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Abstract based software modules are not composable, and deadlaek fre

dom is aglobal program property that is difficult to reason about
and enforce. These considerations motivate recent iniaresitex
alternatives such as atomic sections, which guaranteei@gml
isolated execution and which may be implemented using &&ans
tional memory (Larus and Rajwar 2007) or conventional Iqbks-
Closkey et al. 2006). Major attractions of atomic sectiordude
deadlock-freedom and composability.

This paper considers a different approach to restoringohe ¢
posability that locks destroy and relieving the programuifethe
obligation to reason about global deadlock freedom. We gimw
to automatically eliminate deadlocks in conventional kbelsed
multithreaded programs. Our strategy is to avoid deadlbokugh
a combination of offline static analysis and runtime exasution-
trol: We first generate the control flow graph of a programnthe
enhance it and translate it into a formal model that captsaéient
features of possible program behaviors. Next, we employyana
ses fromDiscrete Control Theoryo identify potential deadlocks
in the model. Finally, we use other Discrete Control Theaght
nigues to synthesizéeedback control logi¢hat provably avoids
these deadlocks at runtime. The control logic is implengkiuyg
program instrumentation and lock function wrappers thatgpane

Deadlock in multithreaded programs is an increasingly irtgyd
problem as ubiquitous multicore architectures force pelization
upon an ever wider range of software. This paper presents-a th
oretical foundation for dynamic deadlock avoidance in corent
programs that employ conventional mutual exclusion andsys
nization primitives (e.g., multithreaded C/Pthreads paatgs). Be-
ginning with control flow graphs extracted from program seur
code, we construct a formal model of the program and then ap-
ply Discrete Control Theory to automatically synthesizadaleck-
avoidance control logic that is implemented by progranrumen-
tation. At run time, the control logic avoids deadlocks bgtpon-
ing lock acquisitions. Discrete Control Theory guaranties the
program instrumented with our synthesized control logionoa
deadlock. Our method furthermore guarantees that thealdogic

is maximally permissivét postpones lock acquisitions only when
necessary to prevent deadlocks, and therefore permitsmabsin-
time concurrency. Our prototype for C/Pthreads scalesaiosat-
ware including Apache, OpenLDAP, and two kinds of benchmark
automatically avoiding both injected and naturally ocmgrdead-
locks while imposing modest runtime overheads.

Categories and Subject Descriptors D.3.3 [Programming Lan- lock acquisitions as necessary to avoid deadlocks.
guage§ Language Constructs and Features—Concurrent program-  Discrete Control Theory (DCT) is a branch of control theory
ming structures that considers systems with discrete state spaces and drixs

dynamics (Cassandras and Lafortune 2007). The analysiscamnd
trol synthesis techniques of DCT are model-based; finiteraata
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ory, Concurrent Programming, Parallel Programming, Nhigiaded ~ Nets date back to the 1960's (Petri 1962) and are widely used t
Programming, Multicore Processors model nondeterministic concurrent systems. DCT origithatéh

the seminal work of (Ramadge and Wonham 1987) on supervisory
control of systems modeled by finite automata. A large body of
theory has also been developed for controlling systems ladde
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1. Introduction

The multicore revolution in computer hardware is precipig a by Petri nets (Holloway et al. 1997; Reveliotis 2005; lotdaand
crisis in computer software by compelling performancesoious Antsaklis 2006). While classical control theory, which siters
developers to parallelize an ever wider range of applioatityp- systems modeled by differential or difference equationas, een
ically via multithreading. Multithreading is fundamerjaimore successfully applied to computer systems (Hellersteith &084),
difficult than serial programming because reasoning abootur- the application of DCT to computer systems problems isiveliyt
rent or interleaved execution is difficult for human prograers, recent (Wang et al. 2007). Generally speaking, classicdtakthe-

and unforeseen execution sequences can include data Paces.  ory is better suited to problems where the specificationgjaas-
grammers can prevent races by protecting shared data with mu titative in nature (e.g., throughput, delay, etc.). DCTppmpriate
tual exclusion locks, but misuse of mutexes can cause daadlo for problems withqualitative specifications, e.g., avoidance of un-
This creates yet another cognitive burden for programmnigrsk- desirable system states; such specifications cannot béedaloyl
classical control methods. The overall feedback controhgigm,
however, is the same in DCT as in classical control: feedlsack
trol logic is automatically designed such that tesed-loopsys-
Permission to make digital or hard copies of all or part o tiork for personal or tem, i.e., the original given system under the control oféelback
classroom use is granted without fee provided that copesar made or distributed control logic, satisfies the given specifications.
for profit or commercial advantage and that copies bear itiseand the full citation Our work uses the Petri net modeling formalism because Petri
on the first page. To copy otherwise, to republish, to postamess or to redistribute  patg gllow for a compact representation of system dynarhias t
to lists, requires prior specific permission and/or a fee. K .. . .
avoids explicit state enumeration. Petri nets can furtioeencon-
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Figure 1. Program control architecture.

threaded programs. Most importantly, DCT control logictegsis
techniques for Petri nets are well suited to the problem aflitek
avoidance and these techniques facilitate concurrentalomntple-
mentations that do not create global performance bottlen&aur
Petri net models of multithreaded programs have specipgrties
that allow us to customize a known control method for Petts ne
to our special subclass to achieve deadlock freedomandmally
permissivecontrol. In the context of our problem, maximal permis-
siveness means that the control logic we synthesize passdonk
acquisitions only when necessary to avert deadlock in atvease
future of the program’s execution. With proper program niioge
and control specification, maximal permissiveness maxdmizn-
time concurrency, subject to the deadlock-freedom remers.

The main contribution of this paper is a detailed descriptid
our customized control synthesis algorithm for Petri nied$ model
multithreaded programs. We also formally characterizeptioper-
ties of programs to which our method has been applied, spaityfi
deadlock freedom and maximal permissiveness, all ensyredib
methodology. For completeness, we briefly summarize ouopro
type implementation and experimental results involvingdamly
generated programs and real software; full details ardadolaiin
a preliminary publication (Wang et al. 2008b) and a sepagpate
per devoted to the prototype implementation and empiricalua-
tion (Wang et al. 2008a).

The remainder of this paper is organized as follows: Se@ion
presents an overview of our approach and its charactexisiec-
tion 3 presents our main results on the automatic synthésem
trol logic for deadlock avoidance, and Section 4 descrilzesrsl
extensions. Sections 5 and 6 summarize our prototype inguitan
tion and experimental evaluations of its correctness,operdnce,
and usability. Section 7 surveys related work, and Sectionr8
cludes.

2. Overview

Figure 1 illustrates the architecture of our approach, whioo-
ceeds in the following high-level steps:

1. Extract per-function Control Flow Graphs (CFGs) from-pro

with additional features that guarantee deadlock avoigldnc
the original program.

4. Instrument the program to incorporate the control logids in-
strumentation ensures that the real program’s runtimevie@ha
conforms to that of the augmented model that was generated in
the previous step, thus ensuring that the program canndt dea
lock. Instrumentation includes code to update controksta
wrappers for lock acquisition functions; the latter avo&hd-
locks by postponing lock acquisitions at runtime.

Our approach decomposes the overall deadlock avoidanbe pro
lem into pieces that play to the respective strengths oftiagis
compiler and Discrete Control techniques. Step 1 leverates
dard compiler techniques, and Step 2 exploits powerful D&3Tlts
that equatdehavioralfeatures of discrete-event dynamical systems
(e.g., deadlock) witlstructuralfeatures of Petri net models of such
systems. These correspondences are crucial to the coiopatat
efficiency of our analyses. The control logic synthesis @igm
we use in Step 3 is calleBupervision Based on Place Invariants
(SBPI) and is the subject of a large body of theory (lordaaied a
Antsaklis 2006). To avoid deadlocks, SBPI augments thdraig
Petri net model with features that constrain its dynamicaloedr.
The instrumentation of Step 4 can embed these featureshvhic
plement deadlock-avoidance control, into the originabpam us-
ing primitives supplied by standard concurrent progranghpack-
ages (e.g., the mutexes and condition variables providethéy
POSIX threads library). The control logic embedded in Stép 4
furthermore highly concurrent because it is decentraltheough-
out the program; it isot protected by a “big global lock” and there-
fore does not introduce a global performance bottleneck.

