3
PE

T
im

e

Lane0

IP
C

=
2
.2

9

A0n A0n+1 A0n+2 A0n+3

Lane1 Lane2 Lane3

A1n A1n+1 A1n+2 A1n+3

A2n A2n+1 A2n+2 A2n+3

M3n

M3n+1

M3n+2

M3n+3

S
ta

ll

0 1 2 3 PE

T
im

e

Lane 0

IP
C

=
4

A0n

A1n

A2n

M3n

0 1

2

3

high DLP, 1 Mul

ADD

MUL

ADD

ADD
A0n+1

A1n+1

A2n+1

A0n+2

A1n+2A0n+3

A1n-1

A2n-1

M3n-1

A2n-2

M3n-2

M3n-3

(a) Example loop (b) Simple resource sharing (c) Logical lane mapping

Figure 5: Dynamic configurability on a 4-lane heterogeneous SIMD
(lane 3 has a multiplier): (a) a simple high-DLP loop with 1
multiply, (b) performance degradation due to stalls during
multiply execution, (c) logical lane formation removes stalls
by instruction pipelining.

of multiplier/memory units decreases on a 16-lane SIMD accelera-

tor. Each bar shows the relative performance normalized to that of

the homogeneous SIMD when each heterogeneous SIMD has spe-

cific number of expensive resources. From this graph, substantial

amounts of performance degradation exist in vision and game bench-

mark because they are highly dependent on expensive operations and

incur a number of stalls to handle these operations. However, media

benchmarks are not highly affected by the proportion of these ex-

pensive resources because the performance is already constrained

by low DLP.

3.1.2. Dynamic Configurability Dynamic configurability of lanes

helps the heterogeneous SIMD accelerator in dealing with the afore-

mentioned problems. One logical lane can consist of one PE for

highly SIMDizable loops with no expensive instructions, and also

consist of multiple PEs for non/low-SIMDizable loops or loops hav-

ing expensive instructions. The resulting SIMD width is decided by

the number of logical lanes and each logical lane executes the same

instruction stream in lockstep. Inside a logical lane, ILP is exploited

to use multiple lanes in parallel, and therefore it can efficiently dis-

tribute instructions between simple lanes and expensive lanes.

The effectiveness of dynamic lane mapping can be explained by

the simple following performance equation. In the equation, we

compare the total performance of the simple SIMD and the Libra

SIMD by the metric of IPC (instruction per cycle). The IPC of

SIMD can be calculated by the multiplication of IPC of one lane

(IPClane) and the minimum of the number of PEs (NSIMD) and the

available degree of DLP (NDLP) of the target loop (Equation (1)).

Similarly, the IPC of Libra can be the multiplication of IPC of one

logical lane (IPClogical_lane), consisting of m PEs, and the minimum

of the number of logical lanes (NSIMD

m
) and the degree of DLP of

the loop (Equation (2)). Therefore, when executing non/low-DLP

loops, Libra can easily outperform the basic SIMD because it only

requires better performance of a logical lane than that of a PE, and

it is always true as a logical lane exploits ILP with multiple PEs in-

side(Equation (3)). Dynamic configurability is also able to address

the performance degradation problem on the heterogeneous SIMD.

When executing high-DLP loops, Libra outperforms SIMDwhen the

IPC of a logical lane is higher than that of m PEs. Although the ILP

performance is normally inferior to DLP performance because of its

dependences and complexity, Libra can frequently be better due to

the heterogeneity. Figure 5(a), (b) and (c) shows the superiority of

Libra. Figure 5(b) and (c) show the execution of a simple high-DLP

loop having a multiply instruction on both the simple SIMD and Li-

bra which have one multiplier on the PE 3. In this example, the IPC

of SIMD is less than the IPC of Libra when one large logical lane is

configured due to a number of stalls.

Bank

7

Bank

0

Bank

1

Bank

2

Bank

3

Bank

4 C
ro

s
s
b
a
r

RF 0

S
w

iz
z
le

N
e
tw

o
rk

RF 15

RF 14

RF 1

FU 0

FU 15

FU 14

FU 1

Loop Configuration buffer

RF

(4n)

FU

(4n)

Int

RF

(4n+1)

FU

(4n+1)

Int+Mem

RF

(4n+2)

FU

(4n+2)

Int+Mul

RF

(4n+3)

FU

(4n+3)

Int

4x8

Crossbar

(4(n-1))

(4(n+1))

(4(n-1)+1)

(4(n+1)+1)

(4(n-1)+2)

(4(n+1)+2)

(4(n-1)+3)

(4(n+1)+3)

Loop Config.

PE Group N

RF 16

RF 31

RF 30

RF 17

FU 16

FU 31

FU 30

FU 17

In
tr

a
-g

ro
u

p
C

o
n

fi
g

u
ra

b
le

In
te

rc
o

n
n

e
c
t

In
te

r-
g

ro
u

p
C

o
n

fi
g

u
ra

b
le

In
te

rc
o

n
n

e
c
t

Cluster 1

Cluster 0 Cluster 0

SIMD

controller

Thread

controller

RF index bits Intra-group

Interconnect

Index bits

Opcode Inter-group

Interconnect

Index bits

RF 2 FU 2

RF 3 FU 3

RF 0 FU 0

RF 1 FU 1

RF 6 FU 6

RF 7 FU 7

RF 4 FU 4

RF 5 FU 5

RF 10 FU 10

RF 11 FU 11

RF 8 FU 8

RF 9 FU 9

RF 14 FU 14

RF 15 FU 15

RF 12 FU 12

RF 13 FU 13
G

ro
u

p
0

G
ro

u
p

1
G

ro
u

p
2

G
ro

u
p

3

PE (4n)

PE (4n+1)

PE (4n+2)

PE (4n+3)

Cluster

Cluster

Cluster

Cluster

(a) (b) (c) (d)

Full ILP Hybrid

Hybrid Full DLP

Intra-group

Interconnect

Inter-group

Interconnect

Out

Out

Out

Out
P

ro
v
id

e
a

lo
o

p
s

c
h

e
d

u
le

L
o

o
p

e
x
e

c
u

ti
o

n
c

o
n

tr
o

l

Group 0

Group 1

Group 2

Group 3

Instruction Cache SIMD controller Thread controller

Figure 6: The 32-PE Libra architecture: (a) a 2-cluster Libra accelerator, (b) a cluster, (c) an example of a single PE group: PE 1 supports
memory operation and PE 2 supports multiply operation, and (d) execution modes.

