
111

Multi-objective Exploration for Practical Optimization
Decisions in Binary Translation

SUNGHYUN PARK, University of Michigan
YOUFENG WU, JANGHAENG LEE, and AMIR AUPOV, Intel Corporation
SCOTT MAHLKE, University of Michigan

In the design of mobile systems, hardware/software (HW/SW) co-design has important advantages by creating
specialized hardware for the performance or power optimizations. Dynamic binary translation (DBT) is a
key component in co-design. During the translation, a dynamic optimizer in the DBT system applies various
software optimizations to improve the quality of the translated code. With dynamic optimization, optimization
time is an exposed run-time overhead and useful analyses are often restricted due to their high costs. Thus,
a dynamic optimizer needs to make smart decisions with limited analysis information, which complicates
the design of optimization decision models and often causes failures in human-made heuristics. In mobile
systems, this problem is even more challenging because of strict constraints on computing capabilities and
memory size.

To overcome the challenge, we investigate an opportunity to build practical optimization decision models
for DBT by using machine learning techniques. As the first step, loop unrolling is chosen as the representative
optimization. We base our approach on the industrial strength DBT infrastructure and conduct evaluation
with 17,116 unrollable loops collected from 200 benchmarks and real-life programs across various domains. By
utilizing all available features that are potentially important for loop unrolling decision, we identify the best
classification algorithm for our infrastructure with consideration for both prediction accuracy and cost. The
greedy feature selection algorithm is then applied to the classification algorithm to distinguish its significant
features and cut down the feature space. By maintaining significant features only, the best affordable classifier,
which satisfies the budgets allocated to the decision process, shows 74.5% of prediction accuracy for the optimal
unroll factor and realizes an average 20.9% reduction in dynamic instruction count during the steady-state
translated code execution. For comparison, the best baseline heuristic achieves 46.0% prediction accuracy with
an average 13.6% instruction count reduction. Given that the infrastructure is already highly optimized and
the ideal upper bound for instruction reduction is observed at 23.8%, we believe this result is noteworthy.

CCS Concepts: • Computer systems organization→ Embedded systems; Compiler ; Binary Translation.

Additional Key Words and Phrases: Compiler, Machine learning, Binary Translation, Loop Unrolling

ACM Reference Format:
Sunghyun Park, YoufengWu, Janghaeng Lee, Amir Aupov, and Scott Mahlke. 2019. Multi-objective Exploration
for Practical Optimization Decisions in Binary Translation. J. ACM 37, 4, Article 111 (October 2019), 19 pages.
https://doi.org/10.1145/1122445.1122456

Authors’ addresses: Sunghyun Park, sunggg@umich.edu, University of Michigan, 2260 Hayward St, Ann Arbor, Michigan,
48109; Youfeng Wu, youfeng.wu@intel.com; Janghaeng Lee, janghaeng.lee@intel.com; Amir Aupov, amir.aupov@intel.com,
Intel Corporation, 3600 Juliette Ln, Santa Clara, CA, 95054; Scott Mahlke, mahlke@umich.edu, University of Michigan, 2260
Hayward St, Ann Arbor, Michigan, 48109.

Permission to make digital or hard copies of all or part of this work for personal or classroom use is granted without fee
provided that copies are not made or distributed for profit or commercial advantage and that copies bear this notice and
the full citation on the first page. Copyrights for components of this work owned by others than ACM must be honored.
Abstracting with credit is permitted. To copy otherwise, or republish, to post on servers or to redistribute to lists, requires
prior specific permission and/or a fee. Request permissions from permissions@acm.org.
© 2019 Association for Computing Machinery.
0004-5411/2019/10-ART111 $15.00
https://doi.org/10.1145/1122445.1122456

This article appears as part of the ESWEEK-TECS special issue and was presented in the International Conference on
Compilers, Architecture, and Synthesis for Embedded Systems (CASES) 2019

https://doi.org/10.1145/1122445.1122456
https://doi.org/10.1145/1122445.1122456

111:2 Sunghyun Park et al.

1 Introduction

Today, many important optimization decisions are made by heuristics, which often depends on
the developers’ expertise. With an expert level of understanding of the system and a huge amount
of effort, programmers can create effective models that capture architectural characteristics [40].
However, due to the increasing complexity of architectural design, it becomes much harder to build
effective human-made models. Additionally, the subtle interactions between software optimization
phases add to the exploration space. As a result, heuristics often fail to make good decisions.
Stephenson and Amarasinghe showed that the loop unrolling heuristics in Open Research Compiler
(ORC) only achieve 16% prediction accuracy for optimal unroll factor [34].

To make effective optimization decisions, researchers build decision models by applying machine
learning techniques [12, 28, 34, 35]. Particularly, given its system-wide impact, researchers have
studied how to improve the optimization decision for loop unrolling. By relaxing loop-carried
dependencies, properly applied loop unrolling can increase Instruction Level Parallelism (ILP) and
bring more opportunities for subsequent optimization phases, resulting in significant performance
improvement. However, it may cause code bloat or large numbers of register spills when it is
applied too aggressively. For the best use of loop unrolling, Stephenson and Amarasinghe suggested
defining loop unroll factor prediction as a classification problem [34]. By employing supervised
classification techniques, they successfully improve prediction accuracy as well as loop performance
over a baseline heuristic. These previous works are built by using statically known information
and inserted into a static compiler. Since they target a static compiler, the overhead (computation
and memory) of the built model is not considered.
On the other hand, hardware/software (HW/SW) co-design has been extensively studied for

mobile and embedded systems to achieve better performance or reduce design cost [1, 7, 38, 39].
A DBT system is a key component in such a co-design process. Since the DBT system conducts
optimization during translation [9], the optimization decision has a direct impact on the quality of
the translation. Thus, smart optimization decisions are necessary to provide high translation quality.
To make better decisions, we examine an approach to tailor machine learning optimization decision
models for a code optimizer in DBT. Particularly, we target a mobile processor that supports high-
performance applications but still operates in a constrained environment (e.g., a mobile processor
for an autonomous vehicle). Unlike previous works [22, 28, 34] in a static compiler, the prediction
overhead (e.g., memory usage, performance overhead, and energy consumption) of a decision model
may restrict the usage of a complex or large decision model in the mobile system.
As the first step, we choose loop unrolling as a representative optimization and investigate five

different multi-class classification techniques and their diverse configurations to build its effective
decision model. This is a multi-objective exploration observing the relationship between prediction
overhead and accuracy. We build our approach with the industrial strength DBT infrastructure.
Our code optimizer has an optional optimization for loop unrolling, called smart unrolling, that can
remove redundant branches [27]. Since smart unrolling can have performance side effects, the built
model must make an additional decision on whether to apply smart unrolling. Furthermore, unlike
previous works [22, 28, 34] in a static compiler, some useful but expensive analyses like dataflow
analysis (DFA) may not be available due to their high overhead in binary translation. Instead, new
opportunities to utilize dynamic information (e.g., loop trip count, taken probability of side exits)
collected during runtime are studied. These turned out to be important features for unroll factor
classifiers.

For experiments, we collected 17,116 unrollable loops from 200 real-life programs and benchmarks
in various domains. By employing all available features that might be crucial for loop unrolling
decision, we suggest the best classification algorithm for our infrastructure given both prediction

J. ACM, Vol. 37, No. 4, Article 111. Publication date: October 2019.

Multi-objective Exploration for Practical Optimization Decisions in Binary Translation 111:3

x86 µArch

Dynamic Binary Translation (DBT) System

Internal ISA µArch (hidden)

yes

translation exit or fault

trigger execution

no

Found

hot region?

Execute native

x86 code

Fetch next instruction

Translate &

Optimize

Code cache

hit?