Our approach brings numerous benefits. As shown in the re-
mainder of this paper, it eliminates deadlocks from the mjipeo-
gram without introducing new deadlocks or global perforoean
bottlenecks. It “does no harm,” except perhaps to perfonaabe-
cause it intervenes in program execution only by tempgoraokst-
poning lock acquisitions; it neither adds new behaviorsdigables
functionality present in the original program. (If deadtcavoid-
ance is impossible for a given program, our method issuesiawa
ing explaining the problem and terminates in Step 3.)

Discrete Control Theory provides a unified formal framework
for reasoning about a wide range of program behaviors (biage
looping, thread forks/joins) and synchronization prir@s (mu-
texes, reader-writer locks, condition variables) thathrh@gherwise
require special-case treatment. Because DCT is modetiptse
modeling of Step 2 is a key step in our methodology. Once model
ing is done properly, the properties of the solution folloinedtly
from results in DCT. The DCT control synthesis techniques we
employ guarantee maximally permissive control with respethe
program model, i.e., the control logic postpones lock agitjans
only when provably necessary to avoid deadlock. This pitygper
plies that, given a good program model, our approach pemats

gram source code. We enhance the CFGs to facilitate deadlockimum concurrency at run time.

analysis by including information about lock variable @deat
tion and access, and lock-related functions and their petens

2. Translate the enhanced CFGs into a Petri net model of theewh
program. The model includes locking and synchronization op
erations and captures realistic patterns such as dynaric lo
selection through pointers. The model is constructed it suc
way that deadlocks in the original program correspond tecstr
tural features in the Petri net.

3. Synthesize control logic for deadlock avoidance. Basethe

The most computationally expensive operations in our aggro
are performed offline (Step 3), which greatly reduces théime
overhead of control decisions. In essence, DCT controtlegn-
thesis performs a deep whole-program analysis and corgpartl
codes “prepackaged decisions” that allow the runtime obidgic
to adjudicate lock acquisition requests quickly, whileitakinto
account both current program state and worst-case futecuérn
possibilities. The net result is low runtime performancerbead.

Like the atomic-sections paradigm that is the subject oftmuc
recent research, our approach ensures that independendipged

special properties of our Petri net subclass, we customize a software modules compose correctly without deadlocks. évew

known Petri net control synthesis algorithm for this stepeT

our methods are compatible with existing code, programpiers

output of this step is the original Petri net model augmented braries, tools, language implementations, and convegititmtk-



based programming paradigms. The latter is particularpoirtant
because lock-based code currently achieves substartéithr per-
formance than equivalent atomic-sections-based codenire Sit-
uations. For example, Section 6 shows that lock-based cade ¢
exploit available physical resources more fully than atebased
equivalents if critical regions contain 1/O.

Our approach assumes full responsibility for deadlock o pr
grams that it deemsontrollableg i.e., programs that admit dead-
lock avoidance control policies. However, there can be doper
mance tradeoff. Our approach allows a programmer to focus on
common-case program logic and write straightforward coib-w
out fear of deadlock, but it remains the programmer’s resitdlity
to use locks in a way that makes good performance possible.

3. Control Synthesis: Main Results

This section presents our main results on control logiclssis.
Throughout this section we illustrate our method using timingd
philosophers program shown in Figure 2, where the main threa
creates two philosopher threads that each grab two forksliiifes-

ent order. The program deadlocks if each philosopher hddbgta
one fork and is waiting for the other.

void * philosopher(void * arg) {

if (RAND_MAX/2 > random()) {
pthread_mutex_lock(&forkA) ;
pthread_mutex_lock(&forkB) ;

/* grab A first */

}

else {
pthread_mutex_lock(&forkB) ;
pthread_mutex_lock(&forkA) ;

/* grab B first */

¥

eat();

pthread_mutex_unlock(&forkA) ;

pthread_mutex_unlock(&forkB) ;
}

int main(int argc, char *argv[]) {
pthread_create(&pl, NULL, philosopher, NULL);
pthread_create(&p2, NULL, philosopher, NULL);

Figure 2. Dining philosophers program with two philosophers

3.1 Petri Net Preliminaries

For the sake of completeness, we present a brief primer an Pet
nets; see (Murata 1989) for a detailed discussion. Pesiaret bi-
partite directed graphs with two types of nodes: circlesasgnt
placesand solid bars represefansitions Tokensin places are
shown as dots. Thmarking(state) of the Petri net is the number
of tokens in each place. Transitions model events in thesy#at
change the marking. Figure 3 shows how to model common pat-
terns of program control flow using Petri nets. The arcs conne
ing placego a given transition represent the pre-conditions that are
necessary for the event associated with that transitiond¢aroThe
arcs connecting placgsom a given transition represent the out-
come of the event. For instance, transitignin Figure 3(a) can
occur only if its input placep; contains at least one token; in this
case, we say thai is enabled Similarly, ¢, is enabled in this sim-
ple Petri net that models &t /else branch in a program. If transi-
tion ¢; occurs (offiresin Petri net terminology), then it “consumes”
one token fronp:, and “produces” one token in its output plage

In general, the firing of a transition consumes tokens frooh e

its input places and produces tokens in each of its outpaeplahe
token count need not remain constant. Petri nets may moojes)o
as in Figure 3(b), where the firing of initiates another iteration
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Figure 3. Basic Petri net models

of the loop. If two or more transitions are both enabled singtt t
exactly one may fire, as with and¢. in Figure 3(a), the Petri net
does not specifwhichwill fire, nor whena firing will occur. Petri
nets are therefore well suited to modeling nondeterminisien td
branching and processor scheduling in multithreaded progr

Concurrency is also easily modeled in Petri nets. For exampl
in Figure 3(c), one can think of transition as thethread_create
operation and- as thethread_join operation. Firing generates
two tokens representing the original and the child threag)aces
p2 andps, respectively. Aftet,, the child thread joins the original
thread in placeps. In Figure 3(d), placd. models a mutex lock,
while t; and ¢t2 model lock acquisition and release operations,
respectively. The token inside represents the lock, whereas the
token inp: represents the thread. After fires, a single token
occupiesp2 and L is empty, meaning that the lock is not available
andt; is disabled. If a new thread arrives @t (via an arc not
shown in Figure 3(d)), it cannot proceed. Firihgreturns a token
to L, which means that the lock is again available.

Formally, we have the following definition.

Definition 1. A Petri netN = (P, T, A, W, My) is a bipartite
graph, whereP = {p1,p2,...,pn} is the set of places] =
{t1,t2, ..., tm } is the set of transitionsd C (P x T') U (T x P)
is the set of arcsi’ : A — {0,1,2, ...} is the arc weight function,
and for eaclp € P, My(p) is the initial number of tokens in place

p.

The notationep denotes the set of input transitions of place
p. ep = {t|(t,p) € A}. Similarly, pe denotes the set of out-
put transitions ofp. The sets of input and output places of a tran-
sition ¢ are similarly defined byt andte. For example in Fig-
ure 3(a),ep1 = 0, pre = {t1,t2}, andet; = {pi1}. This nota-
tion is extended to sets of places or transitions in a natuesl
A transitiont in a Petri net is enabled if every input plapgen
ot has at least¥ (p, t) tokens in it. When an enabled transition
t fires, it removes¥ (p, t) tokens from every input place of ¢,
and addd¥ (¢, p) tokens to every output plagein te. By conven-
tion, W (p,t) = 0 when there is no arc from plageto transition
t. Throughout this section, our models of multithreaded ot
have unit arc weights, i.elW (a) = 1,Va € A. Such Petri nets are
calledordinary in the literature.

