Sculptor: Flexible Approximation with
Selective Dynamic Loop Perforation

Shikai Li Sunghyun Park Scott Mahlke
University of Michigan, Ann Arbor University of Michigan, Ann Arbor University of Michigan, Ann Arbor
shikaili@umich.edu sunggg@umich.edu mahlke@umich.edu

ABSTRACT

Loop perforation is one of the most well known software techniques
in approximate computing. It transforms loops to periodically skip
subsets of their iterations. It is general, simple, and effective. How-
ever, during analysis, it only considers the number of instructions
to skip, but does not consider the differences between instructions
and loop iterations. Based on our observation, these differences
have considerable influence on performance and accuracy. To im-
prove traditional perforation, we introduce selective dynamic loop
perforation, a general approximation technique that automatically
transforms loops to skip selected instructions in selected iterations.
It provides the flexibility to craft approximation strategies at the dy-
namic instruction level. The main challenges in selective dynamic
loop perforation are how to capture the characteristics of instruc-
tions, optimize perforation strategies based on these characteristics,
and minimize additional runtime overhead. In this paper, we pro-
pose several compiler optimizations to resolve these challenges,
including optimized instruction-level, load based and store based
selective perforation, and self-directed dynamic perforation with a
dynamic start and dynamic perforation rates. Across a range of 8
applications from various domains, selective dynamic loop perfora-
tion achieves average speedups of 2.89x and 4.07x with 5% and 10%
error budgets, while traditional loop perforation achieves 1.47x and
1.93x, respectively, for the same error budgets.

CCS CONCEPTS

- Software and its engineering — Compilers; Runtime envi-
ronments; » General and reference — Performance;

KEYWORDS

Approximate Computing, Compiler, Runtime System

ACM Reference Format:

Shikai Li, Sunghyun Park, and Scott Mahlke. 2018. Sculptor: Flexible Ap-
proximation with Selective Dynamic Loop Perforation. In ICS ’18: 2018
International Conference on Supercomputing, June 12—15, 2018, Beijing, China.
ACM, New York, NY, USA, 11 pages. https://doi.org/10.1145/3205289.3205317

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than the
author(s) must be honored. Abstracting with credit is permitted. To copy otherwise, or
republish, to post on servers or to redistribute to lists, requires prior specific permission
and/or a fee. Request permissions from permissions@acm.org.

ICS 18, June 12-15, 2018, Beijing, China

© 2018 Copyright held by the owner/author(s). Publication rights licensed to Associa-
tion for Computing Machinery.

ACM ISBN 978-1-4503-5783-8/18/06...$15.00
https://doi.org/10.1145/3205289.3205317

341

1 INTRODUCTION

Emerging compute-intensive applications in popular domains, such
as machine learning, computer vision, and data mining, create a
rapid increase in computation demands. However, with the dimin-
ishing benefits of CMOS scaling [11], it gets harder and harder
for the computation capacity to keep up with the demands. Ap-
proximate computing provides a practical solution to this problem
through trading off output accuracy for performance improvement
or energy reduction. Prior works have shown that, through software
[5, 31, 33, 35] and hardware [12, 13, 20, 26] techniques, approxi-
mate computing could achieve significant performance speedup
with moderate accuracy lost, which is acceptable or even not no-
ticeable to end users in these domains.

Task skipping [28] is a crucial idea in approximate computing,
in which a part of computational work is skipped to reduce the
corresponding execution time or energy consumption while com-
promising output quality. Loop perforation [35] is one of the most
widely applied task skipping techniques. It transforms loops to
periodically skip subsets of their iterations. It takes a parameter
named loop perforation rate, representing the percentage of itera-
tions to skip, and only executes the first iteration among every n
iterations. Loop perforation has shown to be a simple, general, and
effective task skipping technique. However, it still has limitations
in discovering potential approximation opportunities.

Loop perforation provides a coarse-grained and inflexible solu-
tion of where and when to conduct skipping. It is limited to skip iter-
ations entirely with all internal instructions and periodically with a
constant rate during runtime. In practice, different instructions and
iterations present varying characteristics at runtime. Ignoring these
differences and blindly skipping iterations entirely and periodically
can lose considerable approximation opportunities.

We conduct an in-depth investigation of applications in PARSEC
[6] and Rodina [10]. Based on the investigation, we find out that
skipping different instructions and different iterations of the same
loop have different impacts on performance and accuracy. Figure 1a
and Figure 1b present two examples of this phenomena. Figure 1a
shows final output errors when different instructions of a selected
loop in Hotspot from Rodinia [10] benchmark suite are skipped
every other iteration. As shown in the figure, being skipped at the
same rate, some instructions hurt output quality significantly, while
other instructions hurt output quality negligibly. Figure 1b shows
final output errors when different iterations of a selected loop in
Bodytrack from the PARSEC [6] benchmark suite are skipped during
program execution. One can see that the output errors incurred by
skipping different iterations vary substantially during the execution.
In loop perforation, these differences are ignored. Instructions are
skipped together, iterations are skipped periodically, regardless of
output errors. Therefore, a better solution is desired. We need to

https://doi.org/10.1145/3205289.3205317
https://doi.org/10.1145/3205289.3205317

ICS ’18, June 12-15, 2018, Beijing, China

1.0
0.9
0.8
0.7
206
505
o
504
]
0.3
0.2
0.1
0.0
0

15 20

Instructions

5 10 25 30 35 40

(a) Skipping Different Instructions in Hotspot

0.25

o o o
= = N
o u o

Output Error

o
=}
o

I
0 100 200 300 400 500 600 700 800 900
Iterations

0.00

(b) Skipping Different Iterations in Bodytrack

Figure 1: Output Error of Skipping Different Content

skip work intelligently, skipping instructions and iterations that
are unimportant for output accuracy, while executing instruction
and iterations that are crucial for output accuracy.

To solve these problems, we propose selective dynamic loop per-
foration, which gives a fine-grained, highly-flexible, and intelligent
solution of where and when to conduct skipping and provides the
possibility to optimize skipping strategies at the dynamic instruc-
tion level. Instead of skipping iterations entirely and periodically,
selective dynamic loop perforation intelligently selects instructions
as where to skip and dynamically selects iterations as when to skip,
based on program behaviors derived through a combination of
offline analysis and online observation.

This paper makes the following contributions:

We propose selective dynamic loop perforation which transforms
programs to skip intelligently selected instructions at dynami-
cally selected iterations, aiming to achieve best performance and
accuracy trade-off.

Selective loop perforation is introduced to intelligently select a
subset of instructions to skip. Instruction-level, load based, and
store based selective loop perforation are proposed to balance
selection flexibility and optimization complexity.

Dynamic loop perforation is introduced to dynamically skip iter-
ations with dynamic start and perforation rate. Call-based and
iteration-based dynamic rates are proposed to change the degree
of approximation aggressiveness at runtime.

