
Low-Cost Prediction-Based Fault Protection Strategy
Sunghyun Park

University of Michigan
Ann Arbor, Michigan, USA

sunggg@umich.edu

Shikai Li∗
University of Michigan

Ann Arbor, Michigan, USA
shikaili@umich.edu

Ze Zhang
University of Michigan

Ann Arbor, Michigan, USA
zezhang@umich.edu

Scott Mahlke
University of Michigan

Ann Arbor, Michigan, USA
mahlke@umich.edu

Abstract
Increasing failures from transient faults necessitates the cost-
efficient protection mechanism that will be always activated.
Thus, we propose a novel prediction-based transient fault
protection strategy as a low-cost software-only technique.
Instead of re-executing expensive computations for valida-
tion, an output prediction is used to cheaply determine an
approximate value for a sequence of computation. When
actual computation and prediction agree within a prede-
fined acceptable range, the computation is assumed fault-
free, and expensive re-computation can be skipped. With
our approach, a significant reduction in dynamic instruc-
tion counts is possible. Missed faults may occur, but their
occurrences can be explicitly kept to a small amount with
a proper acceptable range. For evaluation, we build an au-
tomatic compilation system, called RSkip, that transforms a
program into a resilient executable with the prediction-based
protection scheme. Prior instruction replication work shows
2.33× execution time compared to the unreliable execution
over nine compute-intensive benchmarks. With a control for
the loss in protection rate, RSkip can reduce the protection
overhead to 1.27× by skipping redundant computation in
our target loops at a rate of 81.10%.

CCS Concepts • Computer systems organization →
Reliability.

Keywords Reliability, Approximation computing, Redun-
dancy

∗This work was done while Shikai Li was a graduate student.

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are not
made or distributed for profit or commercial advantage and that copies bear
this notice and the full citation on the first page. Copyrights for components
of this work owned by others than ACMmust be honored. Abstracting with
credit is permitted. To copy otherwise, or republish, to post on servers or to
redistribute to lists, requires prior specific permission and/or a fee. Request
permissions from permissions@acm.org.
CGO ’20, February 22–26, 2020, San Diego, CA, USA
© 2020 Association for Computing Machinery.
ACM ISBN 978-1-4503-7047-9/20/02. . . $15.00
https://doi.org/10.1145/3368826.3377920

ACM Reference Format:
Sunghyun Park, Shikai Li, Ze Zhang, and Scott Mahlke. 2020. Low-
Cost Prediction-Based Fault Protection Strategy. In Proceedings of
the 18th ACM/IEEE International Symposium on Code Generation
and Optimization (CGO ’20), February 22–26, 2020, San Diego, CA,
USA. ACM, New York, NY, USA, 13 pages. https://doi.org/10.1145/
3368826.3377920

1 Introduction
Over the past decades, researchers have strived to reduce
diverse design margins (e.g., noise margin) to maximize per-
formance. However, as tight noise margin is often unable to
handle electromagnetic noise properly, computer systems
are becoming more susceptible to transient faults which may
lead to execution failures [8, 9, 22, 24, 47]. To prevent such
failures, diverse techniques introduce redundancy at differ-
ent levels ranging from hardware to software. Since a tran-
sient fault can occur in random location at any given time,
the protection strategy must constantly be activated. Also,
given that a failure from a transient fault happens rarely
at each device perspective, the protection scheme should
be fast and cost-efficient to be practical. In general, hard-
ware techniques are powerful but inevitably require design
modification and often at high cost. To reduce excessive hard-
ware cost, researchers have proposed software techniques
such as Redundant Multithreading (RMT) [14, 23, 29, 39] or
instruction duplication under the guidance of the compiler
[11, 25, 30, 31]. To provide protection, RMT-based techniques
run a redundant thread simultaneously on available built-
in resources and validate computations through complex
communications between threads. The doubled resource uti-
lization allows for the fast concurrent execution of redundant
thread but generally suffer from high energy consumption
[19]. Rather than creating a redundant thread, instruction
duplication based techniques clone instructions and compare
values inside the thread without any additional resources
and complicate validation process. Continuous works from
Princeton, including the detection strategy called SWIFT [31]
and full protection (both detection and recovery) strategy
called SWIFT-R [30] 1, propose compiler-directed instruction

1SWIFT with TMR-based recovery mechanism.

https://doi.org/10.1145/3368826.3377920
https://doi.org/10.1145/3368826.3377920
https://doi.org/10.1145/3368826.3377920

CGO ’20, February 22–26, 2020, San Diego, CA, USA Sunghyun Park, Shiaki Li, Ze Zhang, Scott Mahlke

duplication techniques and provide inspiration to recent ex-
plorations [11, 17]. By optimizing instruction duplication,
their techniques successfully protect a program with the
improved performance overhead. However, slowdown due
to increased dynamic instructions remains a concern which
needs to be addressed.
This paper proposes a novel prediction-based protection

strategy that greatly alleviates run-time overhead of instruc-
tion duplication scheme. Without any extra hardware, our
strategy focuses on reducing dynamic instructions that must
be executed for protection. We postulate that replicated in-
structions employed by software protection techniques (re-
ferred to as re-computation) can be bypassed if software ap-
proximation techniques can predict fault-free computation
result correctly. Otherwise, re-computation must be trig-
gered to check for a possible transient fault. In such cases,
mispredictions cause run-time overhead, but not incorrect
output like traditional approximate computing techniques
[1, 33, 37]. Avoiding any direct impact on the final output of
a program, the prediction is used only for validation. This
approach may result in missed faults, but we show that their
occurrences can be effectively controlled. Sacrificing some
protection quality for significant performance improvement
is not a new idea [17, 41]. However, our work investigates a
different approach in leveraging the trade-off.
We introduce RSkip, a prototype of the automatic compi-

lation system that provides the prediction-based fault pro-
tection. The system accepts unprotected source code and
creates a fast and resilient executable. Since we observed
traditional instruction duplication works [11, 30, 31] often
suffer at the loop due to its recurring synchronization points,
RSkip focuses on improving the protection cost for the loop.
As an accurate and lightweight predictor, dynamic interpo-
lation is proposed to estimate computation results in the
loop by capturing local trends at runtime. A large saving in
run-time instruction overhead is possible by replacing the ex-
pensive re-computation with a linear equation. As a fallback
predictor, approximate memoization [33] is also employed.
Throughout the paper, a Single Event Upset (SEU) fault

model is adopted and the memory system is assumed to
be protected given that the commercial DRAMs and caches
equip Error Correction Codes (ECC) [31]. Our major contri-
butions are as follows:

• We propose a novel prediction-based protection strat-
egy and demonstrate that software approximate com-
puting techniques are not limited to performance opti-
mization in applications that can tolerate output error.
Rather, they can be effectively adapted to detect tran-
sient faults in a cost effective and accurate manner.
Although this work demonstrates the effectiveness of
our new protection strategy by using two loop out-
put estimation techniques targeting several popular
computation patterns, its applicability can be broaden

with new approximation technique that has a wider
target.

• By leveraging the acceptable loss in protection rate 2,
our work reduces the number of dynamic instruction
greatly to 42.82% while alleviating overhead 1.8× com-
pared to the conventional approach.

• Two approximation techniques are adopted as the pre-
diction model: Dynamic Interpolation and Approximate
Memoization. We newly propose dynamic interpola-
tion that utilizes redundancy for accurate low-cost
value prediction. Also, performance and efficiency of
approximate memoization are improved from the pre-
vious work [33]. With both models, RSkip can bypass
81.10% of re-computation in our target loops.

• Run-time management system is inserted to handle
run-time dynamics (e.g., diverse inputs). Context sig-
nature is suggested to diagnose the current situation
and give an indication to tune approximation aggres-
siveness.