We build the incidence matribD of a Petri net as follows:
D e 7™ whereD;; = W (t;,p;) — W(ps,t;) represents the
net change in the number of tokens in plagevhen transitior;
fires. If the net has no self-loop, i.e., at least oné16fp;, t;) or
W (t;,p;) is equal to zero, then: (i) a negative;; means there is
an arc of weight-D;; from p; to ¢;; and (ii) a positiveD;; means
there is an arc of weighD;; from¢; to p;. The incidence matrix of
the Petri net in Figure 3(a) is



t1  t2

P1 —1 —1
D=p2| 1 0
pP3 0 1

The marking (i.e., state) of a Petri net, which records thatmer
of tokens in each place, is represented as a column védtaf
dimensionn x 1 with non-negative integer entries, given a fixed
order for the set of placest/ = [M(p1)--- M(p,)]”, whereT
denotes transpose. As defined abdug, is the initial marking. For
example, the marking of the Petri netin Figure 3(d)lis 0 0] T
this is the number of tokens in the three places ordereg:agp,
ps. If t, fires, the marking becomd$ 1 O]T.

The reachable state space of a Petri net is the set of all nggrki
reachable by transition firing sequences starting frbfq. This
state space may be infinite if one or more places may contain an
unbounded number of tokens. Fortunately we need not canside
the reachable state space because we employ techniqueB@dm
that operate directly upon the relatively compact Petrirnagter
than its potentially vast state space.

3.2 Modeling Multithreaded Programs
Our modeling methodology begins with the set of per-functio

CFGs extracted from the target C program. We augment these

CFGs such that in addition to basic blocks and flow infornmgtio
lock variables and lock functions are also included. Eaclg{a
mented) CFG is a directed graph. To obtain a Petri net we first
create a place for each node (basic block) of this graph. &cdn e
arc connecting two nodes in the graph, we create a transition
two arcs in the Petri net: one from the place correspondirtheo
originating node to the transition, and one from the tramsito the
place corresponding to the destination node. Overall, iz bésck-
transition-basic block chain in the CFG is converted intdacg-
arc-transition-arc-place chain in the corresponding rhade for
example Figures 3(a) and 3(b).

The execution of a thread is modeled as a token flowing through
the Petri net. In order to model lock acquisition/releasecfions
appropriately, we split a basic block that contains mudtifdck
functions into a sequence of blocks such that each block has a
most one lock function associated with it. Therefore, aftedel
translation, each lock operation is represented by a strgybsition
in the Petri net. Similarly, a basic block containing mukipiser-
defined functions is split such that each function call iseepnted
by one place in the Petri net. With this split, we can subtitbe
function call place with the Petri net model of the calleddtion.

A new copy of the called function’s Petri net is substituteeéach
distinct call site. In other words, we build inlined Petri neodels.

Functions that do not invoke lock operations need not be con-
sidered in the modeling phase. We further prune fractionthef
inlined Petri net model that are irrelevant to deadlock ysial Fi-
nally, if the program uses different sets of locks in diffgrenod-
ules, we decompose the Petri net and apply the control sgisthe
algorithm to each subnet separately. These simple pregsince
techniques are highly effective in shrinking real prograodeis to
a manageable size. Additional details are available in g\éral.
2008b).

If recursions occur in the pruned Petri net, we handle them
in a similar way as we model program loops. Each recursion is
substituted by exactly one copy of every function involvedhe
recursion. Subsequent recursive calls inside these bngctare
linked back to themselves. Control synthesis treats themgsion
loops as normal loops. Online instrumentation, howevestrmack
recursive calls and know when the program leaves the recubsi
augmenting parameters of functions involved in the reoursi
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Figure 4. Modeling the Dining Philosopher Example

Modeling multithreaded synchronization primitives usiPetri
nets has been studied previously in the literature; seei (&aal.
2002). We apply these known techniques to model locking iprim
tives. For example, thread creation and join are modelediuss i
trated in Figure 3(c). To model mutex locks, we add a new place
for each lock, called #ock place with one initial token to repre-
sent lock availability. If a transition represents a lockjaisition
call, we add arcs from the lock place to the transition. Ifaansi-
tion represents a lock release call, we add arcs from theiti@am
to the lock place; see Figure 3(d).

With these modeling techniques, we are able to build a cample
Petri net model of a given concurrent program. Figure 4(a) is
the control flow graph of functiophilosopher in the example
in Figure 2. There are four basic blocks, representing ,sidrt
branch.,else branch and the rest of the function. Figure 4(b) is the
translated Petri net model of the CFG. The structure is airtilthe
CFG, with lock places added. Basic blocks containing migtipck
functions are splitinto sequences of places and transisanh that
each lock function is represented by a single transitiomhértet,
as annotated.

3.3 Controlling Petri Nets by Place Invariants

The purpose of control logic synthesis for Petri nets is tudtun-
desirable” or “illegal” markings. Appropriate formal spfécations
that characterize these undesirable markings are neededmA
mon form of specification is the linear inequality

M >0 1)

wherel is a weight (column) vectot)/ is the marking, and is a
scalar;b and the entries of are integers. Equation (1) states that
the weighted sum of the number of tokens in each place shauld b
greater than or equal to a constant. We will show in Sectidmaw
to attack deadlock avoidance using such specifications.
Markings violating the linear inequality in Equation (1) stu
be avoided by control as they are illegal; all other markiags
permitted. It turns out that this condition can be achieveddxding
a newcontrol placeto the net with arcs connecting to transitions in
the net. The control place blocks (disables) its outputsitaoms
when it has an insufficient token count. This method is fotynal
stated as follows.



Theorem 1. (lordache and Antsaklis 2006) If a Petri n&f =
(P, T, A, W, M) with incidence matriD satisfies
b—1"Mo <0 @

then we can add a control plagethat enforces Equation (1). Let
D. : T — Z denote the weight vector of arcs connectingith the
transitions in the netD.. is obtained by

D.=1"D (3)
The initial number of tokens inis
Mo(e) =1"Mo—b>0 (4)

The control place enforces maximally permissive contigidoi.e.,
the only reachable markings of the original mgtthat it avoids are
those violating Equation (1).

The above control technique is called Supervision Based on
Place Invariants (SBPI). It maintains the condition in Bera(1)
by building aplace invariantwith the newly added control place.
The place invariant guarantees that for any markidgin N's
set of reachable markingé. M — M(c) = b, where M (c) is
the number of tokens in the control placeSince M (c) is non-
negative, the inequality in Equation (1) is satisfied. Emuma(2)
states that Equation (1) must be satisfied¥fy, otherwise there is
no solution.

Equation (3) shows that SBPI operates on the net structure (i
cidence matrix) directly without the need to enumerate @lae
the set of reachable markings of the net; this greatly resitive
complexity of the analysis. Equally importantly, SBPI garstees
that the controlled Petri net is maximally permissive,, iaetransi-
tion is not disabled (by lack of tokens in control plagaunless its
firing leads to a marking where the linear inequality is vieth(lor-
dache and Antsaklis 2006). In other words, it enforces ‘@umstugh
control” to avoid all illegal markings. SBPI is the basis four
deadlock avoidance control synthesis algorithm. SpedifiGBPI
eliminates potential deadlocks that we discoversijgnon analysis

3.4 Deadlocks and Petri Net Siphons

To achieve the objective of deadlock avoidance in a conntirre
program using SBPI, we need to express deadlock freedorg usin
linear inequality specifications. This is done by means phan
analysis.

Definition 2. A siphon is a sef of places such thakS C Se.

Intuitively, since the input transition set is a subset @f tlutput
transition set, if a siphoy' becomes empty, every output transition
in Se is disabled and therefore no input transition can fire. As
a result, the set of placeS will remain empty forever and the
transitions inSe will never fire again. For example, the set of
places{ A, B, ps, p7 }, marked by crosses in Figure 5, is a siphon. It
becomes empty when each philosopher acquires one fork atel wa
for another. In this situation, no place in the siphon evéngany
token; indeed, we have a deadlock.