We compare selective dynamic loop perforation to traditional
loop perforation across 8 applications from PARSEC [6] and
Rodina [10]. Selective dynamic loop perforation achieves 2.89x
and 4.07x speedup with 5% and 10% error budgets. In comparison,

342

Shikai Li, Sunghyun Park, and Scott Mahlke

Iterations Iterations

Instructions
Instructions

(a) Traditional Perforation (b) Selective Perforation

Iterations Iterations

Instructions
Instructions

(c) Dynamic Perforation (d) Selective Dynamic Perforation

. Executed Dynamic Instruction. D Skipped Dynamic Instruction.
Figure 2: Illustration of Different Perforation Techniques

traditional loop perforation achieves 1.47x and 1.93x speedup,
respectively, for the same error budgets.

2 OVERVIEW
2.1 Approach

Loop perforation (referred as perforation) transforms loops to exe-
cute a constant subset of their iterations. At the instruction level, it
performs regular skipping of all dynamic instructions in periodi-
cally selected iterations.

However, as discussed in Section 1, we discover that consider-
able skipping opportunities are hidden from approximation due
to the coarse granularity. As a result, we expect a fine-grained dy-
namic instruction skipping technique with low runtime overhead
to expose those opportunities. Here, we propose selective dynamic
perforation, a new technique to irregularly skip specific instruc-
tions at specific iterations. It aims to optimize skipping strategies
for all dynamic instructions to achieve best performance accuracy
trade-off.

Figure 2 shows a simple illustration. It shows different skipping
strategies of different perforation techniques at runtime. A grid
represents all iterations in original execution. Each column repre-
sents a single iteration. Each cell represents a dynamic instruction.
Shaded cells represent executed dynamic instructions and blank
cells represent skipped dynamic instructions.

In traditional perforation, loops are transformed to skip a con-
stant subset of their iterations. We are limited to skip iterations
entirely with all dynamic instructions and periodically with a con-
stant skip rate. As shown in Figure 2a, with these limitations, we
could only skip 50% dynamic instructions under the error budget.

In selective perforation, loops are transformed to skip a flexi-
ble subset of their instructions. Compared to traditional perforation,
we don’t have to skip iterations entirely with all instructions. We
can skip a subset of instructions that is unimportant to output accu-
racy and keep executing instructions that are important to output
accuracy. As shown in Figure 2b, with this relaxation, we could
skip 68.75% dynamic instructions under the error budget.

In dynamic perforation, loops are transformed to skip a flexi-
ble subset of their iterations. Compared to traditional perforation,

Sculptor: Flexible Approximation with
Selective Dynamic Loop Perforation

Compile-Time Analysis and Transformation
= I Transformed
-_—) Bitcode
Selective - Dynamic
Perforation Perforation @
(Error)
Metric Executable
- 1 g
Original .
Source Execution Performance Runtime
Code xTir:eI Value and Scheduling
- Profiling Accuracy
o5 Profiling Test @
Error Profile-Time Performance and Accuracy Runtime
Budget Evaluation Error Control

Figure 3: Sculptor Overview

we don’t have to skip iterations periodically with a constant skip
rate. We can skip a subset of iterations that is unimportant to out-
put accuracy, while keeping iterations that are important to output
accuracy. As shown in Figure 2c, with this relaxation, we could skip
62.5% dynamic instructions under error budget.

In selective dynamic perforation, loops are transformed to
skip a dynamic subset of their instructions in a dynamic subset of
their iterations. It relaxes all the constraints presented in traditional
perforation and achieves high flexibility. Theoretically, we could
choose to skip every single dynamic instruction in the reverse order
of their importance to output accuracy. As shown in Figure 2d, with
the strong flexibility, we could skip 75% dynamic instructions under
the error budget.

In this paper, we introduce methodologies to design selective
perforation and dynamic perforation strategies, and optimizations
to reduce both online and offline overhead.

2.2 Compilation and Profiling System

Figure 3 presents a high-level overview of the compilation and
profiling system of Sculptor. It consists of two parts. One conducts
analysis and transformation at compile-time. Another conducts
performance and accuracy evaluation at profile-time. During perfo-
ration strategy design and integration, the analysis, transformation
and evaluation process are interleaved to compare different optional
strategies.

In this system, besides application source code, programmers
only need to provide an end-to-end error metric, an error budget,
and test inputs for performance and accuracy evaluation. After-
wards, the system is able to conduct analysis, transformation and
evaluation automatically, and generate the approximated executable
with built-in dynamic perforation schedulers. The dynamic per-
foration scheduling will be performed by built-in schedulers at
runtime. Compared to other approximation techniques, it is widely
applicable and requires no hardware modification.

In Figure 3, the black arrows show analysis and transformation
process as a primary process. There are five steps in the primary
process. Firstly, the system performs execution time profiling to
find target loops to perforate. Loops consuming a high ratio of total
execution time are selected as target loops. Secondly, the system
compiles the source code into compiler IR and designs selective

343

ICS ’18, June 12-15, 2018, Beijing, China

perforation strategies (as the analysis process introduced in Sec-
tion 3) for each target loop. Thirdly, the system designs dynamic
perforation strategies (as the analysis process introduced in Sec-
tion 4) for each target loop. Fourthly, the system searches for a near
optimal approximation strategy for the entire program through
integrating different selective and dynamic perforation strategies.
Finally, the system transforms the program and inserts built-in
dynamic perforation schedulers (as the transformation processes
introduced in Section 3 and Section 4).

Along with the primary process, performance and accuracy eval-
uation process is repeatedly conducted as the secondary process. In
general, this process helps the primary process to compare different
optional perforation strategies and ultimately find a near optimal
approximation perforation strategy for the program.

After the compilation and profiling process, an error manage-
ment mechanism is designed to further adjust performance and
accuracy trade-off at runtime (introduced in Section 5).

3 SELECTIVE PERFORATION

In selective perforation, loops are transformed to skip a subset of
their iterations during program execution.

In this paper, three selective perforation methods, instruction
level selective perforation, load based selective perforation and store
based selective perforation, are introduced for different balances of
selection flexibility and optimization complexity.

In the analysis process, through data flow analysis and profiling,
the system can identify instructions to skip (discussed in Section 3.1
and Section 3.2) or instructions to execute (discussed in Section 3.3).

In the transformation process, through customized compiler
optimizations, the system can transform the loop to skip instruc-
tions with a small runtime overhead (discussed in Section 3.1.3 and
Section 3.3).

For error management, Sculptor can execute selectively perfo-
rated loops at varying perforation rates or execute unperforated
loops to adjust approximation aggressiveness at runtime.

3.1 Instruction Level Selective Perforation

In instruction level selective perforation, the system gets a subset
of unimportant instructions through individual performance and
accuracy evaluation (discussed in Section 3.1.1) and expands this
subset through data flow analysis (discussed in Section 3.1.2). In-
struction level selective perforation is performed in three stages,
selection stage, expansion stage and transformation stage.

3.1.1 Selection Stage. In the selection stage, the system selects
instructions that have a large impact on performance and a small
impact on accuracy as target instructions to be perforated.

Firstly, the system selects instructions based on their estimated
impact on performance. Inside the target loop, if there are function
calls which directly live in the loop and consume most execution
time of the loop, only these function calls are selected as potential
perforation targets. Otherwise, all instructions are selected as po-
tential perforation targets. The execution time of the target loops
and inside function calls are derived through profiling.

