
StageNet: A Reconfigurable CMP Fabric for Resilient
Systems

Shantanu Gupta Shuguang Feng Jason Blome Scott Mahlke

Advanced Computer Architecture Laboratory
University of Michigan
Ann Arbor, MI 48109

{shangupt, shoe, jblome, mahlke}@umich.edu

ABSTRACT
Though CMOS feature size scaling has been the source of dra-
matic performance gains, this scaling has lead to mounting relia-
bility concerns due to increasing power densities and on-chip tem-
peratures. Given that most wearout mechanisms that plague semi-
conductor devices are highly dependent on these parameters, sig-
nificantly higher failure rates are projected for future technology
generations. Traditional techniques for dealing with device failures
have relied on the coarse-grained replication of structures (typically
at the processor core level) to maintain service in the face of failed
components. In this work, we challenge the practice of core-level
replication by identifying the inability of core-level replication to
scale to high failure rate scenarios and investigating the advantages
of finer-grained configurations. The case is made that supporting
fine-grained reconfiguration not only enhances a system’s robust-
ness, but can improve overall throughput as well. We use thisstudy
to motivate the design of StageNet, a CMP architecture designed
from its inception with reliability as a first class design constraint.
StageNet relies on a reconfigurable network of replicated processor
structures to maximize the useful lifetime of the chip, gracefully
degrading performance toward end of life.

1. INTRODUCTION
Device scaling trends into the nanometer regime have lead to

increasing current and power densities and rising on-chip temper-
atures, resulting in increasing device failure rates. Leading tech-
nology experts have begun to warn designers that device reliability
will begin to deteriorate from the 65nm node onward [5]. Current
projections indicate that future microprocessors will be composed
of billions of transistors, many of which will be unusable atman-
ufacture time, and many more which will degrade in performance
(or even fail) over the expected lifetime of the processor [7]. To as-
suage these reliability concerns, computer designers mustdirectly
address reliability in computer systems through innovative fault-
tolerance techniques.

The sources of computer system failures are widespread, rang-
ing from transient faults, due to energetic particle strikes [26] and
electrical noise [23], to permanent errors, caused by wearout phe-
nomenon such as electromigration [9] and time dependent dielec-
tric breakdown [25]. In recent years, industry designers and re-
searchers have invested significant effort in building architectures
resistant to transient faults and soft errors. Though thereis signifi-
cant evidence suggesting a growing rate of soft errors in future tech-
nology generations [7], this problem is actively being addressed in
research [15, 15, 16, 24].

In contrast, much less attention has been paid to the problemof
permanent faults, specifically transistor wearout due to the degrada-

tion of semiconductor materials over time. Concerns about wearout
are primarily due to increasing power and current densities, both of
which lead to increasing on-chip temperatures. All of thesethree
parameters have been shown to heavily influence most wearout
mechanisms [3]. In fact, most wearout mechanisms exhibit anex-
ponential dependence on temperature [12] [9] [20]. Furthermore,
device scaling increases the susceptibility to wearout by shrink-
ing the thickness of the gate and inter-layer dielectrics and increas-
ing interconnect current density. Traditional techniquesfor dealing
with transistor wearout have involved extra provisioning in logic
circuits, known as guard-banding, to account for the expected per-
formance degradation of transistors over time. However, the in-
creasing degradation rate projected for future technologygenera-
tions implies that traditional margining techniques will be insuffi-
cient. This necessitates revolutionary new designs for systems that
can identify and adapt to wearout through reconfiguration.

The challenge of tolerating permanent faults can be broadlydi-
vided into three requisite tasks: fault detection, fault diagnosis, and
system recovery. Fault detection mechanisms are used to determine
that a fault is present in the system, while fault diagnosis is used to
determine the source and nature of the fault. System recovery can
consist of a number of different tasks, based on the nature ofthe
fault. For example, if the fault is transient, the incorrectstate may
be corrected by simply flushing the processor pipeline [4]. How-
ever, if the fault is permanent, then a recovery mechanism which
leverages system reconfiguration may be necessary to avoid propa-
gating faults through the use of a failed component.

In general, system reconfiguration requires additional redundant
resources, or the decommissioning of non-critical components. As
an example, many computer vendors provide the ability to repair
faulty memory and cache cells, through the inclusion of spare mem-
ory elements [18]. Recently, researchers have begun to extend these
techniques to support sparing for additional on-chip resources [21],
such as branch predictors [8] and registers [14].

