The Application of Supervisory Control to Deadlock Avoidance in
Concurrent Software

Yin Wang, Terence Kelly, Manjunath Kudlur, Scott Mahlke, and Stéphane Lafortune

Abstract— Ensuring deadlock-free execution of concurrent
programs is a notoriously difficult problem, but an increasingly
important one as multicore processors compel performance-
conscious software developers to parallelize applications. We
propose and validate a novel methodology for dynamically
controlling the execution of concurrent software in order to
provably avoid deadlocks. The methodology is based on super-
visory control of discrete event systems modeled by Petri nets.
Specifically, we synthesize feedback controllers for concurrent
programs based on the theory of supervision based on place
invariants and implement the controllers online to guarantee
deadlock avoidance. We describe a full implementation of this
methodology and report initial experimental results demon-
strating its effectiveness and scalability.

I. INTRODUCTION

Research on building robust, reliable, secure, and highly
available software has been very active in the software and
operating systems research community. More than half of
the papers in recent conferences such as SOSP [30] and
OSDI [25] are directly or indirectly related to software
defects, faults, and reliability. However, existing solutions
to these problems are typically ad hoc, based on best-
practice heuristics. Model-based solutions are rare. For ex-
ample, a recent award-winning paper employs runtime con-
trol to avoid software failures by rolling back a program
to a recent checkpoint and re-executing the program in a
modified environment [27]. Without a program model and
proper feedback, the re-execution simply tries environment
modifications suggested by the nature of the failure that
was detected. Another paper tries to block malicious input
to prevent vulnerabilities in software programs from being
exploited [2]. The input filter is generated and refined using
heuristics learned from practice, without models or formal
methods.

We believe that supervisory control methods developed
in the field of discrete event systems offer considerable
promise in many computer systems problems, provided
suitable models can be built and scalability issues can be
addressed. Recently, we applied supervisory control based
on automata models to control workflow execution control

The research of YW and SL is supported in part by NSF grants CCR-
0325571 and ECCS-0624821. The research of MK and SM is supported in
part by NSF grant CNS-0615261. Support from HP Labs is also gratefully
acknowledged.

T. Kelly is with Hewlett-Packard Labs, Palo Alto, CA 94304, USA,
terence.p.kelly@hp.com

The other authors are with the Department of Electrical Engineering and
Computer Science, The University of Michigan, 1301 Beal Avenue, Ann
Arbor, MI 48109-2122, USA,

{yinw, kvman,mahlke, stephane}@eecs .umich.edu

for Information Technology automation [31]. Classical con-
trol techniques based on linear system models have been
successfully applied to several performance-related computer
problems [10]. One popular application is to stabilize the
response time or throughput of server applications [26].
However, discrete event system methods are better suited to
problems surrounding qualitative functional requirements.

This paper demonstrates the application of supervisory
control to deadlock avoidance in concurrent software. Dead-
lock refers to the situation where two or more processes
or threads hold a set of resources and wait for resources
in the same set. Ensuring deadlock-free execution of con-
current programs is a notoriously difficult problem, but an
increasingly important one as multicore processors compel
performance-conscious developers to parallelize software.

Deadlock is a well-known problem in concurrent pro-
grams. Early research studied the characteristics of deadlocks
and identified three classes of solutions: deadlock prevention,
avoidance, and detection/recovery [4], [22]. Due to the ever-
increasing complexity of software and the lack of formal
models, it is difficult to apply these deadlock resolution
methods. For example, it is well known that deadlocks
involving locks cannot occur if threads acquire locks in
a consistent order. In practice, however, it is remarkably
difficult to enforce global lock ordering across the many
independently-developed software modules that constitute a
complex modern application. The Banker’s Algorithm [3],
[9] is another example revealing the gap between theory
and practice. Given the maximum resources needed by each
thread, the algorithm allocates resources based on safety
tests. In practice, programs rarely declare all resources
needed in advance, which may depend on run-time inputs,
complex branching, and the execution environment.