Secondly, the system filters out part of selected instructions
that might cause program corruption or catastrophic errors based
on static analysis. Among these selected instructions, all branch

ICS ’18, June 12-15, 2018, Beijing, China

load r2, rl
for.body:

load r4, r3

load r5, r4

mul r6, r2, r5

add r7, r6, r5

U WN

Code 1: Code Segment Example for Expansion Stage

instructions and address calculation instructions, together with
their producers, are filtered out.

Thirdly, the system again filters out part of selected instructions
that might cause the output error to exceed the error budget based
on profiling. It uses local error estimation to filter out ALU oper-
ations, load instructions and pure function calls. Besides, it uses
global error estimation to filter out store instructions and other
function calls.

For local error estimation, it detects temporal data similarity
among consecutive executions of instruction and uses it to estimate
the accuracy lost when the instruction is skipped. Temporal data
similarity describes a phenomenon in which an instruction tends
to have similar results among consecutive executions. A value
profiling methodology is used to detect it. During profiling, a sliding
window (as FIFO) is maintained for each selected instruction. It
records the result of last m executions of the instruction. Each time
the instruction is executed, the sliding window will be updated.
At sampling, the relative deviation from it will be calculated and
accumulated. After profiling, the average relative deviation of the
sliding windows will present as a measurement of the temporal data
similarity of the instruction. Instructions with low temporal data
similarity are filtered out. As their results fluctuate greatly during
program execution and might cause large output error when they
are skipped. The algorithm could be described using Equation 1. n
represents the number of sampled sliding windows, m represents
the size of the sliding window, x; j represents results of instruction

executions.
1 2 1 2
o2 1 G iy % = Gy iy xi)%)
E[=]= - T (1)
H nia (7 ZiZq xij)

For global error based estimation, it perforates a single instruc-
tion with basic perforation rate, runs the transformed program, and
calculates the end-to-end output error for each selected instruction.
Instructions that cause the output error to exceed the error budget
are filtered out.

3.1.2 Expansion Stage. After the selection stage, the system gets
a set of target instructions to be perforated. In the expansion stage,
it iteratively expands this set through data flow analysis, adding
more instructions without additional accuracy lost.

There are two rules in the update process: 1) All instructions
which only use results of target instructions or loop invariant values
can be selected as target instructions. 2) All instructions whose
results are only used by other target instructions can be selected as
target instructions as well.

Take Code 1 and Figure 4 as an example. In Figure 4, the dashed
box marks the loop and the shaded rectangles mark the selected
instructions in each step. Assume only the load instruction at line
4 (referred as load.4) is selected in the selection stage. In the first
iterative update, as the multiply instruction only uses the result of

344

Shikai Li, Sunghyun Park, and Scott Mahlke

(c) Round 1. Apply rule 1 and 2.

(d) Round 2. Apply rule 2.

Figure 4: Illustration of Expansion Stage

load.4 and loop invariant value, it is selected based on rule 1; As the
load instruction at line 3 (referred as load.3) generates the result
only used by load.4, it is selected based on rule 2. In the second
iterative update, as the add instruction only uses the result of load.4
and multiply, it is selected based on rule 2. As iterative updates
afterward will not further expand the set of target instructions, the
expansion stage terminates.

As shown in the example, the expansion stage is similar to loop
invariant code motion. Actually, when an instruction is perforated,
the result of the instruction will remain the same during skipped
iterations. It creates temporal invariant values that don’t change
among consecutive iterations, which is similar to loop invariant
values, and brings the optimization opportunities. Rule 1 is justified
because the instruction uses constant values as operands in the
skipped iterations. Rule 2 is also justified because the instruction
which only has target instructions as users do not have any impact
on the program if these target instructions are skipped. Therefore,
instructions which satisfy two suggested rules can be skipped as
target instructions.

3.1.3 Transformation Stage. After the expansion stage, the sys-
tem gets a set of target instructions to perforate. In the transforma-
tion stage, it conducts several compiler optimizations to perforate
these target instructions with low runtime overhead. For simplic-
ity, the system uses the same perforation rate for all the target
instructions in the same loop.

In traditional perforation, the transformation process only needs
to change the increment of the induction variable. However, in
selective perforation, scattering target instructions inside loop body
make it more complicated.

Sculptor: Flexible Approximation with
Selective Dynamic Loop Perforation

Intuitive Solution: An intuitive solution is splitting the basic
block and inserting a branch instruction before each consecutive
target instruction chain. However, it brings too much control diver-
gence overhead and may cause performance downgrade at some-
times. Compiler optimizations could be performed to reduce this
overhead, including instruction reordering, loop unswitching, loop
unrolling, etc.

Unswitching Optimization: The compiler creates two ver-
sions of the loop body, one as original, another as perforated. It
inserts one branch instruction to select one version of the loop
body to execute instead of redundant branch instructions to skip
different instructions at runtime.

Unrolling Optimization: However, for small loops, even one
inserted branch instruction might incur non-negligible performance
overhead. Based on unswitching optimization, the compiler further
unrolls the perforated version of the loop body multiple times to
reduce the overhead.

3.2 Load Based Selective Perforation

Load based selective perforation is a variation of instruction level
selective perforation. The only difference lies in the selection stage.
It only considers load instructions as target instructions. The main
purpose of this variation is to reduce the profiling overhead in the
selection stage. Because of the iterative updates in the expansion
stage, chains of instructions will be selected and perforated in the
end. Similar performance and accuracy trade-off will be achieved
compared to instruction level selective perforation.

3.3 Store Based Selective Perforation

Algorithm 1 Store based selective perforation algorithm

1: kernel_insns «— @

2: for all (store in loop) do

3. if Vget_alias_loads(store) ¢ loop then

4 kernel_insns.insert(store)

5: kernel_insns.insert(get_addr_calc_insns(store))
6 if relative_error_estimate(store) > & then

7 kernel_insns.insert(get_data_calc_insns(store))
8 end if

9: endif

end for

11: per forated_loop < loop

12: for all (regions in per forated_loop) do

13: if Vkernel_insns ¢ region then

14: delete region

15: else

16: delete region \ (kernel_insns U branches)
17 end if

18: end for

In store based selective perforation, the system gets a subset
of important store instructions through accuracy evaluation and
expands this subset through data flow analysis. Algorithm 1 shows
the procedures of store based selective perforation.

Firstly, the system identifies store instructions that might alias
with load instructions outside the loop or cross loop iterations

345

ICS ’18, June 12-15, 2018, Beijing, China

through alias analysis. If all these output stores directly live in the
loop, it continues to next step. Otherwise, it terminates.

Secondly, all output stores and its address calculations are iden-
tified as instructions necessary to be kept. Besides, the system
performs global error estimation on output stores as described in
Section 3.1.1. For output stores that cause output error to exceed er-
ror budget, their data calculations are also identified as instructions
necessary to be kept.

Thirdly, based on the unswitching optimization described in
Section 3.1.3, it creates an original and perforated version of the
loop body. In the perforated version, for all regions without any
necessary instructions, it deletes all basic blocks inside the region
and connects two branches towards and outwards the region.

Store based selective perforation captures the results of itera-
tions and directly approximates them if applicable. It avoids the
complexity of analyzing every instruction and the runtime over-
head to go through the unnecessary control flow divergences. At
certain cases, even entire loop entries can be perforated.