Classical mechanisms such as dual and triple-modular redun-
dancy (DMR and TMR) have been used in the past to address the
problem of system recovery. However, replication at this granular-
ity incurs a high hardware overhead and can only tolerate a small
number of defects [10]. While such techniques may be appropri-
ate for mainframes or mission-critical systems, they are generally
too costly in terms of area and power requirements for mainstream
desktop and embedded computer systems.

Trends in multicore systems have opened up a new design space
for reliable system design. Recent work [17, 2] use the available
redundancy in multicore systems to run duplicated copies ofthe
same process or thread, thereby giving systems the ability to diag-
nose faulty cores and isolate them. Another interesting proposal,
ElastIC [22], proposes dynamic reliability management fora mas-

sively multicore system that uses on chip wearout sensors toturn
off cores that become defective over time. The focus of this paper
is to present a generic framework for providing reconfiguration ca-
pabilities with a smaller granularity of replication in order to max-
imize the lifetime of CMP designs.

Although existing fault tolerance solutions with core level redun-
dancy are viable, their effectiveness in the long run is not guaran-
teed. With the increasing defect rate in semiconductor technology,
it will not be uncommon to see a rapid degradation in throughput
for systems that have processor core level redundancy. Thisis be-
cause with any single device failure within a processor core, the
entire core would have to be decommissioned, drastically reduc-
ing throughput of the system and leaving many working functional
structures unused. This suggests the need for finer-grainedcontrol
over system redundancy that enables reconfiguration for structures
within a processor core. Over time as more and more devices fail,
such a system will gracefully degrade its performance capabilities.

To this end, this work presents, and evaluates StageNet, a highly
reconfigurable and adaptable CMP computing substrate. StageNet
is a CMP architecture designed as a network of pipeline stages.
This architecture naturally exploits the inherent redundancy in a
CMP fabric to maintain higher system throughput over the dura-
tion of a system’s life (even extending that lifetime) compared to a
conventional multicore design. With a sea of pipeline stages at its
disposal, an intelligent reliability management system can dynam-
ically configure StageNet to meet changing reliability and perfor-
mance demands. The primary contributions of this paper:

• A design space exploration of potential reconfiguration gran-
ularities for resilient system design

• A study of mean time to failure (MTTF) of different recon-
figuration granularities

• A networked CMP architecture (StageNet) overview and eval-
uation

2. RECONFIGURATION GRANULARITY
An architecture for tolerating permanent faults requires the abil-

ity for system reconfiguration, where reconfiguration can refer to a
variety of activities ranging from decommissioning non-functioning,
non-critical processor structures to swapping in cold spare devices.
In a reconfigurable architecture, recovery entails isolating defective
component(s) and incorporating spare structures as needed. Sup-
port for reconfiguration can be achieved at various levels ofgran-
ularity, from ultra-fine grained systems that have the ability to re-
place individual logic gates to coarser designs that focus on isolat-
ing entire processor cores. This choice presents a trade-off between
complexity of implementation and potential lifetime enhancement,
where finer grained solutions provide greater lifetime extensions
than their coarser counterparts at significantly more cost.Gener-
ally speaking, the law of diminishing returns dictates the granular-
ity of reconfiguration. This section presents experiments studying
this trade-off and draws upon these results to motivate the design
of StageNet.

2.1 Experimental Setup
In order to effectively model the reliability of different designs, a

Verilog model of the OpenRISC 1200 (OR1200) core [1] was used
as a representative design for the lifetime reliability experiments.
The OR1200 is an open-source core with a conventional 5-stage
pipeline design. The core was synthesized, placed and routed us-
ing industry standard CAD tools with a library characterized for a

OR1200 Core
Area 1.0 mm2

Power 123.9 mW
Clock Frequency 400 MHz
Data Cache Size 8 KB
Instruction Cache Size 8 KB
Technology Node 90 nm

(a) Overlay of the OR1200 floorplan on
top of the placed and routed implemen-
tation of the CPU core.

(b) Implementation details

Figure 1: OpenRisc 1200 embedded microprocessor

90nm process. The final floorplan along with several attributes of
the design is shown in Figure 2.1.

Mean-time-to-failure (MTTF) was used as the metric to estimate
lifetime of various modules in the OR1200 design. This studywas
conducted for the time-dependent-dielectric-breakdown (TDDB)
wearout mechanism1, employing an empirical model similar to that
found in [19]. Equation 1 gives the per device MTTF in the de-
sign with respect to the TDDB wearout mechanism. Furthermore,
module level MTTFs were calculated by identifying the minimum
MTTF across all logic gates within each top-level module of the
OR1200 core. More details about these calculations can be ob-
tained from [6], which uses a similar experimental setup.