Our Petri net models have special properties that allow us to
identify deadlocks in the original program by identifyinigplsons
in the corresponding Petri net model. Recall from Sectidnti3at
our Petri nets arerdinary (all arcs have unit weight). LeNg
denote the Petri net model of a concurrent program. Let the pa
of N¢ that corresponds to the control flow graph be denoted by
Ncra; in other words, lock places are excluded N rc. By
construction, all the transitions iV-rc have exactly one input
place and exactly one output place. Clearly, the only sipimon
Ncra is the entire set of places, which cannot become empty
during the execution of the program. Therefore, any siphaNd:
mustinclude lock places. We build from the following known resul
in the literature.

Theorem 2. (Reisig 1985) A totally deadlocked ordinary Petri net
contains at least one empty siphon.

In this theorem, “total deadlock” refers to a Petri net siate
which no transition is enabled. In our analysis, we are éstad
in circular-mutex-wait deadlocks, not total deadlockswdwer, in
our class of Petri net models, the presence of a circulaexawgit
deadlock implies thafVs contains an empty siphon. To see this,
consider a Petri net state that models a program with a aircul
mutex-wait deadlock. Consider only the subnet involvedha t
circular-mutex-wait deadlock, and only the tokens repntsg
the deadlocked threads. This subnet has no enabled toansiti
According to Theorem 2, it contains at least one empty siphbis
siphon is also empty in the original Petri net state.

Consider next the reverse implication of Theorem 2: what if
the net contains an empty siphon in some reachable marking? A
empty siphon cannot gain any token back and therefore the cor
responding transitions are permanently disabled. Sincengpty
siphon in our Petri net model must include lock places, thede
places remain empty as well, meaning that the threads hypibese
locks will never release them. This could be due to a threat th
simply acquires a lock and never releases it. We handle tie pr
ceding scenario separately in our control logic synthdsis.the
purpose of the present analysis, we assume that threadsiaygn
release all the locks that they acquire. Under this assampimpty
siphons that include lock places correspond to circulaterzwait
deadlocks. Combining this result with Theorem 2, we havddhe
lowing important result:

Theorem 3. The problem of deadlock avoidance in a concurrent
program is equivalent to the problem of avoidance of empplymsis
in its ordinary Petri net modeNg.

Theorem 3 establishes a relationship between deadlockhwhi
is a behavioral property, and siphons, which are strucfeedlres.
The latter can be identified directly from the incidence imatr
without exploring the set of reachable markings (Boer anddu
1994).

In some cases, a siphon cannot become empty in any reachable
marking. For example, places and p2 in Figure 3(d) form a
siphon. Once empty, they remain empty forever. But with étiein
token in L, these two places will never become empty. In fact, a
token will always occupy one of the two places in any readahabl
marking. When synthesizing deadlock avoidance contrak|ag
is important to distinguish siphons that may become emptynfr
those that cannot. Control need only be synthesized to ssidne
former; the latter may safely be ignored.

3.5 Control Logic Synthesis for Deadlock Avoidance

Given Theorem 3, our objective is to control the Petri net etod
of a concurrent program in a manner that guarantees thatafone
its siphons ever becomes empty. For this purpose, it is miffic
to consider onlyminimal siphons, i.e., those siphons that do not
contain other siphons. This goal is translated into spetifios of
the form in Equation (1) as follows: The sum of the number ef to
kens in each minimal siphon is never less than one in any abdeh
marking. SBPI adds a control place to the net that maintaingk
tion (1) for each minimal siphon. For example, consider agia¢
Petri net in Figure 5 (without the place and arcs that areetfjsko
prevent the minimal siphoflA, B, ps, pr} in this net from being
emptied, we define

=0 0000 1 1 1 1],b=1 (5

where the order of the places for vectddsand! is: p1, . . . p7, A, B.
In this case, Equation (1) means that the total number ofioke
placesps, p7, A, and B should not be less than 1. The incidence
matrix of the net in Figure 5 is (with transitions ordered@ding



Figure 5. Controlled Dining Philosophers Example

to their subscripts):

-1 -1 0 0 0 0 0 07
1 0 -1 0 0 0 0 0
0 1 0o -1 0 0 0 0
0 0 1 0 -1 0 0 0
D=|0 0 0 1 0 -1 0 0 (6)
0 0 0 0 1 1 -1 0
0 0 0 0 0 0 1 -1
0 0 -1 o0 0 -1 0 1
L O 0 o -1 -1 0 1 04
Applying Equations (3 and 4), we have
Dc=[0 0 -1 -1 0 0 1 0], Mo(e)=1 (7)

which means that the control place has output arcs to tiansit
ts andts, and an input arc from transitioty; all these arcs have
weight one. The control place has one initial token. Thisti@n
place and its associated arcs are shown with dashed lineg-in F
ure 5. The Petri net including the control place is calledahg-
mented netFrom Theorem 1, we know that the place invariant
I"M — M(c) = 1 always holds for any reachable markifg,
and therefore the siphon is never empty.

It would be wrong to conclude from this simple example that
our approach simply “coarsens locking” or “adds meta-ldckkis
is a reasonable interpretation of the control place in Edurbut
in general the control logic that our procedure synthesiimits
no such simple characterization, as we shall see when wédeons
how our approach handles real-world deadlock bugs in Apanke
OpenLDAP.

A difficulty that arises in the preceding methodology is that
the newly added control places (one per minimal siphon in the
net) could introduce new siphons in the augmented net tivedy,
SBPI avoids deadlocks at the last lock acquisition step, the
lock acquisition that completes the circular wait. Somesrthis is
too late. While the control place blocks the transition indmaeely
leading to the deadlock, there may be no other transitiorpthe
gram can take. This is a deadlock introduced by the contealepl
Fortunately, this deadlock implies the existence of a ng@hai in
the augmented Petri net that includes the control placereTore,
we can apply SBPI again and iterate until both the deadlogks i
the original program and deadlocks introduced by contrgiclare
avoided. The iterative procedure is defined in Figure 6. 8tefers
to “redundant” control places. Those are control placesablaieve

Input Petri netNg that models the program
Output AugmentedN¢ with control places added
Step 1 Let R be the set of places representing mutex locks

Step 2 Find all minimal siphons inV¢ that include at least one
place inR and can become empty; if no siphon found, goto
End

Step 3 Add a control place for every siphon found$tep 2

Step 4 Remove redundant control places adde8tep 3 let R be
the set of control places remaining; g&tep 2

End Output N¢ with all control places added

Figure 6. Control Synthesis Algorithm

redundant control objectives as compared with controlgdacided
in earlier iterations. Details on how we check whether aaiptan
become empty and how we remove redundant control places are
described in (Wang et al. 2008b).

Combining the results of Sections 3.3 and 3.4 with the proce-
dure in Figure 6, we have the following corollary:

Corollary 4. After the iterative procedure of Figure 6, we know
that the augmented Petri net with control places has no reblgh
empty siphon. If the arcs connecting the added control jglaoe

the transitions of the original net all have unit weight, tHey The-
orem 3 we conclude that the augmented net models the deadlock
free execution of the original multithreaded program. Marer, by
Theorem 1, the behavior of the augmented net is the maximally
permissive deadlock-free sub-behavior of the original net

If a newly added control place has a non-unit-weight arc to a
transition of the original net, then deadlock in the mutttded
program does not necessarily imply an empty siphon in theset
Theorem 2 is not directly applicable. Theorem 2 can be génera
ized to the case of non-unit arc weights; in this case liveesot
entirely characterized by empty siphons, but rather by thtén
of “deadly marked siphons” from (Reveliotis 2005). In thisse,
further behavioral analysis of the siphons is necessatgildere
omitted here. In practice, in our experiments so far withgpe-
cial Petri net subclass modeling multithreaded programsjter-
ative SBPI algorithm has converged quickly without introithg
non-unit arc weights. This has been observed on both rarydoml
generated programs and real-world software including Apad
OpenLDAP.