4 DYNAMIC PERFORATION

In dynamic loop perforation, loops are transformed to skip a flexible
subset of their iterations under the scheduling of built-in schedulers
during program execution.

As discussed in Section 1, different iterations have different im-
pacts on output accuracy. However, it is almost impossible to pre-
cisely predict each iteration’s accuracy impact at runtime. Fortu-
nately, we discover that iterations’ accuracy impacts can be clus-
tered according to the program execution circumstances that they
are executed in. The accuracy impact fluctuates negligibly inside the
same circumstance but significantly across different circumstances.
This inspires the self-directed dynamic perforation technique to
use different perforation strategy under different circumstances.

In the analysis process, the system identifies optimal skipping
strategies of the loop under different circumstances through the
control flow analysis and profiling. In the transformation process,
the system transforms the loop and inserts a built-in scheduler. At
runtime, the built-in scheduler observes the current circumstance
and applies the corresponding strategy designed offline.

4.1 Dynamic Rate

In dynamic rate, a built-in scheduler is used to change perforation
rate according to different circumstances at runtime.

In traditional perforation, the perforation rate is constant. How-
ever, as loop behavior changes during program execution, skipping
the same amount of iterations at different circumstances have differ-
ent accuracy impacts. It is understandable that using more adapted
degrees of approximation aggressiveness during program execution
will deliver better performance and accuracy trade-off.

Here, we introduce two methods, active function call based dy-
namic rate and active loop iteration based dynamic rate, to capture
regular loop behavior variations and change perforation rate dy-
namically at different circumstances.

For error management, Sculptor can scale the pre-tuned dynamic
perforation rates (referred as the basic perforation rates) to adjust
approximation aggressiveness at runtime.

ICS ’18, June 12-15, 2018, Beijing, China

1| int kernel (DataType data) {

2 iterative_updates (data.primary) ;
3 iterative_updates (data.secondary) ;
4 return combine (data);

5]}

6| void iterative_updates (intx k) {

7 for (int itr=0; itr<100; itr++)

8 single_update (k) ;

91}
10| void single_update (intx k) {
11 for (int i1dx=0; idx<100; idx++)
12 k[idx] = compute (k[idx]);
13]1}

Code 2: Code Example for Active Function Call Based
Dynamic Rate

4.1.1 Active Function Call Based Dynamic Rate. 1dea: In this
method, the scheduler chooses a perforation rate based on the
observed active function calls at each loop entry. An active function
call is defined as a function call that has been called but has not been
returned at the moment. It is designed based on the phenomena
that executions of a loop tend to have different accuracy impacts
during different function calls.

Example: In Code 2, it is clear that, at each program execu-
tion, compute function will be executed 20000 times. However, the
first 10000 executions and the second 10000 executions of com-
pute are operated on different parts of data. Through profiling,
if data.secondary is observed to be highly tolerant of errors but
data.primary is observed to be less tolerant to errors, it is better
to approximate the first 10000 executions of compute more aggres-
sively but approximate the second 10000 executions of compute less
aggressively at runtime. This motivates the idea of active function
call based dynamic rate.

Algorithm 2 Active function call based dynamic rate algorithm

1: procedure ANALYSIS
2 signature_funcs «— @
3. for all (func_call in program) do
4 if (prof_time(func_call) > total_time x 6) and \
5 (is_reachable(func_call, loop)) then
6 signature_funcs.insert(func_call)
7 end if
8. end for
9: end procedure
10: procedure PROFILING(test_rates)
for all loop_entries do
dyn_rate « test_rates[active_func]
end for
estimate_error[test_rates] < calc_relative_error()
: end procedure
16: procedure RUNTIME (base_rates)

17: for all loop_entries do

18: dyn_rate < base_rates[active_func] X scale
190 end for

20: for all check_points do

21 sample_error < cal_relative_error()

22: scale « get_scale_ratio(sample_error)

23: end for

24: end procedure

346

Shikai Li, Sunghyun Park, and Scott Mahlke

Implementation: As shown in Algorithm 2, active function call
based dynamic rate is implemented in three steps.

Firstly, through call graph analysis, the system identifies possible
active function calls at all loop entries. The system transforms the
loop and instruments instructions. Some instrumentations are used
to store active function call information. Other instrumentations
are used to read this information and load the corresponding pre-
tuned perforation rate. They work together as a lightweight built-in
scheduler.

Secondly, through profiling, it samples and perforates loop en-
tries and calculates output errors at different observed active func-
tion calls. If the output errors are uniform, the perforation rate will
be assigned as 1 when the scheduler observes the same active func-
tion call as the case that produces highest output error. If the output
errors are diverse, the perforation rate will be tuned using the steep-
est ascent hill climbing algorithm [36], changing the perforation
rates until no significant improvements can be achieved.

Thirdly, at runtime, the scheduler will change the basic perfora-
tion rates based on the observed active function calls. Furthermore,
it will also scale the rates with the help of error management mech-
anisms.

4.1.2 Active Loop Iteration Based Dynamic Rate. Idea: In this
method, the scheduler chooses perforation rates based on the ob-
served active loop iterations at runtime. An active loop iteration
is defined as a loop iteration that is being executed or waiting for
return values at the moment. It is designed based on the phenomena
that executions of a loop tend to have different accuracy impacts at
different iterations of its outer loops.

To further explain the method, we give following definitions.
At runtime, if loop A finishes an entry during the time loop B
finishes an iteration, we call loop A(B) as a super-inner(outer) loop
of loop B(A). With these definitions, we can further explain that
executions of a loop tend to have different accuracy impacts at
different iterations of its super-outer loops, not limited to its outer
loops in the same function.

Example: In Code 2, for the first 10000 executions of compute,
the 1st-100th executions is performed during the first iteration
of the loop inside iterative_updates, the 101st-200th executions is
performed during the second iteration of the loop inside itera-
tive_updates, etc. Through profiling, if we observe that the accuracy
loss of skipping iterative_updates is monotonously diminishing,
it might better to approximate compute executions during latter
iterations more aggressively but approximate compute executions
during former iterations less aggressively. This motivates the idea
of active loop iteration based dynamic rate.

Implementation: In the analysis process, through call graph
analysis and control flow analysis, the system identifies super-outer
loops of the target loop. Through profiling, the system identifies
one super-outer loop such that the target loop has most significant
accuracy impact fluctuations within its entries. Furthermore, super-
outer loop iterations of a single entry are partitioned into multiple
successive phases. The system tunes the perforation rates similar
to Section 4.1.1. These phases can be further partitioned with re-
tuned rates until no significant improvement can be achieved. The
transformation process and the runtime scheduling is also similar
to Section 4.1.1 and will not be discussed in detail.

Sculptor: Flexible Approximation with
Selective Dynamic Loop Perforation

1| void kmeans (float** data, floatxx center) {

2| while(delta != 0){

3 assign_cluster (data, center);

4 delta = update_center (center);}

5]}

6| void assign_cluster (floatx+ data, floatxx center) {
7 for (int i=0; 1<1000000; i++)

8 assign_cluster_single(data[i], center);
91}
10| int update_center (floatxx center) {
11 for (int 1=0; 1<100; 1i++)
12 delta += update_center_single (center([i]);
13 return delta;
141}

Code 3: Kmeans Algorithm

4.2 Dynamic Start

In the dynamic start, the scheduler changes iteration start points
at different loop entries during runtime. It is designed to reduce
output errors by providing better execution fairness and coverage.