MTTFTDDB ∝ (
1

V
)(a−bT)

e
(X+ Y

T
+ZT)

kT (1)

where,

• V = operating voltage
• T = temperature
• k = Boltzmann’s constant
• a, b, X, Y, andZ are all fitting parameters based on [19]

The purpose of this setup was to generate a per module MTTF in
the OR1200 design. In this experiment, it is assumed that thefastest

1A similar analysis can be done for other wearout mechanisms in-
cluding negative bias threshold inversion (NBTI), hot carrier injec-
tion (HCI) and electromigration (EM)

failing component in the design (the one with the smallest MTTF)
determines the operational lifetime of the core. Using thisMTTF
data, the next subsection will discuss advantages and disadvantages
of reconfiguring the hardware at different levels of granularity.

2.2 Choosing the Granularity
The granularity of reconfiguration is used to describe the unit of

isolation or replication for components within the processor core.
Implicitly it also states the level at which redundancy is maintained
by the system, because the replacement of the faulty component
is done by the redundant spares. It is important to note that it is
not strictly necessary to use cold spare structures in placeof failed
components, in certain situations the isolation of non-critical faulty
component suffices. Various options for reconfiguration in the or-
der of increasing granularity are as follows:

Gate level: Given this level of reconfiguration, a system can re-
place logic gates in the design as and when they fail. Un-
fortunately, such designs are typically impractical because
they both require capability to diagnose faults precisely at
the level of individual gates, and require tremendous over-
head due to redundant components and wire routing area.

Module level: At this level of reconfiguration, a processor core
can replace broken micro-architectural structures such asan
ALU or branch predictor.

Stage level: The microarchitectural modules of a processor core
are grouped together to form pipeline stages that make a
coarser grained reconfiguration level. Stage level reconfigu-
ration suggests replacement at this granularity, for example,
a fault in the operand muxes feeding the ALU will require
the replacement of the entire Execute stage.

Core level: This forms the coarsest level of reconfiguration where
an entire processor core can be isolated from the system upon
its failure. From the perspective of a system designer, thisis
the easiest technique to implement but at the same time has
poorest returns in terms of the lifetime extension.

Figure 2 demonstrates the effectiveness of the above granulari-
ties of reconfiguration (gate-level reconfiguration is not included in
this study due to the complexity of implementation). MTTF values
for the modules were computed as described in the previous sub-
section. The module level MTTF values were then used to get stage
level MTTF values by taking the minimum of module MTTF values
belonging to a stage. The same reasoning was extended to compute
the core level MTTF by using the minimum MTTF value among all
the modules. The figure overlays three separate plots, one for each
level of reconfiguration. The redundant spares matched the gran-
ularity of reconfiguration and were provisioned to add as much as
300% area overhead. The area overhead presented here is fromthe
redundant components.

The data shown in Figure 2 demonstrates that going towards
finer-grained reconfiguration is categorically beneficial as far as the
gain in MTTF is concerned. But, it overlooks the design complex-
ity aspect of the problem. As one goes towards finer-grained recon-
figuration, hardware challenges for supporting redundancyaggra-
vate, e.g. muxing logic, wiring overhead, circuit timing manage-
ment, etc. At the same time, very coarse grained reconfiguration
is also not an ideal candidate since the MTTF gain scales poorly
with the area overhead. Therefore, a middle-ground solution is de-
sirable that is amiable to the reconfiguration and has a better life
expectancy.

 0

 100

 200

 300

 400

 500

 600

 700

 0 50 100 150 200 250 300

P
er

ce
nt

 In
cr

ea
se

 in
 M

T
T

F

Percent Area Overhead

Module-granularity replacement
Stage-granularity replacement
Core-granularity replacement

Figure 2: Gain in MTTF from the addition of cold spares at the
granularity of micro-architectural modules, pipeline stages, and
processor core. The gains shown are cumulative, and spare mod-
ules are added in the order they are expected to fail (the markers
indicate the times when a cold spare is added to the system). The
base system is a single core machine. A higher slope indicates bet-
ter returns on the area investment but at the same time involves
more design complexity.