2 Motivation and Idea
Conventional instruction duplication techniques [11, 30, 31]
replicate the exact same sequence of instructions for fault
detection 3 and compare computed values at synchronization
points to identify a mismatch which can be a transient fault.
Synchronization points include store, branch and possibly
function calls depending on the implementation. If a fault is
detected, a recovery mechanism will be triggered. Because
of the extra instructions for re-computation and validation,
previous approaches often suffer from high run-time over-
head that may not be feasible in many situations (e.g., mobile
device). Thus, we consider alternatives to reduce overhead.

Figure 1 illustrates the overarching idea of our prediction-
based approach in comparison to conventional approaches.
Two strategies adopt distinct approaches toward managing
redundant copies of instructions for verification. In the figure,
recovery routine is omitted for simplicity.
Figure 1a highlights the concept of the conventional in-

struction duplication techniques. Even without considering
extra overhead for recovery, the previous detection tech-
niques perform more than 2× dynamic instructions as the
unprotected program due to extra instructions for duplica-
tion and validation 4. As a result of parallelism inside modern
processors, slowdown of conventional detection techniques
is reported less than 2× [31]. Yet implications suggest that
previous approaches would suffer from a large overhead
when it is unable to fully utilize parallelism to cover increased
dynamic instructions. For instance, periodic reaching of syn-
chronization points adds dynamic instructions with depen-
dencies for validations, often causing previous approaches
25 percentage point loss is considered acceptable. See Section 7.3 for details.
3Recovery requires additional instructions.
4With recovery mechanism, the full protection scheme may need to execute
more than 3× [30].

Low-Cost Prediction-Based Fault Protection Strategy CGO ’20, February 22–26, 2020, San Diego, CA, USA

Redundant copy

à Re-compute

Original copy

…
…
.

…
…
.

=

Ld Ld Ld Ld

"""

+ +

(a) Conventional

Original copy

Benefit

Prediction

Model

…
…
.

!

Ld Ld Ld

""

+ +

Redundant copy

à Predict

(b) Prediction-based

Figure 1. Idea of each protection strategy. (a) Re-compute
and validate. (b) Estimate and fuzzy-validate.

to struggle at the loop. Given that compute-intensive pro-
grams consume significant amount of time on the loop, it can
be a serious drawback. This phenomenon will be discussed
further with the experimental data in Section 7.
Rather than replicating identical chains of instructions,

prediction-based approach estimates computation results by
using software approximation techniques as shown in Fig-
ure 1b. If prediction and original computation agree within
the predefined acceptable range, the original computation
is assumed correct and used to proceed the rest of program
execution without re-computation. In this work, relative dif-
ference is used to define acceptable range. Naturally, benefit
will be the cost gap between re-computation and prediction
model. Otherwise, a value is considered as a perturbation
which may be a possible fault as in perturbation screen-
ing [26, 32]. In such a case, re-computation will be triggered
for the exact validation. Thus, mispredictions (false posi-
tives) result in run-time overhead without having a di-
rect impact on the program output since estimations
are only used for validation. Traditional approximation
technique requires high prediction accuracy as it replaces
the original computation and thus directly influences pro-
gram output quality. However, in our approach, prediction
accuracy requirement can be relaxed: we only need enough
accuracy to recognize perturbation at runtime.

Due to the existence of fuzzy validation, a small error may
avoid fault detection. A fault must satisfy two conditions to
avoid prediction-based fault detection and cause a failure.
First, a transient fault should modify the value in the original
copy within the acceptable range. Otherwise, correction will
be invoked. Note, a fault occurred in the redundant copy does
not influence the final output of the program since the copy
is only used for validation.Therefore,missed faults (false
negatives) can occur, but their occurrences can be ex-
plicitly kept to a small amount with proper acceptable
range.With reasonable acceptable range, we can effec-
tively control the occurrence of false negatives with
consideration for the trade-off for the significant per-
formance improvement. To set a reasonable acceptable
range, the occurrence of false negatives is investigated in
Section 7.2. Secondly, the corrupted value must be fatal to

0

10

20

30

40

50

60

70

80

90

100

C
ov

er
ag

e
of

 P
re

di
ct

ab
le

C
om

pu
ta

tio
ns

 (%
)

Trend Top 10

Figure 2. Proportion of dynamic instructions whose compu-
tation outputs can be estimated. Measured in Rodinia [10]
benchmark suite.

program fidelity. To avoid this situation, we do not apply
approximation on particular types of values, such as pointers
or loop induction variables, that can significantly impact pro-
gram correctness. Thus, they are protected with traditional
instruction duplication. Usually, their impact on performance
is marginal due to their low computational overhead.
To maximize benefit from prediction-based protection, a

approximation model should naturally be lightweight and ac-
curate. Since prior works struggle from high protection over-
head over the loop on which a compute-intensive program
usually spends significant time, we choose the loop as the
main optimization target and design specialized prediction
models for the loop. To find an opportunity, we investigate
outputs of major loops in Rodinia benchmark suite [10] and
observe the following phenomena: (1) outputs produced in
consecutive iterations tend to share a certain trend. (2) since
the same computation is conducted repeatedly in a loop,
there may exist many repeating outputs. A trend in loop
outputs occurs along with spatio-value similarity [35] that
arises when data elements with spatial locality tend to be
inherently consistent. If a trend can be captured accurately,
it would be possible to efficiently estimate outputs that re-
quire a significant amount of computations. Compared to
previous work [35] that simply groups nearby similar values,
trend-based prediction can be more effective way of utilizing
spatio-value similarity by having a wider coverage (values
on the same trend might not necessarily have close values.).
Likewise, frequent output values can be used for predic-
tion. Figure 2 suggests the potentiality of such approaches.
We measure prediction accuracy of each method and reflect
impact of predictable computations. For the trend-based pre-
diction, data elements showing less than a certain amount of
changes in consecutive iterations are considered residing in
the same trend. However, sometimes, a few outliers irritate
the trend-based prediction. In this motivational experiment,
we manually handle those corner cases. Also, we examined
the effectiveness of a prediction method that only uses the
top 10 most frequent values. Our motivational experiment
shows that both prediction models present promising result,
implying the chance of bypassing more than 33% of dynamic
instructions of the entire program.

CGO ’20, February 22–26, 2020, San Diego, CA, USA Sunghyun Park, Shiaki Li, Ze Zhang, Scott Mahlke

Unreliable

Program

C
om

pi
le

r

Different

Input Sets

Run-time

Management

Reliable Code w/

Prediction-based

Protection (PP)

Reliable Code w/

Conventional

Protection (CP)

Executable with new protection scheme

Figure 3. System Overview

However, existing techniques are discovered to be inaccu-
rate or relatively expensive in capturing varying trends. A re-
gression analysis, for instance, requires a process of splitting
data elements to determine the coverage of a single equa-
tion. In general, however, such a split process is out-of-scope
for a regression analysis [21] and naive split policy would
result in incorrect estimations due to the tendency of total
dependence on the input. Also, a regression analysis may
require high training overhead since training should be done
for each equation separately. To overcome these challenges,
dynamic interpolation is proposed. Dynamic interpolation
learns how to split data elements to capture varying trends.
Rather than learning each equation during offline training,
dynamic interpolation computes a linear equation at runtime
by using two endpoints in each split and use the equation to
estimate values between those endpoints.

Although dynamic interpolation can capture rapidly chang-
ing short trends (e.g., data with low spatio-value similarity),
there is an upper bound for skipping re-computation as in-
terpolation cannot estimate values for endpoints. To skip
re-computations further, we introduce approximate memo-
ization [2, 3, 33] as a second-level predictor. Without depen-
dence on trends, the method substitutes expensive compu-
tation, such as the function call, with a single access to a
lookup table that stores popular repeating values.

Since approximate memoization is generally more expen-
sive than dynamic interpolation, the first prediction will
be made by dynamic interpolation. When the interpolation
turns out to be wrong, approximate memoization creates
a second prediction. Yet, this is profitable as the overhead
for two consecutive predictions can still be lower than the
overhead of the expensive re-computation. In blackscholes,
the relative cost between dynamic interpolation, approxi-
mate memoization, and re-computation measures 1:1.84:4.18
justifying our approach.