This method is inspired by an interesting phenomenon that the
non-uniform distribution of executed iterations might incur much
higher output errors compared to the uniform distribution. One
common scenario is array access. Most loops access arrays through
reading/writing. In traditional perforation, only a fixed subset of
elements will be read from or written to. As a result, considerable
accuracy might be lost by not accessing other elements in arrays.

Take the kmeans algorithm in Code 3 as an example. If as-
sign_cluster is perforated with a fixed start and a fixed rate, it
will create two problems. Firstly, only a fixed subset of data points
will be read. It influences the accuracy of cluster centers as it is
calculated and updated based on a small subset of data. It shows
perforation needs fairness, as all iterations should have the same
probability to be executed, especially for iterations that read arrays.
Secondly, only a fixed subset of data points will be assigned. It incurs
unacceptable output with unassigned data points. It shows perfo-
ration needs coverage, as all iterations should be at least executed
once, especially for iterations that write arrays.

To address above problem, active loop iteration based dynamic
start is implemented. At runtime, the dynamic perforation scheduler
will change iteration start points at different loop entries according
to the iteration count of a super-outer loop. It manages to schedule
different subsets of iteration to be executed in a round-robin fashion,
providing better execution fairness and coverage.

5 RUN-TIME ERROR MANAGEMENT

Sculptor uses a calibration-based aggressiveness adjustment mech-
anism to perform error management at runtime. Figure 5 shows
an example execution segment from one of the benchmarks. The
dashed red line stands for real-time error, the solid blue line stands
for real-time performance, and the approximation and calibration
phases are divided by dashed black lines. It is similar to the er-
ror control mechanisms in previous works [4, 5, 30, 31]. The basic
algorithm is presented in Algorithm 3.

Sculptor performs both accurate and approximate execution
during calibration phases, and calculates relative errors at regular
intervals during runtime. At offline, Sculptor performs code trans-
formation for selective and dynamic perforation and sets initial
perforation rates through profiling. Selective and dynamic perfora-
tion are traded as black boxes for the runtime error management. No

347

ICS ’18, June 12-15, 2018, Beijing, China

030 [[= c [= [= c 6
o o 9o o 9o o
B Bl % gl R B
0251 2 £ 8 E s £ 5
. = <l = <l = X
8 5 3 5 3 5
Ql Ql Q|
< < <
0.20 4
S
20.159 , TR 38
G bt O g
W Iy Y 1 | b A ahaAh ghA *i‘v';')
i Uiiialsh, A it g ey
0.10 o ISR PRARIVE T T
A XEY VW*W?WHH’ i
A AR
]
0.05 ' 1
0.00 0
0 5 10 15 20 25 30

Loop Entries

Figure 5: Runtime Error Management Example

Algorithm 3 Error management algorithm

1: while (program_execution) do

2. if entry_cnt + + # check_pt then

3 approximate_execution(skip_rate)

4 else

5: resqcey < accurate_execution()

6 resapprox < approximate_execution()

7 rel_err « rel_err_calc(resaccu reSapprox)
8 if rel_err < §jyyer then

9 scale < max(max_scale, scale X fyp)

10: else if rel_err > dypper then

11: scale « scale X Bgown

12: end if

13: skip_rate « floor(basic_rate X scale)

14: check_pt « check_pt + floor(basic_stride X scale)
15: end if

16: end while

expensive code transformation or behavior analysis is conducted
online. At online, it only scales the initial perforation rates with
the guidance of runtime error management. Based on the measured
error and the target, the system adjusts the skip rate. The skip rate
can range from 0, in which case the loop is not being perforated at
all, to basic_rate X max_scale, in which case the loop is being per-
forated at the maximum rate allowed. It achieves a good dynamic
balance of accuracy and performance.

Sculptor can also work with other error management mecha-
nisms [5, 19, 31]. It can set the basic perforation rates or generate
different versions of approximated functions offline. With the help
of the error management module, it can be more or less aggres-
sive to approximate through scaling the basic perforation rates or
choosing an appropriate version to execute online. It can replace
traditional loop perforation in existing approximation solutions
with a better performance and accuracy trade-off.

6 EVALUATION
6.1 Methodology

Software Tools and Hardware Configuration Sculptor’s com-
pilation phase is implemented in Clang 4.0 version. Its analysis

ICS ’18, June 12-15, 2018, Beijing, China

- . s . Error
Application Domain Train Size | Test Size Metric
Canneal Engineering 400K 2.5M ARE
Streamcluster I?a.ta 100K 500K NMIL
Mining Score [8]
Blackscholes Financial 64K 10M ARE
Computer 100 261
Bodytrack Vision Frames Frames ARE
Swaptions Financial 6M 13M ARE
. 128 512 SSIM
X264 Media Frames Frames Index
Hotspot Physics 512x512 |1024x1024 ARE
KMeans Data 100K 500K NMI
Mining Score

Note: ARE: Average Relative Error
Table 1: Evaluation Benchmarks

and transformation phases are implemented in LLVM 4.0 version.
It uses an execution time profiling tool and a value profiling tool
developed in LLVM 4.0 version. Evaluation results are collected
through running serial code on a workstation with 3.40GHz Intel
Core i7-6700 CPU under Ubuntu 16.04 version.
Applications and Error Metric We evaluate our methodology
using 6 applications from PARSEC benchmark suite [6] and 2 addi-
tional applications from Rodina benchmark suite [10] with default
data sets, as shown in Table 1. These 8 benchmarks cover various
important domains including data mining, financial analysis, media
processing, computer vision, physics simulation, etc.

In this paper, most error metrics are based on average relative
error, which is defined as:

1 < lyy — il
Average Relative Error = —[) —t——1] (2)
N ; lyil
In Equation 2, N represents the number of output data, y; repre-
sents accurate output data, yj represents approximate output data.
yi and y; could either be scalar or vector.

6.2 Performance Improvement

Overall Improvement Figure 6a and Figure 6b shows the results
for selective dynamic loop perforation and traditional loop perfo-
ration [35] with 5% and 10% error budgets respectively. Speedups
are compared to original programs. As shown in the figures, tradi-
tional loop perforation achieves 1.47x and 1.93x geometric mean
speedup with 5% and 10% error budgets, while selective dynamic
loop perforation achieves 2.89x and 4.07x geometric mean speedup
respectively. Selective dynamic perforation presents a conspicu-
ous improvement over traditional perforation through discovering
latent approximation opportunities. KMeans shows the most signif-
icant improvement through discovering program dynamic charac-
teristics. While X264 shows the least significant improvement as
the application is already crafted to trade off computation overhead
with video quality loss and compression rate, and traditional loop
perforation works well.