Today’s operating systems have no deadlock resolution
mechanism, and lay the burden on programmers for correct
program behavior. Deadlocks are hard to reason about, highly
environment dependent and therefore difficult to discover,
reproduce, and debug. Deadlock bugs can survive software
testing undetected, and are widespread in production code,
including operating system kernels [S]. The rise of multicore
processors exacerbates the problem because deadlocks that
usually remain latent on uniprocessors are more likely to
manifest under real concurrency.

This paper considers deadlocks involving mutual exclusion
locks in concurrent programs. Mutual exclusion locks (or
mutexes) are used to enforce orderly access to shared state,
e.g., global variables, by concurrent threads. When multiple
threads do not correctly coordinate their acquisition of locks,



deadlocks can occur. Mutexes are widely used in program-
ming paradigms that support multi-threaded concurrency,
both for application-level programs and for infrastructure-
level programs such as operating systems. Recent research
on mutex deadlocks includes the following approaches:

Static analysis checks software source code for defects. It
has been applied to deadlock analysis [5] and other prob-
lems [17]. While programs do not suffer runtime overhead
with static analysis methods, lack of runtime information
limits the accuracy of the analysis. False positives are com-
mon.

Runtime monitoring methods complement static analysis
with runtime information from sample executions. False
positives do not occur, but false negatives are possible
because runtime monitoring detects only deadlocks that are
triggered by specific inputs and execution conditions, and
exhaustive testing is infeasible. Both static analysis and
runtime monitoring merely detect deadlocks. Fixing them
remains manual, costly, time-consuming and error-prone.

Runtime control research dates back to the Banker’s Al-
gorithm [3], [9]. Extensions to the original algorithm have
been developed [19], [32]. In general, these algorithms are
not practical for two reasons: over-simplified models and
expensive online computations. Recently, a checkpoint and
rollback method gained popularity for regulating program
behavior online [23], [27]. Although developed in a different
context, this method could be applied for deadlock recovery.
However, rollback is not always possible, e.g., in cases where
outputs or other irrevocable events have occurred.

Transactional Memory was originally proposed in the mid-
80s and has enjoyed a recent resurgence due to the popularity
of multicore processors [13]. It is an alternative to locking
that allows the programmer to specify blocks of code to
be executed atomically and in isolation. The method is not
yet mature and is not compatible with legacy code that
employs locks; furthermore, is not clear that I/O within
atomic sections can be supported efficiently.

This paper describes and validates a novel methodology
for dynamically controlling the execution of concurrent soft-
ware in order to provably avoid deadlocks. Our method-
ology is different from the work reviewed above, as it is
model-based and it employs supervisory control methods for
discrete event systems modeled by Petri nets. Specifically,
feedback controllers for concurrent programs are synthesized
from a detailed model of the program based on the theory
of Supervision Based on Place Invariants (SBPI) and imple-
mented online to guarantee deadlock avoidance. Petri nets
were chosen as the modeling formalism for this problem,
instead of automata models (which we used in [31]), to
address the problem of scalability of controller synthesis for
large concurrent programs by exploiting the system structure
captured in the Petri net model. The same motivations have
led to the use of Petri nets for deadlock avoidance in
manufacturing applications; see, e.g., [28].

The specific contributions of this paper include: 1) to the
best of our knowledge, the first attempt at a comprehensive
implementation of supervisory control techniques in general-

purpose concurrent software; 2) a new approach for modeling
concurrent software in a systematic manner based on com-
piler techniques; 3) a novel adaptation of the SBPI method to
the deadlock avoidance problem in concurrent software; 4) a
full implementation of the complete methodology; and 5) an
evaluation of the methodology against sample programs.

Section II presents necessary background about concurrent
software and control of Petri nets. An overview of our
approach, together with its associated challenges, follows in
Section III. Sections IV and V present implementation details
and experimental results, respectively.

