
StageNet: A Reconfigurable Fabric
for Constructing Dependable CMPs

Shantanu Gupta, Shuguang Feng,

Amin Ansari, Student Member, IEEE, and Scott Mahlke, Member, IEEE

Abstract—CMOS scaling has long been a source of dramatic performance gains. However, semiconductor feature size reduction has

resulted in increasing levels of operating temperatures and current densities. Given that most wearout mechanisms are highly

dependent on these parameters, significantly higher failure rates are projected for future technology generations. Consequently, fault

tolerance, which has traditionally been a subject of interest for high-end server markets, is now getting emphasis in the mainstream

computing systems space. The popular solution for this has been the use of redundancy at a coarse granularity, such as dual/triple

modular redundancy. In this work, we challenge the practice of coarse-granularity redundancy by identifying its inability to scale to high

failure rate scenarios and investigating the advantages of finer-grained configurations. To this end, this paper presents and evaluates a

highly reconfigurable CMP architecture, named as StageNet (SN), that is designed with reliability as its first-class design criteria. SN

relies on a reconfigurable network of replicated processor pipeline stages to maximize the useful lifetime of a chip, gracefully degrading

performance toward the end of life. Our results show that the proposed SN architecture can perform 40 percent more cumulative work

compared to a traditional CMP over 12 years of its lifetime.

Index Terms—Reliability, fault tolerance, multicore, CMP, wearout.

Ç

1 INTRODUCTION

TECHNOLOGICAL trends into the nanometer regime have
lead to increasing current and power densities and

rising on-chip temperatures, resulting in both increasing
transient, as well as permanent failures rates. Leading
technology experts have warned designers that device
reliability will begin to deteriorate in future technology
nodes [1]. Current projections indicate that future micro-
processors will be composed of billions of transistors, many
of which will be unusable at manufacture time, and many
more which will degrade in the performance (or even fail)
over the expected lifetime of the processor [2]. In an effort to
assuage power density concerns, industry has initiated a
shift toward multi/many-core chips with simpler cores to
limit their power and thermal envelope [3]. However, this
paradigm shift also leads toward core designs that have
little inherent redundancy and are, therefore, incapable of
performing the self-repair possible in big superscalar cores
[4]. Thus, in the near future, architects must directly address
reliability in computer systems through innovative fault-
tolerant techniques.

The sources of computer system failures are widespread,
ranging from transient faults, due to energetic particle strikes
[5] and electrical noise, to permanent errors, caused by
wearout phenomenon such as electromigration [6] and time-
dependent dielectric breakdown [7]. In recent years, in-
dustry designers and researchers have invested significant
effort in building architectures resistant to transient faults [8].

In contrast, much less attention has been paid to the problem
of permanent faults, specifically transistor wearout due to
the degradation of semiconductor materials over time.
Traditional techniques for dealing with transistor wearout
have involved extra provisioning in logic circuits, known as
guard-banding, to account for the expected performance
degradation of transistors over time. However, the increas-
ing degradation rate projected for future technology gen-
erations implies that traditional margining techniques will
be insufficient.

The challenge of tolerating permanent faults can be
broadly divided into three requisite tasks: fault detection,
fault diagnosis, and system reconfiguration/recovery. Fault
detection mechanisms [9], [10] are used to identify the
presence of a fault, while fault diagnosis techniques [11] are
used to determine the source of the fault, i.e., the broken
component(s). System reconfiguration needs to leverage
some form of a spatial or temporal redundancy to keep the
faulty component isolated from the design. As an example,
many computer vendors provide the ability to repair faulty
memory and cache cells through the inclusion of spare
memory elements. Recently, researchers have begun to
extend these techniques to support sparing for additional
on-chip resources, such as branch predictors [12] and
registers [4]. The granularity at which spares/redundancy
is maintained determines the number of failures a system
can tolerate. The focus of this work is to understand the
issues associated with system reconfiguration and to design
a fault-tolerant architecture that is capable of tolerating a
large number of failures.

Traditionally, system reconfiguration in high-end servers
and mission critical systems has been addressed by using
mechanisms such as dual- and triple-modular redundancy
(DMR and TMR) [13]. With the recent popularity of
multicore systems, these traditional core-level approaches

IEEE TRANSACTIONS ON COMPUTERS, VOL. 60, NO. 1, JANUARY 2011 5

. The authors are with the University of Michigan, 2260 Hayward St, 4861
CSE Building, Ann Arbor, MI 48105.
E-mail: {shangupt, shoe, ansary, mahlke}@umich.edu.

Manuscript received 25 Jan. 2010; revised 4 June 2010; accepted 11 Aug.
2010; published online 6 Oct. 2010.
For information on obtaining reprints of this article, please send e-mail to:
tc@computer.org, and reference IEEECS Log Number TCSI-2010-01-0058.
Digital Object Identifier no. 10.1109/TC.2010.205.

0018-9340/11/$26.00 � 2011 IEEE Published by the IEEE Computer Society

have been able to leverage the inherent redundancy present
in large chip multiprocessors (CMPs) [14], [15]. However,
both the historical designs and their modern incarnations,
because of their emphasis on core-level redundancy, incur
high hardware overhead and can only tolerate a small
number of defects. With the increasing defect rate in
semiconductor technology, it will not be uncommon to see
a rapid degradation in throughput for these systems as
single-device failures cause entire cores to be decommis-
sioned, often times with the majority of the core still intact
and functional.

In contrast, this paper argues the case for reconfiguration
and redundancy at a finer granularity. To this end, this
work presents the StageNet (SN) fabric, a highly reconfigur-
able and adaptable computing substrate. SN is a multicore
architecture designed as a network of pipeline stages, rather
than isolated cores in a CMP. The network is formed by
replacing the direct connections at each pipeline stage
boundary by a crossbar switch interconnection. Within the
SN architecture, pipeline stages can be selected from the
pool of available stages to act as logical processing cores. A
logical core in the StageNet architecture is referred to as a
StageNetSlice (SNS). An SNS can easily isolate failures by
adaptively routing around faulty stages. The interconnec-
tion flexibility in the system allows SNSs to salvage healthy
stages from adjacent cores and even makes it possible for
different SNSs to time-multiplex a scarce pipeline resource.
Because of this added flexibility, an SN system possesses
inherent redundancy (through borrowing and sharing
pipeline stages) and is, therefore, all else being equal,
capable of maintaining higher throughput over the duration
of a system’s life compared to a conventional multicore
design. Over time as more and more devices fail, such a
system can gracefully degrade its performance capabilities,
maximizing its useful lifetime.

The reconfiguration flexibility of the SN architecture has a
cost associated with it. The introduction of network switches
into the heart of a processor pipeline will inevitably lead to
poor performance due to high communication latencies and
low communication bandwidth between stages. The key to
creating an efficient SN design is rethinking the organization
of a basic processor pipeline to more effectively isolate the
operation of individual stages. More specifically, interstage
communication paths must either be removed, namely, by
breaking loops in the design, or the volume of data
transmitted must be reduced. This paper starts off with the
design of an efficient SNS (a logical StageNet core) that
attacks these problems and reduces the performance over-
head from network switches to an acceptable level. Further, it
presents the SN multicore that stitches together multiple
such SNSs to form a highly reconfigurable architecture
capable of tolerating a large number of failures. In this work,
we take an in-order core design as the basis of the SN
architecture to provide a proof of concept. The choice of an
in-order is also motivated by the fact that thermal and power
considerations are pushing designs toward simpler cores. In
fact, simple cores have already been adopted by designs
targeting massively multicore chips for low latency and high
throughput applications, e.g., Sun UltraSparc T1/T2 [3],
Tilera [16], and Intel Larrabee [17].

The contributions of this paper include:

1. a design space exploration of reconfiguration gran-
ularities for resilient systems;

2. design, evaluation, and performance optimization of
StageNetSlice, a networked pipeline microarchitec-
ture;

3. design and evaluation of StageNet, a resilient multi-
core architecture, composed using multiple SNSs; and

4. scalability analysis and system design of a large-
scale StageNet chip.

2 RECONFIGURATION GRANULARITY

For tolerating permanent faults, architectures must have the
ability to reconfigure, where reconfiguration can refer to a
variety of activities ranging from decommissioning non-
functioning, noncritical processor structures to swapping in
cold spare devices. Support for reconfiguration can be
achieved at various granularities from ultrafine grain systems
that have the ability to replace individual logic gates to
coarser designs that focus on isolating entire processor cores.
This choice presents a trade-off between complexity of
implementation and potential lifetime enhancement. This
section shows experiments studying this trade-off and draws
upon these results to motivate the SN architecture.