Take selective dynamic loop perforation with 10% error budget
as an example. Table 2 shows numbers of loops transformed with

348

Shikai Li, Sunghyun Park, and Scott Mahlke

Traditional Perforation
I Selective Dynamic Perforation

Speedup
w =y w o ~ ee] o

N

(a) 5% Error Budget

Traditional Perforation
EEm Selective Dynamic Perforation

Speedup

un

(b) 10% Error Budget

Figure 6: Selective Dynamic Perforation Performance
Speedup with Different Error Budgets

Application TLP SLP DLP SDLP

Canneal 0 0 2(100%) 0
Streamcluster 0 0 3(100%) 0

Blackscholes 0 0 0 1(100%)

Bodytrack 2(33.3%) 0 3(50%) 1(16.7%)
Swaptions 2(28.6%) | 3(42.8%) | 2(28.6%) 0
X264 5(100%) 0 0 0
Hotspot 1(50.0%) | 1(50.0%) 0 0
KMeans 0 0 1(100%) 0

Average 23.54% 10.31% 53.18% 12.97%

Note: TLP: Traditional Loop Perforation; SLP: Selective Loop Perforation;
DLP: Dynamic Loop Perforation; SDLP: Combination of Selective and Dy-
namic Loop Perforation.

Table 2: Applied Perforation Techniques

different perforation techniques in different applications. As shown
in the table, different perforation techniques have various contribu-
tions across applications. Bodytrack and Swaptions show a mixed
contribution of different perforation techniques; Hostspot shows
dominating contribution of selective loop perforation and tradi-
tional loop perforation; Cannel, Streamcluster and KMeans show
dominating contribution of dynamic loop perforation; Blackscholes

Sculptor: Flexible Approximation with
Selective Dynamic Loop Perforation

9
Selective Perforation
8 {mmm Selective Dynamic Perforation

7

6
s

25
&

o4
0

3

2

1

0

<

&
@’b

Figure 7: Selective Perforation Performance Speedup with
10% Error Budget

shows dominating contribution of selective dynamic loop perfo-
ration. In the following context, we further discuss how different
perforation techniques contribute.

Selective Loop Perforation Improvement In Figure 7, dark bars
represent performance speedup achieved by selective perforation
only, light bars represent performance speedup achieved by se-
lective dynamic perforation. As shown in the figure, Bodytrack,
Swaptions and Hostspot benefit most from selective perforation.

In Bodytrack, the conditional loop inside CalcWeights is used to
calculate particle weights and find the highest likelihood particle.
Traditional perforation cannot perforate the conditional loop. How-
ever, selective loop perforation selectively skips the instructions
for weight calculation but keeps the remaining instructions which
update the data structure. This approximation leads to updating the
data structure with previous calculation results. It delivers accept-
able approximate weights based on the similarity of consecutive
particles.

In Swaptions, the loops inside HJM_SimPath_Forward_Blocking
update path of forward interest rate and the loops inside Dis-
count_Factor_Blocking update discount factors to compute price.
Part of these computation results are highly tolerant to approx-
imation. Traditional perforation perforates these loops without
updating data in skipped iterations. However, selective loop per-
foration selectively skips corresponding calculation instructions
but keeps the data structure update instructions. Similar to Body-
track, this approximation leads to updating the data structure with
previous calculation results. which turns out to be better than not
updating at all.

In Hotspot, the second loop inside single_iteration updates temper-
atures based on previous phase temperature. The calculation loads
previous phase temperature and adds it to current phase tempera-
ture variation. Traditional perforation perforates the loop without
storing temperatures in skipped iterations. However, selective loop
perforation selectively skips temperature variation calculation in-
structions and keeps previous phase temperature load instructions
as well as final result store instruction. This approximation leads to
calculating temperature based on temperature variation of nearby
locations.

349

ICS ’18, June 12-15, 2018, Beijing, China

9
Dynamic Perforation
8{mmm Selective Dynamic Perforation

7

6
s

25
@

o4
)

3

2

1

0

2

F
Q)\’b

Figure 8: Dynamic Perforation Performance Speedup with
10% Error Budget

Dynamic Loop Performance Improvement In Figure 8, dark
bars represent performance speedup achieved by dynamic perfora-
tion only, light bars represent performance speedup achieved by
selective dynamic perforation. As shown in the figure, different
benchmarks benefit differently from dynamic perforation.

In Canneal, loops inside reload traverse the state vector machine
in Mersenne Twister random number generator, which directs the
pseudo-random element swap test. In traditional perforation, per-
forated code constantly skips updates of fixed part of state vector
machine, leaving those part of state vector machine unchanged
during program execution, which finally improves cache locality.
With dynamic starts and dynamic rates, it has better coverage of
updates of state vector machine, balancing cache locality benefits
and element swap benefits.

In Streamcluster, the conditional loop inside pkmedian iteratively
improves local clustering result. Loops inside pFL and pgain im-
prove local clustering result based on feasible cluster centers and
corresponding data points respectively. With dynamic starts, it has
better coverage of all feasible clusters and all data points. Moreover,
all above loops are executed during localSearch activation time.
localSearch is called at the two different sites. One site performs
clustering of local centers, and the other site performs clustering
of all local centers to get global centers. With dynamic rates, all
perforations are turned off at the second call site, which is crucial to
final clustering accuracy but consumes a small portion of execution
time.

In Bodytracks, loops inside ImageErrorinside, ImageErrorEdge,
InsidedError compute information to locate particles of body pose
based on image data sampling. With dynamic starts, it has better
fairness of image data sampling. With dynamic rates, it tunes down
perforation rate referred to the iteration count of the loop in Update,
which actually indicates the annealing layer of the execution, as
the approximation in later layers has a higher influence on final
output quality.

In KMeans, as introduced in Section 4.2, traditional loop perfora-
tion will miss a fixed subset of centers or data points or features
during execution and result in large errors. With dynamic starts,
the kernel loop in kmeans_clustering is perforated, which finds and
assigns centers for all data points and updates new cluster centers.

ICS ’18, June 12-15, 2018, Beijing, China

This solves the fairness and coverage problem which are discussed
previously. It updates centers during a single traversal of all data
points and makes clustering much faster. Besides, with dynamic
rates referred to the outer loop, it decreases perforation rate after
all data points have been assigned, as ever since then the loop could
terminate early when not all data points are well assigned.

7 RELATED WORK

Trading output accuracy for performance improvement or energy
efficiency has become a well-known concept. Lots of ideas have
been proposed to achieve it: skipping computations [1, 28, 35], relax-
ing constraints for efficient parallel execution [9, 23], rough value
estimation for expensive instructions [21, 41, 42], etc. Also, there
have been continuous researches to build cost-efficient resilient
system by applying approximate computing. Provided that the ap-
plication can tolerant a certain degree of error, excessive protection
could be avoided in a delicate manner and cost-efficient detection/-
correction system could be built [18, 29, 39]. Different techniques
to implement these ideas have been proposed ranging from hard-
ware level to software level: algorithms [1, 24, 28, 35] , runtime
systems [5, 9, 16, 19, 37] , programming languages [3, 7, 22, 32, 33]
, middleware [2, 14] , compiler [7, 9, 14, 18, 30, 31] , and hardware
[12, 20, 21, 26, 27, 27, 38, 40, 41].

Hardware Approximation Techniques Neural network acceler-
ators [13, 26, 38, 40] has been intensively investigated to approxi-
mate general-purpose computing. Approximate value prediction is
proposed and discussed in [21, 41, 42]. Cache and memory system
designs are optimized to explore data similarity and redundancy in
[17, 20, 34].