II. BACKGROUND

0 static void % philosopher (void =xid) {

1 e

2 if (FIRST == (int x)id) {

3 /* grab A first =/

4 pthread_mutex_lock (&forkA);

5 : pthread_mutex_lock (&forkB);

6 : }

7 else { /* grab B first =*/

8 : pthread_mutex_lock (&forkB);

9 : pthread_mutex_lock (&forkA);

10: }

11: eat ();

12: pthread_mutex_unlock (&forkAa);

13: pthread_mutex_unlock (&§forkB) ;

14:

15: }

16: ...

17: int main(int argc, char *argv[]) {

18: Ce

19: pthread_create (&pl, NULL,
philosopher, (void x)id[0]);

20: pthread_create (&p2, NULL,
philosopher, (void x)id[1]);

21:

22: 1}

Fig. 1. Dining philosophers program with two philosophers

Mutexes are widely used for data protection in popular
programming languages such as C/C++ and Java. A mutex
is held by at most one thread at a time, so concurrent
access to shared data can be prevented. As with physical
resource deadlocks, a set of threads holding a set of locks
while waiting for locks in the same set is a deadlock.
Figure 1 shows a part of the C program using POSIX
pthread functions to simulate the familiar deadlock-prone
dining philosophers problem with two philosophers and two
forks.

To avoid deadlocks using supervisory control theory, we
must construct a formal model from the program. The
Control Flow Graph (CFG) [1] generated by compilers is
a good starting point for this purpose. A CFG is a graph
that represents all paths that might be traversed through a
program during its execution. It is generated by compilers as
a byproduct when compiling a program into an executable.
Each node in the graph represents a basic block, i.e., a
straight-line piece of code without any jumps or jump targets;



jump targets start a basic block, and jumps end a basic block.
Directed edges represent jumps in the control flow.

The Petri net modeling formalism for discrete event sys-
tems offers the best combination of mathematical formality,
compactness of representation, analytical power, and scal-
ability for the objectives of this paper. We consider only
ordinary Petri nets where the weight of every arc is one. The
principal supervisory control technique that we employ is the
method of Supervisory control Based on Place Invariants
(SBPI). There is a large body of results on SBPI; see, e.g.,
[11], [12], [20]. In order to use SBPI for deadlock avoidance,
we must first discover potential deadlocks in the net based
on structural features called siphons. A siphon is a set of
places that never regains a token once it empties. A minimal
siphon is a siphon that does not contain any other siphon. It is
well known that a deadlocked Petri net contains at least one
empty minimal siphon. SBPI uses linear-algebraic techniques
to add new control places to the Petri net and connect them
in such a way that the net cannot deadlock.

Newly-added places to a Petri net may introduce new
siphons because they change the structure of the net. Stated
differently, blocking lock acquisition requests could intro-
duce new deadlocks. A proper feedback control algorithm
must avoid both natural deadlocks in the program and dead-
locks introduced by control. Multiple iterations of SBPI may
therefore be necessary until no new siphon is discovered.
Whether this iterative procedure converges or not depends
on the Petri net structure.

Note that while a siphon is a structural property, the initial
condition of the net determines whether a state with an empty
siphon can be reached or not. Under a given initial condition,
a siphon that is never empty in the set of reachable states
is called a controlled siphon, otherwise it is uncontrolled.
An important objective in control synthesis is therefore to
develop techniques that identify controlled siphons and make
the SBPI procedure converge quickly.

SBPI guarantees the highly desirable property of maximal
permissiveness [12], [20]: the controller never blocks a tran-
sition unless it may lead to an undesirable state unavoidably.
In our context, maximal permissiveness ideally means that
the controller never postpones a lock acquisition except when
necessary to ensure that deadlock cannot occur. In practice,
our ability to attain this ideal is limited by the accuracy of our
models. Our models of programs may be imperfect if, e.g.,
they include code that is unreachable due to data flow issues
that our modeling techniques do not consider. Throughout
this paper, maximal permissiveness is in the context of our
program model.