3 System Overview
RSkip is a prototype of fully automatic compilation system
that provides prediction-based protection. The system takes

1 for(i=start;i<end;i++){
2 price = BlkSchlsEqEuroNoDiv(sptprice[i], ...);
3 // Re-computations for 'price' will be

substituted.
4 prices[i] = price;
5 }

(a) Detected pattern in blackscholes: function call

1 for(j=i+1;j<size;j++){
2 sum = a[j*size+i];
3 for(k=0;k<i;k++)
4 sum -= a[j*size+k]*a[k*size+i];
5 sum = sum/a[i*size+i];
6 // Re-computations for 'sum' will be substituted.
7 a[j*size+i] = sum;
8 }

(b) Detected pattern in lud: loop

Figure 4. Detected patterns in real benchmarks

unreliable source code as an input and generates a light-
weight resilient executable. It requires no hardware modifi-
cation and no preprocessing on source codes or input data
sets. 5

Figure 3 outlines the concept of RSkip. By exploring source
codes, the compiler conducts a thorough static analysis (e.g.,
def-use chain) and detects optimization candidates. Since the
current prototype focuses on the loop, the compiler identi-
fies the loop that available approximation techniques target.
Once a target loop is isolated, two different versions of the
loop will be created: a reliable version with prediction-based
protection (PP) and a reliable version with conventional pro-
tection (CP). Later, at execution time, one of two versions
will be chosen by the run-time management which is de-
signed to handle the run-time dynamics. CP will be chosen
in cases where PP is expected to have no benefit. Code re-
gions which are not selected as the optimization target will
be transformed into the CP without PP and interaction with
run-time management.
After one-time compilation, the executable starts the of-

fline training process. It observes the run-time context (e.g.,
trend pattern for dynamic interpolation) to recognize the
current situation and learns how to adjust the approximation
aggressiveness. Run-time context can be altered when the
program runs with different input sets or the same code is
executed with different live-in values within a single run.
To react such a run-time dynamics, run-time management
uses the run-time data to create a context signature for each
of transformed code regions with PP. A signature depicts
the run-time context and is used to adapt approximation
methods. Section 5 describes further about context signature
and run-time management.

5In instances where an user desires the highest protection rate in a specific
code region, the acceptable range can be specified as zero by using pragma.
Otherwise, a default acceptable range will be applied.

Low-Cost Prediction-Based Fault Protection Strategy CGO ’20, February 22–26, 2020, San Diego, CA, USA

0

1

2

3

4

5

6

1 2 3 4 5 6 7 8

O
u

tp
u

t
V

al
u

e

Iteration

Start new phase

Action : Start new phase.

S
ta

rt
 a

 p
h

as
e

Original

value

(a) 1st iteration: Start a new phase.

0

1

2

3

4

5

6

1 2 3 4 5 6 7 8

O
u

tp
u

t
V

al
u

e

Iteration

Action : Keep current phase and

execute original computations.

!"#$%1

!"#$%2

& =
!"#$%2 ' !"#$%1

!"#$%1
()*

S
ta

rt
 a

 p
h

as
e

Extend current phase

(b) 3rd iteration: Extend the current phase.

0

1

2

3

4

5

6

1 2 3 4 5 6 7 8

O
u

tp
u

t
V

al
u

e

Iteration

Action : Cut the current phase

and conduct validation.
Skip

re-computation!

Skip

re-computation!
Skip

re-computation!

Further

Investigation!

Possible

fault! !"#$%1

!"#$%2

Prediction

value

Original

value

Linear

prediction & =
!"#$%2 ' !"#$%1

!"#$%1
> ()

S
ta

rt
 a

 p
h

as
e E

n
d

 a p
h

ase

AR

+,, > -.+,, / -.

(c) 7th iteration: Cut the current phase and conduct validation.

0

1

2

3

4

5

6

1 2 3 4 5 6 7 8

O
u

tp
u

t
V

al
u

e

Iteration

…

…

! =
"#$%&2 ' "#$%&1

"#$%&1
()*

Action : Keep current phase and

execute original computations.

"#$%&1

"#$%&2

Validated

E
n

d
 a p

h
ase

Start new phase & Extend

(d) After 7th iteration : Repeat (b) - (c)

Figure 5. Sketch of dynamic interpolation. Whenever slope change is above tuning parameter (TP), a phase is defined. During
the validation process at (c), a data element is considered as a possible fault if the difference between original value and
prediction value is greater than acceptable range (AR).

4 Prediction Techniques
As previously discussed, we chose approximation techniques
specialized to the loop. Since store is a synchronization point
which often requires heavy computation for its value operand,
our approximation techniques estimate values that will be
saved in the memory within the loop. However, loops with
certain types of value computation (e.g., pointer) or low com-
putation overhead (e.g., initialization) are not considered as
the approximation target loop. These will be filtered out by
the static analysis with the cost estimation. For simplicity,
we target the legitimate types of value computation contain-
ing the loop or the user function call that has the number
of instructions above threshold as in Figure 4. The current
approximation target may include data that is not generally
considered as approximable. However, since the approxima-
tion would be used only for validation, it would not harm
the protection quality until a missed fault occurs on the cor-
responding code segment in the original computation. The
missed fault would impact the protection quality according
to its influence on the program fidelity, thus our experimental
result reflects this factor.

4.1 Dynamic Interpolation
4.1.1 Target Computation Pattern
Dynamic interpolation targets computation that updates
values in the memory at every iteration. Either the expen-
sive function call (Figure 4a) or computation with the loop
(Figure 4b) can be replaced with a single linear equation.
Dynamic interpolation also works on multi-dimensional
array. For example, although Figure 4b had written with
multi-dimensional array, dynamic interpolation would still
be applied.

4.1.2 Implementation
Skip rate (i.e., the ratio of iterations skipping re-computation
in the loop) of dynamic interpolation largely depends on
how a phase (i.e., consecutive data elements that a single
equation covers) is sliced onto data elements to capture local
trends. Particularly, dynamic interpolation should be intelli-
gent enough to maximize stride (i.e., phase length) on a long
trend. When values fluctuate widely, it should lower stride.
In general, due to the tendency of total dependence on the
input, phase cannot be determined statically. To overcome
the challenge, we notice the opportunity to utilize the re-
dundancy inserted for protection mechanism: a copy of the
computation can be used as run-time guidance to cut the
phase of a redundant computation dynamically.

CGO ’20, February 22–26, 2020, San Diego, CA, USA Sunghyun Park, Shiaki Li, Ze Zhang, Scott Mahlke

Figure 5 demonstrates the dynamic interpolation algo-
rithm step by step. To decide approximation aggressiveness,
we introduce a tuning parameter (TP), which represents opti-
mistic expectation towards outliers on phase slicing. With a
higher TP, the algorithm tries to extend a stride more aggres-
sively by ignoring outliers. Although this example assumes
a TP is already known, in reality, it will be properly adjusted
by the run-time management. More details are explained in
Section 5. Figure 5a shows the setup stage for a new phase.
Once the first point is generated, the algorithm proceeds to
next iterations to see if an extension is possible. Figure 5b
presents the extension stage. If a change in the latest two
slopes is less than TP, a point is considered to reside in a
current trend. While the condition satisfies, the algorithm
keeps the current phase and proceeds to the next iteration.
Up to this point, only original computations are performed
and their results are saved in their original memory space
without allocating any extra space. In case that the loop
reads and updates same memory locations (e.g., A[i]+=1),
we allocate temporary space to keep the original value and
use it for re-computation. Although managing temporary
space occurs some overhead, our evaluation shows signif-
icant improvement is still possible (See benchmark lud in
Section 7.1.). If a slope change is above TP, the phase is cut at
the previous iteration. The cut stage is described in Figure 5c.
When a phase is defined, data elements in the phase are vali-
dated with a linear prediction computed by two endpoints. If
the original computation and the prediction agree within the
acceptable range, the algorithm assumes fault-free and by-
passes the re-computation. Otherwise, it suspects a possible
fault and triggers further investigations. Once the validation
for the current phase is done, the next phase starts. In this
case, the setup stage is no longer necessary. Therefore, the
extension stage and the cut stage are repeated after iteration
7 as shown in Figure 5d. Note, our work did not set any upper
bound for a stride.