IPCSIMD =min(NSIMD,NDLP)× IPClane (1)

IPCLibra =min(
NSIMD

m
,NDLP)× IPClogical_lane (2)

IPCLibra > IPCSIMD,

when

{

IPClogical_lane > IPClane, if
NSIMD

m
> NDLP

IPClogical_lane > m× IPClane, if
NSIMD

m
< NDLP

(3)

3.2. Microarchitectural Details

The Libra architecture with eight PE groups (32 PEs) is shown in

Figure 6(a). Differently from the traditional SIMD, the Libra dat-

apath consists of 2 groups of clusters, which can be configured to

create logical SIMD lanes of 2, 4, 8, and 16 PEs based on the loop

characteristics. Each of the clusters is composed of 4 PE groups.

The SIMD controller performs the role of managing the logical lane

status to exploit SIMD parallelism, while the thread controller man-

ages the ILP-exploiting method inside the logical lane. Each PE

group contains 4 PEs. Each of the PEs has an FU and a register file,

which can be thought as one lane of the traditional SIMD. Only one

of the PEs in a PE group has a multiplier while another has a mem-

ory unit. Differently from the traditional SIMD, each PE group also

has two kinds of reconfigurable interconnects inside and across PE

groups in order to achieve flexible configuration of logical lanes.

Key features of Libra architectures are as follows:

Scalability: The resources are fully distributed including FUs,

register files, and interconnections. PE groups have dense intercon-

nections inside but each PE group is sparsely connected with neigh-

bors. As a result, area and power costs increase approximately pro-

portional to the number of resources, which makes Libra as scalable

as a simple SIMD.

Polymorphic Lane Organization: PE groups can be aggregated

to form a larger logical lane in order to exploit the existing ILP inside

the loop body, or be split into multiple small logical lanes in order

to exploit DLP over loop iterations.

Resource Sharing: In heterogeneity, the major challenge is how

to determine the number of expensive resources and how to effi-

ciently share them between logical lanes when necessary. To flexibly

handle this, we place the expensive resources based on the average

utilization and provide a sharing mechanism between them in two

categories. A more detailed description is provided in Section 3.3.3.

Simple Multi-threading Mechanism: Even though a logical

lane provides a number of parallel resources, efficient use of the

available resources is limited due to the low ILP of the loopbody.

Therefore, we extended the ILP into loop-level parallelism through

modulo scheduling [20]. Modulo scheduling generally provides a

decent performance improvement by parallelizing instructions over

loop iterations and hiding long latency between back-to-back in-

structions. However, several Libra specific features, such as SIMD

capability and fully-distributed nature, diminish the effectiveness of

modulo scheduling. To compensate for this, simple static multi-

threading with list scheduling is proposed in Section 3.4.

3.2.1. PE GroupA detailed illustration of a single Libra PE group is

provided in Figure 6(c). A PE group consists of four PEs each with

a 32-bit FU and a 16-entry register file with 2-read/1-write ports

(write ports can be added to support threading). Integer arithmetic

operations are supported in all four FUs but multiply and memory

operations are available in only one FU per PE group (PE1 for mem-

ory and PE 2 for multiplication in Figure 6(c)). The FUs inside are

modified to connect with each other with a dense 4x8 full crossbar

network for passing data between the FUs without writing back to

the RF. This allows the PE groups to exploit ILP in a distributed

nature. In order to retain scalability, the Libra architecture has a sim-

ple and fully distributed across-PE group interconnect. Only FUs

are connected between the corresponding neighbors in adjacent PE

groups. In addition to these components, a loop configuration buffer

is added to store instructions for modulo/list scheduled loops. The

buffer is a small SRAM that saves the configuration information in-

cluding instructions, register addresses and interconnect index bits

of the current loop. The interconnect between the loop buffer and

SIMD/Thread controllers in the cluster is used to transfer instruc-

tions for executing loops. The hardware components and execu-

tion mechanism for SIMD/ILP support is explained in detail in Sec-

tions 3.3 and 3.4.

3.2.2. Cluster A cluster is a high-level basic unit that consists of

four PE groups and several additional features for flexible loop exe-

cution support: the SIMD controller and the thread controller. The

SIMD controller is a small controller to manage the logical lane or-

ganization inside the cluster, including the number of logical lanes

and the SIMD width of memory transfer. It receives the information

from the instruction cache. In addition, the SIMD controller also

gets the configuration for one logical lane from the instruction cache

src0 src1
FU 2

ALUShifter
Mul

src0 src1
FU 0

ALUShifter

src0 src1
FU 1

ALUShifter Mem

src2

src0 src1
FU 3

ALUShifter Data

bypass

M
e

m
o

ry

Address

Data

2x bandwidth

Data

Logical lane 0
Logical Lane 0

A B

C

D

E

A0
B0

C0

D0

E0

A1
B1

C1

D1
E1

Load Load

Mul

Add

Store

cycle

1

2

3

4

5

6

7

8

9

10

(C1)

PE0 PE1 PE2 PE3

(a) (b) (c)

Resource Conflict:

Can t schedule

multiply

instruction

A0 A1 in
B0 B1 in A1 in

B1 in

A1, B1 data bypass

Logical lane 1

Logical Lane 1

Figure 7: Resource sharing support: (a) hardware modification: PE 0 and 2 share the multiplier and PE 1 and 3 share the memory unit, (b)
example loop body dataflow graph, and (c) actual schedule: 1-cycle difference between lanes for resource contention avoidance.

and transfers it to each PE group. A thread controller is responsible

for executing loops. It also gets the information about which mode

is selected from the instruction cache and orchestrates the loop ex-

ecution. When modulo scheduling is selected, it just executes the

loop sequentially, and, when multi-threading is selected, it executes

the loop in the order of the thread sequence table. The information is

statically set during compile time and is fetched from the instruction

cache. Multiple clusters can execute one large loop or can execute

multiple parallel loops separately.

3.2.3. Configuration Process Loop execution of Libra can be di-

vided into two stages: configuration and execution. Configuration

stage is forming logical lanes and sending configuration bits to all

the loop buffers of each PE-group. For every loop, the instruction

cache contains both logical lane organization information and con-

figuration bits for one logical lane. The SIMD controller gets these

information from the instruction cache and then sends the configu-

ration bits to the loop buffers of the PE groups based on the logical

lane configuration. The thread controller also gets the information

about the execution mode and sequence table, if required, from the

instruction cache. This process takes 3-5 cycles on average before

the loop buffer receives the configuration bits for the first cycle and

the time varies depending on the size of the logical lane. The thread

controller starts the execution when the first cycle configuration is

ready on all the loop buffers.

3.2.4. Memory Support The memory operation of the Libra system

needs support for both scalar and SIMD memory access. For scalar

memory access, the local memory has the same number of banks

as the number of total memory units. For SIMD access, the local

memory also needs to support contiguous access across all logical

lanes in parallel. Therefore, for the 32-PE Libra system, a 64kB

local memory is used, consisting of 8 memory banks where each

bank is a 2-wide SIMD containing 1024 32-bit entries. As shown in

Section 2.3.1, all memory transfers have the same strides over iter-

ations in SIMDizable loops. Therefore, when several logical lanes

execute the same instructions for SIMDized loops, a single address

calculation followed by a wide memory operation is performed. The

data is then distributed to different logical lanes. Multiple memory

units inside a logical lane need to generate their own memory ad-

dresses. The SIMD width of each access and the number of different

addresses are determined by the logical lane configuration, which is

saved in the SIMD controller.