2.1 Experimental Setup

In order to effectively model the reliability of different
designs, a Verilog model of the OpenRISC 1200 (OR1,200)
core [18] was used in lifetime reliability experiments. The
OR1200 is an open-source core with a conventional four-stage
pipeline design, representative of commercially available
embedded processors. The core was synthesized, placed, and
routed using industry standard CAD tools with a library
characterized for a 90 nm process. The final floorplan along
with several attributes of the design is shown in Fig. 1.

To study the impact of reconfiguration granularity on
chip lifetimes, the mean-time-to-failure (MTTF) was calcu-
lated for each individual module in the OR1200. MTTF was
determined by estimating the effects of a common wearout
mechanism, time-dependent dielectric breakdown (TDDB)
on an OR1200 core running a representative workload.
Employing an empirical model similar to that found in [19],
(1) presents the formula used to calculate per-module
MTTFs. The temperature numbers for the modules were
generated using HotSpot [20]. Given the MTTFs for
individual modules, stage-level MTTFs in our experiment
were defined as the minimum MTTF of any module
belonging to the stage. Similarly, core-level MTTFs were
defined as the minimum MTTF across all the modules:

MTTFTDDB /
1

V

� �ða�bT Þ
e

XþY
T
þZTð Þ

kT ; ð1Þ

w h e r e V ¼ operating v o l t a g e , T ¼ temperature; k ¼
Boltzmann0s constant, and a, b, X, Y, and Z are all fitting
parameters based on [19].

2.2 Granularity Trade-Offs

The granularity of reconfiguration is used to describe the
unit of isolation/redundancy for modules within a chip.
Various options for reconfiguration, in order of increasing
granularity, are discussed below.

6 IEEE TRANSACTIONS ON COMPUTERS, VOL. 60, NO. 1, JANUARY 2011

1. Gate level: At this level of reconfiguration, a system
can replace individual logic gates in the design as
they fail. Unfortunately, such designs are typically
impractical because they require both precise fault
diagnosis and tremendous overhead due to redun-
dant components and wire routing area.

2. Module level: In this scenario, a processor core can
replace broken microarchitectural structures such as
an ALU or branch predictor [21], [4]. The biggest
drawback of this reconfiguration level is that
maintaining redundancy for full coverage is almost
impractical. Additionally, for the case of simple
cores, even fewer opportunities exist for isolation
since almost all modules are unique in the design.

3. Stage level: Here, the entire pipeline stages are treated
as single monolithic units that can be replaced.
Reconfiguration at this level is challenging because:
a) pipeline stages are tightly coupled with each other
(reconfiguration can cause the performance loss),
and b) cold sparing pipeline stages are expensive
(area overhead).

4. Core level: This is the coarsest level of reconfiguration
where an entire core is isolated after developing a
failure. Core-level reconfiguration has also been an
active area of research [15], [14], and from the
perspective of a system designer, it is probably
the easiest technique to implement. However, it has
the poorest returns in terms of lifetime extension,
and therefore, might not be able to keep up with
increasing defect rates.

While multiple levels of reconfiguration granularity

could be utilized, Fig. 2 demonstrates the effectiveness of

each applied in isolation (gate-level reconfiguration was

excluded in this study). The figure shows the potential for

lifetime enhancement (measured as MTTF) as a function of

how much area a designer is willing to allocate to cold

spares. The MTTF of an n-way redundant structure is taken

to be n times its base MTTF. And the MTTF of the overall

system is taken to be the MTTF of the fastest failing module

in the design. This is similar to the serial model of failure

used in [19]. The figure overlays three separate plots, one

for each level of reconfiguration. The redundant spares

were allowed to add as much as 300 percent area overhead.
The data shown in Fig. 2 demonstrate that going toward

finer grain reconfiguration is categorically beneficial as far

as gains in MTTF are concerned. But it overlooks the design

complexity aspect of the problem. Finer grain reconfigura-

tion tends to exacerbate the hardware challenges for

diagnosing faults (needs better observability) and main-

taining redundancy (muxing logic, wiring overhead, and

circuit timing management). At the same time, very coarse-

grained reconfiguration is also not an ideal candidate since

MTTF scales poorly with the area overhead. Therefore, a

compromise solution is desirable, one that has manageable

reconfiguration hardware and a better life expectancy.

2.3 Harnessing Stage-Level Reconfiguration

Stage-level reconfiguration is positioned as a good candi-

date for system recovery as it scales well with the increase

in area available for redundancy (Fig. 2). Logically, stages

are a convenient boundary because pipeline architectures

divide work at the level of stages (e.g., fetch, decode, etc.).

Similarly, in terms of circuit implementation, stages are an

intuitive boundary because data signals typically get

latched at the end of every pipeline stage. Both these

factors are helpful when reconfiguration is desired with a

minimum impact on the performance. However, there are

two major obstacles that must be overcome before stage-

level reconfiguration is practical:

GUPTA ET AL.: STAGENET: A RECONFIGURABLE FABRIC FOR CONSTRUCTING DEPENDABLE CMPS 7

Fig. 2. Gain in MTTF from the addition of cold spares at the granularity of
microarchitectural modules, pipeline stages, and processor core. The
gains shown are cumulative, and spare modules are added (denoted
with markers) in the order they are expected to fail.

Fig. 1. OpenRisc 1200 embedded microprocessor. (a) Overlay of
floorplan. (b) Implementation details.

1. Pipeline stages are tightly coupled with each other
and are, therefore, difficult to isolate/replace.

2. Maintaining spares at the pipeline stage granularity
is very area-intensive.

One of the ways to allow stage-level reconfiguration is to
decouple the pipeline stages from each other. In other words,
remove all direct point-to-point communication between the
stages and replace them by a switch-based interconnection
network. A conceptual picture of a chip multiprocessor
using this philosophy is presented in Fig. 3. We call this
design SN. Processor cores within SN are designed as part of
a high-speed network-on-a-chip, where each stage in the
processor pipeline corresponds to a node in the network. A
horizontal slice of this architecture is equivalent to a logical
processor core, and we call it an SNS. The use of switches
allows complete flexibility for a pipeline stage at depth N to
communicate with any stage at depthN þ 1, even those from
a different SNS. The SN architecture overcomes both of the
major obstacles for stage-level reconfiguration. Pipeline
stages are decoupled from each other, and hence, faulty
ones can be easily isolated. Furthermore, there is no need
to exclusively devote chip area for cold sparing. The
SN architecture exploits the inherent redundancy present
in a multicore by borrowing/sharing stages from adjacent
cores. As nodes (stages) wearout and eventually fail, SN will
exhibit a graceful degradation in the performance, and a
gradual decline in throughput.

Along with its benefits, SN architecture has certain area
and performance overheads associated with itself. Area
overhead primarily arises from the switch interconnection
network between the stages. And depending upon the switch
bandwidth, a variable number of cycles will be required to
transmit operations between stages, leading to performance
penalties. The next section investigates the performance

overheads when using an SNS and also presents our
microarchitectural solutions to regain these losses. The
remainder of the paper focuses on the design and evaluation
of the SN architecture, and demonstrates its ability to
maintain high lifetime throughput in the face of failures.

3 THE STAGENETSLICE ARCHITECTURE

3.1 Overview

SNS is a basic building block for the SN architecture. It
consists of a decoupled pipeline microarchitecture that
allows convenient reconfiguration at the granularity of
stages. As a basis for the SNS design, a simple in-order core
is used, consisting of five stages, namely, fetch, decode,
issue, execute/memory, and writeback [22], [18]. Although
the execute/memory block is sometimes separated into
multiple stages, it is treated as a single stage in this work.

Starting with a basic in-order pipeline, we will go
through the steps of its transformation into SNS. As the
first step, pipeline latches are replaced with a combination
of a crossbar switch and buffers. A graphical illustration of
the resulting pipeline design is shown in Fig. 4. The shaded
boxes inside the pipeline stages are microarchitectural
additions that will be discussed in detail later in this
section. To minimize the performance loss from interstage
communications, we propose the use of full crossbar
switches since 1) these allow nonblocking access to all of
their inputs and 2) for a small number of inputs and
outputs, they are not prohibitively expensive. The full
crossbar switches have a fixed channel width and as a
result, transfer of an instruction from one stage to the next
can take a variable number of cycles. However, this channel
width of the crossbar can be varied to trade-off performance
with area. In addition to the forward data path connections,
pipeline feedback loops in SNS (branch mispredict and
register writeback) also need to go through similar switches.
With the aid of these crossbars, different SNSs within an
SN multicore can share their stages with each other. For
instance, the result from, say, SNS A’s execute stage, might
need to be directed to SNS B’s issue stage for the writeback.
Due to the introduction of crossbar switches, SNS has three
fundamental challenges to overcome:

1. Global Communication: Global pipeline stall/flush
signals are fundamental to the functionality of a
pipeline. Stall signals are sent to all the stages for

8 IEEE TRANSACTIONS ON COMPUTERS, VOL. 60, NO. 1, JANUARY 2011

Fig. 3. A StageNet assembly: group of slices connected together. Each
SNS is equivalent to a logical processing core. This figure shows M,
N-stage slices. Broken stages can be easily isolated by routing around
them, whereas crossbar failures can be tolerated using spares.