Orchestrate

run-time execution

Fault?

Roll-

back

yes

no

no

trigger

re-execution

Execute optimized

translated code

yes

Start

exit

translation chain

Fig. 1. Big picture of our HW/SW co-designed CPU with a DBT system. It constains two different microarchi-
tectures that each supports its own ISA. The highlighted box illustrates the translation process by a binary
translator and a dynamic optimizer.

accuracy and cost. Then, we identify its significant features to prune the feature set and evaluate
the model built by using selected important features. As a result, the best affordable classifier that is
within the memory/time budgets for the decision process shows a 74.5% of prediction accuracy for
optimal unroll factor and realizes an average 20.9% reduction in dynamic instruction count during
the steady-state translated code execution when the ideal upper bound for instruction reduction
is 23.8%. For comparison, the best current heuristic shows a 46.0% prediction accuracy with an
average of 13.6% instruction count reduction.

The major contributions of this work are as follow:
• We show howmachine learning techniques can improve loop unrolling decisions for dynamic
binary translation on the mobile processor, which is a more challenging environment than
static compilers used in previous works [22, 28, 34]. The demanding environment requires a
more careful model selection with multiple objectives considered which is not necessary for
a static compiler. New opportunities to employ dynamic information is also examined. This
approach is instruction set independent and can be extended to other optimization decisions.

• We investigate the relationship between prediction overhead (i.e., time, memory) and accuracy
for diverse classification algorithms and their different configurations. As a result, the best
classification algorithm is discovered. Then, by applying feature space pruning technique, we
provide its major features and suggest the best affordable decisionmodel for our infrastructure
given the specific budgets allocated for the decision process.

• We compare the current heuristics in the industrial strength infrastructure and the proposed
machine learning based approach. Given that the infrastructure is already highly optimized,
the heuristics are well crafted and provide a challenging baseline for comparison.

2 Background

2.1 Our Infrastructure with Binary Translation

Figure 1 sketches our HW/SW co-designed CPU. Although this CPU only accepts the binary code
written in x86, it incorporates a hidden microarchitecture that supports additional Instruction Set
Architecture (ISA) internally. By having a DBT system that translates legacy code into internal
ISA and orchestrates execution between two different architectures, the internal ISA and its

J. ACM, Vol. 37, No. 4, Article 111. Publication date: October 2019.

111:4 Sunghyun Park et al.

architectural design can stay invisible from the outside and be innovated without worrying about
backward compatibility. To manage program execution, our infrastructure employs the region-level
atomic execution similar to [36]. The dynamic binary translation system profiles the execution and
constructs optimization regions to translate x86 instructions in the hot traces into internal ISA
instructions that will be executed on its optimized microarchitecture. To maximize the performance
benefit, it is crucial to produce a high quality of translated code. Therefore, during translation, the
dynamic optimizer applies various code optimizations [36], including loop unrolling, to improve
the translation quality.

2.1.1 Target Loops

• Reducible (Single entry) loop.
• Innermost loop. The outer loop is only considered when the innermost loop is fully unrolled.
• Both counting and non-counting loops with a loop invariant trip count [14].

2.1.2 Smart Unrolling Our dynamic optimizer has an aggressive version of loop unrolling
which is an optional optimization when loop unrolling is enabled. By targeting counting loops,
the technique tries to transform the loop structure and exit condition to minimize the number
of branches [27]. For example, the optimization can eliminate loop exit branches in copies of a
loop body. Also, the optimization phase inserts a run-time check outside of the loop to prevent
exceptions (e.g. overflow).
Smart unrolling can have side effects. When the run-time check fails, deoptimization will be

triggered to revert the code and degrade the performance. Also, applying smart unrolling to a loop
with a low trip count may result in performance degradation due to the overhead of the transformed
structure. Thus, smart unrolling should be applied carefully to realize performance improvement.

2.1.3 Current Heuristics There are two unrolling heuristics in our dynamic optimizer: Opti-
mistic and Conservative. By default, Optimistic is used to optimize identified hot traces. When
speculation with Optimistic fails repeatedly [15], Conservative is used to generate optimized code
with less aggressive optimization. Both heuristics make a decision based on identical information
such as trip count, the expected number of post-unroll instructions, etc. The only difference between
the two is two parameters: the maximum number of post-unroll instructions and the maximum
unroll factor. Conservative has lower values than Optimistic. Each heuristic predicts an unroll factor
that is lower than its upper limits. The maximum unroll factor is set to 8 for Optimistic and 4 for
Conservative, respectively. Also, although smart unrolling may have side effects, current heuristics
always apply it on counting loops with the optimistic expectation.

2.2 Supervised Multi-class Classification

Supervised classification is a process identifying which set of classes (or labels) a new observation
belongs to, based on the learning from training data. This section describes five representative
classification techniques as background to deliver their main concepts with the pros and cons.

2.2.1 k-Nearest Neighbors (kNN) kNN classifies a new observation based on the majority
voting from k number of closest neighbors in training data. The idea is straightforward: find the
most similar case from the training database and assign the same label to the new observation. Thus,
in our case, kNN will search the most similar loops from the training data and assign the dominant
label among them. Without having any form of generalization process on training dataset, training
data will be saved and populated directly during the inference. Since kNN scans data points in
the training set to find the closest neighbors, its prediction cost is proportional to the size of the
training data set. Also, its learned model is unable to be interpreted and give any intuition to the
system designers.

J. ACM, Vol. 37, No. 4, Article 111. Publication date: October 2019.

Multi-objective Exploration for Practical Optimization Decisions in Binary Translation 111:5

2.2.2 Supporting Vector Machines (SVM) SVM makes a classification based on the decision
boundaries. During training, the technique constructs decision boundaries that separate the training
data points. Rather than focusing on minimizing prediction errors on the training set, it tries to
minimize the expected generalization loss based on the probabilistic assumption for unseen data.
Naturally, SVM is resistant to overfitting [32]. To divide data points under different classes while
minimizing the generalization loss, SVM chooses each decision boundary that is farthest away from
the observed training data among all possible boundaries. Thus, each selected decision boundary
is also called the maximum margin separator and the points closest to the separator is called
support vector. However, it takes a long time to train this model and the learned model is not
comprehensible. Fundamentally, SVM manages multiple two-class decision boundaries to conduct
multi-class classification. Therefore, the prediction cost may become expensive as the number of
boundaries increases.

2.2.3 Decision Tree A decision tree is a function that makes a decision by conducting a sequence
of tests [32]. Each node in a tree checks the value of one of the input features and guides to the
next node until the final decision at the leaf node. During training, a decision tree learns what will
be tested at each node. If a feature is numerical, the threshold will also be determined for each node.
Fundamentally, the decision tree consists of nested conditional statements. Therefore, unlike other
machine learning techniques, the learned model is able to be interpreted and easy to visualize. This
is a noteworthy property in the sense that the learned model can give system designers insights
that they may have been missing. In addition, the worst case for the prediction cost is proportional
to the maximum height of the tree. Note, the computation at each node is quite cheap since it is
usually just a simple comparison. Thus, if it is able to build an effective tree with the control of
the maximum height, the model can be highly practical. However, the technique may suffer from
overfitting.

2.2.4 Random Forest Random forest manages a multitude of decision trees and makes a predic-
tion by aggregating the predictions from trees in the forest (e.g., majority voting). Since the random
forest is essentially a group of decision trees, the learned model is also easy to visualize and is
able to give information about the relation between the feature set and the prediction. In general,
the technique is able to convey high accuracy and efficiently handle a large dataset with high
dimensionality of feature space. Also, the estimate of generalization loss will be computed during
training, which can be used to enhance overfitting. However, when the forest grows a multitude
of large trees in parallel, it may require a lot of memory [23]. This may cause an overhead to the
memory system and increase the inference time affecting the translation time in our case.