2.3 Implications on StageNet
Stage level reconfiguration granularity presents itself asa good

candidate because of following reasons:

• Stages can be looked upon as boundaries in a logical as well
as a circuit sense. A logical boundary because the pipeline
architectures divide work at the level of stages (like fetch, de-
code, etc.). A circuit boundary because the data signals gets
latched at the end of every pipeline stage. Both these factors
are helpful when reconfiguration is desired with a minimum
impact on the original performance.

• Stage based reconfiguration scales well with the increase in
available redundant spares (see fig 2).

• A stage based reconfigurable design is easy to validate, be-
cause there is a very limited interaction with the micro-architecture.

• And lastly, in the proposed architecture (StageNet), pipelines
share the stages among them as spare components which
makes the system inherently redundant.

A high-level picture of the StageNet is presented in Figure 3.
Processor cores within this system are designed as part of a high
speed network-on-a-chip, where each stage in a coarse-grained pro-
cessor pipeline corresponds to a node in the network. A horizontal
slice of the architecture is equivalent to a logical processor core.
Such a system would isolate nodes that are deemed defective,and
configure pipelines to share certain stages. As these nodes wearout
and eventually fail, system will exhibit graceful degradation in its
performance, and a gradual decline in throughput. The next sec-
tion elaborates on the design of StageNet architecture and shows
performance evaluation for the same.

3. STAGENET: A RECONFIGURABLE CMP
FABRIC

By making structures on the chip both simple and regular with
a straightforward communications interconnect, architectures can

StageN−1

StageN

StageN

StageN

StageN

StageN−1

StageN−1

StageN−1

Stage1 Stage2

Stage1 Stage2

Stage1 Stage2

Stage1 Stage2Pipeline 1

Pipeline 2

Pipeline 3

Pipeline M

C
on

fig
ur

at
io

n
M

an
ag

er

Figure 3: StageNet architecture. The figure above shows logical pipelines that have their stages interconnected for maximum opportunity of
reconfiguration. Each horizontal slice (a single pipeline)is equivalent to a logic processing core. This figure has M, N-stage pipelines.

be built which can maintain operation despite a large numberof
non-working components. The StageNet architecture is inspired
by this observation. It is a multiprocessor architecture where the
pipeline stages of a traditional microarchitecture, are used as the
unit of replication. Stages are organized as a tightly-coupled, high-
performance network-on-a-chip, communicating with each other
through an interconnect rather than pipeline latches, allowing for
a high degree of system reconfigurability. The overall objective of
this design is to have a scalable fault tolerant multiprocessor sys-
tem with built in redundancy and reconfiguration capabilities. This
section describes the proposed architecture and shows preliminary
performance figures.

3.1 Reconfigurable CMP Fabric
The StageNet architecture, shown in Figure 3, consists of anin-

terwoven fabric set of simple pipeline stages. Each row forms a
logical processing core, a StageNet pipeline. The number ofstages
is variable and dependent upon the base pipeline architecture that
is used to form the StageNet. Each stage is connected to simple
network routers (represented by the shaded circles) allowing it to
communicate with the neighboring stages in the pipeline. These
routers can be considered surrogates for the pipeline latches in a
conventional pipeline. The configuration manager (shown atthe
far right in Figure 3) handles system-wide control (i.e., definition
of logical cores, dynamically re-routing around ailing components,
etc.). At initialization time, each logical core is assigned a core ID
and allocated a single instance of each pipeline stage. Thisallo-
cation of resources defines the routing tables for the intermediate
routers. The simplest policy is to allocate stages belonging to the
same row to the same core. But, by no means are these allocations
static, failure of pipeline stages can trigger system reconfiguration
forcing neighboring pipelines to share stages on a time-multiplexed
basis.

The StageNet design enables the re-provisioning of resources
in order to maintain operation (with potentially degraded perfor-
mance) in the presence of multiple component failures. The re-
sources allocated to a logical core can also be changed over time
to reduce hot spots on the chip. During system reconfiguration,
the available resources are partitioned into logical cores, and the
routing tables are updated. For example (see figure 5), if a stage
(X) in row 2 encounters a failure, the router may be re-configured
to forward instruction packets from the preceding stage (X − 1)
in row 2 to a working stage (X) of, say, row 1. Since the num-

ber of non-defective components on the chip will decrease over
time, the number of complete logical cores that can be formedwill
also decrease with age. Thus, the overall system performance will
gracefully degrade as nodes periodically fail.