4.2 Approximate Memoization
4.2.1 Target Computation Pattern
To apply this method, the computation should generate the
identical output on the same input set without any side effect
(i.g., I/O execution). Also, the number of inputs should be
reasonably limited as lookup table size is expected to grow
exponentially. These strict requirements force the technique
to have narrower applicability than dynamic interpolation.

4.2.2 Implementation
Due to the limited memory space, a lookup table cannot
contain all possible cases. Therefore, approximate memoiza-
tion will group the nearest inputs through the quantization
process and make them access the same entry in the lookup
table. Naturally, its accuracy and performance entirely de-
pend on the table size and the quantization-based address
calculation. In general, a larger table shows higher accuracy,

but its size should be determined with consideration for both
memory size and performance benefit. An overly large table
may not fit in the cache and induce complexity to the quan-
tization process along with the address calculation. Given
that the technique should perform the quantization-based
address calculation for every inference, its complexity will
affect access time towards the memorized result. If the pre-
diction target is computed by many inputs with a diverse
spectrum of values, the lookup table size needs to grow large
enough to cover a variety of input combinations while being
able to return saved results faster than original computation
time. Therefore, it is important to find an intelligent lookup
table management strategy and the quantization becomes
a key process in lookup table construction. In general, the
construction algorithm determines the number of quantiza-
tion levels for each input by assigning a certain number of
bits in the address bits. Since the width of the address bits
is decided by the lookup table size, the smart management
strategy should be able to distribute the limited number of
bits to each input while maximizing prediction accuracy.
To overcome this challenge, Samadi et al.[33] propose the
systematic quantization method with the bit tuning process.
By allowing more bits, the technique enables inputs with
higher impact on the final output to better differentiate their
input sets. After bit tuning, both minimum and maximum
values for each input are used to determine the coverage
of each quantization level. With the assumption that inputs
are uniformly distributed, they equally divide the region be-
tween the minimum and maximum values into the assigned
number of quantization levels. But, when inputs do not fol-
low a uniform distribution, significant inefficiency may arise
with this approach. Therefore, in this paper, the coverage of
each quantization level is dynamically determined based on
the profiling analysis. For dynamic determination, we first
build a histogram with narrow-ranged uniform-length bins
and gradually combine nearby less-crowded bins. It becomes
apparent the new approach is able to build a more efficient
lookup table than the previous work. At blackscholes, the
previous approach encodes three inputs out of six with 15bit-
wide address. Upon the same function, our approach encodes
six inputs with an equal width of the address. Naturally, ac-
curacy is improved from 96.5% to above 99% when testing
with given representative inputs in the benchmark suite [6].
Once compiler statically identifies candidate loops, lookup ta-
bles will be constructed and examined during training phase.
If the lookup table shows good prediction accuracy with
training data, it will be deployed at runtime. However, when
run-time performance is not as good as expected, run-time
management may disable the deployment.

5 Run-time Management
Since traditional approximation techniques replace the orig-
inal computation, Quality-of-Service (QoS) management is
a key process to guarantee a certain level of output quality

Low-Cost Prediction-Based Fault Protection Strategy CGO ’20, February 22–26, 2020, San Diego, CA, USA

Table 1. Selected benchmarks. The impact of skipping re-computation can be imagined by provided computation type and
location. Both training input and test input are randomly generated or selected without any intersection.

Benchmark Application domain Description Computation type of prediction target Location of detected loops Input
conv1d Signal processing, Machine learning 1D convolution A reduction loop Inside a outer loop 4048 integers

conv2d Signal processing, Machine learning 2D convolution Nested reduction loops
with conditional statement

Inside a outer loop 200*200 integers for input vector,
15*15 integers for kernel

sgemm [40] Linear algebra General matrix multiplication Nested reduction loops Inside a outer loop 1024*1024 integer matrices
kde [20] Machine learning Kernel Density Estimation Nested reduction loops Inside a outer loop 1500 float vector

forwardprop [10] Machine learning Forward propagation
for the fully connected neural network A reduction loop · 1024*1024*1024 network

backprop [10] Machine learning Backward propagation
for the fully connected neural network A reduction loop · 1024*1024*1024 network

blackscholes [6] Finance Stock price prediction model A function call Inside a outer loop 65536 cases
lud [10] Linear algebra LU decomposition A reduction loop with a varying trip count Inside a outer loop 1024*1024 float matrices

YOLOv2 [27, 28] Machine learning, Computer vision Real time object detection A reduction loop Inside a outer loop 0.1 ~10MB images

0

0.5

1

1.5

2

2.5

3

L
oo

p
 o

u
tp

u
t

Iteration

O
b

se
rv

e

Adjust Adjust Adjust

O
b

se
rv

e

O
b

se
rv

e

Tuning Parameter

Generate

signature

Ask

QoS model

…

* Context signature:

…

Generate

signature

Ask

QoS model

Generate

signature

Ask

QoS model

Figure 6. An example of run-time management for dynamic
interpolation. Run-time management periodically generates
context signatures by summarizing the current run-time
context to adjust TP based on the QoS model.

while providing significant performance improvement [5,
18, 34]. Green [5] is the representative framework that guar-
antees QoS of approximation techniques at runtime. Before
its deployment, Green constructs a QoS model at offline by
using user-provided inputs. Later at deployment, the frame-
work observes the run-time context and adjust approxima-
tion decisions accordingly with its QoS model. To handle
input diversity, we follow a similar approach. In our work,
the prediction accuracy of each approximation method is
adopted as QoS metric. To provide high QoS, a context signa-
ture is defined to provide each approximation technique with
a meaningful summary of the run-time context. For dynamic
interpolation, the statistics of local trends can be a useful
indicator reflecting the run-time context. In our experiment,
we generate a signature by using histogram of slope changes
which implies the impact of TP. For example, signature "312"
means 3rd bin has the largest count followed by 1st bin and
2nd bin. Since the run-time context may change during an
execution, the management system periodically triggers ob-
servation and adjustment processes. Thus, an executable
may generate more than one signatures during its execution.
Figure 6 illustrates how the run-time management adjusts a
parameter for dynamic interpolation by using the context
signature. Blue line indicates output values across iterations.
Note, TP needs to be adjusted based on the slope changes

rather than the number of outliers. Since our dynamic inter-
polation algorithm will split phases into two at the outlier
when its divergence is greater than TP, a large TP is preferred
on a big trend to ignore small outliers. Therefore, our QoS
model will escalate TP in a long trend to extend the phase
aggressively. In contrast, the parameter should be decreased
in widely-fluctuating short trends to avoid wrong predic-
tions. The QoS model will monitor the prediction accuracy
at run-time and may disable the dynamic interpolation at
low accuracy. However, we could not observe this case in
our experiment. Since approximate memoization does not
depend on the parameter, its QoS model simply monitors the
occurrence of misprediction and disables its usage at poor
run-time accuracy.

6 Training
During the offline training phase, RSkip will build predic-
tion models and construct their QoS models. By utilizing the
training set provided by users, RSkip samples outputs from
detected loops. For dynamic interpolation, RSkip simulates
its algorithm on samples by sweeping various parameters
and monitors performance (e.g., skip rate) to identify the
best parameter for each signature. Note, we "simulate" algo-
rithm (i.e., phase-splitting and prediction) without repeatedly
running a real program to minimize training time. Once the
best parameter is identified, RSkip builds a QoS model which
includes a table containing (signature, best parameter) pairs.
Later at runtime, RSkip simply reference this table and load
the learned parameter when a signature is found. Otherwise,
we kept the previous tuning parameter although different
policies can be chosen. In addition, the lookup table will be
built by following our construction algorithm discussed in
Section 4.2. Then, during the inference phase, approximate
memoization makes predictions by simply reading memo-
rized results in the lookup table.