2.2.5 Artificial Neural Network (ANN) ANN is a learning method that mimics the brain ac-
tivity mathematically. The model consists of multiple layers: an input layer, hidden layers, and
an output layer. Each layer contains a large number of neurons and each neuron is connected to
other neurons in the other layer. In this paper, a fully-connected network, whose each neuron is
connected to all neurons in the next layer, is assumed. In general, the neural network is known for
its outstanding classification accuracy compared to the traditional learning techniques. However,
it may need a large network and a large training dataset to achieve satisfactory accuracy [42].
The inference can be very compute-intensive, particularly with a large network. In addition, the
decision-making process is like a "black box" so that the internal mechanism would hardly give
any intuition to the system designers.

J. ACM, Vol. 37, No. 4, Article 111. Publication date: October 2019.

111:6 Sunghyun Park et al.

0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

0.45

1 2 3 4 5 6 7 8 9 10

Fr
eq

ue
nc

y

Unroll Factor

Fig. 2. Distribution of optimal unroll factors.

0

10

20

30

40

50

60

70

80

90

100

Oracle Conservative Optimistic

Pe
rc

en
ta

ge
 (%

)

Prediction Accuracy Instruction Reduction

Fig. 3. Evaluation of current heuristic design. Prediction accuracy for optimal loop unrolling decision and its
impact on the dynamic instruction count in the resulting optimized code are measured.

3 Motivation
Our current DBT system employs heuristic-based decision models designed by industry experts.
Given the difficulty of creating effective models that describe subtle interaction between optimiza-
tion phases while satisfying hard environmental constraints, we notice the pitfall that may exist:
hand-made heuristic models might be biased by the designer’s experience or insight. Therefore,
we recognize the need to not only evaluate their effectiveness, but also develop the automatic and
systematic approach to building decision models to lessen the burden required for their design
process (e.g., analysis, tuning). Without an automatic method, system designers may need to re-
peatedly invest a huge amount of efforts to tune their optimization decision whenever other system
component(s) are updated.
To investigate the feasibility of such an approach, we initiate the study by focusing on loop

unrolling given its system-wide impact. By examining all possible configurations for the loop un-
rolling decision, the optimal unroll factor for each unrollable loop is identified and the performance
of the current heuristic designs (i.e., Conservative and Optimistic) are measured. Section 5 explains
our methodology in more detail. To evaluate if the upper bound of the unroll factor is reasonably
set in the current heuristic design (e.g., 8 for Optimistic), we explore unroll factors ranging from 2
to 10.
Figure 2 shows the histogram of optimal factors across all collected loops. An optimal unroll

factor of 1 represents the case that loop unrolling should not be applied. Other than the leftmost bar,
there is no dominant unroll factor. This implies that the optimal unrolling factor varies depending

J. ACM, Vol. 37, No. 4, Article 111. Publication date: October 2019.

Multi-objective Exploration for Practical Optimization Decisions in Binary Translation 111:7

on the loop characteristics and thus, the unrolling decision should be made carefully. Also, heuristics
are unable to predict optimal factors of 9 and 10, which accounts for 8.7% of loops. This suggests
the necessity for the higher upper bound on unroll factors.
Figure 3 depicts the effectiveness of current heuristic designs. Note, Oracle represents an ideal

model that always makes the optimal decisions. Thus, loop unrolling can realize 23.8% of instruction
count reduction at most. However, the best heuristic adopted by a dynamic optimizer in our DBT
system only shows 46% of accuracy with 13.6% of instruction reduction in the translated code. This
suggests the opportunity for improvement with a better decision model.

4 Challenges and Opportunities
This section explains why previous works with a static compiler [22, 28, 34] cannot be applied
directly to dynamic binary translation for a mobile system. New challenges and opportunities in
adapting machine learning based optimization decision models to our environment are threefold:

• Limited analysis support and increased complexity tomake optimization decisions:
Some useful information that is concluded important for a static compiler [34] are not available
at the loop unrolling phase in our dynamic binary translation due to their high analysis
overhead: dataflow analyses, live range size, instruction fan-in, critical path length, etc.
Additionally, the optimization phases in the dynamic optimization are more tightly coupled
to each other than a static compiler [20]. Furthermore, in our dynamic optimizer, there is an
additional decision for smart unrolling. These add a complication to the analysis and broaden
the exploration space for optimization decisions. Therefore, the optimization decision model
in a dynamic optimizer should be able to make more complicated decisions with restricted
information. A key question is: Can an accurate machine learning model be created without
high overhead analyses and handle the additional complexities presented in dynamic binary
translation?

• Strict restrictions on the overhead for an optimization decision: Since optimization
time is an extra run-time overhead in dynamic optimization, the cost for optimization deci-
sions also incur run-time overhead [21]. Consequently, a dynamic optimizer needs to make
smart decisions carefully to achieve a good balance between cost and overall performance
benefit. To find a good balance, system designers often set strict time/memory constraints on
each optimization phase. In our experiment, SVM and nearest neighbor, which are recom-
mended for the static compiler [34], showed good accuracy improvement compared to the
baseline heuristics. These techniques, however, presented 8, 095× and 660× slower decision-
making with significant extra memory requirements. Key questions to address are: Are these
methods affordable for a dynamic binary translation in the mobile system? Can a better
decision model be built for our environment?

• The availability of dynamic information: In dynamic optimization, a new opportunity
to use dynamic information arises. Since translation is triggered during runtime, dynamic
information, which is more accurate than profiled information for a static compiler [34], is
available. However, collecting dynamic information also creates run-time overhead. Thus,
the kinds of information that can be collected are limited. A critical question is: What type of
dynamic information would be informative for the loop unrolling decision and also affordable
in terms of time and storage overheads?

To answer these questions, we explore diverse machine learning techniques to evaluate the
feasibility of each approach. Since the classifier will be tested to categorize a new observation based
on the achieved knowledge from the learning, generating meaningful training data is a key process
to build a good classifier. We describe our data generation process in Section 5 and assess each

J. ACM, Vol. 37, No. 4, Article 111. Publication date: October 2019.

111:8 Sunghyun Park et al.

General loop property
Number of side exits, Number of outer loops, ...

Constraints from binary translation
Proportion of post-optimization instructions compared to its quota, ...

Benefit: opportunity for the following phases
Number of invariant loads, ...

Benefit: ILP→ Unavailable
Number of parallel computations in loop, ...

Side effect: code size
Number of static instructions, ...

Side effect: register pressure → Unavailable
Live range size, Number of uses/defs, ...

Dynamic information
Trip count, Taken probability of side exits, ...

Instruction mix
Ratio of static loads/stores/branches, ...

Smart unrolling
Size of immediate operand in induction variable, ...

Table 1. A subset of features for loop unroll decision under different categories. The ratio of each static
operation is computed by dividing the number of each operation by the number of static instructions. Note,
unavailable features (e.g., live range size) in our infrastructure are crossed out. The total of 34 features are
extracted and used for the experiment.

classifier in Section 6. Then, Section 7 illustrates our feature selection technique for the machine
learning algorithm.

5 Data Generation
For each unrollable loop, a set of features and its optimal unroll factor are extracted and combined
to generate data for the classifier. Details for data generation process is described in the following
sections.