3.6 Control Logic Implementation

The output of the control logic synthesis algorithm is anmeagted
version of the input Petri net, to which have been added obntr
places with incoming and outgoing arcs to transitions irottiginal
Petri net. An outgoing arc from a control place will effeetiy
delay the target transition until a token is available in toatrol
place; the token is consumed when the transition fires. Aoniticg
arc from a transition to a control place replenishes therobnt
place with a token when the transition fires. Outgoing arosfr
control places always link to lock acquisition calls, whiaehe
the transitions that the runtime control logiontrols Incoming
arcs originate at transitions corresponding to lock redezgls or
branches, which are the transitions the control logic robserve

A lock acquisition transition that needs to be controlled ha
one or more incoming arcs from control places, as illustrate
Figure 7(a), wherd. is the “real” lock in the program that has to
be acquired, and, Cs,...C,, are control places that link to the
transition. A transition that needs to be observed has omeooe
outgoing arcs to control places, as illustrated in Figubg.®or the



(a) Transition to beontrolled

Cn C: Ci

(b) Transition to bebserved

Figure 7. The control logic implementation problem

sake of generality, Figures 7(a) and 7(b) show several ahpiices
connected to a given transition. In practice, the numberoafrol
places connected to a transition is very small, typicallly ame.

As Figure 7 suggests, control places resemble lock placés, a
therefore can be implemented with primitives supplied laypdard
multithreading libraries, e.g., libpthread.

Controlled Transitions For a lock acquisition transition that
needs to be controlled, the control logic must check thertakail-
ability of all input places to that transition. These inautthe lock
place in the original net model as well as all the control ptac
that were added by the procedure in Figure 6, as depictedgin Fi
ure 7(a). We replace the native lock-acquisition functiagthweur
wrapper to implement the required test for these transtidine
wrapper internally uses two-phase locking with global airdgon
the set of control places to obtain the necessary tokensdhtxol
place does not have enough tokens, the wrapper returnskaiigo
it has obtained from other control places, and waits on aitiond
variable that implements this control place; this effesljvdelays
the calling thread. Once the token becomes available, thpper
starts over again to acquire tokens from all control places.

Observed Transitions For a transition that needs to be ob-
served, i.e., with outgoing arcs to control places as showkig-
ure 7(b), we insert a control logic update function thatéases the
token count and signals the condition variables of the epaad-
ing control places.

Figure 8 is the lock wrapper implementation for Figure 7(a)
using the Pthread library. Each control pla€e is implemented
as a three-tuplgn([il, 1[il, c[il}, wheren[i] is an integer
representing the number of tokensa@h, 1[i] is the mutex lock
protectingn[i], andc[i] is the condition variable used when a
thread is waiting for token in the control place.

The following theorem establishes that the above-deatiiie
plementation of control places does not introduce livelimtl the
instrumentation: Two or more threads cannot become penntigne
“stuck” executing the outer loop in the wrapper function eaf
Figure 8.

Theorem 5. With the implementation of Figure 8 and global order-
ing of [[¢], if a set of threads competes for tokens in control places,
at least one thread will acquire all required tokens from toatrol
places and succeed in firing the corresponding transition.

Proof. Assumel'D = {T1,T>,...T.. } is the set of threads compet-
ing for tokens in the set of control placés? = {C4, Cs, ...C, }.
Without loss of generality, let us also assume every thraddd

start:

pthread_mutex_lock(&L);

for (i=1; i<=n; i++) {
pthread_mutex_lock(&1[i]));

*/

/* acquire real lock

/* check Ci */

if (0 < t[i]) < /* has token in Ci */
n[i]--; /* take one token */
pthread_mutex_unlock(&1[i]));

}

else { /* no token in Ci */

*/
*/

pthread_mutex_unlock(&L) ; /* release real lock

for (j=i-1; j>=1; j--) { /* replenish all tokens
pthread_mutex_lock(&1[j]l);
nljl++;
pthread_cond_signal (&c[jl);
pthread_mutex_unlock(&1[j]);

}

pthread_cond_wait (&c[i], &1[il);

pthread_mutex_unlock(&1[i]));

goto start; /* start over once signaled

}
}

*/

/* wait on Ci

Figure 8. Lock wrapper implementation for the example of Fig-
ure 7(a). A control plac€’; is associated with integer[i] repre-
senting the number of tokens in it; lotki] and condition variable
c[i] protectn[i]. These are global variables in the control logic
implementation.

is at the “start” label of the lock wrapper in Figure 8, i.e,thread
has consumed any token P yet, and every other thread is ei-
ther sleeping or waiting on some (real) lock. Thé® must have
enough tokens for at least one threadll® to go through. Oth-
erwise all threads are permanently waiting and this is aldeld
which is provably avoided by our control synthesis algarth
AssumeCP has enough tokens fdF; to get through. IfT}
failed to get a token from a control place, sy, some other
thread inT' D, sayTz, must have acquired the tokend before
Ty attempted to acquire it. [, failed to get the token in a control
place, say’s, there are two cases: (€} does not have any tokens
at all to start with or (2) some other thread#rD has temporarily
acquired it first. In the first casd will sleep and not compete
with threads inT D anymore. Furthermorel: will release the
token toC, and wake upl’ before it goes into sleep. Then we
can repeat the analysis f@h all over again. In the second case,
the token inC> cannot be temporarily acquired By because of
the assumed global ordering on control places. Assuriiingas
temporarily acquired the token i@z, we could follow the same
analysis performed off:. Eventually, either some thread D
gets all tokens needed or every thread other fhagoes to sleep, in
which caser’ will be awakened and obtain all tokens needed]

As shown in Figure 8, our current controller implementation
does not address the scheduling of threads onto locks; lynder
ing infrastructure (threading library and OS) is respolesibr this.
Whether our control logic introduces scheduling issues (prior-
ity inversion, starvation) depends on the semantics peal/tay the
underlying infrastructure.

4. Control Synthesis: Extensions

Section 3 presented the main results of our deadlock avoédan
methodology for concurrent programs. This section disEsIex-
tensions to the basic method and additional topics relexaatir
problem domain.
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Figure 9. Reader-Writer Lock

4.1 Model Extensions

Our control synthesis algorithm is not limited to circularitex-
wait deadlocks. Rather, it depends on what is included irPitei
net model of the program. With the rich representation ciéipab
ties of Petri net models, it is relatively easy to model otimen-
tithreaded synchronization primitives and thereby to mattically
address deadlocks involving them. We discuss a few examples

Semaphores A semaphore is essentially a lock with multi-
ple instances that can be “acquired/released” by diffetfeneiads
repeatedly throughlown/up operations. Therefore, semaphores
share the same model as locks except that the initial nunmber o
tokens in a semaphore place may exceed one.

Reader-Writer Locks Modeling reader-writer locks is illus-
trated in Figure 9. The initial number of tokens in the lockqd
represents the maximum number of readers allowed. A readter ¢
acquire the lock as long as at least one token is availablée wh
a writer must acquire all of the tokens. When the maximum num-
ber of readers is not specified by the program, we can use a suffi
ciently large initial number of tokens, e.g., greater thia@ hum-
ber of threads allowed. Note that the right-hand arcs in feigu
both have weight:. Theorem 2 presented earlier requires unit arc
weights as an assumption. As was mentioned in Section 3ég-Th
rem 2 can be generalized to the case of non-unit arc weights. T
complicates the procedure of generating the control lagicléad-
lock avoidance and is not discussed in this paper.

Condition Variables Condition variable models include a
place that models the signal variable and transitions thadein
wait, signal, andbroadcast calls. We use a separate place,
with no initial token, to represent each signal. The placega
tokens withsignal/broadcast transitions and loses tokens with
wait transitions. In addition to the input arc from the signalgela
thewait transition must represent the fact that the mutex lock is
released during wait and reacquired once the signal isadolailIn
addition, a complete model should also include signal ledse(
the thread to be awakened is not waiting on the conditioratae);
see (Kavi et al. 2002) for further discussion.