III. OVERVIEW
A. Architecture

Figure 2 shows the architecture of our approach. At a high
level, the approach involves two stages: offline analysis and
control logic synthesis and online control. The objective of
the offline analysis and synthesis stage is to generate the
control logic that will ensure deadlock-free execution at run
time. Namely, the feedback control logic to be synthesized

offline : online

C 3 Instrumented
Program compile Binary

compile :
A J Instru- |
Block/
Control mentation I unblock Transitions
flow graph | transitions observed
translation
v controller
Petri Nets synthesi Online
controller
Fig. 2. Program control architecture.

will tell the controller module when to grant or postpone a
lock acquisition request. This offline analysis involves several
steps. The multi-threaded C program is first fed into the
compiler to generate its CFG. Second, the CFG is translated
into a Petri net. Third, the SBPI method is employed to
generate the required control logic. As part of this step, the
control logic specifies when to update system states and when
to enforce control actions at run time. To properly carry out
the control logic online, we must instrument the program so
that it can communicate with the controller. At run time, this
communication is the standard observation-action loop.

B. Challenges and Limitations

Although the idea and the structure of the approach in
Figure 2 are arguably straightforward, several challenges
arise when dealing with real-world programs. First, although
translation of the flow information of a CFG into a Petri
net is straightforward, data flow information is missing.
Two problems are prominent: pointer analysis and branching
analysis. Pointer analysis includes lock pointers and function
pointers. Lock pointers obfuscate the actual lock instance
that is acquired; furthermore locks are frequently accessed
via pointers to data structures that contain locks. We use
the type of the enclosing structure instead of the lock
instance to approximate the model. For function pointers, we
assume that every function in the scope could be referred
to. Branching information is important in some situations.
For example, the trylock () function is typically used
in branches; to model it properly, we need to know which
branch represents successful lock acquisition. Currently we
do not model these functions.

Deadlock is a computationally complex problem. Early
studies of resource deadlocks showed that determining
whether a state is safe from future deadlocks is NP-complete
as long as partial resource requests are allowed or the
requests are not linearly ordered [8]. Here, by safety we
mean there is a resource allocation scheme at the current
state such that all resources will be eventually freed. In the
context of manufacturing processes, which closely resemble
our models, systems are classified based on the complexity
of processes and the resource allocation at each stage of
a process [28]. Determining the safety property in the sim-
plest case with branchless processes and single-unit resource



requests at each stage (LIN-SU-RAS) is already an NP-
complete problem. Deadlocks with mutexes are more general
than LIN-SU-RAS, and therefore the problem is at least NP-
hard. However, in reality, programmers often use locks in
a simple way due to fear of deadlock. We have not seen
any program with an individual thread holding more than
five different (types of) locks at a time. In addition, the PN
models translated from CFGs have special features that we
can exploit to reduce the complexity of control synthesis; see
Section IV-D for details.

Run-time performance is crucial; online control overhead
must be minimized. There are two overheads introduced by
the feedback controller. The first is the overhead of updating
the controller and implementing control actions. This over-
head must be minimized. The second is the overhead when a
thread is blocked (i.e., delayed) by the controller on its lock
acquisition call. We require that the controller postpones a
lock acquisition request if and only if granting the lock might
lead to deadlocks. In other words, we require the controller
to be maximally permissive. Maximal permissiveness is a
crucial property. One could guarantee deadlock-freeness by
serializing all threads, which of course defeats the purpose
of concurrent programming. Maximal permissiveness is an
important reason why we employ SBPI rather than the
algebraic methods described in [28], [29].

IV. IMPLEMENTATION

This section discusses implementation details of the com-
ponents in our program control architecture (Figure 2). Due
to space limitations, we keep the discussion at a high level.

A. Control Flow Graphs

We use the open source compiler OpenIMPACT [24]
to generate CFGs from C programs. The compiler was
modified such that in addition to the structure of the program,
information related to lock variables and their enclosing data
structures is also included. For example, the CFG records the
total number of locks used, and the type of the enclosing data
structure of the lock requested at each lock acquisition call.
In real-world programs, wrapper structures and functions are
widely used to encapsulate locks and build customized lock
functions. We use annotations to denote these structures and
wrapper functions so the compiler knows what needs to be
included in the CFG. The number of annotations is usually
small (a few lines per program).