Fig. 4. An SNS pipeline. Stages are interconnected using a full crossbar switch. The shaded portions highlight modules that are not present in a
regular in-order pipeline.

cases such as multicycle operations, memory access,
and other hazards. Whereas flush signals are
necessary to squash instructions that are fetched
along mispredicted control paths. In SNS, all the
stages are decoupled from each other, and global
broadcast is infeasible.

2. Forwarding: Data forwarding is essential to prevent
frequent stalls that would, otherwise, occur because
of data dependencies in the instruction stream. The
data forwarding logic relies on precisely timed (in an
architectural sense) communication between execute
and later stages using combinational links. With
variable amounts of delay through the switches and
the presence of intermediate buffers, forwarding
logic within SNS is not feasible.

3. Performance: Lastly, even if the above two problems
are solved, communication delay between stages is
still expected to result in a hefty performance penalty.

The rest of this section will discuss how the SNS design

overcomes these challenges to create a functionally correct

pipeline (Section 3.2) and propose techniques that can

recover the expected loss in the performance (Section 3.3).

3.2 Functional Needs

3.2.1 Stream Identification

The SNS pipeline lacks global communication signals.

Without global stall/flush signals, traditional approaches

to flushing instructions upon a branch mispredict are not

applicable. The first addition to the basic pipeline, a stream

identification register, targets this problem.
The SNS design shown in Fig. 4 has certain components

that are shaded in order to distinguish the ones that are not

found in a traditional pipeline. One of these additional

components is a stream identification (sid) register in all the

stages. This is a single-bit register and can be arbitrarily (but

consistently across stages) initialized to 0 or 1. Over the

course of program execution, this value changes whenever

a branch mispredict takes place. Every in-flight instruction

in SNS carries a stream-id, and this is used by the stages to

distinguish the instructions on the correctly predicted path

from those on the incorrect path. The former are processed

and allowed to proceed, and the latter are squashed. A

single bit suffices because the pipeline model is in-order

and it can have only one resolved branch mispredict

outstanding at any given time. All other instructions

following this mispredicted branch can be squashed. In

other words, the stream-id works as a cheap and efficient

mechanism to replace the global branch mispredict signal.

The details of how and when the sid register value is

modified are discussed below on a stage-by-stage basis:
Fetch. Every new instruction is stamped with the current

value stored in the sid register. When a branch mispredict

is detected (using the branch update from execute/memory

stage), it toggles the sid register and flushes the program

counter. From this point onward, the instructions fetched

are stamped with the updated stream-id.
Decode. Here, the sid register is updated from the

stream-ids of the incoming instructions. If at any cycle, the

old stream-id stored in decode does not match the stream-id

of an incoming instruction, a branch mispredict is implied
and decode flushes its instruction buffer.

Issue. This maintains the sid register along with an
additional 1-bit last-sid register. The sid register is
updated using the stream-id of the instruction that per-
forms register writeback. And the last-sid value is
updated from the stream-id of the last successfully issued
instruction. For an instruction reaching the issue stage, its
stream-id is compared with the sid register. If the values
match, then it is eligible for issue. A mismatch implies that
some branch was mispredicted in the recent past, and
further knowledge is required to determine whether this
new incoming instruction is on the correct path or the
incorrect path. This is where the last-sid register
becomes important. A mismatch of the new instruction’s
stream-id with the last-sid indicates that the new
instruction is on the corrected path of execution, and hence,
it is eligible for issue. A match implies the otherwise and the
new instruction is squashed. The complete significance of
last-sid will be made clear later in this section.

Execute/Memory. This compares the stream-id of the
incoming instructions to the sid register. In the event of a
mismatch, the instruction is squashed. A mispredicted
branch instruction toggles its own stream-id along with the
sid register value stored here. This branch resolution
information is sent back to the fetch stage, initiating a
change in its sid register value. The mispredicted branch
instruction also updates the sid in the issue stage during
writeback. Thus, the cycle of updates is completed.

To summarize, under normal operating conditions (i.e.,
no mispredicts), instructions go through the switched
interconnection fabric, get issued, executed, and write back
computed results. When a mispredict occurs, using the
stream-id mechanism, instructions on the incorrect execu-
tion path can be systematically squashed in time.

3.2.2 Scoreboard

The second component required for proper functionality
of SNS is a scoreboard that resides in the issue stage. A
scoreboard is essential in this design because a forwarding
unit (that normally handles register value dependencies) is
not feasible. More often than not, a scoreboard is already
present in a pipeline’s issue stage for hazard detection. In
such a scenario, only minor modifications are needed to
tailor a conventional scoreboard to the needs of an
SNS pipeline.

The SNS pipeline needs a scoreboard in order to keep
track of the registers that have results outstanding and are,
therefore, invalid in the register file. Instructions for which
one or more input registers are invalid can be stalled in the
issue stage. The SNS scoreboard table has two columns (see
Fig. 5c): the first to maintain a valid bit for each register and
second to store the id of the last modifying instruction. In
case of a branch mispredict, the scoreboard needs to be
wiped clean since it gets polluted by instructions on the
wrong path of execution. To recognize a mispredict,
the issue stage maintains a last-sid register that stores
the stream-id of the last issued instruction. Whenever the
issue stage finds out that the new incoming instruction’s
stream-id differs from last-sid, it knows that a branch
mispredict has taken place. At this point, the scoreboard

GUPTA ET AL.: STAGENET: A RECONFIGURABLE FABRIC FOR CONSTRUCTING DEPENDABLE CMPS 9

waits to receive the writeback, if it hasn’t received it
already, for the branch instruction that was the cause of the
mispredict. This branch instruction can be easily identified
because it will bear the same stream-id as the new incoming
instruction. Finally, after this waiting period, the scoreboard
is cleared and the new instruction is issued.

3.2.3 Network Flow Issues

In SNS, the stalls are automatically handled by maintaining
network back pressure through the switched interconnec-
tion. A crossbar does not forward values to the buffer of a
subsequent stage if the stage is stalled. This is similar to the
way network queues handle stalls. In our implementation,
we guarantee that an instruction is never dropped (thrown
away) by a buffer.

For a producer-consumer-based system, where the
transfer latency is variable, double buffering is a standard
technique used to make the transfer latency overlap with
the job cycles of a producer or consumer. In SNS, all stages
have their input and output latches double buffered to
enable this optimization.

3.3 Performance Enhancement

The additions to SNS discussed in the previous section
bring the design to a point where it is functionally correct. In
order to compare the performance of this basic SNS design
to an in-order pipeline, we conducted some experiments
using a cycle accurate simulator developed in the Liberty
Simulation Environment [23]. Basic here implies an SNS
pipeline that is configured with the stream identification
logic, scoreboard, and double buffering. The details of our
simulation setup and benchmarks are provided in Sec-
tion 6.1. The performance of a basic SNS pipeline (first bar)

in comparison to the baseline is shown in Fig. 6. The results

are normalized to the runtime of the baseline in-order

processor. On average, a 4X slowdown was observed, which

is a significant price to pay in return for the reconfiguration

flexibility. However, in this version of the SNS design, much

is left on the table in terms of the performance. Most of this

performance is lost in the stalls due to 1) the absence of

forwarding paths and 2) transmission delay through the

switches.

3.3.1 Bypass Cache

Due to the lack of forwarding logic in SNS, frequent stalls

are expected for instructions with register dependencies. To

alleviate the performance loss, we add a bypass cache in the

execute/memory stage (see Fig. 5d). This cache stores

values generated by recently executed instructions within

the execute/memory stage. The instructions that follow can

use these cached values and need not stall in issue waiting

10 IEEE TRANSACTIONS ON COMPUTERS, VOL. 60, NO. 1, JANUARY 2011

Fig. 6. SNS performance normalized to the baseline. Different
configurations of SNS are evaluated, both with and without the bypass
cache. The slowdown reduces as the bypass cache size is increased
(fewer issue stage stalls).

Fig. 5. Pipeline stages of SNS. Gray blocks highlight the modules added for transforming a traditional pipeline into SNS. (a) Fetch. (b) Decode.
(c) Issue. (d) Execute/Memory.

for writeback. In fact, if this cache is large enough, results
from every instruction that has been issued, but has not
written back, can be retained. This would completely
eliminate the stalls arising from register dependencies
emulating forwarding logic.