Condition variables are another major source of deadlogks i
multithreaded programs, and it is very difficult to reasorutb
them. However, once condition variables are included inReifri
net models, condition-variable deadlocks can be identifiealigh
siphon analysis in the same manner as mutex deadlocks aré. fou

Figure 10 shows a condition variable deadlock from the Apach
bug database (Apache). This deadlock is introduced by axmute
together with condition variables. The listener threadtsvan a
condition variable while holding theimeout mutex. The worker
thread acquires then releasesneout, then signals the listener.

If the listener thread is already waiting before the workeead
acquirestimeout, the signal is never sent and the two threads
deadlock in the calls indicated by comments.

Figure 11 is the Petri net model of the code in Figure 10. For
simplicity we show only basic signal operations. Detaike lthe
release and reacquisition of locks with theit call are not shown.
Places marked by crosses form the siphon correspondingeto th

listener_thread(...) {
apr_thread_mutex_lock(timeout_mutex) ;

rv = apr_thread_mutex_lock(queue_info->idlers_mutex);

rv apr_thread_cond_wait(queue_info->wait_for_idler,

queue_info->idlers_mutex); /**x/
rv = apr_thread_mutex_unlock(queue_info->idlers_mutex);
;é;_thread_mutex_unlock(timeout_mutex);
) e
worker_thread(...) {
éﬁ;_thread_mutex_lock(timeout_mutex); /*x/
;é;_thread_mutex_unlock(timeout_mutex);

rv = apr_thread_mutex_lock(queue_info->idlers_mutex);

rv = apr_thread_cond_signal(queue_info->wait_for_idler);

rv = apr_thread_mutex_unlock(queue_info->idlers_mutex) ;

Figure 10. Apache deadlock, bug #42031.

worker
lock

listener
lock

timeout_mutex

control

Figure 11. Simplified Petri net model for the Apache deadlock,
bug #42031.

deadlock bug. The control place added guarantees thatghersi
will never empty. The control place prevents the listeneead
from acquiring thetimeout mutex until the worker thread has
released it and is able to signal the listener. This contrgicl is
maximally permissive as it allows the listener thread tocpes
after the worker thread releases thiemeout mutex.

4.2 Partial Controllability and Observability

So far, we have assumed that every transition in the Petrisnet
controllablg i.e., it can be prevented from firing if we append a
control place to its set of input places. Therefore, if asithon has
an incoming arc from a control place after the control sysithe
procedure, the control logic effectively blocks that tiina when



ldap_pvt_thread_rdwr_wlock(&bdb->bi_cache.c_rwlock) ;
/* LOCK(A) */

ldap_pvt_thread_mutex_lock( &bdb->bi_cache.lru_mutex );
/* LOCK(B) */

ldap_pvt_thread_rdwr_wunlock(&bdb->bi_cache.c_rwlock);
/* UNLOCK(A) */

if ( bdb->bi_cache.c_cursize>bdb->bi_cache.c_maxsize ) {
for (...) {
ldap_pvt_thread_rdwr_wlock(&bdb->bi_cache.c_rwlock) ;

/* LOCK(A) */

ldap_pvt_thread_rdwr_wunlock(&bdb->bi_cache.c_rwlock) ;
/* UNLOCK(A) */

}
}

ldap_pvt_thread_mutex_unlock(&bdb->bi_cache.lru_mutex);
/* UNLOCK(B) */

Figure 12. OpenLDAP deadlock, bug #3494.

the control place has an insufficient token count. In our jemb
however, not every transition is controllable. For examplansi-
tions representingf/else branches or loops are not controllable.
We cannot “force” the program to take one branch instead ®f th
other. In our application, the only controllable trangiticare those
representing lock acquisitions.

Partial controllability refers to the situation where notry
transition in the net is controllable. When a control pladeled
by the control synthesis algorithm hastgoingarcs to an uncon-
trollable transition in the net, then the correspondingtcdriogic
is notimplementable. Synthesizing control logic for a jagist con-
trollable net in general requires correctness-preseniiggr con-
straint transformation(lordache and Antsaklis 2006). The trans-
formed constraints guarantee that control places addedB®Bi S
have output arcs to controllable transitions only, whilés$ging
the original linear inequality specifications. The syntbex con-
trol logic under partial controllability is in general mocenserva-
tive than under the case of full controllability. A versioineaximal
permissiveness can still be achieved in this case, in theestrat
the control logic should not block any transition unless¢kecu-
tion of that transition can lead to an undesired statavoidably
i.e., through a sequence of uncontrollable transitions.

We illustrate the controllability issue with an actual OpBAP
bug (OpenLDAP) shown in Figure 12, where clarifying comnsent
are inserted. The deadlock may occur if thread 1 locks A and B,
then releases A. Before thread 1 reacquires A, thread 2 isethe
same code, which acquires A then B. Assuming full contrditgb
the control logic would allow thread 2 to enter and acquik|é,
then force thread 1 to jump out of tHer loop if thread 2 acquires
A first. With partial controllability, the control logic imediately
forbids other threads from entering once thread 1 is exegutie
code,even if lock A is availabldf thread 1 branches over the body
of the if, or if it leaves thefor loop, the control logic knows
that thread 1 cannot be involved in this deadlock bug andtber
permits other threads to enter.

Another issue to consider in practice is that of partial oleseil-
ity. Atransition is nobbbservablef we cannot observe its firing. If a
synthesized control place hasgomingarcs from an unobservable
transition in the net, then the control logic is not impletiadaie as
the control logic does not know when to replenish tokens & th

control place. In our application, one could in principlesetve
every transition by proper instrumentation of the progr&tow-

ever, if source code modifications are not allowed, e.gy bima-

ries are available, we can still control the program by tlcbégue
of library interposition, by intercepting all lock acquisn/release
calls. In this case however, the evolution of the progranmotsully

observable.

Synthesizing control logic for a partially observable Pagt
can also be solved by the technique of constraint transfiioma
as described in (lordache and Antsaklis 2006). Transforinedr
inequality constraints guarantee that control places Gdidee in-
coming arcs from observable transitions only. The contygid is
in general more conservative than the one assuming fullrebse
ability. In the example of Figure 12, if we can observe onbek
andunlock calls, the control logic must wait until the first thread
releasedru mutex at the end before allowing another thread to en-
ter this critical region, which effectively serializes thaole critical
region. Assuming full observability, as discussed abdwe control
logic allows another thread to enter as soon as the firstdhjosaps
out of thefor loop.

4.3 Current Limitations

Our current prototype implementation does not performsatia
pointer analysis when building the Petri net model of a comru
program. We represent lock pointer variables by their typmes,
i.e., the structure type that encloses the primitive lockadde. This
approximation is adopted by a few static analysis tools dk(tme-
gler and Ashcraft 2003). It may lead to conservative coritgic
but does not miss any deadlock unless the program violapes ty
safety conventions by illegal pointer casting. More sojitased
pointer analysis methods, such as the one used in (Cherein et a
2008), could be incorporated into our framework, therelsyiting

in more fine-grained control logic.

Another source of conservatism in our conz: (4
trol synthesis phase is the lack of data flow in-" 1) (1)
formation in our current prototype, whichis also, _ .
shared with static analysis tools. Figure 13 ilif (x)
lustrates the “false paths” problem (Engler and unlock(L)
Ashcraft 2003). With only control flow infor- m
mation, the control synthesis algorithm does not 9 ’
know that the two conditional branches are paired up i§ not
modified in between, and therefore it mistakenly conclutasthis
code might acquire the lock but not release it. The algorithight
respond by adding unnecessary control logic. This exantiple- i
trates the fact that our control logic is maximally permissiith
respect to the program modeds formalized by Theorem 1. More
accurate program models, e.g., from data flow analysis, esuitr
in better control and improved performance by reducingimsen-
tation overhead and by allowing more concurrency.