B. Translation into Petri Nets

The CFG of each function is essentially an automaton.
Therefore, we translate each function into a Petri net that
is a state machine (i.e., each transition has a single input
place and a single output place); this net represents each
thread as a token flowing through it. Using the CFGs of
all the functions in the program, a linked whole-system
CFG is constructed. Locks are added to the net as mutex
places with one initial token each. We link these places to
transitions representing lock acquisition and release calls.
When wrapper data structures and functions are used and

annotated, the wrapper structure rather than the lock itself is
represented by a mutex place.

We currently do not model thread creation and deletion
because threads are created with pointers to the entry func-
tions of the new threads. Pointer analysis is a well known
difficult problem. Instead, we take a pessimistic approach
by assuming every function could be executed concurrently
with infinitely many threads, i.e., there is an infinite number
of tokens at the entry of each function. If the program
actually does not deadlock because of an insufficient number
of threads, our control logic does not do any harm other
than incurring a constant overhead. Additional annotations
recording single or multi-threaded operation could be used.

C. Pruning

Pruning the Petri net model of the linked whole-system
CFG with mutex places is a correctness-preserving perfor-
mance optimization that can be made at no loss of control
capabilities for deadlock avoidance. Specifically, parts of
the Petri net that are irrelevant to deadlock analysis, e.g.,
subgraphs that contain no libpthread calls, can be deleted,
i.e., abstracted out. In essence, the goal of this pruning is to
shrink the model as much as possible yet guarantee that the
output controller will be equivalent to the one generated by
the original unpruned model.

Pruning involves two phases: function removal and func-
tion reduction. The former removes functions that do not
call any lock functions directly or indirectly. We build a
function call graph and then remove functions not connected
to any lock acquisition/release function. Function reduction
works inside functions that remain after the first phase
and removes places and transitions that do not affect the
control logic. First we identify a set of “essential” places that
cannot be removed. These are places representing function
calls which call lock functions directly or indirectly. Then
an iterative procedure removes certain non-essential places
and transitions. During each iteration, we first remove non-
essential places with exactly one incoming transition and
one outgoing transition, and then remove self-loop transitions
and duplicate transitions, i.e., transitions linking exactly the
same incoming and outgoing places. The procedure stops
when no additional place or transition can be removed. We
found this simple iterative procedure to be very efficient and
effective, usually converging in no more than three iterations.
Our pruning algorithm preserves the one-to-one mapping
from each place to a basic block in the program, which
facilitates the online control implementation. Further pruning
or reduction techniques [21] typically violate this desired
mapping and therefore are not adopted.

D. Offline Control Synthesis

The Petri nets obtained by our modeling procedure closely
resemble those in the special class of Petri nets called
S3PR Nets [6]. This class was characterized in the study
of manufacturing systems, and it has been extensively stud-
ied [16]. Our model actually belongs to the class called
S*PR Nets [7], which is more general than S®PR Nets.



Nevertheless, many methods in [16] could be applied to our
case, with suitable modifications. As noted in Section II,
applying the SBPI method to deadlock avoidance results
in an iterative procedure that may not converge [12]. Most
methods reviewed in [16] are based on the SBPI iterative
procedure, but with conservative placement of control places
to accelerate convergence of the procedure. As a result,
maximally permissiveness may be lost. In our context, even
though our model is more general than S3PR Nets, we have
observed that locks in our nets are loosely coupled. There are
few siphons in the original model, and siphons introduced by
control synthesis are even rarer. Therefore, we have chosen
to apply the standard SBPI method to guarantee maximal
permissiveness. Some techniques are borrowed from existing
approaches in [16] to make the procedure converge more
efficiently. It is critical to identify siphons that are already
controlled, and therefore do not generate new control places
for them. For the remaining uncontrolled siphons, recent
research [14], [15] further points out that there are dependen-
cies among them. Controlling only a subset of these siphons,
called elementary siphons, guarantees that the other siphons
never empty. However, the controller may not be maximally
permissive.