Advantages of the StageNet design:

• Reconfiguration Flexibility: The fundamental interconnec-
tion change (from pipeline latches to programmable routers)
provides a tremendous opportunity for fault tolerance through
reconfiguration. Failed stages can be easily bypassed by rout-
ing instructions to an alternate spare while still utilizing the
remaining stages in the original pipeline.

• Inherent Redundancy: When used to form a multicore sys-
tem, such a design can share its pipeline stages with neigh-
boring processors. This ability to share stages provides re-
dundancy by-design without the additional costs of cold-spares.

• Scalable issue width:2 In addition to its reliability features,
the StageNet architecture also supports configurations that
optimize for performance. A single logical core can poten-
tially be allocated more than its share of pipeline stages. For
example, the issue stage of one pipeline can potentially scat-
ter computation to multiple execute stages and the results can
be gathered by a single writeback stage (emulating a wide-
issue system). This is made possible by the flexibility of in-
terconnect between the stages.

Along with these benefits, there is one major challenge facing
this architecture, namely the overhead of the routers that support
the inter-stage communications. The performance overheadasso-
ciated with these routers is evaluated and discussed in the next sub-
section.

As a preliminary study, the number of stages in the StageNet
pipeline was varied to observe the impact of pipeline depth on per-
formance. The router communication overhead was fixed at 1 cycle
for every transfer between the stages. Figure 4 shows the perfor-
mance measured as CPI for a set of benchmarks chosen from the
MiBench [13] benchmark suite while the pipeline depth is varied.
The performance impact from the increase in pipeline depth,as

2Although the evaluation for this feature of StageNet is beyond the
scope of this paper, it was one of the advantages that motivated the
design

seen in figure 4, is negligible when compared to the overhead as-
sociated with the router. Even for the case with five stage pipelines
(second bar for every benchmark), almost all the benchmarksshow
approximately 2X increase in the CPI over the baseline architec-
ture3. Therefore, the major component of performance degradation
comes from the communication overhead that is discussed further
in the following subsection.

 0

 0.5

 1

 1.5

 2

 2.5

 3

 3.5

 4

 4.5

bitcount

blowfish

fft grep
ispell

lex patricia

rawcaudio

rawdaudio

rijndael

sha
susan

tiff2bw

P
er

fo
rm

an
ce

 (
C

P
I)

baseline
5 stages

10 stages
15 stages
20 stages

Figure 4: Single thread performance for a StageNet pipelinewith
variation in the number of pipeline stages. The transmission delay
is fixed at 1 cycle.

3.2 Communication Overheads
The communication between stages happens via on-chip net-

work routers. The router for StageNet, as shown in figure 5, is
a standard textbook design [11] with buffering at its inputsand
round-robin allocation logic for the non-blocking crossbar switch.
It performs the task of receiving instruction packets from stages up-
stream and transmitting them to available stages downstream. The
communication overhead in the StageNet architecture comesfrom
two sources:

Transmission delay: This is the delay incurred from transmitting
an instruction from one pipeline stage to the next. The rea-
son for this delay is the limited communication bandwidth
between the pipeline stages. For instance, if the instruction
size is 128 bits (including operands), then a 64 bit wide com-
munication bus would require two cycles to transmit it.

Congestion delay: If the number of input stages to a router is more
than the number of output stages, then that router is said
to be congested. Such a scenario arises when the pipeline
stages start failing and the remaining stages have to be time-
multiplexed between the existing threads (see figure 5). The
delay introduced is referred to as congestion delay. Early in
the lifetime when all stages are functioning properly, no con-
gestion delay is observed.

In order to see the impact of varying transmission delays (tdelay)
on single thread performance, the same benchmarks as beforewere
executed. The number of stages was kept fixed at 10, and the trans-
mission delay was varied from 0 to 8 (see figure 6). The result-
ing performance scaled almost linearly with the transmission de-
lay. This is also intuitive because after every instructionin the
pipeline, the transmission delay will force the insertion of NOPs
(no-operations). Thus, the pipeline stages sit idle for at least ’trans-
mission delay’ number of cycles after processing every instruction.
3A conventional five-stage inorder pipeline

Stage X−1

Stage X−1

Stage X−1

Stage X

Stage X

Stage X

Allocator

Crossbar

Stage X−1

Stage X−1

Stage X−1

Stage X

Stage X

Stage X

Allocator

Crossbar

Figure 5: StageNet fabric handling a fault in a pipeline stage. The
top figure shows the router under normal conditions. The bottom
figure shows the configuration after the failure of Stage X in the
second pipeline. Here, the router redirects the incoming traffic to
the working stages downstream.