5.1 Feature Extraction

For an accurate decision, characteristics of a loop must be captured properly. Thus, important
loop information that can affect the decision for loop unrolling is introduced as a feature. For a
fair comparison with current heuristics, we use the information that is already available at the
optimization phase without an additional profiling or heavy analysis.
For feature selection, we define 9 categories of features across various loop information as

presented in Table 1. To manage the quality of translated code regions, our DBT infrastructure puts
certain restrictions (e.g., an upper limit for the expected number of post-optimization instructions)
in each optimization phase. Thus, the constraints from the binary translation are introduced
as features. To estimate the impact of loop unrolling, we also define categories indicating the
benefit/side effect. However, the information for instruction level parallelism or register pressure
cannot be used for our experiment since it requires dataflow analysis which is unavailable in
our loop unrolling phase. In addition, the information for loop characterization, smart unrolling,
dynamic information, etc. is employed as a feature. In total, 34 features are extracted and used for
the experiment. These 34 features include all 8 features employed by heuristics.

J. ACM, Vol. 37, No. 4, Article 111. Publication date: October 2019.

Multi-objective Exploration for Practical Optimization Decisions in Binary Translation 111:9

5.2 Optimal Factor Exploration

For supervised learning and prediction accuracy measurement, the optimal factor for each set
of features should be identified. Thus, we follow an exhaustive approach. Each benchmark trace
is executed multiple times with all possible optimization decisions. In this work, unroll factor
prediction should make several decisions: (1) Whether loop unrolling should be applied. When
loop unrolling is expected to bring performance degradation, the decision model should not enable
it. (2) Whether smart unrolling should be applied. (3) Unroll factor. In terms of the unroll factor,
we explore the range from 2 to 10. Therefore, each benchmark is executed 19 times with different
configurations in loop unrolling:

Nnounroll + Nsmart ∗ Nf actor = 1 + 2 ∗ 9 = 19

Each Nnounroll , Nsmart , Nf actor represents the number of cases when unrolling is disabled, cases for
smart unrolling (Enable/Disable), and cases for unroll factor (2 to 10) respectively. As we investigate
19 configurations, there exist 19 labels that the classifier considers. This exploration space is more
than twice compared to previous work [34].

During each run, the dynamic optimizer identifies unrollable loops and dumps their feature sets.
Then, the optimizer forces the given configurations on the loops and measures their performance.
In this paper, the number of dynamic instructions is measured and used as the performance metric.
We discuss our approach further in Section 6. Different performance metrics can be employed
depending on the objective of the system design.
After execution, the performance numbers between different configurations are compared to

find optimal configurations for each unrollable loop. When the numbers draw, the smaller unroll
factor is preferred as it has a smaller side effect (e.g. code size). Secondarily, if the numbers between
smart unrolling and regular loop unrolling with the same unroll factor draw, smart unrolling is
picked with the optimistic expectation: when the speculative assumption for smart unrolling holds,
it would outperform regular loop unrolling. The identified optimal unroll factors for each feature
set will be used as training data for supervised learning and testing data for the evaluation.

6 Evaluation

6.1 Experimental Setup

Classifiers with five different supervised multi-class classification methods are built by using the
Python scikit-learn library [29]. To improve the performance, the library implements its core
algorithm with Cypthon [8], a package for C-Extension, and compiles it with -O3 optimization level.
The selected classification methods include nearest neighbor and SVM which are recommended in
previous study for the static compiler [34]. To observe the relationship between prediction cost and
its benefit, we explore different configurations for decision tree and random forest. In the library,
their configuration can be controlled indirectly by providing the maximum depth and the maximum
number of leaf nodes. The parameter setting for each classifier is described in Table 2. For instance,
by setting k = 3, Nearest Neighbor conducts majority voting from three most similar loops. The
classifiers which are not covered in the table use the default setting. Due to the compute-intensive
nature of neural network algorithm, we inspect a simple network to investigate its applicability.

For performance evaluation, we base our approach on the industrial strength DBT infrastructure
and examine the quality of the translated code (i.e., internal ISA). In our experiment, both instruction
sets run with a simulator that models our new SW/HW co-designed processor. Since only a
functional simulator was available, alternatively, the number of dynamic instructions is measured
and used as the performance metric. Although this approach has the restriction as it may not
show the overall impact of the optimization directly, researchers often adopt dynamic instruction

J. ACM, Vol. 37, No. 4, Article 111. Publication date: October 2019.

111:10 Sunghyun Park et al.

Classifier Parameter Setting
Nearest Neighbor k = 3
* Decision Tree_0 -
Decision Tree_1 max.depth = 20, max.leaf = 500
Decision Tree_2 max.depth = 15, max.leaf = 200
Decision Tree_3 max.depth = 10, max.leaf = 50

* Random Forest_0 trees = 10
Random Forest_1 trees = 5, max.depth = 10, max.leaf = 50

Neural Net network size = 34 * 100 * 19

Table 2. Configurations for the classifiers. Annotated (*) configurations are generated without any restriction
on both the maximum depth and the maximum number of leaf nodes.

count as an approximation for the execution time [18, 31]. For example, Ravindar and Srikant
use the dynamic instruction count to estimate Worst-Case Execution Time (WCET) [31]. For the
same reason, we could not directly measure the overhead of classifiers by embedding them into
our dynamic optimizer. Instead, performance improvement analysis and overhead analysis for
each prediction technique are conducted separately. Thus, our performance improvement analysis
shows the enhancement in the optimized translated code after the execution is stabilized. For
overhead analysis, time and memory usage per prediction are examined for each decision model on
an Intel Core i7-4700MQ mobile processor assuming the x86 architecture in our CPU design. For
a fair comparison with classifiers, we implemented both heuristics algorithms (i.e., Conservative,
Optimistic) in Python with C-Extension and configured with the equivalent optimization level to
measure their overhead on the identical conditions.

By following a similar approach with SimPoint [30], we gathered data of 17,116 unrollable loops
in the hot traces from 200 real-life programs and benchmarks in various domains. The represen-
tative benchmark suites and the breakdown of collected loops for each domain are as follows:
embedded/enterprise/games (FPMark [3], Geekbench [4], SYSmark [5], TabletMark [6], 3DMark [2],
etc.:49%), performance (SPEC CPU ’06/’17 [10, 19]: 41%), machine learning (MLbench [25], etc.:10%).
Diverse operating system environments are also considered: Windows, Linux, Mac, Android, etc.
Throughout the experiment, we conduct the stratified 5-fold cross-validation [41]. On average,

we train each classifier with 13,652 loops and test it with 3,423 unseen loops. The loops are divided
randomly and there is no intersection between them.

6.2 Prediction Accuracy

The accuracy is measured by counting the total number of correct classification in comparison
to the optimal label out of all test data. For a better understanding of the classifier, we define
four different classes for accuracy so that a single prediction can be evaluated in four different
perspectives. Each class has a unique definition for "correct classification" as follows:

• Exact: Accuracy for exact prediction in all unrolling, smart unrolling and unroll factor
decisions.

• Unroll: Accuracy only for the loop unrolling decision.
• Smart: Accuracy only for the smart unrolling decision.
• Dist_n: Compare the unroll factor only and accept the difference in factors within ’n’. It
ignores the decision for smart unrolling.

In the dynamic optimization, the decision of whether to apply the optimization has more im-
portance than the one in the static compilation as the optimization process is a part of a run-time
overhead. Therefore, we measure the accuracy of each optimization decision in loop unrolling:

J. ACM, Vol. 37, No. 4, Article 111. Publication date: October 2019.

Multi-objective Exploration for Practical Optimization Decisions in Binary Translation 111:11

0

10

20

30

40

50

60

70

80

90

100

Exact Unroll Smart Dist0 Dist1 Dist2 Dist3

P
re

d
ic

ti
on

 a
cc

u
ra

cy
 (

%
)

Conservative Optimistic Nearest Neighbor SVM

Decision Tree_0 Decision Tree_1 Decision Tree_2 Decision Tree_3

Random Forest_0 Random Forest_1 Neural Net

Fig. 4. Prediction accuracy with various classes.