7 Evaluation
As described in Section 4, our prototype implementation of
RSkip targets a computation containing the loop or the user
function call as a candidate for prediction-based protection
scheme to evaluate its potential. When a program does not

CGO ’20, February 22–26, 2020, San Diego, CA, USA Sunghyun Park, Shiaki Li, Ze Zhang, Scott Mahlke

0

10

20

30

40

50

60

70

80

90

100
S

k
ip

 R
at

e
(%

)

AR20 AR50 AR80 AR100

(a) Average skip rate

0

0.5

1

1.5

2

2.5

3

3.5

4

4.5

N
o

r
m

a
li

z
e
d

 E
x
e
c
u

ti
o

n
 T

im
e

SWIFT-R AR20 AR50 AR80 AR100

(b) Normalized execution time

0

0.5

1

1.5

2

2.5

3

3.5

4

4.5

N
or

m
al

iz
ed

 N
u

m
b

er
 o

f

D
yn

am
ic

 I
n

st
ru

ct
io

n
s

SWIFT-R AR20 AR50 AR80 AR100

(c) Normalized number of dynamic instructions

0

0.5

1

1.5

2

2.5

3

3.5

4

4.5

N
o
r
m

a
li

z
e
d

 I
P

C

SWIFT-R AR20 AR50 AR80 AR100

(d) Normalized IPC

Figure 7. Test result with test inputs of each benchmarks (AR : Acceptable Range)

contain such computations, they are protected solely by the
conventional protection scheme. Therefore, nine applica-
tions with target computation types are chosen as bench-
marks from various domains. For a case study, diversity of
detected patterns is also considered during benchmark selec-
tion. The selected benchmarks represent compute-intensive
applications containing dominant loops. Especially, YOLOv2
is a successful real-life object detection application. Table 1
explains characteristics of each application. To ease prepara-
tion effort, both training inputs and test inputs are randomly
generated by using the input-generator or selected fromwell-
known image archives without any intersection between
them. If inputs can be selected manually, better training qual-
ity would be expected. Throughout the experiment, 20%, 50%,
80%, and 100% acceptable ranges 6 are assumed for RSkip
(labeled as AR20, AR50, AR80, and AR100 respectively). The
rationality of the acceptable range will be discussed in Sec-
tion 7.3. Note, approximate memoization is only applied to
blackscholes due to its strict requirement as previously dis-
cussed in Section 4.2. Without focusing on the improvement
of the recovery mechanism, the re-computation based re-
covery technique is chosen in this work and its impact is
reflected in our analysis. Since fault detection and fault recov-
ery mechanism can be investigated independently [17, 31], a
better recovery mechanism can be incorporated if applicable.
To handle interaction with the unmodified library function,
both schemes set the function call as the synchronization

6Relative difference is used in this work.

point. As baseline, SWIFT-R [30] is chosen since it is one
of the most well-known instruction duplication techniques
that provide full protection.The execution is forced to use a
single thread and the experiments are conducted after an au-
tomated training session with training inputs. The extension
for multi-threaded execution remains as the future work.

7.1 Performance Overhead
The performance of each protection scheme is measured by
running benchmarks on an Intel Xeon CPU E31230 with
3.20GHz. Also, papi library [44] is used to measure the num-
ber of dynamic instructions and Instructions Per Cycle (IPC).
Figure 7 shows the performance with test inputs for all

benchmarks. Figure 7a presents the ratio of iterations skip-
ping re-computation in the detected loop. Overall, 67.03% of
re-computation can be bypassed with the value prediction
at AR20. With a wider acceptable range at fuzzy validations,
the skip rate increases steadily with AR50 (75.67%), AR80
(78.73%), and AR100 (81.10%). The performance overhead
is also presented in Figure 7b. The entire program execu-
tion time of each protection scheme is normalized by
the execution time of the unprotected program. On av-
erage, SWIFT-R suffers from 2.33× slowdown due to repeat-
ing synchronization points. A 20% acceptable range shows a
1.42× slowdown with 67.03% skip rate. The performance also
improves due to the increasing skip rate as the acceptable
range grows.When the acceptable range is set 100%, the slow-
down is measured only 1.27×with 81.10% skip rate. By using

Low-Cost Prediction-Based Fault Protection Strategy CGO ’20, February 22–26, 2020, San Diego, CA, USA

0

20

40

60

80

100

0

0.5

1

1.5

2

2.5

AR20 AR50 AR80 AR100

S
k

ip
 R

ate (%
)

N
or

m
a

li
ze

d
 E

xe
cu

ti
o

n
 T

im
e

Normalized Execution Time (Dynamic interpolation only)

Normalized Execution Time (Dynamic interpolation + Approximate memoization)

Skip Rate (Dynamic interpolation only)

Skip Rate (Dynamic interpolation + Approximate memoization)

(a) Test result in blackscholes.

0

0.5

1

1.5

2

2.5

3

3.5

4

4.5

5

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20

av
er

ag
e

0

10

20

30

40

50

60

70

80

90

100

N
or

m
al

iz
ed

 E
xe

cu
ti

o
n

 T
im

e

Test Input ID

S
k

ip
 R

ate (%
)

SWIFT-R RSkip (AR20) Skip Rate

(b) Test result of AR20 in lud.

Figure 8. The detailed analysis for two selected benchmarks

skip rate, frequency of recovery mechanism can be rougly
estimated. To further understand the experimental results,
the normalized number of dynamic instruction and IPC for
the entire program execution are presented in Figure 7c and
Figure 7d respectively. SWIFT-R executes 3.48× dynamic in-
structions while having only 1.47× IPC improvement. As the
increase of IPC is not enough to hide the additional instruc-
tions for protection, the technique suffers from slowdown.
On the other hand, RSkip achieves performance improve-
ments by inserting significantly fewer instructions while
having a similar level of IPC with an unprotected program.
AR20 inserts only 1.71× additional instructions which can
be decreased further by 1.49× at AR100.

The performance of SWIFT-R is degraded by a large amount
in conv2d as the value is calculated in nested loops with con-
ditional statements inside them. Because of recurring syn-
chronization points in the code with a complicated control
flow, SWIFT-R cannot exploit the hardware parallelism well
enough so that its IPC is almost the same with the unpro-
tected program. At the same time, it executes 3.97× extra
instructions for repeating validations. In this case, the ben-
efit of skipping re-computation is significant. By skipping
86.67% of re-computation, AR20 shows the best-averaged
performance improvement in conv2d among selected bench-
marks. And the performance can be improved further with
broader acceptable ranges.
blackscholes shows the highest skip rate, which is above

99%, with every acceptance rate due to the existence of ap-
proximate memoization as a second-level predictor. Inter-
estingly, even without the significant change in skip rate,
the performance improvement is still observed when the
acceptable range grows. To understand this phenomenon,
the detailed analysis is conducted for this application as
shown in Figure 8a. The figure evaluates the presence of the
fallback predictor by comparing both normalized execution
time and skip rate. Without approximate memoization, AR20
shows 2.07× runtime overhead with 11.47% skip rate and the
gradual improvement is observed as the acceptable range
broadens. With 100% of acceptable range, the skip rate of
dynamic interpolation increases up to 67.03% resulting in
1.50× slowdown. This can explain the gradual performance

improvement of the RSkip with the presence of secondary
predictor. When the re-computation is skipped at the sec-
ondary predictor, the estimation cost includes the overhead
of the first prediction as well as the second predictor. Al-
though, the cost is cheaper than re-computation, it is quite
expensive given the relatively high cost of approximate mem-
oization. Thus, the contribution of the first-level predictor
in the skip rate has a noteworthy impact. Consequently, as
shown in Figure 8a, the performance of RSkip 7 can still im-
prove even among the similar skip rates due to the increase
of the contribution from the first predictor in the skip rate
with broadened acceptance rate.