Based on these known results and on the special fea-
tures of our Petri net subclass, we apply the following
permissiveness-preserving heuristics for our offline control
synthesis algorithm.

1) A siphon containing fewer than two mutex places is
controlled. This is a well-known result [6].

2) Control minimal siphons only; the minimal siphon in-
duced by a subset of mutexes is unique. The first part
is well-known. The uniqueness of the siphon is because
the Petri net model of each function itself (without any
mutex place) is a state machine.

3) Calculate siphons among circular waiting mutexes only.
A siphon induced by a subset of mutexes without
circular waiting is a controlled siphon. We first traverse
through the net to find lock dependencies. For every
subset of locks where there is a cycle, the minimal
siphon is calculated.

4) Among equivalent siphons, control only one. Among a
set of equivalent siphons [15], controlling the one with
minimum number of initial tokens, called the token-
poor siphon [15], guarantees that the others never
empty.

5) Remove control places with redundant logic Checking
redundant control logic is a known difficult problem.
For simplicity, we compare the control logic between
newly-generated control places and existing ones. If
the control logic of one control place is more per-
missive than that of another, i.e., its token is always
available when requested, it is removed.

E. Online Control

After the offline modeling and controller synthesis steps,
the resulting controller consists of a set of places with
incoming and outgoing arcs to transitions in the system

model. Intuitively speaking, transitions linked fo a control
place are events we want to observe. During online execution
of the program, the controller state needs to be updated when
such transitions fire. Transitions linked from a control place
are events that need to be controlled. These are controllable
events. The controller determines whether the controllable
event is enabled or disabled, i.e., whether the lock request
corresponding to the transition is postponed or granted im-
mediately. Since we cannot change program execution other
than delaying lock acquisition calls, not all transitions are
controllable. The SBPI method can be extended to handle
partial controllability [12]. The procedure involves constraint
transformation and integer programming. The convergence of
the procedure and the maximal permissiveness of the output
controller are net dependent. For simplicity, as the Petri net
without mutex places is a state machine, if a control place
links fo a transition that is not controllable, we move the link
backward until a lock acquisition transition.

The program must communicate with the controller at run
time to update the state of the controller and implement
the control logic, that is, the enablement and disablement
of the controllable events. We implemented library call
interposition for online control. Library call interposition
does not modify the source code. It intercepts library calls
and replaces them with user-defined functions. In our case,
we intercept lock acquisition and release calls, check and
update the control place if necessary, and then call the
actual lock acquisition and release functions. Since library
interposition can intercept only library calls, it does not fully
observe the program state. Extensions of the SBPI method
to handle partial observability are described in [12]. Most
systems we tested were observable, i.e., the control places
generated had incoming links from lock acquisition/release
transitions only. A more general online control method,
called program instrumentation, can fully observe the ex-
ecution of the program. It is the standard general method
to obtain runtime information. Extra code invoking the
controller is inserted into the program around the transitions
linked with control places. Implementation of the program
instrumentation method is in progress.

V. EXPERIMENTS

Random multi-threaded programs were generated with
a random-walk-style algorithm. At each step, the program
randomly decides either to grab a lock or to release a
lock it already holds. Branches and loops are also gener-
ated similarly, such that lock acquisitions and releases are
paired up in one loop or one branch. We generated 20
random programs, each with a different number of locks.
The number of steps of the random walk is proportional to
the number of locks. For all these random programs, we
gradually added every heuristic described in Section IV-D.
The results are shown in Table I. Success rates denote the
portion of programs where the iterative control synthesis
algorithm returns (converges) within five minutes. Once the
control synthesis algorithm converged, we built an interposed
library controller and ran the program. Without the controller,



