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Abstract—Mobile computing as exemplified by the smart
phone has become an integral part of our daily lives. The next
generation of these devices will be driven by providing richer
user experiences and compelling capabilities: higher definition
multimedia, 3D graphics, augmented reality, and voice interfaces.
To meet these goals, the core computing capabilities of mobile
terminals must be scaled within highly constrained energy
budgets. Coarse-grained reconfigurable architectures (CGRAs)
are an appealing hardware platform for mobile systems by pro-
viding programmability with the potential for high computational
throughput, low cost, and energy efficiency. CGRAs are most
commonly used for innermost loops that contain an abundance
of instruction-level parallelism. Unfortunately, current CGRAs
fail to meet future performance requirements due to their
inability to scale. Simply increasing the size of the array is too
expensive in terms of power and area. In this paper, we first
perform a deep analysis of several mobile applications from the
domains of multimedia and gaming. We then explore potential
solutions in the context of these applications for scaling the array
performance in an energy efficient manner: homogeneous ver-
sus heterogeneous functionality, interconnect topologies, simple
versus complex processing elements, and scalar versus vector
memory support.

I. INTRODUCTION

The embedded systems that power today’s mobile devices

demand both high performance and energy efficiency in or-

der to support the various applications, such as audio and

video decoding, 3D graphics, and signal processing. Tradi-

tionally, application-specific hardware in the form of ASICs

is used on the compute-intensive kernels to simultaneously

meet tight performance/energy requirements. However, the

increasing convergence of different functionalities combined

with high non-recurring costs involved in designing ASICs

have pushed designers towards more flexible solutions that

are post-programmable. Coarse-grained reconfigurable archi-

tectures (CGRAs) are becoming attractive alternatives be-

cause they offer large raw computation capabilities with low

cost/energy implementations [18], [27], [20]. Example CGRA

systems that target wireless signal processing and multimedia

are ADRES [21], MorphoSys [18], and Silicon Hive [25].

CGRAs generally consist of an array of a large number of

function units (FUs) interconnected by a mesh style network,

as shown in Figure 2. Register files are distributed throughout

the CGRA to hold temporary values and are accessible only

by a small subset of the FUs. The FUs can execute common
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Fig. 1. The computational power trends for social sites in each resource
type:texts, images, audio, video, and CPUs.

integer operations, including addition, subtraction, and multi-

plication. CGRA resources are fully managed in software to

maintain high energy efficiency. In contrast to FPGAs, CGRAs

sacrifice gate-level reconfigurability to achieve hardware ef-

ficiency. Thus, CGRAs have short reconfiguration time, low

delay characteristics, and low power consumption.

Even though CGRAs can meet the performance require-

ments of many of today’s applications, future computational

demands of mobile applications are predicted to increase

exponentially [9]. Figure 1 depicts the trends in computational

requirements for several media processing domains (text,

image, audio and video) along with the projected performance

gains of CPUs based on technology scaling based on data from

[9]. This projection shows clearly that hardware scaling alone

will be quickly out distanced by the performance requirements

of all these domains. Further, simple hardware replication will

not solve this problem as the power budgets for mobile devices

are not increasing at a fast rate.

Previous works on CGRAs show that considerable perfor-

mance improvements are possible by applying various tech-

niques such as exploiting multiple types of parallelism [24],

[14] or generating complex processing elements (PEs) [6].

However, these only consider features in isolation and fail

to consider other issues including the topology and memory

subsystem.

In this paper, we perform a deep study to help the engineers
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Fig. 2. Overview of a 4x4 CGRA.

design future CGRAs to meet future computation requirements

while maintaining a tight power budget. We consider the

following four key questions for scaling the performance of

CGRAs:

1) How effective is heterogeneous functionality at increas-

ing efficiency?

2) For the same number of processing elements (PEs), what

are efficient interconnection topologies?

3) For power efficiency, can a complex PE be helpful

compared to a simple PE?

4) For the memory interface, how useful is the introduction

of vector memory operation support?

This work does not propose the best optimized CGRAs or

new features. The goal of this work is to investigate these

factors and their feasibility in the view of performance and

power efficiency. We consequently place emphasis on finding

the potential for architectural features and CGRA organization.