To assess the impact of input diversity, the variance in
performance and skip rate towards different test inputs are
observed with AR20. Figure 8b presents a representative
result with lud. Mostly, performance and skip rate are mea-
sured close to 1.15×with 90.00% respectively. The worst case
is measured as 1.59× slowdown with 55.00% skip rate. Yet,
significant enhancement from SWIFT-R is observed. The best
case is measured as 1.07× slowdown with 97.15% skip rate.
In this case, the overall run-time overhead for full protec-
tion scheme (detection + recovery) is only 7% of unprotected
program execution.

7.2 Reliability
The reliability aspect is evaluated using Statistical Fault In-
jection (SFI) [12, 17] in Gem5 simulator [7]. Each of nine
benchmarks is executed 1,000 times on the out-of-order cores
with a configuration of ARMv7-A. By following the previous
work [17], a single bit flip is injected randomly into the sim-
ulated processor during each run. In our reliability evalu-
ation, faults are only injected into the detected loops
to strictly evaluate the reliability of prediction-based
protection approach. Note that, in real-life execution,
a fault can occur at regions outside of detected loops
that are protected by the traditional approach.

The simulation result is categorized into five classes:
• Correct: The execution generates correct output with-
out any data corruption. Conventional approximation

7RSkip employs both dynamic interpolation and approximate memoization

CGO ’20, February 22–26, 2020, San Diego, CA, USA Sunghyun Park, Shiaki Li, Ze Zhang, Scott Mahlke

0

10

20

30

40

50

60

70

80

90

100

U
N

S
A

F
E

S
W

IF
T

-R

A
R

2
0

A
R

5
0

A
R

8
0

A
R

1
0

0

U
N

S
A

F
E

S
W

IF
T

-R

A
R

2
0

A
R

5
0

A
R

8
0

A
R

1
0

0

U
N

S
A

F
E

S
W

IF
T

-R

A
R

2
0

A
R

5
0

A
R

8
0

A
R

1
0

0

U
N

S
A

F
E

S
W

IF
T

-R

A
R

2
0

A
R

5
0

A
R

8
0

A
R

1
0

0

U
N

S
A

F
E

S
W

IF
T

-R

A
R

2
0

A
R

5
0

A
R

8
0

A
R

1
0

0

U
N

S
A

F
E

S
W

IF
T

-R

A
R

2
0

A
R

5
0

A
R

8
0

A
R

1
0

0

U
N

S
A

F
E

S
W

IF
T

-R

A
R

2
0

A
R

5
0

A
R

8
0

A
R

1
0

0

U
N

S
A

F
E

S
W

IF
T

-R

A
R

2
0

A
R

5
0

A
R

8
0

A
R

1
0

0

U
N

S
A

F
E

S
W

IF
T

-R

A
R

2
0

A
R

5
0

A
R

8
0

A
R

1
0

0

U
N

S
A

F
E

S
W

IF
T

-R

A
R

2
0

A
R

5
0

A
R

8
0

A
R

1
0

0

conv1d conv2d sgemm kde blackscholes lud forwardprop backprop YOLOv2 average

O
cc

u
rr

en
ce

s
(%

)

Correct SDC Segfault Core dump Hang

(a) Fault injection experiment : 1,000 faults are injected for each benchmark.

0

5

10

15

20

25

30

35

40

45

50

A
R

2
0

A
R

5
0

A
R

8
0

A
R

1
0

0

A
R

2
0

A
R

5
0

A
R

8
0

A
R

1
0

0

A
R

2
0

A
R

5
0

A
R

8
0

A
R

1
0

0

A
R

2
0

A
R

5
0

A
R

8
0

A
R

1
0

0

A
R

2
0

A
R

5
0

A
R

8
0

A
R

1
0

0

A
R

2
0

A
R

5
0

A
R

8
0

A
R

1
0

0

A
R

2
0

A
R

5
0

A
R

8
0

A
R

1
0

0

A
R

2
0

A
R

5
0

A
R

8
0

A
R

1
0

0

A
R

2
0

A
R

5
0

A
R

8
0

A
R

1
0

0

A
R

2
0

A
R

5
0

A
R

8
0

A
R

1
0

0

conv1d conv2d sgemm kde blackscholes lud forwardprop backprop YOLOv2 average

O
cc

u
rr

en
ce

s
(%

)

Correct SDC Segfault Core dump Hang

(b) Measurement of false negatives.

Figure 9. The result of the fault injection experiment. Each protection scheme is tagged under every application.

methods often ignore certain amount of error [1, 33,
37] in the output quality. However, our evaluation
considers even small output errors as bad quality
and only 100% of output quality as "Correct".

• Silent Data Corruption (SDC): An influence of single
bit flip silently remains until the program termination
and creates corrupted output.

• Segfault: Failure due to illegal memory access.
• Core dump: The injected fault results in a system crash
or an abnormal termination of the program.

• Hang: The program cannot terminate its execution.

Figure 9 shows the result of fault injection experiment.
Fault protection rate of each protection scheme is provided
in Figure 9a. For comparison, the unprotected program is
included and labeled as UNSAFE. On average, 76.68% of in-
jected faults are masked in UNSAFE. Additionally, they suffer
from 20.72% SDCs and 2.13% Segfaults. SWIFT-R shows a
97.24% protection rate, with the decreased occurrences of
SDCs and Segfaults to 1.08% and 1.40%, respectively. Such
failures are caused by limitations of the software-only pro-
tection scheme [31]. Since there is no dedicated mechanism
to protect special registers, detection is not possible when
a transient fault strikes a single bit in the opcode field and
changes the instruction into operations like branch or store.
Also, a transient fault may occur at the examined register
before its actual usage. In this stage, as validation is already

done, the program will proceed rest of the execution with er-
roneous value. Any compiler optimization to reduce register
lifetime will be helpful in this scenario.

AR20 demonstrates a comparable level of protection rate
to SWIFT-R by exhibiting a 95.67% protection rate with
2.23% of SDCs and 1.63% of Segfaults. Protection rate de-
creases when acceptable range broadens: AR20 (95.67%),
AR50 (94.51%), AR80 (93.42%), AR100 (92.52%). The differ-
ences in protection rate are mainly originated by SDCs be-
cause we protect address calculation of memory instruc-
tion with the conventional strategy: AR20 (2.23% SDCs),
AR50 (3.37% SDCs), AR80 (4.30% SDCs), AR100 (5.29% SDCs).
Throughout the experiment, the occurrence for Core dump
and Hang in every protection scheme, including UNSAFE
and SWIFT-R, is measured less than 0.3%.
Figure 9b presents the statistics of false negative. As ex-

pected, its occurrence increases with widened acceptable
range: AR20 (1.80%), AR50 (3.12%), AR80 (3.74%), AR100
(5.04%). As fuzzy validation is applied to data validation,
false negatives mostly produce SDCs. Interestingly, due to
YOLOv2’s program characteristics, false negatives are gener-
ally benign in this application. After extensive computations
through multiple layers, only a label with the highest prob-
ability for each detected object is produced as the output.
Naturally, small errors that eschewed fuzzy validations tend
to be logically masked in later part of the execution.

Low-Cost Prediction-Based Fault Protection Strategy CGO ’20, February 22–26, 2020, San Diego, CA, USA

7.3 The Rationality of Acceptable Range
Before the deployment of RSkip, the acceptable range of
fuzzy validation should be determined with consideration of
both protection rate and performance. On average, the repre-
sentative conventional scheme, SWIFT-R, can provide 97.24%
of protection rate with 2.33× slowdown. As for widening
acceptable range, RSkip achieves significant performance
benefits in exchange of certain loss for the protection rate
: AR20 (95.67% of protection rate with 1.42× slowdown),
AR50 (94.51% of protection rate with 1.33× slowdown), AR80
(93.42% of protection rate with 1.30× slowdown), AR100
(92.52% of protection rate with 1.27× slowdown). With AR20,
RSkip can significantly reduce protection overhead while
presenting comparable level with the conventional scheme.
Also, RSkip can reduce the overhead further to 1.27× with
the same amount of loss (5 percentage point) that previous
works [16, 17] leveraged.