Heuristics Number of Locks

Used 3 5 7 10

1) 0% NA NA NA NA NA NA NA
1)-2) 100% 1 30% NA NA NA NA NA
1)-3) 100% 1 100% 2 75% 9 0% NA
1)-4) 100% <1 100% 2 100% 7 10% NA
1)-5) 100% <1 100% 1 100% 11 100% 63

TABLE I

SUCCESS RATE AND TIME (SEC) OF CONTROL SYNTHESIS STEP

most programs deadlock in less than a minute. With the
controller, no program deadlocks within a ten-minute run.
With all heuristics applied, the algorithm is able to deal
with randomly generated programs with up to ten locks. We
noticed that the first iteration dominates the total computation
time, because it exhaustively enumerates all subsets of the set
of locks. A better minimal siphon finding algorithm could be
used, such as the one in [18]. We leave this for future work.

We mentioned in Section III-B that there are two over-
heads: controller state lookup/update and the postponing of
lock acquisition calls. Experiments with randomly generated
programs show that controller state lookup/update overhead
is negligible, less than 1 ms for both types of implementa-
tions, instrumentation and library interposition. The overhead
of postponing lock acquisition calls depends on the program,
and can range widely.

VI. CONCLUSION

We have reported on our ongoing work on the application
of supervisory control methods to the problem of deadlock
avoidance in concurrent software. We have highlighted the
challenges that arise in: (i) building suitable models of
concurrent programs for the purpose of deadlock avoidance;
(ii) applying existing results in supervisory control of Petri
nets to synthesize controllers that avoid deadlock and are
minimally restrictive; and (iii) implementing these controllers
online with minimal overhead. While much work remains to
be done to test the scalability of our approach, results on
randomly generated programs demonstrate that the approach
is technically sound and technologically feasible.

REFERENCES

[1] A. V. Aho, M. S. Lam, R. Sethi, and J. D. Ullman. Compilers:
Principles, Techniques, and Tools (2nd Edition). Addison Wesley,
2006.

[2] M. Costa, M. Castro, L. Zhou, L. Zhang, and M. Peinado. Bouncer:
securing software by blocking bad input. In Proc. SOSP, pages 117—
130, 2007.

[3] E. W. Dijkstra. Solution of a problem in concurrent programming
control. Commun. ACM, 8(9):569, 1965.

[4] J. Edward G. Coffman and P. J. Denning. Operating Systems Theory.
Prentice Hall Professional Technical Reference, 1973.

[5] D. Engler and K. Ashcraft. RacerX : effective, static detection of race
conditions and deadlocks. In Proc. SOSP, pages 237-252, New York,
NY, USA, 2003. ACM Press.

[6] J. Ezpeleta, J. M. Colom, and J. Martinez. A petri net based deadlock
prevention policy for flexible manufacturing systems. IEEE Trans. on
Robotics and Automation, 11(2):173-184, Apr. 1995.

[7] J. Ezpeleta, F. Garcia-Vallés, and J. M. Colom. A banker’s solution
for deadlock avoidance in FMS with flexible routing and multiresource
states. IEEE Trans. on Robotics and Automation, 18(4):621-625, Aug.
2002.

[8]
[9]
(10]

(11]

[12]

[13]

[14]

[15]

[16]

[17]

(18]

[19]

[20]

[21]
[22]
[23]
[24]
[25]

[26]

[27]

[28]

[29]

(30]

[31]

[32]

E. M. Gold. Deadlock prediction: easy and difficult cases. SIAM
Journal on Computing, 7(3):320-336, Aug. 1978.

A. N. Habermann. Prevention of system deadlocks. Commun. ACM,
12(7):373-t., 1969.

J. L. Hellerstein, Y. Diao, S. Parekh, and D. M. Tilbury. Feedback
Control of Computing Systems. Wiley, 2004.

L. Holloway, B. Krogh, and A. Giua. A survey of Petri net methods for
controlled discrete event systems. Discrete Event Dynamic Systems:
Theory and Applications, 7(2):151-190, 1997.