For the first question, we show that heterogeneous FUs are

indeed effective at reducing area and power at a small loss of

performance. Second, we demonstrate that recent fixed multi-

core solutions are often restricted by the application charac-

teristics and a flexible solution with an advanced compilation

technique is required. Third, we investigate whether complex

PEs are indeed energy efficient. We show that CGRAs with

complex PEs can improve performance with small additional

energy consumption. Lastly, we examine the effect of vector

memory operation support and conclude that it is helpful due

to the high degrees of spatial locality found in media and

gaming applications.

This paper is organized as follows. Section II provides the

background information on CGRAs, target applications, and

simulation tool-chain. Section III presents the experimental

methodologies, results, and discussions on four considerations.

Section IV concludes this paper.

II. ANALYSIS INFRASTRUCTURE

This section introduces a baseline architecture, target bench-

marks, and the analysis infrastructure.

A. Baseline Architecture

ADRES [21] is used for the baseline CGRA accelerator

(Figure 2). This architecture consists of 16 FUs interconnected
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Fig. 3. Loop categorization of various benchmarks: The three bars indicate
ratio of execution time in innermost loops, SWPable loops, and SIMDizable
loops.

by a mesh style network. Register files are associated with each

FU to store temporary values. The FUs can execute common

integer operations. One FU, a register file, a configuration

memory, and corresponding interconnect logics are commonly

called as a PE. The architecture has two operation modes: one

is CGRA array mode and the other is VLIW processor mode.

In CGRA array mode, all 16 computing resources are available

and loop-level parallelism is exploited by software pipelining

compute-intensive innermost loops. The baseline architecture

is also able to function as a VLIW processor to execute

sequential and outer loop code. The four FUs in the first

row and the central register file support VLIW functionality,

while the other components are de-activated. This type of

architecture provides high performance by eliminating huge

communication overhead to transfer live values between host

processor and the array as well as a multi-issue VLIW for

non-loop code that is more powerful than a traditional general-

purpose processor used as the host (e.g., an ARM-9).

B. Benchmarks Overview

Two major classes of mobile benchmarks are used for this

application analysis. The benchmarks consist of:

• Media benchmark: Three key mobile media applications

are selected: AAC decoder (MPEG4 audio decoding, low

complexity profile), H.264 decoder (MPEG4 video de-

coding, baseline profile, qcif) [13], and 3D (3D graphics

rendering) [2]. These benchmarks are optimized for DSPs

in the production-quality level and a large portion of the

loops have a high potential degree of ILP and are software

pipelinable.

• Game physics benchmark: Three common kernels are

extracted from mobile gaming applications [1]. First,

lineOfSight plays an important role of separating visible

objects and non-visible objects. Sound effects, collision

detection and other functions involving linear equations

often exploit convolution and the conjugate gradient

method. The three kernels mostly consist of high DLP

loops.

1) Loop Characterization: Applications typically have

many compute intensive kernels that are in the form of nested

loops. Among these kernels, we analyze the available ILP and
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Fig. 4. Performance degradation and static power consumption on a CGRA at different FU organizations.

DLP of the innermost loops and find the maximum natural

vector width which is achievable. To extract maximum degree

of ILP, we found the Software pipelinable innermost loops to

which modulo scheduling can be applied: 1) counted loop,

2) no subroutine call, and 3) no multiple exits/backedges.

Control flows inside the innermost loops are solved by the

if-conversion compiler technique. Among the software pipelin-

able (SWPable) innermost loops, we also identify the SIMDiz-

able innermost loops which can utilize DLP. Based on the

Intel Compiler [12], the rules to be selected as a SIMDizable

innermost loop are as follows:

• The loop must contain straight-line code. No jumps or

branches, but predicated assignments, are allowed only

when the performance degradation is ignorable.

• The loop must be countable and there must be no data-

dependent exit conditions.

• Backward loop-carried dependencies are not allowed.

• All memory transfers must have same strides over itera-

tion.

If a loop satisfies the above four conditions, the minimum

iteration count is set to the maximum available SIMD width.