8 Related Works
Hardware techniques insert additional hardware module to
protect their execution. For example, Austin proposed DIVA
[4, 43] checker which is a small core designed to validate the
computation on the fly. Despite their expensive cost, hard-
ware techniques have been adopted in real systems for the
high fidelity [15, 38, 45]. Additionally, Racunas et al. [26] pro-
posed a perturbation-based screening hardware technique
considering an erratic value as a possible fault. Legitimate
sets of values are defined to detect inconsistency in values.

After Saxena et al. [36] noticed the SMT redundancy, many
techniques were proposed to reduce hardware cost [14, 23,
39]. To improve performance of thread-level approach, DAFT
[46] exploits speculation to minimize inter-thread commu-
nications for memory operations. Yet, utilizing redundant
threads generally suffers from high energy consumption
[19] due to an increased number of dynamic instructions for
redundant threads and validation.

Additionally, instruction duplication based protection was
first introduced by Oh et al. [25] where all instructions in-
cluding memory operations were duplicated and validated.
Reis et al. proposed SWIFT [31] to optimize instruction du-
plication scheme by removing unnecessary memory redun-
dancies based on the assumption of ECC. As SWIFT did not
claim any recovery method, Reis et al. expanded SWIFT
further with TMR-based instruction level recovery tech-
nique [30]. In general, fault detection and fault recovery
mechanism can be investigated independently [17, 31]. En-
core [13] and checkpoint-based methods [12, 42] are pro-
posed as the independent recovery scheme. At wrong pre-
dictions, our prediction-based protection scheme executes
re-computation for the exact validation. In this case, the
mechanism generating re-computation for the redundant
copy resembles a form of recovery mechanism. Also, un-
like previous works [11, 17, 30, 31] that trigger recovery

routine only on the actual fault detection, our approach ad-
ditionally triggers recovery mechanism on mispredictions.
To enhance performance of both detection and recovery
mechanisms in RSkip, the integration of advanced recovery
mechanisms [12, 13, 42] can be studied.

To reduce the protection cost, Khudia et al. [17] leveraged
certain loss in protection rate by protecting only critical vari-
ables. Similarly, Venkatagiri et al. proposed Approxilyzer
[41], a framework that suggests protecting critical dynamic
instructions by quantifying quality impact of a single bit
flip to avoid excessive protection cost. In contrast to our
work, they reduce protection cost by narrowing down pro-
tection targets. By incorporating this technique, a better
performance can be achieved.

9 Conclusion
The unique properties of a transient fault force protection
strategies to be fast and cost-efficient. RSkip demonstrates
that the performance of the software-only protection strat-
egy can be significantly improved with a newly proposed
prediction-based protection scheme. By predicting the value
of computation with approximation techniques, the expen-
sive re-computation can be bypassed. As a result, 81.10% of
re-computation can be skipped on average with a remarkable
performance improvement. While conventional technique
suffers from 2.33x slowdown compared to the unreliable ex-
ecution, RSkip only suffers 1.27x slowdown with a 5% loss
in protection rate.

Acknowledgement
This material is based upon work supported by the U.S. De-
partment of Energy, Office of Science, Office of Advanced
Scientific Computing Research (ASCR), under Award Num-
ber DE-SC0014134.

References
[1] Anant Agarwal, Martin Rinard, Stelios Sidiroglou, Sasa Misailovic, and

Henry Hoffmann. 2009. Using code perforation to improve performance,
reduce energy consumption, and respond to failures. Technical Report.
Technical report, MIT.

[2] Carlos Alvarez, Jesus Corbal, and Mateo Valero. 2005. Fuzzy memoiza-
tion for floating-point multimedia applications. IEEE Trans. Comput.
54, 7 (2005), 922–927.

[3] Carlos Alvarez, Jesus Corbal, and Mateo Valero. 2012. Dynamic tol-
erance region computing for multimedia. IEEE Trans. Comput. 61, 5
(2012), 650–665.

[4] Todd M Austin. 1999. DIVA: A reliable substrate for deep submi-
cron microarchitecture design. In Microarchitecture, 1999. MICRO-32.
Proceedings. 32nd Annual International Symposium on. IEEE, 196–207.

[5] Woongki Baek and Trishul M Chilimbi. 2010. Green: a framework for
supporting energy-conscious programming using controlled approxi-
mation. In ACM Sigplan Notices, Vol. 45. ACM, 198–209.

[6] Christian Bienia, Sanjeev Kumar, Jaswinder Pal Singh, and Kai Li. 2008.
The PARSEC benchmark suite: Characterization and architectural
implications. In Proceedings of the 17th international conference on
Parallel architectures and compilation techniques. ACM, 72–81.

CGO ’20, February 22–26, 2020, San Diego, CA, USA Sunghyun Park, Shiaki Li, Ze Zhang, Scott Mahlke

[7] Nathan Binkert, Bradford Beckmann, Gabriel Black, Steven K Rein-
hardt, Ali Saidi, Arkaprava Basu, Joel Hestness, Derek R Hower, Tushar
Krishna, Somayeh Sardashti, et al. 2011. The gem5 simulator. ACM
SIGARCH Computer Architecture News 39, 2 (2011), 1–7.

[8] Shekhar Borkar et al. 2004. Microarchitecture and design challenges
for gigascale integration. In MICRO, Vol. 37. 3–3.

[9] Greg Bronevetsky, B de Supinski, and Martin Schulz. 2009. A foun-
dation for the accurate prediction of the soft error vulnerability of sci-
entific applications. Technical Report. Lawrence Livermore National
Lab.(LLNL), Livermore, CA (United States).

[10] Shuai Che, Michael Boyer, Jiayuan Meng, David Tarjan, Jeremy W
Sheaffer, Sang-Ha Lee, and Kevin Skadron. 2009. Rodinia: A benchmark
suite for heterogeneous computing. InWorkload Characterization, 2009.
IISWC 2009. IEEE International Symposium on. Ieee, 44–54.

[11] Moslem Didehban and Aviral Shrivastava. 2016. nZDC: A Compiler
technique for near Zero Silent data Corruption. In Proceedings of the
53rd Annual Design Automation Conference. ACM, 48.

[12] Shuguang Feng, Shantanu Gupta, Amin Ansari, and Scott Mahlke.
2010. Shoestring: probabilistic soft error reliability on the cheap. In
ACM SIGARCH Computer Architecture News, Vol. 38. ACM, 385–396.

[13] Shuguang Feng, Shantanu Gupta, Amin Ansari, Scott A Mahlke, and
David I August. 2011. Encore: low-cost, fine-grained transient fault
recovery. In Proceedings of the 44th Annual IEEE/ACM International
Symposium on Microarchitecture. ACM, 398–409.

[14] Mohamed Gomaa, Chad Scarbrough, TN Vijaykumar, and Irith Pomer-
anz. 2003. Transient-fault recovery for chip multiprocessors. In Com-
puter Architecture, 2003. Proceedings. 30th Annual International Sympo-
sium on. IEEE, 98–109.

[15] Robert W Horst, Richard L Harris, and Robert L Jardine. 1990. Multiple
instruction issue in the NonStop Cyclone processor. In ACM SIGARCH
Computer Architecture News, Vol. 18. ACM, 216–226.

[16] Daya Shanker Khudia and Scott Mahlke. 2013. Low cost control flow
protection using abstract control signatures. In ACM SIGPLAN Notices,
Vol. 48. ACM, 3–12.

[17] Daya Shanker Khudia and Scott Mahlke. 2014. Harnessing soft compu-
tations for low-budget fault tolerance. In Microarchitecture (MICRO),
2014 47th Annual IEEE/ACM International Symposium on. IEEE, 319–
330.

[18] Shikai Li, Sunghyun Park, and Scott Mahlke. 2018. Sculptor: Flexible
Approximation with Selective Dynamic Loop Perforation. In Proceed-
ings of the 2018 International Conference on Supercomputing. ACM,
341–351.