An FIFO replacement policy is used for this cache
because older instructions are less likely to have produced a
result for an incoming instruction. The scoreboard unit in
the issue stage is made aware of the bypass cache size when
the system is first configured. Whenever the number of
outstanding registers in the scoreboard becomes equal to
this cache size, instruction issue is stalled. In all other cases,
the instruction can be issued as all of its input dependencies
are guaranteed to be present within the bypass cache.
Hence, the scoreboard can accurately predict whether or not
the bypass cache will have a vacancy to store the output
from the current instruction. Furthermore, the issue stage
can perform selective register operand fetch for only those
values that are not going to be available in the bypass cache.
By doing this, the issue stage can reduce the number of bits
that it needs to transfer to the execute/memory stage.

As evident from the experimental results (Fig. 6), the
addition of the bypass cache results in dramatic improve-
ments in the overall performance of SNS. The biggest
improvement comes between the SNS configuration with-
out any bypass cache (first bar) to the one with a bypass
cache of size two (second bar). This improvement di-
minishes after a while and saturates around six entries. The
average slowdown hovers around 2.1X with the addition of
the bypass cache. In terms of its cost, a six-entry bypass
cache is about 20 percent in size relative to the register file,
which has 32 entries.

3.3.2 Interconnection Network

Within an SNS, pipeline stages are connected to each other
using nonblocking, narrow-width crossbars. The width of a
crossbar determines the number of bits that can be
transferred across it in a single cycle. The SNS stages
maintain latches at their inputs as well as outputs, isolating
the interconnection network into a separate stage. The
interconnection network does not contain any internal
buffers. Thus, the transfer latency for an instruction across
this network is determined by the crossbar width. For
instance, a 32-bit crossbar would take three cycles to transfer
96-bits of data.

The results presented so far in this section have been
with a crossbar width of 32-bits. Fig. 8 illustrates the impact
of varying this width on the performance. Three data points
are presented for every benchmark: a 32-bit channel width,
a 64-bit channel width, and infinite channel width. A large
performance gain is seen when going from 32-bit width to
64-bit width. Infinite bandwidth essentially means that any
amount of information can be transferred between the
stages in a single cycle, resulting in the performance
comparable to the baseline (however, at a tremendous area
cost). With a 64-bit crossbar switch, SNS has an average
slowdown of about 1.35X. The crossbar width discussion is
revisited after the next performance enhancement.

3.3.3 Macro Operations

The performance of the SNS design suffers significantly
from the overhead of transferring instructions between

stages, as every instruction has to go through a switched
network with a variable amount of delay. Here, a natural
optimization would be to increase the granularity of
communication to a bundle of multiple operations that we
call a macro-op (MOP). This has two advantages:

1. More work (multiple instructions) is available for the
stages to work on while the next MOP is being
transmitted.

2. MOPs can eliminate the temporary intermediate
values generated within small sequences of instruc-
tions, and therefore, give an illusion of data compres-
sion to the underlying interconnection fabric.

These collections of operations can be identified both
statically (at compile time) or dynamically (in the hard-
ware). To keep the overall hardware overhead low, we form
these statically in the compiler. Our approach involves
selecting a subset of instructions belonging to a basic block,
while bounding two parameters: 1) the number of live-ins
and live-outs and 2) the number of instructions. We use a
simple greedy policy, similar to [24], that maximizes the
number of instructions, while minimizing the number of
live-ins and live-outs. When forming MOPs, as long as the
computation time in the stages can be brought closer to the
transfer time over the interconnection, it is a win.

The compiler embeds the MOP boundaries, internal data
flow, and live-in/live-out information in the program
binary. During runtime, the decode stage’s Packer structure
is responsible for identifying and assembling MOPs.
Leveraging hints for the boundaries that are embedded in
the program binary, the Packer assigns a unique MOP id
(MID) to every MOP flowing through the pipeline. All other
stages in the SNS are also slightly modified in order to work
with these MOPs instead of simple instructions. This is
particularly true of the execute/memory stage where a
controller cycles across the individual instructions that
comprise an MOP, executing them in sequence. However,
the bandwidth of the stages is not modified, and they
continue to process one instruction per cycle. This implies
that register file ports, execution units, memory ports, etc.,
are not increased in their number or capability. The use of
MOPs also impacts the way the exceptions are handled by
an SNS. The exceptions that occur at MOP boundaries do
not need special attention, as the program execution can
resume at the next MOP. On the other hand, exceptions in
the middle of an MOP need a more involved response. At
the time of exception, the remaining instructions in the
MOP are thrown away and don’t get executed. When the
program execution resumes, the Packer starts precisely from
the instruction following the excepting instruction, forming
only singleton operations (not MOPs). This is continued
until an MOP boundary is reached, at which point regular
MOPs can be formed again.

The performance results shown in Fig. 7 are for an SNS
pipeline with the bypass cache, 64-bit switch channel width
and MOPs. The various bars in the plot are for different
configurations of the MOP selection algorithm. The results
show that beyond a certain limit, relaxing the MOP
selection constraints (live-ins and live-outs) does not result
in the performance improvement. Prior to reaching this
limit, relaxing constraints helps in forming longer MOPs,

GUPTA ET AL.: STAGENET: A RECONFIGURABLE FABRIC FOR CONSTRUCTING DEPENDABLE CMPS 11

thereby balancing transfer time with computation time.
Beyond this limit, relaxing constraints does not result in
longer MOPs. Instead, it produces wider MOPs that have
more live-ins/outs, which increases transfer time without
actually increasing the number of distinct computations
that are encoded. On average, the best performance was
observed for live-ins/outs constraint of four. This yielded
1.14X slowdown for an SNS pipeline over the baseline. The
worst performers were the benchmarks that had very poor
branch prediction rates. In fact, the performance on SNS
was found to be strongly correlated with the number of
mispredicts per thousand instructions. This is expected
because the use of MOPs, and the additional cycles spent
for data transfer between stages, causes the SNS pipeline to
behave like a very deep pipeline.

3.3.4 Crossbar Width Optimization

The bandwidth requirement at each SNS switch interface is
not the same. For instance, macro-ops that are transmitted
from decode to issue stage do not have any operand values.
But the ones that go from issue to execute/memory stage
hold the operand values read from the register file, making
them larger. This observation can be leveraged to optimize
the crossbar widths between every pair of stages, resulting
in an overall area saving.

A series of experiments was conducted to track the
number of bits transmitted over each crossbar interface
(fetch-decode, decode-issue, issue-execute, execute-issue,
and execute-fetch) for every MOP. The average number of
bits transmitted varied from 32 to 87. Given a fixed budget
of total crossbar width (across all interfaces), a good
strategy is to allocate width to each interface in proportion

to the number of bits it transfers. The result of applying this
optimization to the SNS pipeline is shown in Fig. 9. For
nearly the same crossbar area (budget of 300-bits), the
optimized assignment of crossbar widths is able to deliver
three percent performance improvement over uniform
usage of 64-bit crossbars (equivalent to 320-bits in total).
With this final performance enhancement, the SNS pipeline
slowdown stands at about 1.11X of the baseline.

3.4 Stage Modifications

This section summarizes the modules added to each stage
in the pipeline.

Fetch. The sid register and a small amount of logic to
toggle it upon branch mispredicts (Fig. 5a).

Decode. An instruction buffer, augmented with a sid

register to identify branch mispredicts and flush the buffer.
The decode stage (Fig. 5b) is also augmented with the
Packer. The Packer logic reads instructions from the buffer,
identifies the MOP boundaries, assigns them an MID, and
fills out the MOP structure attributes such as length,
number of operations, and live-in/out register names.

Issue. The issue stage (Fig. 5c) is modified to include a
Scoreboard that tracks register dependencies. For an MOP
that is ready for issue, the register file is read to populate
the live-ins. The issue stage also maintains two 1-bit
registers: sid and last-sid, in order to identify branch
mispredicts and flush the Scoreboard at appropriate times.

Execute/Memory. The execute/memory stage (Fig. 5d)
houses the bypass cache that emulates the job of forwarding
logic. This stage is also the first to update itssid register upon
a branch mispredict. In order to handle MOP execution, the
execute/memory controller is modified to walk the MOP
instructions one at a time (one execution per cycle).

4 THE STAGENET MULTICORE

The SNS presented in the last section is in itself a complete
microarchitectural solution to allow pipeline-stage-level
reconfiguration. By maintaining cold spares for stages that
are most likely to fail, an SNS-based design can achieve the
lifetime enhancement targets projected in Fig. 2. However,
these gains can be greatly amplified, without the cold
sparing cost, by using multiple SNSs as building blocks to
form an SN multicore.