3.2.5. Communication with a Host Processor The Libra architec-

ture is a co-processor similar to a GPU and interfaces with a host pro-

cessor such as ARM using memory. The data transfer is performed

through a standard AMBA bus along with a DMA.

3.3. Execution Model

This section describes the three different execution modes of the Li-

bra architecture, which are full ILP, hybrid, and full DLP modes.

We first explain how each mode operates and then provide proof of

how the three modes can effectively support different kinds of loops.

The example provided assumes a four-PE group cluster as shown in

Figure 6(d).

3.3.1. Full ILP Mode In this mode, the Libra architecture decides

to use all the PEs as one large logical lane. The SIMD controller

spreads different configuration informations into the loop buffer of

each PE group. The execution mechanism is the same as the loop

acceleration technique of common VLIW solutions but the perfor-

mance might be slightly worse than previous solutions because the

Libra architecture sacrifices both centralized resources and dense

across-PE group interconnects. Applications which have a high pro-

portion of non-SIMDizable loops mostly utilize this mode for accel-

eration.

3.3.2. Hybrid Mode When a loop is SIMDizable, a cluster has the

possibility of either having several small logical lanes or forming a

large logical lane. In this case, the Libra architecture may choose to

use a hybrid mode with a cluster having at least two logical lanes,

each having at least one PE group. With smaller logical lanes, the

performance usually increases since SIMDization provides an oppor-

tunity to increase performance by the same amount as the degree of

DLP. Also the routing overhead decreases with small logical lanes,

further boosting performance. Figure 6(d) also has two examples of

hybrid mode execution. The SIMD controller distributes the same

configuration information and live values to the loop buffer and RFs

of each logical lane. When a loop lacks sufficient level of DLP or

has a moderate proportion of expensive resources, hybrid mode can

achieve the best performance.

3.3.3. Full DLPModeWhen a loop is highly data-parallel but has a

low degree of ILP, the resources (PEs) cannot be effectively utilized

because the degree of ILP in the loop cannot meet the minimum

degree of the PE group. To compensate for the lack of ILP, the

Libra architecture supports separation of PE groups, forming two

smaller logical lanes. As a result, SIMD parallelism can make up for

insufficient ILP in the loops (also in Figure 6(d)). Hence, a cluster

has a total of eight logical lanes executing in lockstep. Distinct from

loops with a small number of instructions, loops with unbalanced

resource usage can also be well matched to a full DLP mode, unlike

the hybrid mode. As mentioned in Section 2.3.3, the hybrid mode

cannot fully utilize resources in a PE group since performance of

loops with a high proportion of memory operations are constrained

by the memory unit.

The major challenge in full DLP mode is determining how to

Thread Controller

RF

loop buffer

Schedule time

Thread Id

src0 src1
FU 2

ALUShifter
Mul

Out

Thread Id
Thread Id-added

schedule

PE 2

Group

Cluster

(a) (b) (c) (d)

Cycle Thread Id
Loop buffer

address

0 0 0

1 0 1

2 1 0

3 1 1

4 0 3

5 0 4

6 0 5

7 1 3

8 1 4

9 1 5

Original

Cycle

Original

Configuration

0 A

1 B

2 NOP

3 C

4 D

5 E

Cycle
Thread-aware

configuration

0 A0

1 B0

2 A1

3 B1

4 C0

5 D0

6 E0

7 C1

8 D1

9 E1

Figure 8: Multi-threading support & compiler support: (a) hardware modification: shaded components are modified, (b) sequence table in the
thread controller, (c) loop buffer, and (d) final multi-threaded schedule.

share expensive resources between two small logical lanes in a PE

group. The first category for resource sharing is expensive but in-

frequently used functionalities such as the multiply operation. As

shown in Figure 3(a), the average ratio of multiply is as low as

16% and only 1% of loops are multiply-dominant, and therefore sim-

ple sharing between two half-PE groups does not incur performance

degradation. The second category is frequently used functionalities

such as memory operations as shown in Figure 3(a). These instruc-

tions are already a performance bottleneck and simple sharing can-

not enhance the overall performance. Therefore, this shared resource

should lead to double the performance in a lightweight manner.

We accomplish these requirements using simple hardware modifi-

cations as shown in Figure 7(a). One PE group is mapped into two

small logical lanes with (PE 0, PE 1) and (PE 2, PE 3). Based on

the application analysis, only PE2 supports multiply operations and

PE 1 supports memory operations. To ensure that both logical lanes

support all functionalities, PE 0 and PE 2 share the multiplier and

PE 1 and PE 3 share the memory unit. To share the multiplier, PE 0

connects input and output ports to the multiplier of PE 2. A memory

controller in PE 1 is shared with PE 3 in a different manner. When

the memory controller receives a memory operation command, only

PE1 communicates with the memory with double bandwidth and

send/receives the data of PE 3 through a bypass logic.

To execute the same instructions in both logical lanes using the

above modifications, the following processes are required:

• The compiler must not schedule multiply instructions in a row, be-

cause the multiplier needs a spare cycle after the cycle in which

the multiply instruction is scheduled in order to handle the opera-

tion of the other logical lane. However, other instructions can be

placed since they have no resource or writeback contention. Mem-

ory instructions can be scheduled without any restrictions as the

hardware supports double bandwidth.

• The SIMD controller has the instruction configuration only for

one logical lane. The controller transfers the same configuration

into the loop buffer of both logical lanes with one-cycle difference

to avoid resource contention.

Figure 7(b) is an example of a full DLP mode execution. For a

simple dataflow graph of the loop body, the latency of the load and

multiply operations are set to 4 and 2. Due to the small size and

high memory dependent characteristic of the loop body, a full DLP

mode is selected and each PE group is separated into two logical

lanes. Identical schedules based on two PEs are transferred into the

loop buffer in the PE group with one cycle difference between log-

ical lane 0 and logical lane 1 (see Figure 7(c)). Different memory

operations can execute in the same cycle as shown in cycle 2 but dif-

ferent multiply instructions cannot be scheduled at cycle 7 because

logical lane 1 needs to use the multiplier in that cycle.

3.4. Improving ILP Performance

Although modulo scheduling has proven to be an effective solution

to exploit ILP over loops, it is not always the best solution because

1) original iteration count is divided by DLP capability, and there-

fore, the smaller iteration count may not compensate for the pro-

log and epilog overheads even in moderate DLP loops [23] and 2)

sparse interconnection between PEs and no centralized RFs make

the quality of the schedule worse. As a result, we suggest support-

ing list scheduling [6] of the loop body as another option to exploit

ILP. When either there is not much total ILP in the loop, or the

hardware cannot benefit from increased ILP, list scheduling can out-

perform modulo scheduling since it does not incur the overhead of

modulo scheduling: handling modulo information such as staging

predicates.