Software Approximation Techniques Most software approxi-
mation techniques utilize compiler to analyze and transform pro-
grams [5, 9, 23, 30, 31, 33]. The idea of task skipping is presented
in [28]. Inspired by this idea, loop perforation is introduced and
discussed in [1, 24, 35]. The idea of dynamic approximation has
been presented in previous works [15]. Input responsive approx-
imation introduced in [19] changes approximate strategies using
canary inputs at each execution. Its dynamism is input-to-input
based. It is dynamic between different executions, but still static
during the same execution. Phase-aware optimization introduced in
[25] changes approximate strategies at different phases. However,
it doesn’t provide automatic methodologies to identifies different
phases. Besides, the idea of instruction level approximation is pre-
sented in [39]. It analyzes the possibilities to approximate different
instructions through error injection.

8 CONCLUSION

In this paper, we propose selective dynamic loop perforation to
capture the differences between instructions and iterations, and
design a highly optimized approximation strategy based on these
differences. It is compatible with most prior approximation systems
and can be used to replace traditional loop perforation to achieve
better performance improvements under the same error budgets. In
selective dynamic loop perforation, loops are transformed to skip
a selected subset of instructions at a selected subset of iterations.
It breaks the integrity and periodicity constraints in traditional
loop perforation, providing the flexibility to explore underneath

350

Shikai Li, Sunghyun Park, and Scott Mahlke

approximation opportunities in two orthogonal dimensions. The
insight of this paper is to customize approximation strategies for
different dynamic instructions. The specific approximation tech-
nique is not limited to perforation, other techniques could also
be applied based on the methods proposed in this paper. Across
evaluated applications, selective dynamic loop perforation achieves
an average speedup of 2.89x and 4.07x with less than 5% and 10%
accuracy loss.

ACKNOWLEDGEMENTS

This material is based upon work supported by the U.S. Depart-
ment of Energy, Office of Science, Office of Advanced Scientific
Computing Research (ASCR), under Award Number DE-SC0014134.
Support was also provided by the National Science Foundation
(NSF) grant XPS-1438996.

REFERENCES

[1] Anant Agarwal, Martin Rinard, Stelios Sidiroglou, Sasa Misailovic, and Henry
Hoffmann. 2009. Using code perforation to improve performance, reduce energy
consumption, and respond to failures. Technical Report. Technical report, MIT.
Sameer Agarwal, Barzan Mozafari, Aurojit Panda, Henry Milner, Samuel Madden,
and Ion Stoica. 2013. BlinkDB: queries with bounded errors and bounded response
times on very large data. In Proceedings of the 8th ACM European Conference on
Computer Systems. ACM, 29-42.

Jason Ansel, Yee Lok Wong, Cy Chan, Marek Olszewski, Alan Edelman, and
Saman Amarasinghe. 2011. Language and compiler support for auto-tuning
variable-accuracy algorithms. In Proceedings of the 9th Annual IEEE/ACM Interna-
tional Symposium on Code Generation and Optimization. IEEE Computer Society,
85-96.

Matthew Arnold, Michael Hind, and Barbara G Ryder. 2002. Online feedback-
directed optimization of Java. In ACM SIGPLAN Notices, Vol. 37. ACM, 111-129.
Woongki Baek and Trishul M Chilimbi. 2010. Green: a framework for supporting
energy-conscious programming using controlled approximation. In ACM Sigplan
Notices, Vol. 45. ACM, 198-209.

Christian Bienia, Sanjeev Kumar, Jaswinder Pal Singh, and Kai Li. 2008. The
PARSEC benchmark suite: Characterization and architectural implications. In
Proceedings of the 17th international conference on Parallel architectures and com-
pilation techniques. ACM, 72-81.

Brett Boston, Adrian Sampson, Dan Grossman, and Luis Ceze. 2015. Probability
type inference for flexible approximate programming. In ACM SIGPLAN Notices,
Vol. 50. ACM, 470-487.

Gerlof Bouma. 2009. Normalized (pointwise) mutual information in collocation
extraction. In Proceedings of the Biennial GSCL Conference, Vol. 156.

Simone Campanoni, Glenn Holloway, Gu-Yeon Wei, and David Brooks. 2015.
Helix-up: Relaxing program semantics to unleash parallelization. In Proceedings
of the 13th Annual IEEE/ACM International Symposium on Code Generation and
Optimization. IEEE Computer Society, 235-245.

Shuai Che, Michael Boyer, Jiayuan Meng, David Tarjan, Jeremy W Sheaffer, Sang-
Ha Lee, and Kevin Skadron. 2009. Rodinia: A benchmark suite for heterogeneous
computing. In Workload Characterization, 2009. ISWC 2009. IEEE International
Symposium on. IEEE, 44-54.

Hadi Esmaeilzadeh, Emily Blem, Renee St Amant, Karthikeyan Sankaralingam,
and Doug Burger. 2011. Dark silicon and the end of multicore scaling. In ACM
SIGARCH Computer Architecture News, Vol. 39. ACM, 365-376.

Hadi Esmaeilzadeh, Adrian Sampson, Luis Ceze, and Doug Burger. 2012. Ar-
chitecture support for disciplined approximate programming. In ACM SIGPLAN
Notices, Vol. 47. ACM, 301-312.

Hadi Esmaeilzadeh, Adrian Sampson, Luis Ceze, and Doug Burger. 2012. Neural
acceleration for general-purpose approximate programs. In Proceedings of the
2012 45th Annual IEEE/ACM International Symposium on Microarchitecture. IEEE
Computer Society, 449-460.

Inigo Goiri, Ricardo Bianchini, Santosh Nagarakatte, and Thu D Nguyen. 2015.
Approxhadoop: Bringing approximations to mapreduce frameworks. In ACM
SIGARCH Computer Architecture News, Vol. 43. ACM, 383-397.

Henry Hoffmann. 2015. JouleGuard: energy guarantees for approximate appli-
cations. In Proceedings of the 25th Symposium on Operating Systems Principles.
ACM, 198-214.

Henry Hoffmann, Jonathan Eastep, Marco D Santambrogio, Jason E Miller, and
Anant Agarwal. 2010. Application heartbeats for software performance and
health. ACM Sigplan Notices 45, 5 (2010), 347-348.

[2

(3]

(12]

[13]

[14

[15

[16]

Sculptor: Flexible Approximation with
Selective Dynamic Loop Perforation

[17]

[18]

[19]

[20]

[21]

[22]

[23]

[24]

[25

[26]

[27]

[28]

[29]

[30]

Animesh Jain, Parker Hill, Shih-Chieh Lin, Muneeb Khan, Md E Haque, Michael A
Laurenzano, Scott Mahlke, Lingjia Tang, and Jason Mars. 2016. Concise loads and
stores: The case for an asymmetric compute-memory architecture for approxi-
mation. In Microarchitecture (MICRO), 2016 49th Annual IEEE/ACM International
Symposium on. IEEE, 1-13.

Daya Shanker Khudia and Scott Mahlke. 2014. Harnessing soft computations
for low-budget fault tolerance. In Microarchitecture (MICRO), 2014 47th Annual
IEEE/ACM International Symposium on. IEEE, 319-330.