0%

10%

20%

30%

40%

50%

60%

70%

80%

90%

100%

B
r
e
a

k
d

o
w

n

Wrongly Applied Missed Opportunity

(a) Class Unroll

0%

10%

20%

30%

40%

50%

60%

70%

80%

90%

100%

B
r
e
a

k
d

o
w

n

Wrongly Applied Missed Opportunity

(b) Class Smart

Fig. 5. The breakdown of wrong predictions.

Unroll, Smart. Also, comparison of Dist_n gives the indication of how far the prediction goes from
the optimal label in terms of the unroll factor.
Figure 4 presents the accuracy of heuristics and classifiers. For Exact class, Conservative and

Optimistic show 42.6% and 46.0% of accuracy respectively. Overall, all machine learning techniques
outperform heuristics. Especially, Decision Tree_0 and Random Forest_0 show the best accuracy
which is around 75%. They are the biggest configurations for decision tree and random forest
algorithm respectively. Their accuracy goes down with smaller configurations. For Unroll class,
heuristics work pretty well. Optimistic has 88.0% accuracy, which is better than SVM, Random
Forest_1, and Neural Net. Interestingly, SVM shows the lowest accuracy among all predictors, even
lower than Conservative although it shows the decent accuracy for Exact class. Other classifiers,
such as Decision Tree_0, surpass the accuracy of heuristics. For Smart class, all machine learning
models outperform heuristics by presenting the accuracy above 90% even though both heuristics
shows desirable accuracy. Although heuristics’ optimistic expectation generally holds, this suggests
an opportunity for improvement in their current design. For Dist_n class, most models increase
their accuracy as the allowance in the difference of factors grows. Particularly, the increases in
Optimistic, Decision Tree_2, Random Forest_1, and Neural Net are notable. This implies they make a
good deal of sub-optimal predictions that are close to the optimal labels. However, the accuracy

J. ACM, Vol. 37, No. 4, Article 111. Publication date: October 2019.

111:12 Sunghyun Park et al.

0

5

10

15

20

25

I
n

s
tr

u
c
ti

o
n

 c
o

u
n

t
r
e
d

u
c
ti

o
n

 (
%

)

(a) Geomean of instruction reduction for test loops.

-1

-0.8

-0.6

-0.4

-0.2

0

0.2

0.4

0.6

0.8

1

R
a

ti
o

 w
it

h
 O

r
a
c
le

Test loop

opt con Nearest Neighbors Decision Tree_0

Decision Tree_1 Decision Tree_2 Decision Tree_3 Random Forest_0

Random Forest_1 Neural Net RBF SVM

Optimistic Conservative

SVM

(b) The ratio of optimized loops compared to Oracle.

Fig. 6. Averaged instruction count reduction and the ratio of optimized loops compared to Oracle for each
decision model.

change in SVM is not significant compared to others. This might be related to its noteworthy low
accuracy for class Unroll.

To understand the misprediction for Unroll and Smart, we collect its sources of prediction failures.
A prediction failure falls into either one or the other: wrongly applied, or missed opportunity.
Figure 5 illustrates the ratio of wrongly applied and missed opportunities among mispredictions
in the decision model. The breakdown for class Unroll is shown in Figure 5a. In general, most
decision models have turned out to have lots of missed opportunity which suggests a room for
performance improvement. Especially, SVM has a conspicuous amount of missed opportunity
resulting in significantly low accuracy for class Unroll. The classifier disables loop unrolling more
than necessary, resulting in overly conservative predictions. This can also explain the observation
of SVM in class Dist_n. Given that SVM shows high prediction accuracy in Exact class, the classifier
is expected to have a very high accuracy to figure out when it should not apply loop unrolling.
Figure 2 backs up this phenomenon. For around 40% of loops in our benchmark traces, it is the
best decision to disable loop unrolling. When comparing Conservative and Optimistic, the former
makes more missed opportunity than the latter although it has less wrong applications of loop
unrolling. This is expected when considering the nature of the conservative approach. On the other
hand, Figure 5b shows the breakdown for class Smart. Notably, many decision models wrongly
apply smart unrolling in many cases. Especially, both heuristics have a significantly high ratio of
wrongly applied which is greater than 80% and 95% respectively. This implies overly optimistic
expectation from heuristics would result in misuse of smart unrolling around 10% of the time
in their predictions. The high misuse rate is induced by heuristics’ overly optimistic expectation
towards the speculative assumptions for smart unrolling. Meanwhile, SVM presents its conservative
approach by showing a significantly low ratio of wrongly applied.

6.3 Performance Improvement In Translated Code

To evaluate the steady-state performance of the translated code, expected instruction reduction
for each loop is computed by using collected data. Figure 6 illustrates the performance benefit of
loop unrolling with each decision model. Figure 6a represents the average in instruction count
reduction for test loops. The first bar, Oracle, shows the expected instruction reduction of a perfect
predictor which always predicts optimal labels. Therefore, its number (23.8%) will be the ideal
upper limit that the decision model can achieve. The best heuristic in our DBT infrastructure
presents 13.6% of instruction reduction. All but SVM outperforms the best heuristic significantly.

J. ACM, Vol. 37, No. 4, Article 111. Publication date: October 2019.

Multi-objective Exploration for Practical Optimization Decisions in Binary Translation 111:13

This can be explained by SVM’s significant amount of missed opportunity for loop unrolling as
presented in Figure 5a. Other classifiers notably outperform the best heuristic. In particular, Decision
Tree_0 and Random Forest_0 show reductions of around 21%, which is close to the ideal upper limit.
Smaller configurations like Decision Tree_2, Decision Tree_3, and Random Forest_1 also show notable
improvement. Figure 6b illustrates the ratio of loops that are close to the optimal performance. For
each test loop, the instruction reduction of each classifier is divided by that of Oracle. Oracle can not
have any negative value in the reduction since it would disable the loop unrolling when the side
effect is shown. The calculated ratios are then placed in increasing order to clearly show how much
proportion of loops are close to optimal. The points below zero represent the loops suffering from
performance degradation due to the wrongly applied loop unrolling. When points are closer to one,
corresponding loops are unrolled close to the optimal. In other words, the model with fewer points
below zero suffers less from the side effect of loop unrolling while the model with more points
close to one has more ideally optimized loops. In both heuristics, a greater number of loops suffer
from the side effect of loop unrolling than machine learning techniques. Additionally, they have
fewer loops unrolled by the optimal decision. Due to its conservative nature, SVM disables more
loop unrolling than necessary for many loops. Thus, SVM has less loops near one while having
many loops on zero. On the other hand, Decision Tree_0 and Random Forest_0 are observed to have
ideally unrolled loops significantly more than others.

6.4 Prediction Overhead Analysis

Figure 7 and Table 3 illustrate the inference time and memory requirement for each decision model
respectively. The memory requirements for main memory (e.g. DRAM) is computed by its entire
model size while cache is calculated by its worst-case run-time memory footprint for an inference.
As Optimistic and Conservative are essentially the same algorithm with different parameters, their
inference times are almost identical. Notably, both inference time and memory requirement of
Nearest Neighbor and SVM are significant. Since Nearest Neighbor populates the training data to
make a prediction, the data should be stored and accessed during the inference. Thus, the large
size of the training data may cause the high prediction overhead. On the other hand, SVM makes a
prediction by using supporting vectors. Naturally, when the number of supporting vectors is high,
the technique would suffer from high memory usage and slow inference speed. In our experiment,
11, 028 supporting vectors are built during training. This approach brings an excessive prediction
cost for both memory and inference time (8, 095× slower than heuristics). Random Forest_0, Random
Forest_1, and Neural Net present large prediction costs as well. Because the random forest algorithm
maintains a group of trees, it requires sufficient memory space to store all tree nodes and computing
power to process them to achieve satisfactory prediction speed. The compute-intensive nature of
Neural Net arises its high prediction cost. Given that a simple network with a single hidden layer
is assumed in this experiment, a more complex network is expected to have a higher prediction
overhead that would be excessive for our dynamic optimizer. The decision tree model makes a
prediction by conducting a sequence of simple tests on the nodes along with the path from the
root node to the leaf node. Thus, when the tree has a reasonable height, the model exhibits low
prediction overhead.