The remaining problem of adapting list scheduling to hide idle

cycles comes from long latency instructions such as multiply and

memory operations. To solve this problem, we propose a simple

multi-threading scheme with fast context switching. Assuming the

Libra architecture supports two threads, a loop with large number

of iterations is divided into two threads with identical loops with

half number of iterations. The two threads are then executed on the

same logical lane. To make the scheme simple, a switch of running

threads is allowed only when all the PEs are idle. Each thread has its

own register file space divided by the number of threads, similar to

what a GPU does, and therefore no context change overhead exists.

The schedule with multiple threads is statically decided at compile

time. The multi-threading technique is simple but highly effective

and is a realistic solution because of the following two reasons: 1)

low register pressure: loops with small number of instructions have

a small amount of data to save in the register file and list scheduling

does not require additional register overhead, and 2) a high chance of

hiding latency: this technique is applied only to SIMDizable loops

executing on small logical lanes, thus increasing the probability that

all FUs are idle.

Although multi-threading looks promising, the Libra architecture

faces a number of challenges in reality. There are three essential

challenges and we present the lightweight solutions incorporated in

the Libra architecture:

Context Saving: The fully distributed nature of Libra allows tem-

poral data to be saved in the register files as well as the output buffer

in order to directly transfer the data between FUs. As a result, the

output buffer data of each thread should also be saved in addition to

the register files. The register file is divided into the same number of

threads. The parts are then addressed by the thread ID. However, the

output buffer is originally a simple flip-flop without addressing sup-

port. Therefore, it is substituted by an n-entry register file addressed

by thread ID(n: the number of threads supported). The output data

can thus remain unchanged when another thread is executed.

Writeback Contention Avoidance: Handling multi-latency in-

structions is not a simple problem if the output data from a multi-

latency instruction is generated when the other thread is executing.

To solve this problem, multi-latency FUs need to save the thread ID

when the input is issued and be connected to the output buffer (small

register file) with an additional port addressed by the original input

thread ID. Since only a single additional port is required for multi-

ple FUs with the same latency, the overhead is negligible. For the

Libra architecture, only two ports are added to the whole PE group

to support a multiplier and a memory controller.

Code Bloat: Since multiple threads are scheduled at compile

time, the loop buffer of each PE group needs to contain the entire

schedule information of all threads for each cycle. This causes the

code bloat problem, requiring an increased loop buffer size which in-

curs a power overhead. However, an important observation to point

out is that the schedules of different threads are essentially the same,

just with different execution times. We can, therefore, solve the prob-

lem by 1) saving the schedule configuration of only one thread and 2)

adding a simple sequence table which contains a thread ID and the

corresponding loop buffer address pointing to the actual schedule

configuration. The thread controller contains the basic information

for supporting multi-threading and the sequence table.

Figure 8 shows an illustration of the Libra architecture with an em-

phasis on modified features(shaded components) to support multi-

threading, assuming that the architecture supports execution of two

threads. The loop buffer contains configuration information for only

one thread as shown in Figure 8(c). Therefore, its size is the same as

when one thread is executed. The thread controller in the cluster has

a tiny sequence table containing the actual thread ID and the address

of the configuration saved in the loop buffer. Figure 8(b) depicts an

example sequence table for two thread execution. Since two threads

are executed in this example, the space of RF is divided by two and

the output buffer is a 2-entry register file. By reading the sequence ta-

ble from cycle 0 to cycle 9, the thread controller transfers the thread

ID and loop buffer address for each cycle to the loop buffer. From

this information, the loop buffer generates the final configuration by

reading the appropriate configuration and adding a thread ID to the

register file address (see Figure 8(d)). The multiplier gets the thread

ID and has a separate data bus due to the multi-latency functionality.

When the original configuration B has the multiply operation for FU

2, the result data from thread 0 and B configuration can be stored in

the output buffer at cycle 2 without any writeback contention.

3.5. Decision Flow

In order to maximize the performance and resource utilization, the

Libra architecture depends on an intelligent selection of the config-

uration between the number of logical lanes and the size of each

logical lane. The system flow is shown in Figure 9. Applications

run through a front-end compiler, producing a generic Intermediate

Representation (IR), which is unscheduled and uses virtual registers.

The compiler also has a high-level machine specific information, in-

cluding the number of resources, size of register files, the size of a

Compiler Front-end

Generic C

program

Resource allocation

Modulo

scheduling

List scheduling

w/ multi-threading

Code Generation

Executable

Loop-specific

optimization

Compiler

Back-end

Classifying the loop

Hardware

Information

Determine

SIMDizability

Set SIMD mode

Set ILP mode

Profile

Information

Figure 9: Decision flow of the Libra architecture.

cluster, and the number of supported micro-threads. In addition to

this, the compiler needs to have profile information about the itera-

tion counts of loops and memory alias information. Given the IR,

hardware and profile information, the compiler categorizes loops

into two basic types: SWPable and SIMDizable loops. The com-

piler then decides the logical lane configuration of a cluster for each

loop (resource allocation). If a loop is not SIMDizable but only SW-

Pable, the entire cluster is assigned to the loop. If a loop is proved

as SIMDizable, the compiler finds the best configuration based on

the provided information such as average iteration count, instruction

and dependency information of the loop. Briefly speaking, the com-

piler tries to fully exploit SIMD parallelism by securing the maxi-

mum number of logical lanes without performance degradation due

to the instruction imbalance. However, it also performs broad design

space explorations by changing the number of logical lanes. This is

because 1) sometimes the effectiveness of DLP is not clear when

the divided trip count is small and the instruction number is not too

small, and 2) the scheduler uses a heuristic way to generate the mod-

ulo schedule. After deciding the lane configuration, the compiler

chooses the method to exploit ILP inside the logical lane. Finally,

the compiler performs modulo scheduling or list scheduling. It then

generates the final schedule and the configuration information.

4. Experiments

4.1. Experimental Setup

Target Architecture To evaluate the effectiveness of the Libra archi-

tecture, three example implementations with different sizes are used:

16 (one cluster, four PE groups), 32 (two clusters), and 64 (four clus-

ters) PEs. Four FUs per cluster are able to perform load/store in-

structions to access the data memory with four-cycle latency while

another four FUs support two-cycle pipelined multiply instructions.

The Libra is compared against two other accelerators in our exper-

iment. We generate 4(cluster)×4(PE), 8×4, and 16×4 heteroge-

neous VLIWs having the same organization of PEs as correspond-

ing Libra architectures. The wide SIMD architecture as discussed

in Section 2.2 is used and the number of SIMD resources can vary

from 16 to 64, having the same heterogeneous FU structure.