[19] Niti Madan and Rajeev Balasubramonian. 2007. Power efficient ap-
proaches to redundant multithreading. IEEE Transactions on Parallel
and Distributed Systems 18, 8 (2007).

[20] Panagiotis D Michailidis and Konstantinos G Margaritis. 2013. Ac-
celerating kernel density estimation on the GPU using the CUDA
framework. Applied Mathematical Sciences 7, 30 (2013), 1447–1476.

[21] Douglas C Montgomery, Elizabeth A Peck, and G Geoffrey Vining.
2012. Introduction to linear regression analysis. Vol. 821. John Wiley &
Sons.

[22] Shubu Mukherjee. 2011. Architecture design for soft errors. Morgan
Kaufmann.

[23] Shubhendu S Mukherjee, Michael Kontz, and Steven K Reinhardt.
2002. Detailed design and evaluation of redundant multi-threading
alternatives. In Computer Architecture, 2002. Proceedings. 29th Annual
International Symposium on. IEEE, 99–110.

[24] Shubhendu S Mukherjee, Christopher T Weaver, Joel Emer, Steven K
Reinhardt, and Todd Austin. 2003. Measuring architectural vulnerabil-
ity factors. IEEE Micro 23, 6 (2003), 70–75.

[25] Nahmsuk Oh, Philip P Shirvani, and Edward J McCluskey. 2002. Error
detection by duplicated instructions in super-scalar processors. IEEE
Transactions on Reliability 51, 1 (2002), 63–75.

[26] Paul Racunas, Kypros Constantinides, Srilatha Manne, and Shub-
hendu S Mukherjee. 2007. Perturbation-based fault screening. In
High Performance Computer Architecture, 2007. HPCA 2007. IEEE 13th
International Symposium on. IEEE, 169–180.

[27] Joseph Redmon. 2013–2016. Darknet: Open Source Neural Networks
in C. http://pjreddie.com/darknet/.

[28] Joseph Redmon and Ali Farhadi. 2016. YOLO9000: Better, Faster,
Stronger. arXiv preprint arXiv:1612.08242 (2016).

[29] Steven K Reinhardt and Shubhendu S Mukherjee. 2000. Transient fault
detection via simultaneous multithreading. Vol. 28. ACM.

[30] George A Reis, Jonathan Chang, and David I August. 2007. Automatic
instruction-level software-only recovery. IEEE micro 27, 1 (2007).

[31] George A Reis, Jonathan Chang, Neil Vachharajani, Ram Rangan, and
David I August. 2005. SWIFT: Software implemented fault tolerance.
In Proceedings of the international symposium on Code generation and
optimization. IEEE Computer Society, 243–254.

[32] Swarup Kumar Sahoo, Man-Lap Li, Pradeep Ramachandran, Sarita V
Adve, Vikram S Adve, and Yuanyuan Zhou. 2008. Using likely pro-
gram invariants to detect hardware errors. In Dependable Systems
and Networks With FTCS and DCC, 2008. DSN 2008. IEEE International
Conference on. IEEE, 70–79.

[33] Mehrzad Samadi, Davoud Anoushe Jamshidi, Janghaeng Lee, and Scott
Mahlke. 2014. Paraprox: Pattern-based approximation for data parallel
applications. In ACM SIGARCH Computer Architecture News, Vol. 42.
ACM, 35–50.

[34] Mehrzad Samadi, Janghaeng Lee, D Anoushe Jamshidi, Amir Hormati,
and Scott Mahlke. 2013. Sage: Self-tuning approximation for graphics
engines. In Proceedings of the 46th Annual IEEE/ACM International
Symposium on Microarchitecture. ACM, 13–24.

[35] Joshua San Miguel, Jorge Albericio, Natalie Enright Jerger, and Aamer
Jaleel. 2016. The Bunker Cache for spatio-value approximation. In
Microarchitecture (MICRO), 2016 49th Annual IEEE/ACM International
Symposium on. IEEE, 1–12.

[36] Nirmal R Saxena and Edward J McCluskey. 1998. Dependable adaptive
computing systems-the roar project. In Systems, Man, and Cybernetics,
1998. 1998 IEEE International Conference on, Vol. 3. IEEE, 2172–2177.

[37] Stelios Sidiroglou-Douskos, Sasa Misailovic, Henry Hoffmann, and
Martin Rinard. 2011. Managing performance vs. accuracy trade-offs
with loop perforation. In Proceedings of the 19th ACM SIGSOFT sym-
posium and the 13th European conference on Foundations of software
engineering. ACM, 124–134.

[38] Timothy J Slegel, Robert MIII Averill, Mark A Check, Bruce C Giamei,
Barry W Krumm, Christopher A Krygowski, Wen H Li, John S Liptay,
John D MacDougall, Thomas J McPherson, et al. 1999. IBM’s S/390 G5
microprocessor design. IEEE micro 19, 2 (1999), 12–23.

[39] Jared C Smolens, Jangwoo Kim, James C Hoe, and Babak Falsafi. 2004.
Efficient resource sharing in concurrent error detecting superscalar
microarchitectures. In Proceedings of the 37th annual IEEE/ACM In-
ternational Symposium on Microarchitecture. IEEE Computer Society,
257–268.

[40] John A Stratton, Christopher Rodrigues, I-Jui Sung, Nady Obeid, Li-
Wen Chang, Nasser Anssari, Geng Daniel Liu, and Wen-mei W Hwu.
2012. Parboil: A revised benchmark suite for scientific and commercial
throughput computing. Center for Reliable and High-Performance
Computing 127 (2012).

[41] Radha Venkatagiri, Abdulrahman Mahmoud, Siva Kumar Sastry Hari,
and Sarita V Adve. 2016. Approxilyzer: Towards a systematic frame-
work for instruction-level approximate computing and its application
to hardware resiliency. InMicroarchitecture (MICRO), 2016 49th Annual
IEEE/ACM International Symposium on. IEEE, 1–14.

[42] Nicholas JWang and Sanjay J Patel. 2006. ReStore: Symptom-based soft
error detection in microprocessors. IEEE Transactions on Dependable
and Secure Computing 3, 3 (2006), 188–201.

http://pjreddie.com/darknet/

Low-Cost Prediction-Based Fault Protection Strategy CGO ’20, February 22–26, 2020, San Diego, CA, USA

[43] Chris Weaver and Todd Austin. 2001. A fault tolerant approach to
microprocessor design. In Dependable Systems and Networks, 2001. DSN
2001. International Conference on. IEEE, 411–420.

[44] Vincent M Weaver, Dan Terpstra, Heike McCraw, Matt Johnson, Kiran
Kasichayanula, James Ralph, John Nelson, Phil Mucci, Tushar Mohan,
and Shirley Moore. 2013. Papi 5: Measuring power, energy, and the
cloud. In Performance Analysis of Systems and Software (ISPASS), 2013
IEEE International Symposium on. IEEE, 124–125.

[45] Ying C Yeh. 1996. Triple-triple redundant 777 primary flight computer.
In Aerospace Applications Conference, 1996. Proceedings., 1996 IEEE,
Vol. 1. IEEE, 293–307.

[46] Yun Zhang, Jae W Lee, Nick P Johnson, and David I August. 2012.
DAFT: decoupled acyclic fault tolerance. International Journal of
Parallel Programming 40, 1 (2012), 118–140.

[47] James F Ziegler and Helmut Puchner. 2004. SER–history, Trends and
Challenges: A Guide for Designing with Memory ICs. Cypress.

	Abstract
	1 Introduction
	2 Motivation and Idea
	3 System Overview
	4 Prediction Techniques
	4.1 Dynamic Interpolation
	4.2 Approximate Memoization

	5 Run-time Management
	6 Training
	7 Evaluation
	7.1 Performance Overhead
	7.2 Reliability
	7.3 The Rationality of Acceptable Range

	8 Related Works
	9 Conclusion
	References

