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Abstract—Performance-oriented optimizations have been successful by making transistor faster and smaller. However, the computer
systems are becoming less reliable as optimizations increase their susceptibility to transient faults by reducing various design margins.
The device cannot handle electromagnetic noise properly and naturally, the transient fault may lead to system failures or data
corruptions. Given that transient fault occurs randomly in both time and space, the protection strategy should be constantly activated.
Thus, the protection strategy should be cost-efficient and lightweight to be practical. In this paper, we propose RSkip which is a
lightweight software-only protection technique. It focuses on minimizing the number of dynamic instructions for the fault protection.
Rather than re-executing expensive identical computations, the output of re-computation is approximated and compared to validate
execution. When the actual computation and estimation agree within predefined error bound, the computation is assumed fault-free
and the expensive re-computation can be skipped. Prior instruction duplication work shows 2.89× normalized execution time compared
to unreliable execution over five compute-intensive benchmarks. With negligible loss of protection rate, RSkip reduces the overhead to
1.20× by skipping 83.91% of re-computations.

Index Terms—Approximate Computing, Software-based Fault Protection, Value Prediction
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1 INTRODUCTION

O VER the past decades, researchers have been focusing
on enhancing performance by reducing design mar-

gins, such as noise margins. However, the technologies
make devices less reliable since the hardware with tight
noise margins cannot handle electromagnetic noise prop-
erly. To protect against such faults, diverse techniques intro-
duce redundancy at different levels ranging from hardware
to software. In general, hardware techniques are effective
but inevitably require the expensive design modification.
Thus, researchers have proposed techniques exploiting re-
dundant multithreading [1], [2], [3], [4] or instruction du-
plication under the guidance of the compiler [5], [6], [7],
[8]. In particular, SWIFT [6] (SWIFT-R [7] with recovery),
proposes software-only protection methodology and pro-
vides inspiration to recent explorations [8], [9]. However,
the slowdown caused by increased dynamic instructions
remains a concern which needs to be addressed.

In this paper, we focus on minimizing the runtime
instruction overhead of instruction duplication-based pro-
tection strategy. We postulate that redundant instructions
for protection techniques (referred to as re-computation) can
be bypassed if the computation result can be predicted
correctly. Otherwise, the re-computation must be executed
to investigate a possible transient fault. Unlike traditional
approximate computing techniques [10], [11], [12], mispre-
dictions only cause run-time overhead without producing
incorrect output since the prediction is used only for valida-
tion. To design an accurate and lightweight predict function,
we exploit output similarity from output elements in spatial
locality that are common in many applications. Based on
output similarity, dynamic interpolation is proposed to esti-
mate a computation result for a data element by capturing
a local trend at runtime. By substituting the expensive re-
computation with a linear equation, the large benefit can be
achieved.

We propose RSkip, a static compilation system based
on LLVM [13]. The system accepts the source code for
unreliable program and creates a lightweight and resilient
executable with full protection (fault detection and recov-
ery). It is a fully automatic process without any hardware
modification or additional work from the programmer.
Runtime management is also inserted to deal with input
variance. Throughout the paper, a Single Event Upset (SEU)
fault model, which assumes an exact one-bit flip during the
entire execution, is adopted as the fault model. Also, given
that the commercial DRAMs are already protected by error
correction codes (ECC), memory is assumed to be safe from
the transient fault.

The major contributions of this work are as follows:

• We propose RSkip, a fully automatic compilation
infrastructure, that provides lightweight and reliable
execution. Over five compute-intensive benchmarks,
RSkip shows 1.20× slowdown compared to the unre-
liable execution. In contrast, SWIFT-R presents 2.89×
slowdown.

• We extend the applicability of software approxi-
mate computing techniques. Beside performance op-
timizations for approximable applications, they can
be effectively adapted to detect faults in a cost effec-
tive and accurate manner.

• We introduce dynamic interpolation of loop out-
put values to detect transient faults in lieu of re-
computation. On average, 83.91% of re-computation
in our target loops are skipped.

• The runtime management is proposed to automat-
ically determine approximation aggressiveness to-
wards diverse inputs.