Target Applications As discussed in Section 2.1, the evaluation

is conducted for subsets of three domains. Max 20 top loops hav-

ing a high execution time are selected for vision and game physics

benchmarks, and 144 loop kernels, varying in size from 4 to 142

0.53

(a)

(b)

10.814.7 8.8
10.5

0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4
S

IM
D

V
L

IW

L
ib

ra

S
IM

D

V
L

IW

L
ib

ra

S
IM

D

V
L

IW

L
ib

ra

S
IM

D

V
L

IW

L
ib

ra

S
IM

D

V
L

IW

L
ib

ra

S
IM

D

V
L

IW

L
ib

ra

S
IM

D

V
L

IW

L
ib

ra

S
IM

D

V
L

IW

L
ib

ra

S
IM

D

V
L

IW

L
ib

ra

S
IM

D

V
L

IW

L
ib

ra

S
IM

D

V
L

IW

L
ib

ra

disparity localization stitch svm tracking AAC 3D H.264 lineOfSight convolution conjugate

Vision Media Game Physics

N
o

rm
a

li
z
e

d
 E

x
e

c
u

ti
o

n
 T

im
e

SWPable (non-SIMDizable) SIMDizable

0

0.05

0.1

0.15

0.2

0.25

0.3

S
IM

D

V
L

IW

L
ib

ra

S
IM

D

V
L

IW

L
ib

ra

S
IM

D

V
L

IW

L
ib

ra

S
IM

D

V
L

IW

L
ib

ra

Vision Media Game
Physics

Avg

N
o

rm
a

li
z
e

d
 E

x
e

c
u

ti
o

n
 T

im
e

0
1
2
3
4
5
6
7
8
9

10

S
IM

D

V
L

IW

L
ib

ra

S
IM

D

V
L

IW

L
ib

ra

S
IM

D

V
L

IW

L
ib

ra

S
IM

D

V
L

IW

L
ib

ra

S
IM

D

V
L

IW

L
ib

ra

S
IM

D

V
L

IW

L
ib

ra

S
IM

D

V
L

IW

L
ib

ra

S
IM

D

V
L

IW

L
ib

ra

S
IM

D

V
L

IW

L
ib

ra

S
IM

D

V
L

IW

L
ib

ra

S
IM

D

V
L

IW

L
ib

ra

S
IM

D

V
L

IW

L
ib

ra

disparity localization stitch svm tracking AAC 3D H.264 lineOfSight convolution conjugate

Vision Media Game Physics Avg

N
o

rm
a
li

z
e
d

 E
n

e
rg

y

Figure 10: Performance/Energy comparison of 32-PE Libra/SIMD/VLIW architectures: (a) total loop execution time and (b) energy consumption.
All the data are normalized to that of a simple in-order core.

operations, are extracted from the media benchmark because the ra-

tio of execution time to the total execution time of the top 20 loops

is too small. High number of loops in the media benchmarks and

several major loops in the vision benchmarks have conditional state-

ments, while the gaming benchmarks do not have them. In order

to eliminate all internal branches, we applied if-conversion for these

loops.

Compilation and SimulationThe industrial tool chain developed

by SAIT [5] is used for compilation and simulation of Libra. The

IMPACT compiler [19] is used as the frontend compiler. Basic list

scheduler [6], edge-centric modulo scheduling (EMS) [20]-based

modulo scheduler, and simple loop-level SIMDization scheduler us-

ing a SODA-style [15] wide vector instruction set are implemented

in the backend compiler. Based on the original modulo scheduler,

we developed a scheduler that can support both flexible execution

of Libra and list scheduling with static multi-threading technique.

The performance is generated by the cycle-accurate code schedule

of loops, accounting for the configuration overhead.

Performance Measurement For fair comparison, both list

scheduling and modulo scheduling are applied and the better per-

forming schedule is picked for the SIMD accelerator. For VLIW,

loop unrolling is applied when a loopbody size is too small and its

resources may not be fully utilized. Multi-threading technique of

Libra is also not applied for a fair comparison of the performance of

the three architectures. This issue is discussed in Section 4.6.

Power/Area Measurements All architectures are generated in

RTL Verilog, synthesized with the Synopsys design compiler, and

place-and-routed with the Cadence Encounter using IBM SOI 45nm

regular Vt standard cell library in slow operating conditions with a

0.81V operating voltage. Synopsys PrimeTime PX is used to mea-

sure the power consumption based on the utilization. The Artisan

Memory Compiler is used to determine the area and the power of

the memory operation using a 0.81 Volts operating voltage. The

target frequency of Libra is 500MHz2 similar to the latest mobile

GPUs.

2The FO4 delay of this process is about 13ps.

4.2. Performance/Energy Evaluation

We compared the performance of a 32-PE Libra architecture with

identically sized VLIW (8×4) and SIMD(32-wide) architectures.

Performance results are measured as the total loop execution time

when each loop is scheduled by the method the target architecture

supports. Figure 10(a) shows a plot comparing the performance of

the three architectures normalized to the simple 1-issue inorder core.

For individual benchmarks, the graph also indicates the fraction of

two different loop categories: SIMDizable and SWPable loops.

For benchmarks with a high ratio of non-SIMDizable loops such

as stitch, AAC, and lineOfSight, SIMD shows severe performance

degradation, whereas VLIW and Libra show a fair performance im-

provement. Libra outperforms even VLIW because it can acceler-

ate SIMDizable regions more efficiently. On the other hand, both

the SIMD and Libra deliver a substantial performance improvement

for benchmarks with mostly SIMDizable loops, while VLIW suf-

fers. The Libra also shows better performance than SIMD because

it effectively accelerates applications having low-SIMDizable loops

(3D, H.264) and its ILP capability also helps Libra to adequately

tolerate the lack of expensive resources for high-SIMDizable loops

(convolution, conjugate). Overall, Libra shows the best performance

in all benchmarks except H.264 benchmark. This is because of the

slightly lower performance gain on SWPable regions due to its dis-

tributed nature. Among average result of each domain, performance

gain of Libra is the highest on game physics. As a result, Libra

shows a performance gain of 2.04x and 1.38x over SIMD and VLIW,

respectively.