The high-level abstraction of SN (Fig. 3), in combination
with the SNS design, forms the basis of the SN multicore

12 IEEE TRANSACTIONS ON COMPUTERS, VOL. 60, NO. 1, JANUARY 2011

Fig. 7. SNS with a bypass cache and the capability to handle MOPs, compared to the baseline in-order pipeline. The first bars are for MOP sizes
fixed at 1, while the other bars have constraint on the number of live-ins and live-outs.

Fig. 8. An SNS pipeline, with variation in the transmission bandwidth.
The performance improves with the increasing transmission bandwidth
and almost matches the base pipeline at unlimited bandwidth.

(Fig. 10). The resources within this are not bound to any
particular slice and can be connected in any arbitrary
fashion to form logical pipelines. The SN multicore has two
prominent components to glue SNSs together:

1. Interconnection Crossbars: The role of the crossbar
switch is to direct the incoming MOP to the correct
destination stage. For this task, it maintains a static
routing table that is addressed using the thread-id
of the MOP. The thread-id uniquely determines the
destination stage for each thread. To circumvent
the danger of having them as single points of
failure, multiple crossbars can be maintained by the
SN multicore.

2. Configuration Manager: Given a pool of stage
resources, the configuration manager divides them
into logical SNSs. The configuration manager logic is
better suited for a software implementation since:
a) it is accessed very infrequently (only when new
faults occur), and b) more flexibility is available in

software to experiment with resource allocation
policies. The configuration manager can be designed
as a firmware/kernel module. When failures occur,
a trap can be sent to the virtualization/OS interface,
which can then initiate updates for the switch
routing tables.

In the event of any stage failure, the SN architecture can
initiate recovery by combining live stages from different
slices, i.e., salvaging healthy modules to form logical SNSs.
We refer to this as the stage borrowing (Section 4.1). In addition
to this, if the underlying stage design permits, stages can be
time-multiplexed by two distinct SNSs. For instance, a pair of
SNSs, even if one of them loses its execute stage, can still run
separate threads while sharing the single live execute stage.
We refer to this as stage sharing (Section 4.2).

4.1 Stage Borrowing

A pipeline stage failure in the system calls upon the
configuration manager to determine the maximum number
of full logical SNSs that can be formed using the pool of live
stages. Full SNS here implies an SNS with exclusive access to
exactly one stage of each type. The number of such SNSs that
can be formed by the configuration manager is determined
by the stage with the fewest live instances. For example, in
Fig. 10, the bottom two SNSs have a minimum of one stage
alive of each type, and thus, one logical SNS is formed. The
logical slices are highlighted using the shaded path,
indicating the flow of the instruction streams.

It is noteworthy that all four slices in Fig. 10 have at least
one failed stage, and therefore, a multicore system in a
similar situation would have lost all working resources.
Hence, SN’s ability to efficiently borrow stages from
different slices gives it the competitive edge over a
traditional multicore.

GUPTA ET AL.: STAGENET: A RECONFIGURABLE FABRIC FOR CONSTRUCTING DEPENDABLE CMPS 13

Fig. 10. An SN multicore formed using four SNSs. As an example, a scenario with five broken stages is shown (crosses indicate broken stages).
Faced with a similar situation, a regular CMP will lose all its cores. However, SN is able to salvage three operational SNSs, as highlighted by the bold
lines (note that these bold lines are not actual connections). The configuration manager is shown for illustrative purposes, and is not an actual
hardware block.

Fig. 9. Performance comparison with different budgets for crossbar
widths. The first bar is for static assignment of 64-bit crossbars at all
interfaces, which is equivalent to a 320-bit (64� 5) budget. Optimized
assignment of 300-bits is able to deliver better performance than 320-bit
static assignment.

4.2 Stage Sharing

Stage borrowing is good, but it is not enough in certain
failure situations. For example, the first-stage failure in the
SN fabric reduces the number of logical SNSs by one.
However, if the stages can be time-multiplexed by multiple
SNSs, then the same number of logical SNSs can be
maintained. Fig. 10 has the top two logical SNSs sharing
an execute stage. The number of logical SNSs that can share
a single stage can be tuned in our implementation.

The sharing is beneficial only when the threads
involved present opportunities to interleave their execu-
tion. Therefore, threads with very high instructions per
cycle (IPC) are expected to derive lesser benefit compared
to low IPC threads. Furthermore, as the degree of stage
sharing is increased, the benefits are expected to shrink
since more and more threads will contend for the available
stage. In order for the stages to be shared, hardware
modifications are required in each of them.

The fetch stage needs to maintain a separate program
counter for each thread and has to time-multiplex the
memory accesses. The instruction cache, in turn, will also be
shared implicitly by the executing threads. In decode, the
instruction buffer has to be partitioned between different
threads. The scoreboard and the register file are populated
with state values specific to a thread, and it is not trivial to
share them. There are two ways to handle the sharing for
these structures: 1) compile the thread with fewer registers
or 2) use a hardware structure for register caching [25].
In our evaluation, we implement the register caching in
hardware and share it across multiple threads. Finally, in
the execute stage, bypass cache is statically partitioned
between the threads.

4.3 Fault Tolerance and Reconfiguration

SN relies on a fault detection mechanism to identify broken
stages and trigger reconfiguration. There are two possible
solutions for detection of permanent failures: 1) continuous
monitoring using sensors [9], [26] or 2) periodic testing for
faults. The discussion of exact mechanism for detection is
beyond the scope of this paper. The configuration manager is
invoked whenever any stage or crossbar switch is identified
to be defective. Depending upon the availability of working
resources, configuration manager determines the number of
logical SNSs that can be formed. It also configures the stages
that need to be shared and partitions their resources
accordingly between threads. While working with higher
degrees of sharing, the configuration manager employs a
fairness policy for resource allocation so that the work
(threads) gets evenly divided among the stages. For example,
if there are five threads that need to share three live stages of
same type, the fairness policy prefers a 2-2-1 configuration
(two threads each to stages 1 and 2 and remaining one to
stage 3) over a 3-1-1 configuration (three threads to stage 1,
one each to stages 2 and 3).

5 SYSTEM-LEVEL DESIGN

The SN design, as presented in the previous section, fails to
cover two important system-level aspects. First, for a large-
scale multicore (10-100s of cores), how does the SN concept
scale? The crossbars that were used to connect the slices

together are notorious for steep growth in area and delay
overheads as the number of ports is increased [27]. Second,
how important is the interconnection reliability, and what
are the ways to improve it? SN’s robustness hinges on the
crossbar reliability, and a failure in the same can render all
of the working stages useless. The purpose of this section is
to find answer to these questions.

The reliability advantages of SN stem from the ability of
neighboring slices (or pipelines) to share their resources
with one another. Thus, a direct approach for scaling would
be to allow as many slices to connect together as possible.
However, practical constraints such as area, delay, and
layout-related issues would constitute reasons that limit the
connectivity between the slices. Thus, a large many core
system would need to be logically divided into smaller
SN islands. Each such island would offer full connectivity
within itself. Fig. 11 shows a conceptual floorplan of a large-
scale SN chip that can be divided into nine SN islands, each
containing four slices/cores (C). The memory hierarchy
within SN is same as that of a typical many core chip, with a
shared L2 and private L1 I/D cache for each slice.

5.1 Island Size

In order to ascertain the right number of slices that can be
efficiently grouped together to form an island, we con-
ducted lifetime reliability experiments for different island
sizes. The total number of slices in these experiments was
fixed, but they were grouped together at a range of values.
For instance, 16 slices can be interwoven at granularity of
two slices (leading to eight SN islands), four slices (leading
to four SN islands), eight slices, or all 16 slices together.
Fig. 12 shows the cumulative work done (left Y-axis) by a
large number of slices grouped at a range of island sizes.
The result is normalized to an equally provisioned CMP.
Cumulative work metric, as defined in Section 6.2, measures
the amount of useful work done by a system over its entire
lifetime. Note that the interconnection fabric here is kept
fault-free for the sake of estimating the upper bound on the
advantage offered by SN.

The experiment shows that a bulk of reliability benefits
are garnered by sharing among a small group of stages. The
returns diminish with the increasing number of pipelines,
and beyond 8-10 pipelines, there is only a marginal impact.
This is so because, as an island spans more and more slices,
the variation in time to failure of its components gets
smaller and smaller. Thus, in a larger set of stages, most fail

14 IEEE TRANSACTIONS ON COMPUTERS, VOL. 60, NO. 1, JANUARY 2011

Fig. 11. A many core SN chip. The shaded group of cores constitutes an
SN island. The island size (four in this example) is a design parameter.

around the same time anyway, making the option to borrow
from neighbors less meaningful. A second, and more
important, factor in determining SN island size is the
crossbar wire delay. Due to the longer wires, connecting up
more than six slices (computed using intermediate wiring
delay from [28]) results in addition of a cycle to crossbar
latency. This causes significant IPC loss, as shown in Fig. 12
(right Y-axis). Considering both factors mentioned above,
the SN island size of six is used for system-level experi-
ments in the rest of this paper.