Figure 3 shows relative execution time of innermost loops,

SWPable loops, and SIMDizable loops to total execution

time on a simple 1-issue ARM processor. On average, there

is a substantial amount of time spent on either or both

SWPable and SIMDizable loops. More specifically, the media

benchmark is originally optimized to maximize the portion

of SWPable loops, but it also has high ratio of SIMDizable

loops. The gaming physics benchmarks have higher levels of

data parallelism. Results in Figure 3 confirm that not only

different applications have different characteristics, but also

different innermost loops in a single application can have

different characteristics. In addition to this, we can have

another opportunity to improve the overall performance if we

have additional mechanism to support DLP.

C. Experimental Setup

Target Applications As discussed in Section II-B, the

evaluation is conducted for subsets of two domains. The top

10 loops having higher execution time are selected for gaming

benchmark, and 144 loop kernels, varying in size from 4 to 142

operations, are extracted from the media benchmark because

ratio of total execution time of top 10 loops is too small.

Compilation and Simulation The IMPACT compiler [22]

is used as the frontend compiler. Edge-centric modulo schedul-

ing (EMS) [23]-based modulo scheduler is implemented in the

backend compiler on the ADRES [21] framework.

Power/Area Measurements Various CGRA templates are

generated in RTL Verilog, synthesized with the Synopsys

design compiler, and place-and-routed with the Cadence En-

counter using IBM 65nm standard cell library in typical

operating conditions with 1.0 operating voltage. Synopsys

PrimeTime PX is used to measure power consumption. The

Artisan Memory Compiler and RF Compiler are used to de-

termine the power of memory operation using a 1.2 operating

voltage. The target frequencies of the systems are 200MHz.

III. ANALYSIS

In this section, we describe the key issues on scaling

CGRAs, then set up the methodology in order to collect

meaningful results for each factor. Finally, we analyze the

experimental results and suggest several recommendations for

the factors.

A. Question 1: Heterogeneity vs. Homogeneity

1) Overview: In common CGRAs, the use of heteroge-

neous FUs (mix of simple integer FUs and complex FUs) is

considered as an apparent architectural choice since complex

functionality such as multiply and divide operations requires

high area and static power overhead but the utilization of them

is often disproportionally lower than simple integer operations.

For example, only 2.2% and 1.3% of the total dynamic

instructions are multiplications and divisions in the H.264

video decoding application [4]. However, most architectural

exploration on CGRAs has been focused on the interconnect

topology and the array size [8], [16]. In this section, we

examine the performance effect of heterogeneous FUs over

homogeneous FUs.

2) Methodology: Based on the 16-PE homogeneous base-

line CGRA (Section II-A), we decrease the number of FUs

supporting whole functionalities. In the baseline CGRA, all

FUs support all the functionalities: simple integer operations,

complex operations (multiply, divide), and memory operations.

Then we decrease the total number of some major function-

alities. First, we limit the number of FUs supporting complex

operations from 8 to 1 (mul N): only a subset of all 16 FUs



supports complex operations and all FUs support all other

operations. Second, we also limit the number of memory

operations (mem N). Lastly, we limit the number of FUs that

supports both complex and memory operations (exp N). For

these architectures, the total execution time is used as a metric.

3) Result and Discussion: Figure 4 illustrates the perfor-

mance degradation as the number of expensive units decrease

on a 16-PE CGRA accelerator. Each bar shows the relative

performance normalized to that of the homogeneous baseline

CGRA. From this graph, the amounts of performance degra-

dation are not as substantial as the area/static power benefits

when reducing expensive units in both benchmarks. This is

because the performance is normally constrained not by the

expensive operations but by the simple integer instructions.

Among complex and memory operations, the performance

degradation depends much more on memory operations. If

we set 80% of the baseline performance as the minimum

performance target, we can decrease the number of both

complex and memory units by up to 75% with high area/power

benefits.

B. Question 2: Interconnection Topology

1) Overview: To enhance the overall performance, increas-

ing total number of PEs is the simplest method to use.

However, the key problem is the utilization of the PEs. As

discussed in PPA [24], the performance saturates at some point

if we simply increase the size of the CGRA due to the routing

overhead and the lack of enough number of instructions inside

the loopbody. The routing overhead is more critical because

CGRAs do not provide a multi-ported, centralized register file

and the operands must be explicitly routed using decentralized

resources, often PEs. The number of instructions inside the

loopbody can be increased by loop unrolling, but it will be

also limited with increasing routing overhead.