Some deadlocks are simply unavoidable. For example, adhrea
may repeatedly lock a nonrecursive mutex. In the terminolafy
DCT, such programs atcontrollable and SBPI responds to the
corresponding Petri net models by emitting negative caefits
where positive ones are expected (e.g., for arc weights aré-m
ings). Our prototype implementation issues warnings faoutrol-
lable deadlocks.

A different kind of uncontrollability problem can arise iip
control logic prevents concurrent execution of two progfaag-
ments that must run concurrently in order for execution txped.
This can occur if one fragment enters a blocking call (e.geaal
on a pipe) whose return is contingent upon the other fragieegt,

a write to the same pipe). To address this problem, we mulstdac
in our program model all blocking calls, including those wbae-
turn is triggered by phenomemet explicitly modeled. (Condition
variable signal/broadcast is modeled in our current pypiat but



blocking system calls are not.) It is then straightforwavdden-
tify cases where our control logic potentially precludes taturn
of blocking calls and issue appropriate warnings. If ourezignce
with real software is any guide, such scenarios are rareaictige:
we have never observed deadlocks caused by a combination-of ¢
trol logic and, e.g., interprocess communication.

If a program does not merit one or another sort of uncontrolla
bility warning, we guarantee correct execution; our metheder
silently introduces deadlocks or disables program funetiity.

In general, our overall approach is well suited to languages
that admit the static modeling, analyses, and control ggittthat
we require. Dynamic constructs do not preclude our apprbach
may lead to conservatism, e.g., we handle function calisutn
pointers by assuming that the callee may be any function thiigh
appropriate type signature. Annotations help clarify thdiguity
caused by dynamic constructs. Our current C/Pthreadstppato
implementation does not modgét jmp ()/longjmp (), exception
handling, or signal handling.

5. Implementation

We briefly discuss in this section several issues regardiagn-
plementation of our methodology, which is the subject offzasate
paper (Wang et al. 2008a) devoted to our prototype and erapiri
evaluation.

5.1 Control Flow Graph

We modified the open source compiler OpenIMPACT (Openim-
pact) to construct an augmented control flow graph (CFG)dohe
function in the input program. Lock variables (globally teed,
locally declared, or dynamically allocated) are includethie CFG.
In addition, functions calls are listed in each basic bldoigether
with their argument name and type information. We recogtfiee
standard Pthread functions automatically. We use progemam-
notations to recognize wrapper functions, if such functiare used
for the primitive Pthread functions. Basic blocks that eamthese
wrapper functions are marked and will be handled appragyiat
during the model translation phase.

As discussed in Section 4.3, patterns like the one illustrat
Figure 13 may lead to spurious deadlock detection. Sincean
trol synthesis algorithm avoids all potential deadlochkdarge pro-
grams, numerous false control flow paths could result in ¢ery
servative control logic. Appropriate user annotation\adles this
problem. We found that function level annotation is hightfee-
tive against false paths. The annotation marks whethertepiar
lock type isalwaysor neverheld upon return from a particular
function. We use a variant of lockset analysis (Savage €t9817)
to identify ambiguous functions automatically. In praetithe set
of ambiguous functions is very small and a programmer urifami
with the source can annotate a function in a few minutes. ¥ame
ple, the function enclosing the code in Figure 13 could betatad
to indicate that lockl is never held after the function returns. Our
experience with real-world programs suggests that patbithee
data flow analysis tools could eliminate the need for mostef t
annotations we added.

5.2 Model Translation

As explained in Section 3.2, we translate each function GEGa
separate Petri net. Each place in the function Petri neespands
to a basic block in the function, and control transfer frone ta-
sic block to another is represented by a transition. Lockgddink
lock acquisition/release transitions in these functiotrifets. All
of these model translations are straightforward, but va#i-world
programs the difficulty lies in modeling common softwaregpra
tices that may obfuscate a program’s locking behavior, égks

accessed through pointers and primitive lock data typekbsed
in wrapper structures that are passed to lock/unlock fanatirap-
pers.

With the lock name and type information in the augmented
CFGs, as discussed in the previous subsection, we are able to
identify whether the lock variable in a lock function argume
is a static reference to a lock instance or a dynamic choica of
certain lock type. A lock type is defined as its wrapper strrect
type, i.e., the type of the argument of the wrapper functiorihe
case of chained pointers/references as the function argynve
could either be conservative and consider only the type efakt
node (the default setting), or take the whole chain as tHetle.

In the latter case, a false negative is possible when twerdifit
chains actually refer to the same lock in the end. False ivegat
are unacceptable, so we prefer the former approach.

When a lock variable is a static reference, we model the lock
instanceas a lock place and link it to the acquisition/release transi
tions as discussed in Section 3.2. When a lock variable isiardic
choice through pointers, we approximate the model by usingla
place to represent the lotkperather than the actual instance. All
dynamic references of this lock type share the same loclepta
there is exactly one initial token in the place. If a lock isessed
by both static address reference and pointers, we stilloxpate
the model using a lock place to represent the lock type. Inesur
perience, such mixed references are rare in practice.

Since we model dynamically selected locks by their typefs, di
ferent instances of the same lock type could give false igesifor
deadlock, and the end result would be impaired performalmce.
real programs, however, most deadlocks reported in budpdses
and change logs involve cyclic wait dlifferentlock types (Lu et al.
2008), i.e., locking hierarchy violations as in the OpenlPBug of
Figure 12. Cyclic wait on locks of the same type is uncommam. O
model simplification matches this typical deadlock patteeti.

5.3 Offline Control Synthesis

The input to the offline control synthesis module is a set dfiPe
nets that represents each function in the program. Sincadiaitk
may cross function boundaries and involve different paftthe
program, we need to inline these Petri nets for control ®gith as
described in Section 3.2. However, whole program inliningot
practical for real programs because of the extensive uagnofibn
pointers and recursions. We instead inline only functioglated
to critical regions, i.e., functions that can be called byeé#us
holding locks. In other words, we collapse regions of thebglo
inlined Petri net that contain no lock-related operatioesause
they are irrelevant. With this correctness-preservinggoerance
optimization, the inlined call depth is typically no moraththree.

5.4 Online Control

We have two implementations of the control logic for onliren¢
trol of the program: library interposition and program msben-
tation. Library interposition intercepts library callgptcally lock
acquisition/release functions, and postpones lock aitiuiscalls
whenever necessary. Library interposition does not mogify
gram source code, and therefore can work directly with lsar
However, as explained in Section 4.2, the control synthaigjs-
rithm must account for the partial observability problenhiet
possibly reduces concurrency because of the limited setsEro-
able transitions. Program instrumentation, on the othed hiaserts
control logic code into the program as needed, and thereforén
principle observe the complete program execution state.

For both implementations, we must correlate program ei@tut
state with corresponding Petri net state. The current execu
function and line number are not sufficient as one functioghtibe
called at different locations and therefore result in défe control



actions. We need the call stack to map the current prograe teta
transitions in the Petri net. Our library interposition eggch walks
up the call stack from the intercepted library call and idferg
the current transition. With the program instrumentatippraach,
for reasons of performance and portability, we insteadunsént
functions as necessary with additional parameters thatdenthe
execution state.

6. Experiments

This section summarizes experimental evaluations of atoppe
implementation. Greatly expanded results on randomly rg¢ee
programs, the publish-subscribe benchmark, and OpenLDAP a
available in (Wang et al. 2008b,a).

Randomly Generated Programs Our first test involved ran-
domly generated programs reminiscent of the dining phpbsos
problem. These programs repeatedly acquire or releaselarmdy
selected lock then sleep for a random interval; they de&diead-
ily. After we apply our deadlock avoidance technique to thieaw-
ever, they run indefinitely without deadlock. A comparisdroor
customized control synthesis algorithm with a naive agpion of
standard SBPI shows that our approach offers scalabilitgfits in
terms of the off-line computational cost of control synik€8vVang
et al. 2008b).