5.2 Spare Crossbars

The functionality of interconnection is as important as that
of stages for maintaining proper operation within an SN
island. The interconnection wire links are typically reliable,
and hardly develop faults (because: 1) they aren’t scaled as
badly as transistors, and 2) signal wires have low vulner-
ability to Electromigration). On the other hand, crossbar
switches do need fault tolerance. This can be incorporated
by maintaining cold spares. Fig. 13 shows improvement in
cumulative work for a six-slice SN island with a varying
number spares maintained per crossbar in the design. With
no spares, the cumulative work is actually worse than the
baseline (six-core CMP). The gains, however, are negligible
beyond two spare crossbars.

In summary, a large-scale SN system has to be designed
hierarchically, with each SN island containing six slices.
Further, each crossbar should be allocated two spares for
operating reliably.

6 RESULTS AND DISCUSSION

6.1 Simulation Setup

The evaluation infrastructure for the SN architecture
consisted of three major components: 1) a compilation

framework, 2) an architectural simulator, and 3) a Monte
Carlo simulator for lifetime throughput estimations. A total
of 14 benchmarks were selected from the embedded and
desktop application domains: encryption (3des, pc1, rc4,
and rijndael), audio processing (g721encode, g721decode,
rawcaudio, and rawdaudio), image/video processing (idct
and sobel), Unix utilities (grep and wc), and SPECint
benchmarks (mcf and eqn).

We use the Trimaran compilation system [29] as our first
component. The MOP selection algorithm is implemented
as a compiler pass on the intermediate code representation.
During this pass, the code is augmented with the MOP
boundaries. The final code generated by the compiler uses
the HPL-PD ISA [30].

The architectural simulator for the SN evaluation was
developed using the Liberty Simulation Environment (LSE)
[23]. A functional emulator was also developed for the
HPL-PD ISA within the LSE system. Two flavors of the
microarchitectural simulator were implemented in sufficient
detail to provide cycle accurate results. The first simulator
modeled a simple five-stage pipeline, which is also the
baseline for our experiments. The second simulator im-
plemented the SN architecture with all the proposed
enhancements. Table 1 lists the common attributes for our
simulations.

The third component of our simulation setup is the
Monte Carlo engine that we employ for lifetime through-
put study. Each iteration of the Monte Carlo process
simulates the lifetime of the SN architecture. The config-
uration of the SN architecture is specified in Table 1. The
MTTF for the various stages and switches in the system
was calculated using (1), with the fetch qualified to have an
MTTF of 10 years. The crossbar switch peak temperature
was taken from [31] that performs interconnection model-
ing for the RAW multicore chip [32]. The stage tempera-
tures were extracted from HotSpot simulations of the
OR1200 core with the ambient temperature normalized to
the one used in [31]. The calculated MTTFs are used as the
mean of the Weibull distributions for generating time to
failure (TTF) for each module (stage/switch) in the system.
For each iteration of the Monte Carlo, the system gets
reconfigured over its lifetime whenever a failure is
introduced. The instantaneous throughput of the system
is computed for each new configuration using the
architectural simulator on multiple random benchmark
subsets. From this, we obtain the system throughput over
the lifetime. The Monte Carlo study required about 1,000
iterations before arriving at reasonably accurate results.
Final numbers from a pair of these Monte Carlo studies
differed by less than 0.5 percent.

GUPTA ET AL.: STAGENET: A RECONFIGURABLE FABRIC FOR CONSTRUCTING DEPENDABLE CMPS 15

Fig. 12. Increase in cumulative work for a fixed size SN system as the
islands are made larger. Interconnection faults were ignored for this
experiment. The second Y-axis shows the decline in IPC for each slice
as the crossbar latency increases (with island size).

Fig. 13. Increase in cumulative work for an SN island (six slices) as more
cold spares are added for crossbar switches.

TABLE 1
Architectural Attributes

6.2 Simulation Results

6.2.1 Lifetime Performance (Four-Slice SN Chip)

Fig. 14a shows the lifetime throughput results for a four-
core CMP compared against four-core CCA (3/1) config-
uration [33], and two equally provisioned configurations of
the SN architecture. The four-core CCA (3/1) configuration,
a concurrent effort for stage-level reconfiguration, allows
three cores to borrow resources of the fourth core in the
event of failure(s). This is strictly less flexible than SN
where all cores can borrow resources from each other.

The CMP system starts with a performance advantage
over all other configurations due to a slightly higher
single-thread performance. However, as failures accumu-
late, the throughput of SN overtakes other configurations
and remains dominant thereafter. For instance, at year five,
the throughput of SN is more than double the throughput
of CMP. The CCA configuration is able to keep up with SN
until the middle of third year, but it falls behind as the
number of failures rises beyond six. The shaded portion in
this figure depicts the number of failures accumulated in
the system by a given point in the life. For instance, this
plot shows that after eight years, on average, there are 20
failed structures in the system. The difference between
SN configuration with and without sharing was found to
be almost negligible. Remaining results in the paper are for
SN configuration without sharing.

As evident from this result, the SN system is able to
sustain a higher throughput, relative to a traditional design,
for a longer duration. In the context of technology scaling,
there are two ways to benefit from this result. First, in the
future, marketing models can be expected for mass
consumer chips where a fraction of actual resources are
exposed to the end user (similar to IBM zSeries processor
modules [34]). The remaining resources are either dead on
arrival, or are used as spares for in-field failures. In this
scenario, SN chips can be placed into higher bins, as they
provide stronger throughput guarantees. Second, architec-
tural solutions like SN can help the semiconductor
manufacturers take an extra step in silicon scaling, beyond
what can be achieved by process engineers alone.

The throughput differential between SN and other
designs can also be compared by integrating the respective

throughputs over the lifetime. We call this cumulative work,
and it is roughly the total amount of work performed by a
chip. Fig. 14b shows the cumulative work for SN config-
urations compared against the baseline. By the end of the
lifetime, we achieve as much as 37 percent improvement in
the work done for the SN fabric. About 30 percent of this is
achieved by stage borrowing only, and the additional
seven percent benefit is a result of stage sharing. The sharing
was not found to be very effective as the opportunities to
time-multiplex stages were very few and far between. The
CCA configuration achieves about 15 percent improvement
in the cumulative work done.

6.2.2 Lifetime Performance (64-Slice SN Chip)

The above experiments were also repeated for a larger
many core system. Typically, the die sizes today are about
100 mm2, out of which nearly 60 percent is devoted to
processing cores. Given that estimate, one such die can hold
64 OR1200 cores (see Fig. 1b).

Fig. 15a shows the lifetime throughput results for a
64-core CMP, 64-slice SN chip, and 54-slice SN chip. Both
SN chips use an island size of six slices and employ two spare
crossbars per interface. The 54-slice SN chip configuration
was added to have an area neutral comparison with the
baseline CMP (area overhead of SN is discussed later in more
detail). As in the case above, the CMP system starts with a
performance advantage over the SN architecture, but falls
below both SN configurations around the two-year mark.

Fig. 15b shows the cumulative performance (total work
done) for SN configurations compared against the baseline.
By the end of the lifetime, 64-slice SN chip achieves
40 percent improvement. Even the area neutral SN
configuration with 54-slices dominates baseline CMP by
22.5 percent. Thus, at no additional silicon cost, SN solution
delivers a significant reliability advantage.

6.2.3 Area Overhead

The area overhead in the SN arises from the additional
microarchitectural structures that were added and the
interconnection fabric composed of the crossbar switches.
Area overhead is shown using an OR1200 core as the
baseline (see Section 2.1). The area numbers for the bypass
cache and register cache are estimated by taking similar

16 IEEE TRANSACTIONS ON COMPUTERS, VOL. 60, NO. 1, JANUARY 2011

Fig. 14. Throughput and cumulative performance results for four-core CMP, four-core CCA (3/1) configuration, four-slice SN, and four-slice SN with
sharing. (a) Throughput over time. This plot shows (shaded portion) the expected number of failed modules (stages/switch) until that point in the
lifetime. (b) Cumulative work done. These curves are time integral of throughput over time plots.

structures from the OR1200 core and resizing them
appropriately. More specifically, bypass cache and register
cache areas are based on the TLB area, which is also an
associative lookup structure. And finally, the area of double
buffers is based on the maximum macro-op size they have
to store. The sizing of all these structure was done in
accordance with the SNS configuration that achieved the
best performance. The crossbar switch area is based on the
Verilog model from [27]. The total area overhead for the
SN design (no sharing) is e15 percent (Table 2). This was
computed assuming that six slices share a crossbars, and
each crossbar maintains two cold spares. Note that the
scoreboard area is ignored in this discussion, as the
introduction of sufficiently sized bypass cache eliminates
the need for them.