2 MOTIVATION

SWIFT(-R) duplicates instructions for fault detection (re-
covery requires triplication). At a synchronization point,
SWIFT-R validates computed values to identify a possible
transient fault. Synchronization points include store, branch
and possibly function calls depending on the approaches.
Once a fault is detected, a recovery mechanism will be
triggered. SWIFT-R, SWIFT with a recovery mechanism,
simply manages an additional copy of the program to
conduct majority voting at synchronization points (similar
to TMR). In general, a recovery mechanism can be stud-
ied independently. Because of the additional instructions
for protection, SWIFT(-R) often suffers from high runtime
overhead that may not be feasible in many situations (e.g.,
mobile device). Thus, we focus on reducing instruction over-
head. SWIFT(-R) [6], [7] and RSkip has distinct approaches
toward managing redundant copies of instructions. Rather
than having extra identical instruction sequences, RSkip
estimates computation results by using a simple prediction
approach (e.g., regression model). If the approximate and
original computation are similar, the output is considered
correct and the SWIFT re-computation is bypassed. Oth-
erwise, the re-computation will be performed to check for
possible existence of a fault. Note that mispredictions (false
positives) result in runtime overhead without having
direct impact on the program output. Missed faults can
occur with false negatives, but the error is explicitly
observed to be small, so such faults are unlikely to
damage output quality noticeably. When the values are not
suitable for approximation, such as a pointer for address
calculation or an induction variable, they are protected
with traditional instruction duplication. Given their low
computational overhead, their protection overhead remains
marginal.

To design lightweight and accurate estimation model, we
note output similarity. In general, spatio-value similarity [14]
arises when data elements with spatial locality tend to be
inherently consistent. Along with spatio-value similarity, we
observe the data elements with spatial locality tend to share
a certain trend. If trends can be captured efficiently, output
values can be estimated more accurately. Based on this idea,
dynamic interpolation is proposed to capture varying trends
and react to them at runtime. The prediction overhead stays
low by using a linear equation computed by two endpoints
to estimate data points between them. The outliers will
be considered as possible faults similar to perturbation
screening [15] and examined more carefully. With dynamic
interpolation, 83.91% of re-computations can be bypassed in
the selected benchmarks.

3 SYSTEM OVERVIEW

The overarching idea of RSkip is presented in Figure 1.
RSkip takes an unreliable source codes as an input and
automatically generates a lightweight resilient executable
without any hardware modification, extra work from the
programmer, and preprocessing on source codes or in-
put data sets. Optionally, the programmer can specify as
zero in specific code regions where 100% correctness is
necessary. A default error bound will be applied when
there is no annotation provided from the programmer. By
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Fig. 1: System Overview

using static analysis on source codes, the compiler auto-
matically detects optimization candidates containing certain
patterns and transforms the code into the resilient form.
Once the candidate is isolated, both approximate and non-
approximate versions are created and one of two versions
will be chosen at runtime. Non-approximation version of
code is generated by conventional duplication technique.
To react towards input diversity, runtime manager is also
included in the executable and determines the version of
the code. The non-approximation will be chosen in cases
where the approximation techniques does not show any
performance benefit. The codes, which are not identified as
the candidate, will be transformed into non-approximation
version without interaction with runtime management.

After one-time compilation process, the executable itself
will observe the pattern of trends (referred to as program
context). Program context can be quite different when the
program runs with varying input sets or the same code re-
gion is executed multiple times with different live-in values
within a single run. During the offline training process, it
starts learning the tuning parameter which represents ap-
proximation aggressiveness. At execution, runtime manager
creates a program signature using the runtime information for
each transformed code region. It represents program context
and is used to tune approximation aggressiveness for each
situation. Since program performs repeats identical compu-
tation on different input sets, a certain group of input sets
is likely to show a similar pattern of local trends. To group
input sets with alike trend patterns, we assume the inputs
that show similar statistics in the subset of data elements
tend to share similar program context. Given that dynamic
interpolation cuts phase dynamically based on recent slope
changes, the program context is calculated with the statistics
of slope changes. Also, two inputs might present similar
trends only at the specific regions. To handle such cases,
the executable will create program signature periodically
and may generate more than one signatures during a single
execution. During offline training phase, the best tuning
parameter for each created signature is saved in a table.
Later, on testing, runtime manager will create program
signature and reference the table by using the signature to
adjust its approximation aggressiveness during execution.