6.5 Choice of Classification Algorithm

Since the optimization time induces a run-time overhead in dynamic optimization, system designers
often introduce various budgets on dynamic optimization as the design criteria. Also, due to the
limited resource in a mobile processor, there is a restriction on the memory usage. In this section,
we evaluate the feasibility of each classification methods by considering time/memory constraints
and identify the best affordable method.

J. ACM, Vol. 37, No. 4, Article 111. Publication date: October 2019.

111:14 Sunghyun Park et al.

0

0.3

0.6

0.9

1.2

1.5
P

re
d

ic
ti

on
 c

os
t

(µ
s)

49.0 600.7 2.7 2.4

Budget = 0.308µs

Fig. 7. Inference time for each model with given budget.

Model Main Memory (KB) Cache (KB)
Nearest Neighbor 1,391 1,391

SVM 1,500 1,500
Decision Trees < 130 < 0.66
Random Forests < 1,122 < 6.96

Neural Net 21 21

Table 3. Memory requirement for each model. The requirements for decision tree and random forest configu-
rations are represented by their largest configurations.

Firstly, we examine the feasibility in terms of time. Based on the rule of thumb widely used by
experts in the industry, dynamic binary translation could use no more than 10k ∗ N instructions to
optimize the region of N instructions. Given that there are plenty of optimization phases and a
decision model for the unroll factor is only a small fraction of loop unrolling phase, we assume
0.3% of the total budget as the time constraint for the decision model. Therefore, 30N instructions
can be used for each unroll factor prediction. To calculate the time budget, we use the information
of the processor used for the experiment: Intel Core i7-4700MQ mobile processor (Haswell) with
2.4GHz and its averaged IPC (1.621) [24]. Also, the averaged region size (40) [16, 36] is used for N .
As a result, 0.308 µs is introduced as the time constraint for each inference and used to evaluate the
applicability of each decision model. Figure 7 visualizes the inference cost with the time constraint.
Overall, all machine learning techniques but the decision tree algorithm present the inference time
above the given budget. Nearest Neighbor and SVM especially show excessively high prediction
overhead. Although the previous work [34] suggests that both techniques would be a good choice
for unroll factor prediction in a static compiler, their prediction overheads are exorbitant in our
dynamic optimizer. Also, the high inference time of Neural Network, which is over the budget,
implies that even a simple network has excessive computation overhead for our infrastructure.
While Random Forest_0 presents the highest prediction accuracy, it turned out the decision model
is not affordable due to its high prediction cost significantly above the time constraint. Decision
Tree_0, which has the comparable prediction accuracy to Random Forest_0, shows faster inference
speed compared to the other classifiers. But its prediction cost is slightly above the constraint.
The smaller decision trees, Decision Tree_1 and Decision Tree_2, exhibit relatively high prediction
accuracy with fast prediction satisfying the given budget. This implies the necessity to consider
the trade-off between prediction accuracy and cost in terms of the tree size.

J. ACM, Vol. 37, No. 4, Article 111. Publication date: October 2019.

Multi-objective Exploration for Practical Optimization Decisions in Binary Translation 111:15

(34, 74.61) (15, 74.53) (6, 73.09)

(2, 63.4)

(34, 0.335)

(15, 0.298)
(6, 0.286)

0

0.1

0.2

0.3

0.4

0.5

0.6

0

10

20

30

40

50

60

70

80

34 33 32 31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1

In
fe

re
n

ce
 t

im
e

(µ
s)

P
re

d
ic

ti
on

 a
cc

u
ra

cy
 (

%
)

Number of features

Objective 1 (Left y-axis) Objective 2 (Right y-axis)

Budget = 0.308µs

Fig. 8. The change in prediction accuracy and inference time during greedy feature selection process. With
Top 15 features (marked with stars), the decision tree model can show an almost identical level of prediction
accuracy to the model with all 34 features while satisfying the time constraint.

We also assume 0.3% of the total memory budget as the memory constraint for the decision
model. Table 3 represents memory requirements for storing (main memory) and running (cache)
each model. Our assumed mobile processor can store all models without difficulty. However, the
memory constraint on cache is challenging. Since our mobile processor contains 1 MB of L2 cache,
the constraint for cache becomes 3 KB. Thus, only decision tree and random forest with small
configuration can meet the restriction.

Overall, the decision tree is the only machine learning based model that satisfies both time/mem-
ory budgets on our infrastructure. It is also one of the models with the highest prediction accuracy.
Thus, the decision tree would be a good choice as a cost-effective decision model for loop unrolling
on our infrastructure. Additionally, the decision tree is an interpretable model which can give
insight to system designers. The learned knowledge (e.g., how each feature is treated) from the
decision tree can be used to improve the human-made heuristic algorithm.

7 Redundant Feature Pruning
To identify the important features and possibly reduce the number of features, we modify the greedy
feature selection algorithm [34]. Every iteration, our greedy method drops the least significant
feature by examining variation in prediction accuracy when each feature in the feature set is
eliminated. Starting from a full feature set (i.e., 34 features in our case), the same process is repeated
until no feature is left in the set.

Figure 8 presents how our greedy feature selection technique gradually narrows down the feature
set for the decision tree algorithm which is identified as the best classification technique for our
DBT system in the previous section. The reduced feature set affects tree size and availability of
test that the model can perform at each tree node. Mostly, both prediction accuracy and inference
time are observed to decrease as the number of available features gets smaller. Since the decision
tree makes a prediction at a leaf node by passing through a series of tests along the path, reducing
average depth for leaf nodes brings the improvement in the inference time. The prediction accuracy
sustains a similar level until only 6 features are employed and drops significantly after that point.
Particularly, the decision tree model can present the almost identical level of prediction accuracy
with the model employing a full feature set by using only 15 features (less than 0.1% of difference),

J. ACM, Vol. 37, No. 4, Article 111. Publication date: October 2019.

111:16 Sunghyun Park et al.

Top 15 features
General loop property
• The number of operands
• Step of induction variable ✓
• The viability of non-linear loop conversion ✓
Constraints from binary translation
• Proportion of post-optimization blocks compared to its quota ✓
• Proportion of post-optimization instructions compared to its quota ✓
Benefit: opportunity for the following phases
• The number of loop invariants
• The number of loop invariant loads ✓
Side effect: code size
• Number of duplicated exit blocks
• Number of instructions in duplicated exit blocks
Dynamic Information
• Trip count ✓
• The taken probability of side exits
Instruction mix
• The ratio of static stores
• The ratio of memory operations
Smart unrolling
• The size of immediate operand from induction variable ✓
• The size of operand for the loop condition ✓

Table 4. Top 15 features for decision tree. Check marks (✓) indicate that the corresponding features are
considered in the current heuristic design: 8 out of the top 15 features are employed by current heuristics.

while satisfying the time constraint. Also, the built model requires 0.61KB of space in cache which
fits within our memory budget. Thus, in this work, Top 15 features are recommended to use.