All the design blocks were synthesized using Synopsys
Design Compiler and placed and routed using Cadence
Encounter with a TSMC standard cell library characterized
for a 90 nm process. The area overhead for separate
modules, crossbar switches, and SN configurations is
shown in Table 2.

6.2.4 Power Overheads

Power dissipation for various modules in the design is
simulated using Synopsys Primepower on an execution
trace of OR1200 running media kernels. The crossbar power
dissipation was simulated separately using a representative
activity trace. The stage to crossbar interconnection power
was calculated using standard power equations [35] with

capacitance from Predictive Technology Model [36] and
intermediate wiring pitch from 90 nm node (ITRS [28]).

The power overhead in SN comes from three sources:
crossbars, stage/crossbar interconnection, and miscella-
neous logic (extra latches and new modules). Table 3 shows
the breakdown, with total power overhead at 16.4 percent.
A majority of this power overhead comes from the
interconnection network (crossbars and links).

6.2.5 Timing Overhead

Although we have not investigated the impact of our
microarchitectural changes to the circuit critical paths, a
measurable influence on the cycle time is not expected in
SNS, because: 1) our changes primarily impact the pipeline
depth (due to the additional buffers), and 2) all logic
changes are local to the stages and do not introduce any
direct (wire) communication between them.

7 RELATED WORK

Concern over reliability issues in future technology genera-
tions has spawned a new wave of research in reliability-
aware microarchitectures. Recent work has addressed the
entire spectrum of reliability topics from fault detection and
diagnosis to system repair and recovery. This section
focuses on the most relevant subset of work, those that
propose architectures that tolerate and/or adapt to the
presence of faults.

High-end server systems, like Tandem NonStop and
IBM zSeries [34], typically rely on coarse-grained spatial
redundancy to provide a high degree of reliability.
However, such dual and triple modular redundant systems
incur significant overheads in terms of area and power,
and cannot tolerate a high failure rate. More recently,

GUPTA ET AL.: STAGENET: A RECONFIGURABLE FABRIC FOR CONSTRUCTING DEPENDABLE CMPS 17

TABLE 2
Area Overhead of the SN Architecture

TABLE 3
Power Overhead for a Single SNS: The Percentages
Are with Respect to OR1200’s Power Consumption

Fig. 15. Throughput and cumulative performance results for 64-core CMP, 64-slice SN chip, and 54-slice SN chip (area neutral). (a) Throughput over
time results. This plot also shows (shaded portion) the expected number of failed modules (stages/switch) until that point in the lifetime.
(b) Cumulative work done. These curves are time integral of throughput over time plots.

ElastIC [15], Configurable Isolation [14], and Architectural
Core Salvaging [37] are high-level architectural proposals
for multiprocessor fault tolerance. Although good in a
limited failure rate scenario, all of these proposals need a
massive number of redundant cores, without which they
face the prospect of rapidly declining processing through-
put as faults lead to core disabling.

Much work has also been done in fine-grained redun-
dancy maintenance such as Bulletproof [21], sparing in
array structures [12], and other such microarchitectural
structures [4]. These schemes typically rely on inherent
redundancy of superscalar cores, and it is also extremely
hard to achieve good coverage with them.

SN differs dramatically from solutions previously pro-
posed in that our goal is to minimize the amount of
hardware used solely for redundancy. More specifically, we
enable reconfiguration at the granularity of a pipeline stage,
and allow pipelines to share their stages, making it possible
for a single core to tolerate multiple failures at a much lower
cost. In parallel to our efforts, Romanescu and Sorin [33]
have proposed a multicore architecture, Core Cannibaliza-
tion Architecture (CCA), that also exploits stage-level
reconfigurability. CCA allows only a subset of pipelines to
lend their stages to other broken pipelines, thereby avoiding
full crossbar interconnection. Unlike SN, CCA pipelines
maintain all feedback links and avoid any major changes to
the microarchitecture. Although these design choices re-
duce the overall complexity, fewer opportunities of recon-
figuration exist for CCA as compared to SN.

8 CONCLUSION

Technology scaling is driven by a need to keep improving
computation capabilities by packing more and more
resources onto a single chip, and can be sustained as long
as the benefits outweigh the associated costs. With the
growing reliability concerns, this scaling is under a threat.
Therefore, as the CMOS technology evolves, so must the
techniques that are employed to counter the effects of ever
more demanding reliability challenges. Efforts in fault
detection, diagnosis, and recovery/reconfiguration must
all be leveraged together to form a comprehensive solution
to the problem of unreliable silicon. This paper contributes
to the area of hardware reconfiguration by proposing a
radical architectural shift in processor design. The end goal
is to extend the life of silicon technology, keeping the
scaling beneficial even in the face of high defect rates.

The proposed architecture, named as SN, is motivated by
a need for fine-grained reconfiguration, which enables a
better resource utilization in the presence of faults. In SN’s
design, networked pipeline stages were identified as the
effective trade-off between cost and reliability enhance-
ment. Although the performance suffered at first as a result
of changes to the basic pipeline, a few well-placed
microarchitectural enhancements were able to reclaim
much of what was lost. Ultimately, the SN architecture
exchanged a modest amount of area overhead (15 percent)
in return for a highly resilient fabric with only 10 percent
degradation in the single-thread performance.

SN’s ability to salvage working pipeline stages, from
otherwise broken cores, enables it to give stronger
throughput guarantees. This translates into a higher

number of available hardware contexts for a longer period
of time. For instance, a 64-core SN chip was able to provide
an IPC of 20 until the five year mark. A similarly
provisioned traditional CMP chip (with core disabling)
dipped below 20 IPC just after three years. Accumulated
over the entire lifetime, this throughput differential results
in 40 percent more cumulative work for the SN chip.

For marketing chips with such high defect rates, future
chip vendors might expose only 50-75 percent of the
resources that are actually present on a chip. This marketing
model is already employed in IBM zSeries servers, where
every processor module has two spare cores. In such a
scenario, SN chips can be rated at a significantly higher
throughput (relative to a CMP), for a given service lifetime. In
addition to wearout fault tolerance, the SN concept is
similarly beneficial for failures at manufacture time, resulting
in yield improvements. Hence, the SN fabric is well
positioned to withstand the rapidly increasing device failure
rates, permitting the aggressive scaling of technology.

ACKNOWLEDGMENTS

The authors gratitude goes to the anonymous referees who
provided excellent feedback on this work. The authors also
thank David Penry for his assistance with the Liberty
Simulation Environment and Visvesh Sathe for his help with
Cadence Encounter. This research was supported by ARM,
Ltd., the US National Science Foundation grant CCF-
0347411, and the Gigascale Systems Research Center, one
of five research centers funded under the Focus Center
Research Program, a Semiconductor Research Corporation
program.

REFERENCES

[1] K. Bernstein, “Nano-Meter Scale cmos Devices (Tutorial Presenta-
tion),” 2004.

[2] S. Borkar, “Designing Reliable Systems from Unreliable Compo-
nents: The Challenges of Transistor Variability and Degradation,”
IEEE Micro, vol. 25, no. 6, pp. 10-16, Nov./Dec. 2005.

[3] P. Kongetira, K. Aingaran, and K. Olukotun, “Niagara: A 32-Way
Multithreaded SPARC Processor,” IEEE Micro, vol. 25, no. 2,
pp. 21-29, Feb. 2005.

[4] P. Shivakumar, S. Keckler, C. Moore, and D. Burger, “Exploiting
Microarchitectural Redundancy for Defect Tolerance,” Proc. 2003
Int’l Conf. Computer Design, pp. 481-488, Oct. 2003.

[5] J. Zeigler, “Terrestrial Cosmic Ray Intensities,” IBM J. Research and
Development, vol. 42, no. 1, pp. 117-139, 1998.

[6] A. Christou, Electromigration and Electronic Device Degradation.
John Wiley and Sons, Inc., 1994.

[7] E. Wu, J.M. McKenna, W. Lai, E. Nowak, and A. Vayshenker,
“Interplay of Voltage and Temperature Acceleration of Oxide
Breakdown for Ultra-Thin Gate Oxides,” Solid-State Electronics,
vol. 46, pp. 1787-1798, 2002.

[8] C. Weaver and T.M. Austin, “A Fault Tolerant Approach to
Microprocessor Design,” Proc. 2001 Int’l Conf. Dependable Systems
and Networks, pp. 411-420, 2001.

[9] J.A. Blome, S. Feng, S. Gupta, and S. Mahlke, “Self-Calibrating
Online Wearout Detection,” Proc. 40th Ann. Int’l Symp. Micro-
architecture, pp. 109-120, 2007.