4 DYNAMIC INTERPOLATION

4.1 Target pattern
In this section, we explain the implementations of approx-
imation technique for the value prediction. Given the sig-
nificant amount of time that compute-intensive benchmarks
spend on loops, large loops are selected as main optimiza-
tion target. Furthermore, SWIFT(-R) often struggles at loops
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(b) At iteration 3 : Extend the current phase.
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(c) At iteration 7 : Cut the current phase.
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Fig. 2: The dynamic interpolation algorithm

due to repeating synchronization points which result in
increase of dynamic instructions with dependencies. There-
fore, the optimization for large loops is expected to bring
notable performance improvement. In this paper, the values
for store instructions in large loops will be predicted by em-
ploying dynamic interpolation. To apply optimization, the
compiler automatically searches for the preferable patterns
by conducting a thorough static analysis and transforms
them into the resilient version with the prediction model.
Nonetheless, certain essential information, such as loop trip
count, cannot be known at compilation time. Therefore,
the runtime management is inserted into the executable
to handle dynamic information properly. In addition, not
all large loops can benefit from our optimization. Certain
patterns of loops, like an initialization loop, already presents
low computation overhead. They are not considered as
optimization target, thus these will be filtered out by static
computation cost estimation. For simplicity, the computa-
tion containing loop or expensive function call are chosen
as our optimization target.

4.2 Implementation
The linear prediction made by interpolation is totally de-
pend on its two endpoints. In this paper, the data elements
between two endpoints are considered to be in a phase and
the length of a phase is also defined as stride. In general, due
to the total dependence on the input set, the phase length
cannot be determined statically. Therefore, the dynamic
interpolation algorithm needs to be intelligent enough to
maximize stride on a long trend or lower stride on widely
fluctuating values. For fault protection, multiple copies of a
program are executed together inside a single run. We note
an opportunity to utilize a copy of program as a runtime
guidance to cut the phase of a redundant copy dynamically.

Figure 2 demonstrates the dynamic interpolation algo-
rithm step by step. In this example, a program signature
and threshold (tuning parameter) are assumed to be known

for simplicity. Figure 2a shows the setup stage of a new
phase. Once the value for the first iteration is computed,
the algorithm proceeds to the next iterations to see if the
data elements are still in the same phase. Figure 2b shows
the extension stage. If a change in the latest two slopes
is less than the threshold, the previous phase extends its
stride. While the condition satisfies, the algorithm maintains
current phase and move onto the next iterations. Up to this
point, only original computations are performed without
making any prediction. Once a slope change is above the
threshold, the phase is defined with the previous iteration
and a linear prediction form the two endpoints is made
to validate each computation. The cut stage is described
at Figure 2c. When the difference between prediction and
original computation is less than error bound, the algorithm
assumes fault-free and bypass the re-computation. Other-
wise, re-computation is triggered for the exact validation.
The extension stage and cut stage are repeated after iteration
7 as in Figure 2d. The setup stage is no longer necessary as
the next phase starts at the end of current phase.

Fig. 3: The selected benchmarks. The impact of skipping
re-computation can be imagined by provided computation
type and location.
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Fig. 4: The result of the fault injection experiment. Each pro-
tection scheme is tagged with the name of the application.
(un : unprotected, sw : SWIFT-R, rs : RSkip)

5 EVALUATION

SWIFT-R [7] is chosen as the baseline for evaluation. Five
compute-intensive applications with large loops are chosen
as benchmarks from various domains. For detailed investi-
gation, benchmarks are selected by considering diversity of
detected patterns. The optimizations for the selected appli-
cations are important since most of them are heavily utilized
kernels for real-life applications. The characteristics of each
application are described in Figure 3. Both training inputs
and test inputs are randomly generated. Throughout the
experiments, a 20% error bound is assumed. The rationality
of the error bound will be discussed in the following section.

5.1 Reliability
The fault protection rate of our work is evaluated using Sta-
tistical Fault Injection (SFI) [9], [16] in Gem5 [17] with out-of-
order configuration of ARMv7-A. Each of five applications
is executed 1,000 times with a randomized single bit flip on
a register during each run. Due to the limitation of software-
only technique, special registers, such as program counter,
or stack pointer are excluded from the fault injection. Also,
faults are limited to injections that fall within the detected
loops to evaluate the reliability of RSkip. For analysis, the
simulation result is categorized into five classes: ”COR-
RECT”, ”SDC”, ”SEGFAULT”, ”CORE” and ”HANG”. If
an injected fault results in corrupted output data, the ex-
ecution is counted as ”Silent Data Corruption(SDC)”. If the
program tries to access wrong memory address and cause
the failure, it is counted as ”SEGFAULT”. It is regarded as
”CORRECT” only when the execution generates the correct
output without any error unlike the traditional approxima-
tion techniques that often allow a certain amount of error [9],
[18]. However, in this paper, even small output errors are
considered as unacceptable. Also, ”CORE” and ”HANG”
represent the cases for core dump and hang, respectively.