Clustering is the common interconnection topology for the

performance saturation problem [3], [17]. A large number of

PEs are split into smaller partitions and each subset of PEs

works separately. In this system, loops are scheduled targeting

one partition (cluster) and executed in multiple partitions,

where iteration counts are divided by the number of partitions.

An interesting question at this point is how to find the optimal

number of partitions and PEs inside each partition. In this sec-

tion, we examine various types of interconnection topologies,

including clustering, and map media and gaming benchmarks

on CGRAs. We then introduce a reasonable strategy for scaling

performance.

2) Methodology: To assess the impact of clustering as

the size increases, we took all the SWPable loops in media

and gaming benchmarks. Three different styles of CGRA

architectures are implemented for design space exploration.

Each style of architecture also has six variations of PE number:

4, 8, 16, 32, 64, and 128. The detailed explanation of the

architecture styles is as follows:

• N: Baseline architecture (Figure 5(a)). The architecture

consists of all the PEs, and the structure is the same as

the architecture explained in Section II-A. As shown in

DLP loop Non-DLP loop

Baseline Schedule on

all the PEs

Execute on 

all the PEs

Schedule on

all the PEs

Execute on 

all the PEs

Fixed

partition

(M x L)

Schedule on 

one partition

Execute on 

M partition

Schedule on 

one partition

Execute on 

one partition

Flexible

mapping

Schedule on 

one partition

Execute on 

M partition 

(M can vary)

Schedule on

all the PEs

Execute on 

all the PEs

(a)

(b)

(c)

(d)

Baseline

Fixed partition 

Flexible mapping

Fig. 5. Various interconnection topologies of CGRAs: (a) baseline, (b) fixed
partition, (c) flexible partition, and (d) a table for execution model of loops
on different topologies.

Figure 5(d), both DLP and non-DLP loops are scheduled

targeting whole PEs.

• MxL: Fixed partition (Figure 5(b)). N PEs are physically

split into M partitions(2 ≤ M ≤ 8), then L (N/M ) PEs

consist of each partition. Both kinds of loops are sched-

uled targeting one partition. Non-DLP loops are executed

in one partition due to the inter-iteration dependencies,

and DLP loops are executed in M partitions and each

iteration count is divided by M (Figure 5(d)).

• N flex: Flexible partition (Figure 5(c)). Based on a

baseline architecture, the number of partitions can be

dynamically changed from 1 to 8. Therefore, non-DLP

loops are scheduled targeting whole PEs and executed

on whole PEs. For DLP loops, the schedule of each

loop is generated targeting the best partition and executed

in parallel on each partition for smaller iteration counts

(divided by the number of partitions).

To determine the effects of differing architectural features,

the measurements of performance and the performance satu-

ration point distribution of loops were obtained.

3) Result and Discussion: Figure 6 shows the performance

results of above architecture types as the CGRA size increases.

The X-axis on these graphs shows the architecture templates,

and the Y-axis shows the average performance of media and

gaming applications. Each performance result is normalized

to when each application is mapped onto the 4-PE baseline

architecture. Here, we can notice that the throughput saturates

as we increase the size of the baseline architecture. For media

and gaming benchmarks, the performance does not increase

that much beyond the size of 32 PEs and 16 PEs, respectively.

This is because the average size of innermost loops on gaming

benchmarks is smaller than that on media benchmarks.

For fixed partition, the performance is often worse than

the corresponding size baseline architecture on small sizes,

but it scales well on large sizes. For media benchmarks, a

high number of partitions does not always show the best

performance among various same size architectures because

the degree of DLP is not high for DLP loops and the

performance of non-DLP loops is higher on larger partition
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Fig. 6. Performance comparison of various architectures for media and
gaming benchmarks.

size. Different from media, gaming benchmarks always show

the best performance on the highest number of partitions. This

is because most of the loops are small data-parallel loops

with high iteration counts. Figure 7 explains this difference

well. Two pie charts in Figure 7 show loop distribution at

different saturation points for two domain benchmarks. From

this figure, we can see that high portion of loops in media

benchmarks needs more than 32 PEs for full acceleration,

hence the performance is often limited by the small size of

a partition. Conversely, more partitions are much helpful for

performance improvement on gaming benchmarks as most of

the loops have the small saturation points less than 16.