M. V. Iordache and P. J. Antsaklis. Supervisory Control of Concurrent
Systems: A Petri Net Structural Approach. Birkhduser, Boston, MA,
2006.

J. Larus and R. Rajwar. Transactional Memory (Synthesis Lectures on
Computer Architecture). Morgan & Claypool Publishers, 2007.

Z. Li and M. Zhou. Elementary siphons of Petri nets and their
application to deadlock prevention in flexible manufacturing systems.
IEEE Trans. on Systems, Man, and Cybernetics—Part A, 34(1):38-51,
Jan. 2004.

Z. Li and M. Zhou. Control of elementary and dependent siphons in
Petri nets and their application. IEEE Trans. on Systems, Man, and
Cybernetics—Part A, 38(1):133-148, Jan. 2008.

Z. Li, M. Zhou, and N. Wu. A survey and comparison of Petri net-
based deadlock prevention policies for flexible manufacturing systems.
IEEE Trans. on Systems, Man, and Cybernetics—Part C, 38(2):173—
188, Mar. 2008.

S. Lu, S. Park, C. Hu, X. Ma, W. Jiang, Z. Li, R. A. Popa, and Y. Zhou.
Muvi: automatically inferring multi-variable access correlations and
detecting related semantic and concurrency bugs. In Proc. SOSP,
pages 103-116, 2007.

J. Martinez and M. Silva. A simple and fast algorithm to obtain all
invariants of a generalized Petri net. In Selected Papers from the First
and the Second European Workshop on Application and Theory of
Petri Nets, pages 301-310, 1981.

T. Minoura. Deadlock avoidance revisited. J. ACM, 29(4):1023-10438,
1982.

J. O. Moody and P. J. Antsaklis. Supervisory Control of Discrete Event
Systems Using Petri Nets. Kluwer Academic Publishers, Boston, MA,
1998.

T. Murata. Petri nets: Properties, analysis and applications. Proceed-
ings of the IEEE, 77(4):541-580, Apr. 1989.

G. Newton. Deadlock prevention, detection, and resolution: an
annotated bibliography. SIGOPS Oper. Syst. Rev., 13(2):33—44, 1979.
E. B. Nightingale, P. M. Chen, and J. Flinn. Speculative execution in
a distributed file system. In Proc. SOSP, pages 191-205, 2005.
OpenIMPACT. http://www.gelato.uiuc.edu/.

USENIX Symposium on Operating Systems Design and Implemen-
tation (OSDI). http://www.usenix.org/events/byname/
osdi.html.

P. Padala, K. G. Shin, X. Zhu, M. Uysal, Z. Wang, S. Singhal,
A. Merchant, and K. Salem. Adaptive control of virtualized resources
in utility computing environments. In Proc. ACM SIGOPS European
Conf. (EuroSys), pages 289-302, 2007.

F. Qin, J. Tucek, J. Sundaresan, and Y. Zhou. Rx: Treating bugs as
allergies—a safe method to survive software failure. In Proc. SOSP,
Oct. 2005.

S. A. Reveliotis. Real-Time Management of Resource Allocation
Systems: A Discrete-Event Systems Approach. Springer, New York,
NY, 2005.

S. A. Reveliotis. Algebraic Deadlock Avoidance Policies for Sequential
Resource Allocation Systems, pages 235-289. Facility Logistics:
Approaches and Solutions to Next Generation Challenges. Auerbach,
Dec. 2007.

ACM Symposium on Operating Systems Principles (SOSP). http:
//sosp.org/.

Y. Wang, T. Kelly, and S. Lafortune. Discrete control for safe execution
of IT automation workflows. In Proc. ACM SIGOPS European Conf.
(EuroSys), pages 305-314, 2007.

D. Zobel and C. Koch. Resolution techniques and complexity results
with deadlocks: a classifying and annotated bibliography. SIGOPS
Oper. Syst. Rev., 22(1):52-72, 1988.