Despite using the same amount of computation resources,

performance-only comparison may not be fair due to the different

interconnection strategies among the architectures. An energy com-

parison may yield a better comparison considering both performance

and hardware overhead. Figure 10(b) shows the energy consump-

tion of three architectures and the results are also normalized to the

1-issue core. This graph shows a similar trend to Figure 10(a). On

average, even though SIMD added extra logics for handling sharing

resources (Figure 5(b)), VLIW shows 16% more power consump-

tion because of bigger RFs and complex control logics, and Libra

shows 20% more power consumption due to more interconnects and

0

5

10

15

20

25

30

35

40

16 32 64 16 32 64 16 32 64 16 32 64 16 32 64 16 32 64

disparity localization stitch svm tracking Avg

Vision

N
o

rm
a

li
z
e

d
 P

e
rf

o
rm

a
n

c
e

0
2
4
6
8

10
12
14
16
18
20

16 32 64 16 32 64 16 32 64 16 32 64

AAC 3D H.264 Avg

Media

0
5

10
15
20
25
30
35
40
45
50

16 32 64 16 32 64 16 32 64 16 32 64

lineOfSight convolution conjugate Avg

Game Physics

0

5

10

15

20

25

16 32 64

Average

Figure 11: Scalability of Libra/SIMD/VLIW architectures: the Libra architecture is highly scalable for most of benchmarks, while SIMD and VLIW
cannot be scalable for several benchmarks.

Libra-specific overhead such as a loop-buffer and a thread controller.

Based on these power differences, the Libra saves 38% and 19% en-

ergy compared to SIMD and VLIW, respectively3 . As a result, the

Libra architecture shows a fair amount of performance improvement

in addition to high energy efficiency by providing a more suitable ac-

celeration scheme for each loop.

4.3. Scalability

Figure 11 shows the performance of each architecture normalized to

a 1-issue core for different sizes across three benchmark domains.

The number of PEs varying from 16 to 64 are shown on the X-

axis. The results show high scalability of the Libra architecture in

all benchmark domains.

In the vision and game domain benchmarks, applications are not

specially optimized to the SIMD-style architecture, but the perfor-

mance is highly scalable as the number of PEs increases because

most loops are simple and highly SIMDizable. Only the stitch is

barely scalable because the application is mostly sequential as the

dominating loop has only a small number of iterations. In the media

domain, the Libra accelerator performance also fairly increases as it

scales to more PEs. Compared to other architectures, VLIW perfor-

mance results are frequently saturated because modulo scheduling of

a big size loopbody(often unrolled) on a large number of PEs is too

complex to exploit ILP, while Libra solves this problem by schedul-

ing a small loopbody in a small logical lane and applying the same

schedule to multiple logical lanes. The SIMD results are also con-

strained by lack of expensive resources and program complexity. To

summarize, the Libra architecture can increase its performance with

larger resources when the application has enough total ILP/DLP par-

allelism.

4.4. From the Homogeneous SIMD to the Heterogeneous Libra

Section 4.2 and 4.3 evaluate three different architectures consist-

ing of the same computation resources. The key question here

is how much Libra surpasses the traditional SIMD architecture.

To answer this question, we compared the performance and en-

ergy consumption of the heterogeneous Libra and the homogeneous

SIMD. The heterogeneous Libra has a quarter of memory/multiply

resources and the homogeneous SIMD has the same number of mem-

ory/multiply resources as the total number PEs. Figure 12 shows the

average of relative performance and energy consumption of Libra

over SIMD for different sizes. In terms of performance, Libra out-

performs SIMD and the difference increases in proportion to the size

(Figure 12(a)). This is because 1) the lack of expensive resources can

be effectively compensated for by forming logical lanes and 2) the

3Figure 10(b) does not mean that a simple 1-issue core is 3x energy efficient than

Libra because the performances are different. For a performance-equivalent comparison,

Libra is much more efficient than the simple core.

lane utilization of the traditional SIMD is lower for a larger size due

to the program characteristics.

In terms of the energy consumption, Libra still shows similar re-

sults as its performance improvement because significantly less com-

putational units can reduce the overall power overheads, and the re-

sult is better on larger size. For example, the 32-PE heterogeneous

Libra consumes 11% more power than the same size homogeneous

SIMD due to 12% power savings on FUs with 23% overheads (Fig-

ure 12(c)). On average, Libra shows 101%, 71%, and 56% energy

consumption compared to the traditional SIMD.

(a) (b) (c)

1

1.2

1.4

1.6

1.8

2

16 32 64

R
e
la

ti
v
e
 P

e
rf

o
rm

a
n

c
e

Resource

0

0.2

0.4

0.6

0.8

1

1.2

16 32 64
R

e
la

ti
v
e
 E

n
e
rg

y

Resource

0

0.2

0.4

0.6

0.8

1

1.2

homogeneous
SIMD

heterogeneous
Libra

R
e
la

ti
v
e
 p

o
w

e
r

Extra D-mem Control RF FU

Figure 12: Performance/energy improvement of the heterogeneous
Libra over the same sized homogeneous SIMD: (a) perfor-
mance, (b) energy consumption, and (c) power breakdown
with five categories: FU, RF, control logic, memory, and ar-
chitecture specific additional logic.

4.5. Acceleration Mode Selection

Our experiments so far have focused on the overall performance of

the Libra architecture compared to other architectures, showing con-

siderable performance enhancement. In this section, we evaluate

the effectiveness of flexible lane mapping to answer the question if

Libra really needs to provide various intermediate sizes of logical

lanes between SIMD and VLIW. Figure 13(a) shows the execution

time distribution at different logical lane sizes for the three appli-

cation domains on the 16, 32, and 64-PE Libra. On average, all

available modes are used for considerable fraction of time and no

dominating logical lane size exists, which proves the effectiveness

of flexible lane mapping. Furthermore, the lane sizes are selected

adaptive to the domain characteristics. For vision benchmarks, 2-PE

small sized logical lane is dominant because most loops are small

and memory operation dominant. In media benchmarks, large logi-

cal lanes are used for a high fraction of the execution because of lack

of DLP. Game physics uses a 4-PE logical lane in substantial fraction

to execute high-DLP loops with some ILP. Figure 13(b) compares

the normalized performance of Libra to that when only one specific

logical lane configuration is allowed to execute benchmarks. The

results of this graph further prove the effectiveness of flexibility by

showing that any fixed mode execution cannot win over the flexible

execution.

(a) (b)

0%

20%

40%

60%

80%

100%

16 32 64 16 32 64 16 32 64 16 32 64

Vision Media Game
Physics

Avg

2 4 8 16 32 64

0

5

10

15

20

25

30

16 32 64 16 32 64 16 32 64 16 32 64

Vision Media Game
Physics

Avg

N
o

rm
a
li

z
e
d

 P
e
rf

o
rm

a
n

c
e

Libra 2 4 8

16 32 64

Figure 13: Mode selection: (a) execution time distribution at different
logical lanes, (b) flexible vs. fixed execution.

4.6. Multi-threading Effectiveness

As discussed in Section 3.4, a simple multi-threading functionality

is added to Libra. In this section, we evaluate the effectiveness of

this functionality. Figure 14(a) shows the performance improvement

on SIMDizable loops only, since this technique can be only applied

to SIMDizable loops. On average, a performance gain of 12-16%

is achieved, and this is up to 28% more effective in vision bench-

marks because the majority of loops are small and multi-threading

is most effective in small size logical lane mapping. Figure 14(b)

shows the execution time distribution for different logical lane sizes

when multi-threading is applied. Compared to Figure 13(a), a sub-

stantial amount of 2 and 4-PE logical lane execution is substituted

with multi-threading. Overall, multi-threading is effective for small

logical lanes when executing SIMDizable loops.