Though fixed partitioning shows decent performance gain,

it is hard to say that the application is fully accelerated. This

is because the best structure highly varies over loops inside a

a benchmark and also across multiple benchmarks. Therefore,

we also test a unified architecture to support flexible mapping

(n flex). As shown in Figure 6, the flexible architecture always

shows the best performance and retains scalability even in

large size as all the loops can be executed on the best partition

guided by the results on Figure 7.

These results reveal the difficulty of performance scaling

with common solutions in the real world. To further improve

the single threaded performance, it is necessary to find a

mechanism to flexibly change the partition adaptive to the loop

characteristics. The flexible mapping without physical array

partitioning will also be highly favorable to other research for

improving the multi-threaded performance such as PPA [24]

and MT-ADRES [3], while our flexible partitioning scheme is

completely orthogonal to multi-threading of CGRAs.

C. Question 3: Complex PEs vs. Simple PEs

1) Overview: Interconnection topology has been a primary

consideration for scaling CGRAs because most CGRAs con-

Media Game

4
3%
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16
11%

32
48%

64
22%

128
5% 4

11%

8
45%

16
22%

32
11%

64
11%

Fig. 7. Performance saturation point distribution at different PE sizes
for media and gaming benchmarks: media benchmarks need relatively high
number of PEs to be sufficiently accelerated but gaming benchmarks need
small number of PEs.

sist of multiple simple PEs, which include one FU and one

RF. Recently, CGRAs with more complex PEs, consisting of

multiple FUs and RFs, are also introduced in order to im-

prove performance [6], [7], [5]. Construction of CGRAs with

complex PEs has several key advantages over conventional

CGRAs. First, sparse interconnection between PEs provides

better cost and energy scalability with minimum performance

loss due to the dense interconnection inside PEs. Second, the

number of RFs can decrease as mapping multiple instructions

inside a PE can reduce RF accesses by directly consuming

temporary values generated inside a PE. Third, back-to-back

instructions can be chained without pipeline registers, hence

execution can be faster. Lastly, heterogeneity inside PEs can

be implemented while retaining PE-level homogeneity.

Despite these advantages, adopting complex PE scheme is

still questionable because it is hard to attain full utilization

of resources inside the PEs. In this section, we focus on

the energy consumption instead of resource utilization. We

investigate whether complex-PE based CGRAs can consume

less or comparable energy, then show that the energy overhead

is not critical in some cases. We believe that this evaluation

will help developers consider complex PE based design as one

of possible options.

2) Methodology: Figure 8 demonstrates the structure of

complex PEs varying the number of FUs from one to six.

The number of RFs depends on the number of output ports.

For all the PE structures, two kinds of designs are considered:

uniform and optimized. In a uniform PE, all the FUs support

all the functionalities including both simple integer operations

(add, sub, and logic) and complex operations (mul, div), while

only shaded FUs support complex operations for an optimized

PE.

To estimate the energy consumption on different PE styles,

we map all the loops on to those PEs by taking the concept

of subgraph identification [10], [11]. Briefly, the compiler

generates the dataflow graph (DFG) of each loopbody, and

discovers all the subgraphs (groups of instructions) which

can be mapped onto the target PE. Each remaining node is

regarded as a subgraph with one instruction.

Based on the above data, estimated energy consumption
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Fig. 8. PE designs with different number of FUs: the number of RFs is the same as the number of output ports and only shaded FUs support all instructions
in optimized PEs.
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Fig. 9. Experimental results on various PEs: (a) relative average energy consumption, (b) relative energy consumption of every loop, and (c) the number of
subgraphs. All the FUs support full functionality on uniform PEs, and only a subset of FUs supports full functionality on optimized PEs.

of a loop is calculated as Pactive × Nsubgraph. Pactive and

Nsubgraph refer to the power consumption when a PE is active

and the number of subgraphs, and inactive PEs are assumed

to be dynamically power-gated.