Figure 4 shows the fault protection rate of each pro-
tection scheme. For comparison, the unprotected program
is also included in the experimental results. On average,
68.00% of injected faults are masked on unprotected pro-
grams. And, they suffer from 28.5% SDCs and 3.08% SEG-
FAULTs. SWIFT-R shows a 97.82% protection rate, with the
occurrences of SDC and SEGFAULT decreased to 0.32% and
1.66%, respectively. Such failures are caused by limitations
of instruction duplication based techniques [6], [7]. With a
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Fig. 5: Normalized execution time with test inputs of each
benchmark

20% error bound, RSkip demonstrates a comparable level of
protection rate to SWIFT-R by exhibiting a 97.34% protec-
tion rate. The occurrences of SDC and SEGFAULT are also
reduced to 0.56% and 1.86%, respectively. Because of fuzzy
validation inherent with the approximation approach, the
SDC ratio of R-Skip is slightly higher than SWIFT-R. But,
the difference is negligible. As the protection rates of the
two approaches are very close, we can successfully prevent
the side effect of fuzzy validation with 20% of error bound.
Throughout the experiment, the occurrence for CORE and
HANG are measured less than 1%.

5.2 Performance Overhead

The performance of each protection scheme is measured by
running the benchmark executable with each approach on
an Intel Xeon CPU E31230 with 3.20GHz. It has four cores,
each with 32KB of I-cache and D-cache. The execution is
forced to use a single thread and the performance overhead
is measured after an automated training session with train-
ing inputs.

Figure 5 shows the performance with test inputs for all
benchmarks. The execution time of each protection scheme
is normalized by execution time of the unprotected pro-
gram. On average, 83.91% of re-computation can be sub-
stituted with value prediction. As a result, RSkip shows the
normalized execution time of 1.20× while SWIFT-R suffers
from 2.89× slowdown due to the repeating synchronization
points. The performance of previous work in conv2d is de-
graded by a large amount as the value is calculated in nested
loops with conditional statements inside them. In this case,
the benefit of skipping re-computation is clear. By skipping
89.83% of re-computation, RSkip shows the best-averaged
performance improvement among selected benchmarks.

6 RELATED WORKS

Transient fault mitigation techniques can be broadly classi-
fied based on the form of redundancies utilized : hardware
[19], [20], [21], thread [1], [3], [22] and instruction [5], [6], [7],
[8]. In general, hardware-based techniques are powerful but
expensive while software-based techniques are cheap but
suffer from runtime overhead.

Especially, Oh et al. [5] first proposed instruction du-
plication based protection that replicates all instructions
including memory operations with additional validations.



However, the technique shows great slowdown due to
duplicated memory operations. To improve performance
for instruction duplication scheme, Reis et al. proposed
SWIFT [6] that removed unnecessary memory redundancies
by building system on the assumption that memory is
protected by ECC and restricting synchronization points.
However, SWIFT has weakness on the protection for branch,
load and store operations. nZDC [8] was proposed to tackle
down this problem. As SWIFT provides detection strategy
without recovery mechanism, Reis et al. expanded SWIFT
further with TMR-based instruction level recovery tech-
nique [7]. Diverse recovery techniques [23], [24] are also
explored. These recovery schemes can be integrated with
RSkip if applicable. To reduce the performance overhead of
traditional duplication scheme, the strategies injecting less
instructions for protection are explored [9], [18]. In contrast
to our work, they narrow down targets rather than utiliz-
ing approximate computing techniques. By introducing this
concept, a better performance can be achieved with RSkip.

7 CONCLUSION

Transient fault force protection strategies should be fast
and cost-efficient to be practical. In general, hardware-based
techniques are too expensive due to inevitable hardware
modification while software-based techniques suffer from
runtime overhead due to increased dynamic instructions.
RSkip demonstrated that the performance of the software-
only protection strategy can be significantly improved by
minimizing the number of additional instructions for pro-
tection scheme. By substituting the redundant computation
with cheap estimation, the expensive re-computation can be
bypassed. To design cost-efficient prediction model, the op-
portunity of utilizing the runtime information is explored.
Furthermore, a runtime management is integrated to handle
input diversity. As a result, the remarkable performance
improvement is achieved in five benchmark applications.
While SWIFT-R suffers from 2.89× slowdown compared
to the unreliable execution, RSkip only suffers 1.20× slow-
down by skipping 83.91% of expensive re-computation.
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