0%

20%

40%

60%

80%

100%

16 32 64 16 32 64 16 32 64 16 32 64

Vision Media Game
Physics

Avg

64_thr 32_thr 16_thr 8_thr 4_thr 2_thr
64 32 16 8 4 2

1

1.05

1.1

1.15

1.2

1.25

1.3

163264 163264 163264 163264

Vision Media Game
Physics

Avg

R
e

la
ti

v
e

 p
e

rf
o

rm
a

n
c

e

(a) (b)

Figure 14: Multi-threading effectiveness: (a) performance improve-
ment for SIMDizable loops, (b) execution time distribution
at different logical lanes.

4.7. Power and Area Measurement

We measured the average power when the 32-PE Libra architecture

executes the H.264 benchmark at 500 MHz. A power and an area

consumption breakdown for various components that are part of the

architecture are shown in Figure 15(b). Compared to the normal

SIMD, the power consumption of the routing logic is larger due to its

dynamic configurability, but FU power is smaller due to the smaller

number of expensive units. A SIMD controller and four loop buffers,

and a thread controller are added to a cluster. The power consump-

tion of a SIMD controller and four loop buffers is substantial because

the loop buffer is implemented as 64-entry wide two-port SRAM and

the data is read every-cycle. In addition to this, the thread controller

also consumes 0.7% of total power because the sequence table is a

256 entry 8 bit two-port SRAM. The total area of the 32-PE Libra

architecture is 2.0 mm2.

Based on the power and performance data, we compared the ef-

ficiency of Libra to other architectures using data shown in [11].

Based on Figure 15(a), the Libra architecture achieves 11.18

MIPs/mW and most of the other well-known solutions show lower

efficiency. The Tensilica Diamond Core is slightly more efficient

than the Libra architecture, but the actual performance is not enough

to successfully execute compute-intensive media applications.

(a)

(b)

Component Power(mW) Ratio(%) Area(um^2) Ratio(%)

SIMD FUs 131.3 26.7% 341909 17.1%

SIMD RFs 180.2 36.6% 405963 20.3%

SIMD Pipeline + Routing

+ Scalar Pipeline
115.5 23.5% 117721 5.9%

Instruction Control

(SIMD controller + Loop buffer)
56.0 11.4% 471984 23.6%

Thread controller 3.2 0.7% 37714 1.9%

D-mem (64kB) 5.9 1.2% 626550 31.3%

Total 492.2 100.0% 2001840 100.0%

0

1000

2000

3000

4000

5000

6000

0 100 200 300 400 500 600 700

P
e

rf
o

rm
a

n
c

e
 (

M
IP

S
)

Power (mW)

Tensilica

Diamond

Core

Libra:

11.18 MIPS/mW

TI C6x

ARM11 XScale

Figure 15: (a) Power/Performance comparison, and (b) power and
area breakdown of the 32-PE Libra architecture.

5. Related Works

Many previous works have focused on accelerators to address the

challenges of improving computing efficiency. Some exploit only

one type of parallelism and others introduce some flexibility to sup-

port more than one type of parallelism. Figure 16 compares and

shows the major differences between Libra and prior works.

ILP DLP Heterogenity
Configurable

Performance
Scalability

Power

Efficiency

SIMD No High No No High High

GPU Low High Limited No High Low

Embedded GPU Low High Limited No High High

ILP Accelerator ADRES High No Yes No Low High

DLP + ILP Accelerator Imagine High High Yes No High Low

AnySP Low High No Limited High High

SIMD-Morph High High No Limited Low High

TRIPS, SCALE High High Yes Yes High Medium

Libra High High Yes Yes High High

DLP Accelerator

Flexible Accelerator

Figure 16: Comparison to prior work

Accelerators for multimedia usually focus on one type of paral-

lelism without adaptive configuration. Conventional SIMD [9, 15]

only supports DLP and misses the opportunity of improving perfor-

mance with other form of parallelism. By Amdahl’s law, low-DLP

regions quickly become the bottleneck of applications. Conven-

tional SIMD also wastes expensive resources due to imbalanced uti-

lization. While the latest GPUs [18, 17] support the limited level of

heterogeneity and embedded GPUs such as Qualcomm Adreno [4]

and ARM Mali [1] are power-efficient, GPUs have the same funda-

mental weakness as other data-parallel accelerators.

ILP accelerators, such as ADRES [16], tackle the problem in an-

other way by exploiting ILP with the help of modulo scheduling.

Even though it has high scalability by providing distributed archi-

tecture, the throughput quickly saturates as the number of resources

increases due to the scheduling difficulty as shown in PPA [21]. Hy-

brid accelerators such as the Stanford Imagine [7] use the VLIW-

SIMD scheme but the fixed configuration frequently incurs a lack or

waste of resources.

Recently, several architectures have tried to embrace flexibility in

a conventional SIMD accelerator in order to support multiple appli-

cation domains with different characteristics. AnySP [27] targets

mobile applications such as 4G wireless communication and high-

definition video coding. AnySP achieves the goal efficiently by sim-

ply chaining two SIMD lanes and supporting limited thread level par-

allelism, but underutilization in low-DLP loops is still inevitable due

to the lack of general policy to support ILP. SIMD-Morph [10] em-

ploys subgraph matching to accelerate sequential code region. De-

spite their fair performance gain, their simple ILP/DLP mode tran-

sition policy cannot adaptively adjust the degree of ILP and DLP

inside a specific code region. For example, it is impossible to fully

utilize the SIMD-Morph for a low-DLP code region since an insuf-

ficient degree of DLP cannot be supplemented by ILP exploitation,

while Libra can. In addition, they are still homogeneous SIMD, and

therefore, cannot improve utilization and power efficiency.

TRIPS [25] and SCALE [14] are also similar to this work. TRIPS

integrates ILP, DLP and TLP, and SCALE exploits both vector par-

allelism and TLP. They are targeting more the desktop/server space,

and therefore, need expensive architectural features such as inter-

cluster networks, additional multiple fetch units, and specialized

caches for generality. However, Libra focuses on more efficient exe-

cution of loops with minimal hardware modifications.

Avoiding resource contention of expensive instructions by

pipelined execution is also introduced in an instruction-systolic array

architecture [22]. However, systolic execution may incur severe per-

formance degradation on high number of PEs because of the pipelin-

ing delay, while Libra limits sharing only between two logical lanes

in full DLP mode.