3) Result and Discussion: The average energy consumption

of loops on media and gaming benchmarks are shown in

Figure 9(a). The target PEs are shown on the X-axis, and

relative energy consumption normalized to the one-FU PE

(Figure 8(a)) on the Y-axis. The following results are examined

and shown as a line form: averages of energy consumptions of

all loops included in media and gaming benchmarks targeting

uniform PEs (Media uniform and Game uniform), and those

targeting optimized PEs(Media optimized and Game opti-

mized). Figure 9(b) shows the energy consumption of all loops

on both benchmarks targeting only optimized PEs. Figure 9(c)

shows the relative number of mapped subgraphs, and each

line shows the average of relative numbers of subgraphs

normalized to the one-FU PE.

From Figure 9(a), even though the utilization is always

lower at more complex PEs, the energy increase is not as

substantial as FU number increases. This is because the power

consumption of each PE is not directly proportional to the

number of FUs due to smaller number of RFs and pipeline

registers. As shown in Figure 9(b), some loops consume

less energy on 2- or 3-FU PE CGRAs by high resource

utilization. For media benchmarks, complex PEs are well

utilized as shown in Figure 9(c), and energy consumption can

be highly saved when using optimized PE structure because the

applications have low ratio of complex operations(Figure 9(a)).

Conversely, execution of gaming benchmarks at complex

PE architectures shows more relative energy consumption

than media benchmarks because the number of subgraphs

does not highly decrease for more complex PE architectures

(Figure 9(a)). Moreover, the performance degradation from

a uniform PE structure to a optimized PE structure is high

because game applications have a high portion of complex

operations such as multiplication/division but an optimized PE

structure has smaller number of these FUs (Figure 9(c)).

The interesting point here is that we may allow some degree

of energy overhead because of several reasons: 1) at same

operating frequency, complex PE structure is faster than the

one-FU PE structure, and 2) routing overhead can be reduced

as the number of subgraphs decreases (Figure 9(c)). Therefore,

if we decide that 50% energy overhead can be allowed,

complex PEs with 2 and 3 FUs can also be considered as

the proper solution in addition to the simple PE(Figure 9(a)).

D. Question 4: SIMD Memory Support

1) Overview: In addition to the previous consideration

about the size of PEs, supporting SIMD memory operation

by adding a vector unit into a PE is also introduced by some

recent CGRAs. For example, ADRES system supports special

intrinsic instructions that allow SIMD operations [19], [3].

Similar to Section III-C, supporting SIMD memory operations

on PEs has several noticeable advantages such as less fetching

power and less number of instructions over simple scalar

memory operations.

However, current designers often hesitate to add the SIMD
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Fig. 10. Experimental results with different vector widths: (a) relative energy consumption for total memory accesses, and (b) memory ResMII increase
when using SIMD memory units with same total bandwidth.

capability into CGRAs due to the uncertainty of high potential

degree of DLP. In this section, we investigate the frequency of

spatial reuse of wide vector data on the mobile benchmarks,

and then show that SIMD functionality is worthwhile to adopt

in some range with slight overhead due to the domain specific

characteristics.

Though there are several previous research about the mem-

ory structure and scheduling algorithm on CGRAs, most of the

research focuses on the performance improvement on scalar

memory-based system such as reducing memory conflicts

on multi-bank scratchpad local memory [15]. We further

examine the availability of SIMD memory-based system for

high efficiency.

2) Methodology: To prove the effectiveness of SIMD mem-

ory support, we consider SIMD memory units from 1 to 16

vector length in the view of the energy consumption and the

performance. For the energy consumption, we first get the

memory reference footprints during sixteen iterations for each

loop. Based on the footprints, we find the required number of

vector instructions for each SIMD memory unit(Naccess). We

also measure the power consumption of the SRAM per mem-

ory access (Paccess) from the datasheet generated by memory

compiler. We then estimate the total energy consumption of

memory accesses by Paccess ×Naccess.