Publish-Subscribe Benchmark Our next test involved a
highly concurrent network server benchmark. We implentiate
simple multithreaded publish-subscribe server that carolreiled
in three ways: deadlock-free, deadlock-prone, and at@@dtion.
The first employs fine-grained locks correctly and the se@md
quires locks out of order. The third is compiled using thellipro-
totype software transactional memory compiler (Intel)e Berver
software must perform I/O within critical sections to sBtian
application-level consistency requirement. It runs on ahire
with a dual-core CPU and four network cards connected to four
client emulators.

As expected, our deadlock avoidance technique automigtical
eliminates deadlocks in the deadlock-prone variant. Thie mar-
pose of the benchmark test is to evaluate performance rdther
correctness. From the clients, we measured throughput hedey
load (server saturation) and transaction response timaer dight
load. Our first result is that our deadlock avoidance apprdess
a negligible effect on light-load response times and reslisetu-
ration throughput by roughly 18% compared to the deadloek-f
variant. Our second result is that the atomic-sectionsiaersuf-
fers farworseperformance overheads: it achieves only about half
of the heavy-load throughput of the dynamic-deadlock-@Gance
version and suffers @x increase in response times. This result ini-
tially surprised us until we determined that all I/O was akzid
in the atomic-sections version. This is not a shortcomintdpéln-
tel compiler but rather a fundamental consequence of atsete
tions: atomic sections containing If@ustbe serialized lest covert
1/0 channels violate isolation among them. Our results stiaw
locks sometimes permit better exploitation of availablggitel
resources than atomic sections. Our dynamic deadlock avoel
technique preserves this benefit of locks while eliminatiegd-
locks and restoring the composability that locks alonerdgst

OpenLDAP We next applied our method to OpenLDAP, a
popular open-source implementation of the Lightweighebiory
Access Protocol. We tested on OpenLDAP version 2.2.20, lwhic
has a confirmed circular-mutex-wait deadlock bug (OpenLPAP

tation’s first pass took a few seconds and reported 25 ambiguo
functions (i.e., the set of locks held on exit was ambiguoWég
annotated 21 manually; this took slightly more than an hdbe
second pass reported four potential deadlocks: the knoaaiioiek,
two previously unreported ones, and a false positive thdtiesto
limited data flow analysis. We disabled deadlock avoidanse-
mentation for the latter and enabled it for the three reatitbeks;
control synthesis terminated in a few seconds, after aesiitgf-
ation. Performance tests involving three different sytitheork-
loads initially showed negligible performance overheadfs. had
to modify the standard OpenLDAP server configuration substa
tially in order to trigger adverse performance consequeffmethe
server instrumented with deadlock-avoidance controlddgiorst-
case overheads on client-measured throughput and restiorese
ranged from 3-10%, depending on the workload.

Apache We also applied our method to the most recent release
of Apache, version 2.2.8. This version bftpd contains 2,264
functions and twelve lock types. Our prototype’s first passnfl
28 functions containing false-paths ambiguities, nedtlgfavhich
involve error checking in lock/unlock functions (if the exttpt to
acquire a lock fails, they return immediately). After we eqi-
ately annotate these functions, the second pass showsautacir
mutex-wait deadlock. This finding is consistent with the &lpa
bug database, which reports no such deadlocks in versioB.2.2
When condition variables are included in the model, ourymisl
identifies the known deadlock bug in Figure 10 and automistica
synthesizes the control logic depicted in Figure 11.

7. Related Work

This section reviews prior research in Discrete Controlor@nd
in atomic sections implemented with transactional memarg a
with conventional locks. See (Wang et al. 2008a) for a dedtail
review of four traditional approaches to deadlock (staéitedtion,
static prevention, dynamic detection, and dynamic avaidpand
two new proposals (“healing” and “immunity”).

Discrete Control Theory has matured rapidly since the seimin
work of (Ramadge and Wonham 1987). Comprehensive textbooks
facilitate graduate-level education in Discrete Contfedgsandras
and Lafortune 2007) as the research community expandsdhe fr
tier of DCT results. The prior work closest our own involvesad-
lock avoidance in manufacturing systems (Li et al. 2008)ictvh
admit restricted models that facilitate analysis and airgtynthe-
sis; however such models are inappropriate for concurcdtware.
Furthermore, much research in this area either fails teeaehiax-
imal permissiveness or requires explicit exploration @& thach-
able state space. Our contributions are to leverage Dés€en-
trol as a principled foundation for dynamic deadlock avoiiin
general-purpose software, and to achieve both scalabitiymax-
imal permissiveness.

Several recent approaches allow programmers to define @tomi
sections that are guaranteed to execute atomically andlatiisn.
Transactional Memory (TM) implements atomic sections bii-op
mistically permitting concurrency, detecting conflictsarg con-
current atomic sections and resolving them by rolling bacxi-e
cution (Larus and Rajwar 2007). Rollback is not an optiorr-f i
revocable actions such as I/O occur within transactionssboh
transactions can be supported as long as they are seri@itadd
et al. 2008). This is the approach taken in the Intel pro®tym
compiler (Intel). Unfortunately, such serialization cagdade per-

The bug was fixed in 2.2.21 but returned in 2.3.13 when new code formance and can prevent software from fully exploitingitade
was added. The whole program has 1,795 functions and 41 lock physical resources (Wang et al. 2008a).

types (i.e., distinct types of structures that contain £)ckVe an-
notated OpenLDAP’s internal wrapper lock functions andosher
pairs of lock/unlock functions that operate on file or datablacks
or call OpenLDAP’s wrappers through pointers. Our implemen

An alternative approach to implementing atomic sectioresus
conventional locks rather than transactions and attenopésso-
ciate locks with atomic sections in such a way as to maximize c
currency (McCloskey et al. 2006; Isard and Birrell 2007; Emm



et al. 2007; Cherem et al. 2008). In the simplest case, alisloc
associated with an atomic section are acquired upon enttigeof
section and released upon exit, which reduces concurréfare
fine-grained locking strategies acquire locks lazily andébease
locks eagerly; however, lazy acquisition immediately ptio ac-
cesses of protected variables can imply incorrect lockrorgeand
thus deadlock.

In contrast to the paradigm of atomic sections, our approach

brings benefits to legacy lock-based code, imposes no pesfure
penalty on 1/O within critical sections, and exploits degdiknowl-
edge of all possible whole-program behaviors to maximizeoo
rency. Locks provide a more nuanced language for expresding
lowable concurrency than existing implementations of atasec-
tions, and our approach preserves this benefit. At the samee diur
approach restores the composability that locks destroyeasdres
deadlock freedom, just as atomic sections do.

8. Conclusions

This paper has demonstrated that Discrete Control Theay pr
vides a formal foundation for dynamic deadlock avoidanceir-
tithreaded software. We construct program models withctiral
features (siphons) corresponding to undesirable runtiemaviors
(deadlocks), and use DCT to synthesize runtime controt|tt
provably avoids the latter by constraining the former. Qapraach
effectively eliminates deadlocks from the original pragravith-
out silently introducing new deadlocks or global perforicabot-
tlenecks. The control logic that we synthesize is maximpky-
missive, ensuring that runtime concurrency is maximizeat. &p-
proach furthermore reduces runtime overheads by perforthia
most computationally expensive steps (siphon analysisSBfel)
offline, which minimizes the online costs associated with@n-
trol logic. In essence, DCT control logic synthesis perfeardeep
whole-program analysis that compactly encodes contesdiip
foresight, allowing the runtime control logic to adjudiealbck
acquisition requests quickly, based on current prograrte stad
worst-case future execution possibilities.

Extensive experiments with a C/Pthreads prototype confiah t
our approach scales to real software, eliminates both alftwoc-
curring and injected deadlock faults, and adds negligibl@éodest
performance overhead. Like atomic sections, our apprasstbnes
composability and thereby reinstates the cornerstonesogfam-
mer productivity, divide-and-conquer problem decompositind
software modularity. Unlike atomic sections, our approadback-
ward compatible with legacy code and programmers. Becduse i
neither forbids nor penalizes arbitrary I/O in critical Begs, it
sometimes enables software to exploit available physesaurces
more fully than atomic sections.
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