6. Conclusion

The popularity of mobile computing platforms has led to the devel-

opment of feature-packed devices that support a wide range of soft-

ware applications with high single-thread performance and power ef-

ficiency requirements. To efficiently achieve both objectives, SIMD-

based architectures are currently proposed. However, the SIMD is

not able to efficiently support a wide range of mobile applications

due to several limiting factors: limited availability of high trip count

vector loops and the homogeneous nature of the hardware. To en-

hance the applicability of SIMD and improve its inherent energy

efficiency, we break two long-standing traditions of SIMD design:

identical lanes and static configuration. The Libra accelerator adapts

the SIMD lane resources to target application. The Libra archi-

tecture customizes the lane configuration based on the loop struc-

ture from many resource-constrained logical lanes for highly data-

parallel loops, to a modest number of lanes with moderate resources,

up to a single resource-rich logical lane that is effectively a multiclus-

ter VLIW. A 32-PE Libra system achieves an average 1.58x speedup

over the traditional SIMD system, and the gain becomes higher as

the number of PEs increases. Through a judicious mechanism to

share expensive resources, Libra also achieves a 29% reduction in

energy compared to the SIMD system. We believe that as industry

requires higher performance with high energy efficiency, the pro-

posed scalable architecture puts more resources to work in order to

meet this demand.

7. Acknowledgments

Thanks to Gaurav Chadha, Anoushe Jamshidi, Dongsuk Jeon and

Yoonmyung Lee for all their help and feedback. We also thank Krste

Asanovic for shepherding this paper. This research is supported by

Samsung Advanced Institute of Technology and the National Sci-

ence Foundation under grants CCF-0916689 and CNS-0964478.
References

[1] ARM Mali Graphics Hardware
- http://www.arm.com/products/multimedia/mali-graphics-hardware/.

[2] Cuda toolkit. - http://developer.nvidia.com/cuda-toolkit.
[3] Glbenchmark - http://www.glbenchmark.com/.
[4] Qualcomm Adreno

- http://www.qualcomm.com/solutions/multimedia/graphics/.
[5] Samsung advanced institute of technology

- http://www.sait.samsung.co.kr/.
[6] T. Adam, K. Chandy, and J. Dickson. A comparison of list schedules for

parallel processing systems. Communications of the ACM, 17(12):685–
690, Dec. 1974.

[7] J. H. Ahn et al. Evaluating the Imagine stream architecture. In Proc.
of the 31st Annual International Symposium on Computer Architecture,
pages 14–25, June 2004.

[8] M. Alvarez, E. Salami, A. Ramirez, and M. Valero. A perfor-
mance characterization of high definition digital video decoding using
h.264/avc. In 2005 IEEE International Symposium on Workload Char-
acterization, pages 24–33, Oct. 2005.

[9] H. Bluethgen, C. Grassmann, W. Raab, and U. Ramacher. A pro-
grammable platform for software-defined radio. In Intl. Symposium
on System-on-a-Chip, pages 15–20, Nov. 2003.

[10] G. Dasika, M. Woh, S. Seo, N. Clark, T. Mudge, and S. Mahlke.
Mighty-morphing power-simd. In Proc. of the 2010 International Con-
ference on Compilers, Architecture, and Synthesis for Embedded Sys-
tems, Oct. 2010.

[11] K. Fan, M. Kudlur, G. Dasika, and S. Mahlke. Bridging the computa-
tion gap between programmable processors and hardwired accelerators.
In Proc. of the 15th International Symposium on High-Performance
Computer Architecture, pages 313–322, Feb. 2009.

[12] Intel. Intel compiler, 2009. software.intel.com/en-us/intel-compilers/.
[13] H. Kalva. The H.264 video coding standard. IEEE MultiMedia,

13(4):86–90, 2006.
[14] R. Krashinsky, C. Batten, M. Hampton, S. Gerding, B. Pharris,

J. Casper, and K. Asanovic. The vector-thread architecture. In Proc.
of the 31st Annual International Symposium on Computer Architecture,
2004.

[15] Y. Lin et al. Soda: A low-power architecture for software radio. In Proc.
of the 33rd Annual International Symposium on Computer Architecture,
pages 89–101, June 2006.

[16] B. Mei et al. ADRES: An architecture with tightly coupled vliw pro-
cessor and coarse-grained reconfigurable matrix. In Proc. of the 2003
International Conference on Field Programmable Logic and Applica-
tions, pages 61–70, Aug. 2003.

[17] NVIDIA. NVIDIA’s Next Generation CUDA Compute Architecture:
Fermi. http://www.nvidia.com/content/PDF/fermi_white_papers/
NVIDIA_Fermi_Compute_Architecture_Whitepaper.pdf.

[18] NVIDIA. GeForce GTX 200 GPU architectural overview, 2008.
http://www.nvidia.com/docs/IO/55506/
GeForce_GTX_200_GPU_Technical_Brief.pdf.

[19] OpenIMPACT. The OpenIMPACT IA-64 compiler, 2005.
http://gelato.uiuc.edu/.

[20] H. Park, K. Fan, S. Mahlke, T. Oh, H. Kim, and H. seok Kim. Edge-
centric modulo scheduling for coarse-grained reconfigurable architec-
tures. In Proc. of the 17th International Conference on Parallel Archi-
tectures and Compilation Techniques, pages 166–176, Oct. 2008.

[21] H. Park, Y. Park, and S. Mahlke. Polymorphic pipeline array: A flexible
multicore accelerator with virtualized execution for mobile multimedia
applications. In Proc. of the 42nd Annual International Symposium on
Microarchitecture, pages 370–380, Dec. 2009.

[22] J. Park, H. Yang, G. Park, S. Kim, and C. C. Weems. An instruction-
systolic programmable shader architecture for multi-threaded 3d graph-
ics processing. Journal of Parallel and Distributed Computing,
70(11):1110–1118, 2010.

[23] B. R. Rau. Iterative modulo scheduling: An algorithm for software
pipelining loops. In Proc. of the 27th Annual International Symposium
on Microarchitecture, pages 63–74, Nov. 1994.

[24] R. M. Russell. The CRAY-1 computer system. Communications of the
ACM, 21(1):63–72, Jan. 1978.

[25] K. Sankaralingam et al. Exploiting ILP, TLP, and DLP using polymor-
phism in the TRIPS architecture. In Proc. of the 30th Annual Inter-
national Symposium on Computer Architecture, pages 422–433, June
2003.

[26] S. K. Venkata, I. Ahn, D. Jeon, A. Gupta, C. L. S. Garcia, S. Belongie,
and M. B. Taylor. SD-VBS: The san diego vision benchmark suite.
In 2009 IEEE International Symposium on Workload Characterization,
pages 55–64, Oct. 2009.

[27] M. Woh, S. Seo, S. Mahlke, T. Mudge, C. Chakrabarti, and K. Flautner.
AnySP: Anytime Anywhere Anyway Signal Processing. In Proc. of
the 36th Annual International Symposium on Computer Architecture,
pages 128–139, June 2009.