Additionally, the performance effect of SIMD memory units

is also examined. We measure the performance effect by

substituting scalar memory units into SIMD memory units

while keeping the same total bandwidth. For instance, when

we set the total bandwidth as 4x32 bits, we test 16-PE CGRAs

with four 32-bit scalar memory units (Figure 11(a)), two 2x32

vector memory units (Figure 11(b)), and one 4x32 vector

memory unit (Figure 11(c)).

For performance metric, we use the resource-constrained

lower bound (ResMII) of memory resources: Naccess (number

of memory instructions) /NMunit (number of memory units).

This is because the performance of a loop, which modulo

scheduling is applied to, is generally determined by the initi-

ation interval (II) when the number of iterations is large [23],

[26]. The goal of the modulo scheduling is to minimize the

II by MII, and therefore, if ResMII of memory resources is

PE PE

PE PE

PE PE

PE PE

PE PE

PE PE

PE PE

PE PE

Mem

Mem

Mem

Mem

PE PE

PE PE

PE PE

PE PE

PE PE

PE PE

PE PE

PE PE

2x32 Mem 2x32 Mem

2-way vector operation support

(a) (b)

PE PE

PE PE

PE PE

PE PE

PE PE

PE PE

PE PE

PE PE

4x32 Mem

4-way vector operation support

(c)

Fig. 11. Example CGRAs with different SIMD memory support: (a) four
scalar memory support, (b) two 2x32 SIMD memory support, and (c) one
4x32 SIMD memory support.

larger than MII of original architecture, the performance of

the loop can be thought as to be affected.

3) Result and Discussion: Figure 10(a) shows the average

energy consumption of loops over varying vector widths of

memory units. X-axis shows the vector widths of memory

units, the number of memory accesses, the power consump-

tion per memory access, and the total energy consumption

are shown as a line form, and these are normalized to the

scalar memory unit (vector width = 1). In the left graph of

Figure 10(a), though power consumption for one memory

access highly increase at longer vector width, the total energy

consumption maintains a similar level to that of a scalar

memory unit by virtue of a high degree of spatial locality in

memory accesses on mobile benchmarks. The enlarged graph

on the right side shows that total energy consumption can

be even lower than a scalar vector unit in the case of a 2-

way vector unit. This is because most of loaded data are used

without additional loads and the vector load consumes less

power than multiple scalar loads.

The performance effect of using vector memory units is

shown in Figure 10(b). The four lines indicate the average

memory ResMII of all loops when changing the vector width

while retaining same bandwidth. Each ResMII data is normal-

ized to the MII targeting the 16-PE CGRA with scalar memory

units. This graph shows the gradual growth of memory ResMII



but they are always less than the actual MII, and therefore, the

performance degradation does not exist.

These data show that adopting vector instructions is not as

harmful as a common myth in the view of energy consumption

and performance, hence developers should consider SIMD

capability for designing a future mobile CGRA.

E. Summary and Insights

The analysis of these four considerations provides several

insights. First, using heterogeneous FU organization is highly

effective in reality and the ratio of expensive resources can

be tuned by performance degradation. Second, even though

the current fixed partitioning scheme is fairly effective over

the baseline for performance scaling, the high variance of

loops inside and across applications prevents it from further

achieving the performance gain. Therefore, flexible partition-

ing should be supported by both architectural and compiler

modifications. Third, a complex PE structure can be one

of the attractive options for further improving performance

because complex PE can be more energy efficient even in

lower resource utilization. Lastly, the characteristics of mobile

benchmarks can make the wide SIMD memory support from

an aggressive solution into a realistic solution.

IV. CONCLUSION

The mobile applications have been rapidly developed so

that the future mobile devices need to provide high single-

thread performance within limited power budget. CGRAs are

known as one of the prominent solutions to achieve these

needs, but the potential for the scalability of CGRAs are

not thoroughly investigated yet. In this paper, we perform

a deep analysis on several key considerations when scaling:

heterogeneity, interconnection topology, complexity of PEs,

and SIMD memory support. The study shows us that CGRAs

have high potential of performance improvement with high

efficiency and some key factors, which are easy to overlook,

should also be considered for designing CGRAs. We believe

that these insights will be key advices for improving future ap-

plications (more DLP), compilers (support flexible mapping),

and architectures (complex PEs and SIMD memory units).
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