[10] A. Meixner, M. Bauer, and D. Sorin, “Argus: Low-Cost,
Comprehensive Error Detection in Simple Cores,” IEEE Micro,
vol. 28, no. 1, pp. 52-59, Jan. 2008.

[11] F.A. Bower, D.J. Sorin, and S. Ozev, “A Mechanism for Online
Diagnosis of Hard Faults in Microprocessors,” Proc. 38th Ann. Int’l
Symp. Microarchitecture, pp. 197-208, 2005.

[12] F.A. Bower, P.G. Shealy, S. Ozev, and D.J. Sorin, “Tolerating Hard
Faults in Microprocessor Array Structures,” Proc. 2004 Int’l Conf.
Dependable Systems and Networks, pp. 51-60, 2004.

18 IEEE TRANSACTIONS ON COMPUTERS, VOL. 60, NO. 1, JANUARY 2011

[13] D. Bernick, B. Bruckert, P.D. Vigna, D. Garcia, R. Jardine, J. Klecka,
and J. Smullen, “Nonstop Advanced Architecture,” Proc. Int’l
Conf. Dependable Systems and Networks, pp. 12-21, June 2005.

[14] N. Aggarwal, P. Ranganathan, N.P. Jouppi, and J.E. Smith,
“Configurable Isolation: Building High Availability Systems with
Commodity Multi-Core Processors,” Proc. 34th Ann. Int’l Symp.
Computer Architecture, pp. 470-481, 2007.

[15] D. Sylvester, D. Blaauw, and E. Karl, “Elastic: An Adaptive Self-
Healing Architecture for Unpredictable Silicon,” IEEE J. Design
and Test, vol. 23, no. 6, pp. 484-490, June 2006.

[16] Tilera “Tile64 Processor—Product Brief,” http://www.tilera.
com/pdf/, 2008.

[17] L. Seiler et al., “Larrabee: A Many-Core�86 Architecture for Visual
Computing,” ACM Trans. Graphics, vol. 27, no. 3, pp. 1-15, 2008.

[18] OpenCores “OpenRISC 1200,” http://www.opencores.org/
projects.cgi/web/ or1k/openrisc_1200, 2006.

[19] J. Srinivasan, S.V. Adve, P. Bose, and J.A. Rivers, “The Case for
Lifetime Reliability-Aware Microprocessors,” Proc. 31st Ann. Int’l
Symp. Computer Architecture, pp. 276-287, June 2004.

[20] W. Huang, M.R. Stan, K. Skadron, K. Sankaranarayanan, and S.
Ghosh, “Hotspot: A Compact Thermal Modeling Method for cmos
vlsi Systems,” IEEE Trans. Very Large Scale Integration Systems,
vol. 14, no. 5, pp. 501-513, May 2006.

[21] K. Constantinides, S. Plaza, J.A. Blome, B. Zhang, V. Bertacco, S.
Mahlke, T. Austin, and M. Orshansky, “Bulletproof: A Defect-
Tolerant CMP Switch Architecture,” Proc. 12th Int’l Symp. High-
Performance Computer Architecture, pp. 3-14, Feb. 2006.

[22] ARM “Arm11,” http://www.arm.com/products/CPUs/
families/ARM11Family.html, 2010.

[23] M. Vachharajani, N. Vachharajani, D.A. Penry, J.A. Blome, S.
Malik, and D.I. August, “The Liberty Simulation Environment: A
Deliberate Approach to High-Level System Modeling,” ACM
Trans. Computer Systems, vol. 24, no. 3, pp. 211-249, 2006.

[24] N. Clark, A. Hormati, S. Mahlke, and S. Yehia, “Scalable Subgraph
Mapping for Acyclic Computation Accelerators,” Proc. 2006 Int’l
Conf. Compilers, Architecture, and Synthesis for Embedded Systems,
pp. 147-157, Oct. 2006.

[25] M. Postiff, D. Greene, S. Raasch, and T. Mudge, “Integrating
Superscalar Processor Components to Implement Register Cach-
ing,” Proc. 2001 Int’l Conf. Supercomputing, pp. 348-357, 2001.

[26] E. Karl, P. Singh, D. Blaauw, and D. Sylvester, “Compact In Situ
Sensors for Monitoring nbti and Oxide Degradation,” Proc. 2008
IEEE Int’l Solid-State Circuits Conf., Feb. 2008.

[27] L.-S. Peh and W. Dally, “A Delay Model and Speculative
Architecture for Pipelined Routers,” Proc. Seventh Int’l Symp.
High-Performance Computer Architecture, pp. 255-266, Jan. 2001.

[28] ITRS “Int’l Technology Roadmap for Semiconductors 2008,”
http://www.itrs.net/, 2008.

[29] Trimaran “An Infrastructure for Research in ILP,” http://
www.trimaran.org/, 2000.

[30] V. Kathail, M. Schlansker, and B. Rau, “HPL-PD Architecture
Specification: Version 1.1,” Technical Report HPL-93-80(R.1),
Hewlett-Packard Laboratories, Feb. 2000.

[31] L. Shang, L. Peh, A. Kumar, and N.K. Jha, “Temperature-Aware
On-Chip Networks,” IEEE Micro, vol. 26, no. 1, pp. 130-139, Jan./
Feb. 2006.

[32] W. Lee, R. Barua, M. Frank, D. Srikrishna, J. Babb, V. Sarkar, and
S. Amarasinghe, “Space-Time Scheduling of Instruction-Level
Parallelism on a RAW Machine,” Proc. Eighth Int’l Conf.
Architectural Support for Programming Languages and Operating
Systems, pp. 46-57, Oct. 1998.

[33] B.F. Romanescu and D.J. Sorin, “Core Cannibalization Architec-
ture: Improving Lifetime Chip Performance for Multicore Proces-
sor in the Presence of Hard Faults,” Proc. 17th Int’l Conf. Parallel
Architectures and Compilation Techniques, 2008.

[34] W. Bartlett and L. Spainhower, “Commercial Fault Tolerance: A
Tale of Two Systems,” IEEE Trans. Dependable and Secure
Computing, vol. 1, no. 1, pp. 87-96, Jan.-Mar. 2004.

[35] J. Rabaey, A. Chandrakasan, and B. Nikolic, Digital Integrated
Circuits, second ed. Prentice Hall, 2003.

[36] PTM “Predictive Technology Model,” http://ptm.asu.edu/, 2010.
[37] M.D. Powell, A. Biswas, S. Gupta, and S.S. Mukherjee, “Archi-

tectural Core Salvaging in a Multi-Core Processor for Hard-Error
Tolerance,” Proc. 36th Ann. Int’l Symp. Computer Architecture, June
2009.

Shantanu Gupta received the BTech degree in
computer science and engineering from the
Indian Institute of Technology, Guwahati, in
2005, and the MSE degree in computer
engineering in 2007 from the University of
Michigan, where he is currently working toward
the PhD degree at the Electrical Engineering
and Computer Science Department. His re-
search interests span various aspects of compi-
lers and architectures with a focus on fault

tolerance, power efficiency, and single-thread performance.

Shuguang Feng received the bachelor’s degree
in computer engineering from the University of
Florida in 2005, and the MSE degree in
computer engineering in 2006 from the Univer-
sity of Michigan, Ann Arbor, where he is
currently working toward the PhD degree at the
Electrical Engineering and Computer Science
Department. His research interests include fault
tolerant, reconfigurable computer architectures,
and investigating techniques that can exploit the

interaction between software and hardware to enhance the system
reliability.

Amin Ansari received the BS degree in
computer engineering from Sharif University of
Technology, Iran, in 2007, and the MSE degree
in computer science and engineering in 2008
from the University of Michigan, Ann Arbor,
where he is currently working toward the PhD
degree at the Department of Electrical Engineer-
ing and Computer Science. His research inter-
ests include designing architectural and
microarchitectural techniques for enhancing

reliability of high-performance microprocessors in deep submicron
technologies. He is a student member of the IEEE and the ACM.

Scott Mahlke received the PhD degree in
electrical engineering from the University of
Illinois at Urbana-Champaign in 1997. He is an
associate professor in the Electrical Engineering
and Computer Science Department at the
University of Michigan, where he leads the
Compilers Creating Custom Processors Re-
search Group. The CCCP group delivers tech-
nologies in the areas of compilers for multicore
processors, application-specific processors for

mobile computing, and reliable system design. His achievements were
recognized by being named the Morris Wellman assistant professor in
2004 and being awarded the Most Influential Paper Award from the
International Symposium on Computer Architecture in 2007. He is a
member of the IEEE.

. For more information on this or any other computing topic,
please visit our Digital Library at www.computer.org/publications/dlib.

GUPTA ET AL.: STAGENET: A RECONFIGURABLE FABRIC FOR CONSTRUCTING DEPENDABLE CMPS 19