Table 4 shows those selected features. Overall, features under various categories defined in Table 1
are chosen. This suggests loop unrolling requires information from diverse aspects to make a good
decision. Note, our binary translation puts constraints on upper limits for the expected number of
post-optimization instructions and basic blocks. Therefore, the proportion of post-optimization
instructions/basic blocks compared to its quota plays an important role in unrolling decision.
Top 15 features also include information regarding loop invariants and the number of duplicated
instructions/blocks. Each information provides an indication for benefit and side effect from loop
unrolling respectively. Dynamic information, such as trip count and the taken probability of side
exits, also takes a crucial role by helping the dynamic optimizer to capture the actual iteration
count at runtime. On the other hand, the size of the immediate operand from the induction variable
and the operand size for the loop condition are meaningful for the decision for smart unrolling.
It helps the decision model to estimate the chance of the run-time check failure. The rest of the
information helps the optimizer to characterize each loop better.

Interestingly, all 8 features employed in the current heuristic design are chosen as Top 15 features.
The significant improvement in the machine learning based model comes from the difference
in how each feature is treated (e.g., importance of each feature, threshold for each feature) and
the missing features in the heuristic design. By using their own statistical approaches, machine
learning based approach is capable of finer tuning in high dimensional space than the hand-made

J. ACM, Vol. 37, No. 4, Article 111. Publication date: October 2019.

Multi-objective Exploration for Practical Optimization Decisions in Binary Translation 111:17

model. Furthermore, the approach can suggest important features that are missed by experts. Our
investigation points out that information, such as the taken probability of side exits and the ratio
of memory operations, should be considered for the accurate loop unrolling decision. Note, these 7
missing features are readily available or collected with the negligible overhead at the loop unrolling
phase.

8 Related Works

There have been efforts to build an optimization decision model by hand [33, 40]. Although these
results show quite impressive improvements, it is expected to become continuously harder for
compiler designers to create an effective model by hand due to the increasing design complexity.
The failures with the software pipelining heuristic which is designed to avoid the side effect
from its overly aggressive usage are reported [17, 26]. Also, Stephenson and Amarasinghe [34]
showed that their baseline compiler predicts optimal unroll factor only 16% of the time. To improve
optimization decision, researchers started to employ machine learning techniques. Particularly,
given its system-wide impact, loop unrolling is widely studied. Monsifrot et al. proposed an auto-
generation of heuristics for a target processor by using the decision tree algorithm [28]. They built
a binary classifier that decides whether to apply loop unrolling or not while leaving unroll factor
determination to the existing heuristic. To include the unroll factor in the automation process,
Stephenson and Amarasinghe [34] suggested to consider this problem as a multi-class classification
problem and solved it by introducing machine learning techniques. Their best classifier shows
65% of prediction accuracy which leads to a 5% speedup (software pipelining disabled) and 1%
speedup (software pipelining enabled) over the SPEC 2000 benchmark suite. While the macroscopic
approach is similar, our work assumes a dynamic binary translation in the mobile system which is
more challenging environment than a static compiler assumed in previous works. As the prediction
cost occurs in run-time overhead, five different machine learning techniques are evaluated with
varying configurations to identify the cost-efficient machine learning algorithm and show the
relation between classifier size and prediction accuracy. Leather et al. suggested the automatic
feature generation mechanism for the decision tree model designed to predict the unroll factor [22].
They define the feature space by a grammar and automatized the exploration by using genetic
programming and predictive modeling. This approach can be applied to our work to isolate the
best set of features for the machine learning-based decision model.
The application of machine learning techniques is also explored for the dynamic compilation.

In a Java Just-in-time (JIT) compiler, Cavazos and Moss [11] improved the program speed by
employing supervised learning to predict whether blocks would benefit from instruction scheduling
optimization. For the blocks expected to gain no advantage from the instruction scheduling, their
approach bypasses the optimization to improve the compilation time at runtime. Cavazos and
O’Boyle [12] proposed an automatic tuning method for function inlining in a Java JIT compiler.
They designed a genetic algorithm that searches a large space of parameter values efficiently. In
addition, the best optimization configuration is explored in JIT compiler. Hoste et al. [20] proposed
the multi-objective evolutionary search algorithm to find Pareto-optimal in terms of compilation
time and execution speed for JIT compiler. As a result, they gained up to 40% of improvement in
compilation time and 19% of improvement in steady-state performance over the default setting
of Jikes RVM. On the other hand, and O’Boyle [13] used logistic regression to determine which
optimization should be applied to each method based on its features in Jikes RVM and achieves
29% of speedup compared to -O2 optimization level.

The comprehensive survey in the field of machine-learning based compilation is well described
in the work by Wang and O’Boyle [37].

J. ACM, Vol. 37, No. 4, Article 111. Publication date: October 2019.

111:18 Sunghyun Park et al.

9 Conclusion

To improve the optimization decision model in binary translation, we propose a statistical and
automatic approach by employing machine learning techniques. Focusing on loop unrolling, our
work examines the performance and feasibility of machine learning models. We evaluate our
approach with the industrial strength infrastructure and 17,116 unrollable loops collected from
various real-life programs and benchmarks. By considering both prediction accuracy and cost, the
decision tree model is identified as the best classification model. Then, through the greedy feature
selection method, its significant features are discovered. By using them, we successfully build the
effective best affordable decision model that satisfies the given time/memory budgets and greatly
outperforms the baseline heuristics by making better optimization decisions.

References

[1] 2019-02-08. Intel core i7 embedded processor. https://ark.intel.com/products/series/122593/8th-Generation-Intel-Core-
i7-Processors#@embedded

[2] 2019-06-02. 3DMark. https://www.3dmark.com/
[3] 2019-06-02. FPMark. https://www.eembc.org/fpmark/
[4] 2019-06-02. Geekbench. https://www.geekbench.com/
[5] 2019-06-02. SYSmark. https://bapco.com/products/sysmark-2018/
[6] 2019-06-02. TabletMark. https://bapco.com/products/end-of-life-products/tabletmark/
[7] Felice Balarin, Paolo Giusto, Attila Jurecska, Michael Chiodo, Harry Hsieh, Claudio Passerone, Ellen Sentovich, Luciano

Lavagno, Bassam Tabbara, Alberto Sangiovanni-Vincentelli, et al. 1997. Hardware-software co-design of embedded
systems: the POLIS approach. Springer Science & Business Media.

[8] Stefan Behnel, Robert Bradshaw, Craig Citro, Lisandro Dalcin, Dag Sverre Seljebotn, and Kurt Smith. 2011. Cython:
The best of both worlds. Computing in Science & Engineering 13, 2 (2011), 31–39.

[9] Edson Borin, Youfeng Wu, Cheng Wang, Wei Liu, Mauricio Breternitz Jr, Shiliang Hu, Esfir Natanzon, Shai Rotem,
and Roni Rosner. 2010. TAO: two-level atomicity for dynamic binary optimizations. In Proceedings of the 8th annual
IEEE/ACM international symposium on Code generation and optimization. ACM, 12–21.

[10] James Bucek, Klaus-Dieter Lange, et al. 2018. SPEC CPU2017: Next-Generation Compute Benchmark. In Companion of
the 2018 ACM/SPEC International Conference on Performance Engineering. ACM, 41–42.

[11] John Cavazos and J Eliot B Moss. 2004. Inducing heuristics to decide whether to schedule. In ACM SIGPLAN Notices,
Vol. 39. ACM, 183–194.

[12] John Cavazos and Michael FP O’Boyle. 2005. Automatic tuning of inlining heuristics. In Supercomputing, 2005.
Proceedings of the ACM/IEEE SC 2005 Conference. IEEE, 14–14.

[13] John Cavazos and Michael FP O’boyle. 2006. Method-specific dynamic compilation using logistic regression. ACM
SIGPLAN Notices 41, 10 (2006), 229–240.