Michael A Laurenzano, Parker Hill, Mehrzad Samadi, Scott Mahlke, Jason Mars,
and Lingjia Tang. 2016. Input responsiveness: using canary inputs to dynamically
steer approximation. In Proceedings of the 37th ACM SIGPLAN Conference on
Programming Language Design and Implementation. ACM, 161-176.

Joshua San Miguel, Jorge Albericio, Andreas Moshovos, and Natalie Enright
Jerger. 2015. Doppelginger: a cache for approximate computing. In Proceedings
of the 48th International Symposium on Microarchitecture. ACM, 50-61.

Joshua San Miguel, Mario Badr, and Natalie Enright Jerger. 2014. Load value
approximation. In Proceedings of the 47th Annual IEEE/ACM International Sympo-
sium on Microarchitecture. IEEE Computer Society, 127-139.

Sasa Misailovic, Michael Carbin, Sara Achour, Zichao Qi, and Martin C Rinard.
2014. Chisel: Reliability-and accuracy-aware optimization of approximate com-
putational kernels. In ACM SIGPLAN Notices, Vol. 49. ACM, 309-328.

Sasa Misailovic, Deokhwan Kim, and Martin Rinard. 2013. Parallelizing sequen-
tial programs with statistical accuracy tests. ACM Transactions on Embedded
Computing Systems (TECS) 12, 2s (2013), 88.

Sasa Misailovic, Daniel M Roy, and Martin C Rinard. 2011. Probabilistically
accurate program transformations. In International Static Analysis Symposium.
Springer, 316-333.

Subrata Mitra, Manish K Gupta, Sasa Misailovic, and Saurabh Bagchi. 2017.
Phase-aware optimization in approximate computing. In Code Generation and
Optimization (CGO), 2017 IEEE/ACM International Symposium on. IEEE, 185-196.
Thierry Moreau, Mark Wyse, Jacob Nelson, Adrian Sampson, Hadi Esmaeilzadeh,
Luis Ceze, and Mark Oskin. 2015. SNNAP: Approximate computing on pro-
grammable socs via neural acceleration. In High Performance Computer Architec-
ture (HPCA), 2015 IEEE 21st International Symposium on. IEEE, 603-614.

Sriram Narayanan, John Sartori, Rakesh Kumar, and Douglas L Jones. 2010. Scal-
able stochastic processors. In Proceedings of the Conference on Design, Automation
and Test in Europe. European Design and Automation Association, 335-338.
Martin Rinard. 2006. Probabilistic accuracy bounds for fault-tolerant computa-
tions that discard tasks. In Proceedings of the 20th annual international conference
on Supercomputing. ACM, 324-334.

Mohamed M Sabry, Georgios Karakonstantis, David Atienza, and Andreas Burg.
2012. Design of energy efficient and dependable health monitoring systems
under unreliable nanometer technologies. In Proceedings of the 7th International
Conference on Body Area Networks. ICST (Institute for Computer Sciences, Social-
Informatics and Telecommunications Engineering), 52-58.

Mehrzad Samadi, Davoud Anoushe Jamshidi, Janghaeng Lee, and Scott Mahlke.
2014. Paraprox: Pattern-based approximation for data parallel applications. In

351

[31

(32

[33

[34

[35

[36

[37

[40

[41

[42

]

ICS ’18, June 12-15, 2018, Beijing, China

ACM SIGARCH Computer Architecture News, Vol. 42. ACM, 35-50.

Mehrzad Samadi, Janghaeng Lee, D Anoushe Jamshidi, Amir Hormati, and Scott
Mahlke. 2013. Sage: Self-tuning approximation for graphics engines. In Proceed-
ings of the 46th Annual IEEE/ACM International Symposium on Microarchitecture.
ACM, 13-24.

Adrian Sampson, André Baixo, Benjamin Ransford, Thierry Moreau, Joshua
Yip, Luis Ceze, and Mark Oskin. 2015. Accept: A programmer-guided compiler
framework for practical approximate computing. U. Washington, Tech. Rep. UW-
CSE-15-01-01 (2015).

Adrian Sampson, Werner Dietl, Emily Fortuna, Danushen Gnanapragasam, Luis
Ceze, and Dan Grossman. 2011. Ener]: Approximate data types for safe and
general low-power computation. In ACM SIGPLAN Notices, Vol. 46. ACM, 164—
174.

Joshua San Miguel, Jorge Albericio, Natalie Enright Jerger, and Aamer Jaleel.
2016. The Bunker Cache for spatio-value approximation. In Microarchitecture
(MICRO), 2016 49th Annual IEEE/ACM International Symposium on. IEEE, 1-12.
Stelios Sidiroglou-Douskos, Sasa Misailovic, Henry Hoffmann, and Martin Rinard.
2011. Managing performance vs. accuracy trade-offs with loop perforation. In
Proceedings of the 19th ACM SIGSOFT symposium and the 13th European conference
on Foundations of software engineering. ACM, 124-134.

Steven S Skiena. 1998. The algorithm design manual: Text. Vol. 1. Springer Science
& Business Media.

Jacob Sorber, Alexander Kostadinov, Matthew Garber, Matthew Brennan, Mark D
Corner, and Emery D Berger. 2007. Eon: a language and runtime system for
perpetual systems. In Proceedings of the 5th international conference on Embedded
networked sensor systems. ACM, 161-174.

Renée St Amant, Amir Yazdanbakhsh, Jongse Park, Bradley Thwaites, Hadi
Esmaeilzadeh, Arjang Hassibi, Luis Ceze, and Doug Burger. 2014. General-
purpose code acceleration with limited-precision analog computation. ACM

SIGARCH Computer Architecture News 42, 3 (2014), 505-516.
Radha Venkatagiri, Abdulrahman Mahmoud, Siva Kumar Sastry Hari, and Sarita V

Adve. 2016. Approxilyzer: Towards a systematic framework for instruction-level
approximate computing and its application to hardware resiliency. In Microarchi-
tecture (MICRO), 2016 49th Annual IEEE/ACM International Symposium on. IEEE,
1-14.

Amir Yazdanbakhsh, Jongse Park, Hardik Sharma, Pejman Lotfi-Kamran, and
Hadi Esmaeilzadeh. 2015. Neural acceleration for gpu throughput processors.
In Proceedings of the 48th International Symposium on Microarchitecture. ACM,
482-493.

Amir Yazdanbakhsh, Gennady Pekhimenko, Bradley Thwaites, Hadi Es-
maeilzadeh, Onur Mutlu, and Todd C Mowry. 2016. RFVP: Rollback-free value
prediction with safe-to-approximate loads. ACM Transactions on Architecture
and Code Optimization (TACO) 12, 4 (2016), 62.

Amir Yazdanbakhsh, Bradley Thwaites, Hadi Esmaeilzadeh, Gennady Pekhi-
menko, Onur Mutlu, and Todd C Mowry. 2016. Mitigating the memory bottleneck
with approximate load value prediction. IEEE Design & Test 33, 1 (2016), 32-42.

	1
	2
	3
	4
	5
	6
	7
	8
	9
	10
	11
	12
	13
	14
	15
	16
	17
	18
	19
	20
	21
	22
	23
	24
	25
	26
	27
	28
	29
	30
	31
	32
	33
	34
	35
	36