[14] Jack W Davidson and Sanjay Jinturkar. 1996. Aggressive loop unrolling in a retargetable, optimizing compiler. In
International Conference on Compiler Construction. Springer, 59–73.

[15] James C Dehnert, Brian K Grant, John P Banning, Richard Johnson, Thomas Kistler, Alexander Klaiber, and Jim Mattson.
2003. The Transmeta Code Morphing/spl trade/Software: using speculation, recovery, and adaptive retranslation to
address real-life challenges. In Code Generation and Optimization, 2003. CGO 2003. International Symposium on. IEEE,
15–24.

[16] Kemal Ebcioglu, Erik Altman, Michael Gschwind, and Sumedh Sathaye. 2001. Dynamic binary translation and
optimization. IEEE Transactions on computers 50, 6 (2001), 529–548.

[17] Ramaswamy Govindarajan, Erik R Altman, and Guang R Gao. 1994. Minimizing register requirements under resource-
constrained rate-optimal software pipelining. In Proceedings of the 27th annual international symposium on Microarchi-
tecture. ACM, 85–94.

[18] John L Hennessy and David A Patterson. 2011. Computer architecture: a quantitative approach. Elsevier.
[19] John L Henning. 2006. SPEC CPU2006 benchmark descriptions. ACM SIGARCH Computer Architecture News 34, 4

(2006), 1–17.
[20] Kenneth Hoste, Andy Georges, and Lieven Eeckhout. 2010. Automated just-in-time compiler tuning. In Proceedings of

the 8th annual IEEE/ACM international symposium on Code generation and optimization. ACM, 62–72.
[21] Chandra Krintz and Brad Calder. 2001. Using annotations to reduce dynamic optimization time. ACM Sigplan Notices

36, 5 (2001), 156–167.

J. ACM, Vol. 37, No. 4, Article 111. Publication date: October 2019.

https://ark.intel.com/products/series/122593/8th-Generation-Intel-Core-i7-Processors#@embedded
https://ark.intel.com/products/series/122593/8th-Generation-Intel-Core-i7-Processors#@embedded
https://www.3dmark.com/
https://www.eembc.org/fpmark/
https://www.geekbench.com/
https://bapco.com/products/sysmark-2018/
https://bapco.com/products/end-of-life-products/tabletmark/

Multi-objective Exploration for Practical Optimization Decisions in Binary Translation 111:19

[22] Hugh Leather, Edwin Bonilla, and Michael O’Boyle. 2009. Automatic feature generation for machine learning based
optimizing compilation. In Proceedings of the 7th annual IEEE/ACM International Symposium on Code Generation and
Optimization. IEEE Computer Society, 81–91.

[23] Andy Liaw, Matthew Wiener, et al. 2002. Classification and regression by randomForest. R news 2, 3 (2002), 18–22.
[24] Ankur Limaye and Tosiron Adegbija. 2018. A Workload Characterization of the SPEC CPU2017 Benchmark Suite. In

Performance Analysis of Systems and Software (ISPASS), 2018 IEEE International Symposium on. IEEE, 149–158.
[25] Yu Liu, Hantian Zhang, Luyuan Zeng, Wentao Wu, and Ce Zhang. 2018. MLbench: benchmarking machine learning

services against human experts. Proceedings of the VLDB Endowment 11, 10 (2018), 1220–1232.
[26] Josep Llosa, Mateo Valero, E Agyuade, and Antonio González. 1998. Modulo scheduling with reduced register pressure.

IEEE Transactions on computers 6 (1998), 625–638.
[27] Uma Mahadevan and Lacky Shah. 1998. Intelligent loop unrolling. US Patent 5,797,013.
[28] Antoine Monsifrot, François Bodin, and Rene Quiniou. 2002. A machine learning approach to automatic production of

compiler heuristics. In International conference on artificial intelligence: methodology, systems, and applications. Springer,
41–50.

[29] Fabian Pedregosa, Gaël Varoquaux, Alexandre Gramfort, Vincent Michel, Bertrand Thirion, Olivier Grisel, Mathieu
Blondel, Peter Prettenhofer, Ron Weiss, Vincent Dubourg, et al. 2011. Scikit-learn: Machine learning in Python. Journal
of machine learning research 12, Oct (2011), 2825–2830.

[30] Erez Perelman, Greg Hamerly, Michael Van Biesbrouck, Timothy Sherwood, and Brad Calder. 2003. Using SimPoint
for accurate and efficient simulation. In ACM SIGMETRICS Performance Evaluation Review, Vol. 31. ACM, 318–319.

[31] Archana Ravindar and YN Srikant. 2011. Relative roles of instruction count and cycles per instruction in WCET
estimation. In ACM SIGSOFT Software Engineering Notes, Vol. 36. ACM, 55–60.

[32] Stuart J Russell and Peter Norvig. 2016. Artificial intelligence: a modern approach. Malaysia; Pearson Education Limited,.
[33] Vivek Sarkar. 2000. Optimized unrolling of nested loops. In Proceedings of the 14th international conference on

Supercomputing. ACM, 153–166.
[34] Mark Stephenson and SamanAmarasinghe. 2005. Predicting unroll factors using supervised classification. In Proceedings

of the international symposium on Code generation and optimization. IEEE Computer Society, 123–134.
[35] Mark Stephenson, Saman Amarasinghe, Martin Martin, and Una-May O’Reilly. 2003. Meta optimization: improving

compiler heuristics with machine learning. In ACM SIGPLAN Notices, Vol. 38. ACM, 77–90.
[36] Cheng Wang and Youfeng Wu. 2013. TSO_ATOMICITY: efficient hardware primitive for TSO-preserving region

optimizations. In ACM SIGARCH Computer Architecture News, Vol. 41. ACM, 509–520.
[37] Zheng Wang and Michael O’Boyle. 2018. Machine Learning in Compiler Optimization. Proc. IEEE (2018).
[38] MarkusWillems, Volker Bursgens, Thorsten Grotker, and Heinrich Meyr. 1997. FRIDGE: An interactive code generation

environment for HW/SW codesign. In 1997 IEEE International Conference on Acoustics, Speech, and Signal Processing,
Vol. 1. IEEE, 287–290.

[39] Wayne H Wolf. 1994. Hardware-software co-design of embedded systems. Proc. IEEE 82, 7 (1994), 967–989.
[40] Kamen Yotov, Xiaoming Li, Gang Ren, Michael Cibulskis, Gerald DeJong, Maria Garzaran, David Padua, Keshav Pingali,

Paul Stodghill, and Peng Wu. 2003. A comparison of empirical and model-driven optimization. ACM SIGPLAN Notices
38, 5 (2003), 63–76.

[41] Xinchuan Zeng and Tony R Martinez. 2000. Distribution-balanced stratified cross-validation for accuracy estimation.
Journal of Experimental & Theoretical Artificial Intelligence 12, 1 (2000), 1–12.

[42] Guoqiang Peter Zhang. 2000. Neural networks for classification: a survey. IEEE Transactions on Systems, Man, and
Cybernetics, Part C (Applications and Reviews) 30, 4 (2000), 451–462.

J. ACM, Vol. 37, No. 4, Article 111. Publication date: October 2019.

	Abstract
	1 Introduction
	2 Background
	2.1 Our Infrastructure with Binary Translation
	2.2 Supervised Multi-class Classification

	3 Motivation
	4 Challenges and Opportunities
	5 Data Generation
	5.1 Feature Extraction
	5.2 Optimal Factor Exploration

	6 Evaluation
	6.1 Experimental Setup
	6.2 Prediction Accuracy
	6.3 Performance Improvement In Translated Code
	6.4 Prediction Overhead Analysis
	6.5 Choice of Classification Algorithm

	7 Redundant Feature Pruning
	8 Related Works
	9 Conclusion
	References