The impact of congestion delay is harder to quantify for a single
thread because congestion is seen only when multiple benchmarks
are running on the system. Furthermore, it is necessary to model
failed pipeline stages to induce congestion. This is a topicfor sec-
tion 4 where the system throughput is computed in the presence of
stage failures.

 0

 2

 4

 6

 8

 10

 12

bitcount

blowfish

fft grep
ispell

lex patricia

rawcaudio

rawdaudio

rijndael

sha
susan

tiff2bw

P
er

fo
rm

an
ce

 (
C

P
I)

baseline
tdelay of 0
tdelay of 2
tdelay of 4
tdelay of 8

Figure 6: Performance of a StageNet pipeline with differenttrans-
mission delays. The number of stages is fixed at 10.

3.3 Performance Enhancement
The performance of the design suffers immensely from the over-

head of transferring instructions between stages since every instruc-
tion has to go through a network with a variable amount of delay.
Another observation is that since each of these stages usually take
a single cycle to execute the instruction, they are sitting idle for
rest of the time waiting for the next instruction to arrive. Avery
fruitful optimization would be to increase the granularityof com-
munication between the stages to a collection of instructions rather
than sending one at a time. Let this bundle of instructions becalled
a macro-op. A pipeline stage will take multiple cycles to process
such a macro-op because the hardware resources within a stage re-
mains unchanged. As a result, the transmission of the next macro-
op can be overlapped with the processing of the current macro-op,
increasing overall hardware utilization. Lessons learnedfrom out-
of-order architectures support the fact that a higher resource utiliza-

tion usually translates into better overall performance.
For this work, the macro-ops were formed by combining con-

secutive instructions in the program assembly code. The macro-
ops were generated during compilation time with two guidingcon-
straints:

• the number of instructions that can belong to a single macro-
op had an upper bound

• macro-ops cannot span branch instructions

Essentially, macro-ops are similar to the program basic blocks,
only with a limit on the maximum number of instructions. Per-
formance results for experiments that varied the macro-op size are
shown in figure 7. In these experiments, the number of pipeline
stages was fixed at 10 and the transmission delay was set at 4 cy-
cles. The results demonstrate that performance greatly benefits
from the use of macro-ops. Generally speaking, benchmark per-
formance increases proportionally with increasing macro-op sizes.
But, as evident from the figure 7, this holds true only as long as
the macro-op size is less than or equal to the transmission delay.
When the macro-op size exceeds the transmission delay (barscor-
responding to macro-op sizes 6 and 8), the performance improve-
ment saturates. This is an expected result because initially when
the macro-op size is increased, the longer execution times required
for macro-ops masks the transmission delays and the performance
improves. Once the macro-op size becomes greater than the trans-
mission delay, the bottleneck comes from the pipeline stages that
execute the macro-ops, and this introduces stall cycles.

 0

 1

 2

 3

 4

 5

 6

 7

 8

bitcount

blowfish

fft grep
ispell

lex patricia

rawcaudio

rawdaudio

rijndael

sha
susan

tiff2bw

P
er

fo
rm

an
ce

 (
C

P
I)

baseline
macro-op size 1
macro-op size 2
macro-op size 4
macro-op size 6
macro-op size 8

Figure 7: Performance of a StageNet pipeline with variable sizes
of macro-ops. The transmission delay is fixed at 4 and number of
stages at 10.

For the evaluation of a CMP system, in addition to the single
thread performance, throughput is an important metric. Especially
in the face of failing design components, the rate of throughput
degradation gives insight into the resilience of a design. This is
discussed in more detail by the following section.

4. THROUGHPUT EVALUATION
The benefits of prolonging the life of a processor are marginal-

ized if its computational capacity is severely diminished.There-
fore, the key metric used to evaluate the StageNet architecture is
its throughput over time. In other words, the “quality of life” of the
processor is as important as the magnitude of the lifetime extension
achievable. In the context of this paper, throughput is defined as the
amount of work done per unit time where work refers to the num-
ber of instructions committed, and the unit of time is CPU cycles.

Therefore, throughput is simply the summation of IPCs (instruc-
tions per cycle) for all threads running on the CMP.

In the event of failures, throughput is expected to diminishbe-
cause fewer resources are available in the system. A system that
degrades its throughput gracefully (i.e. at a slow rate) with respect
to the number failures is naturally a good resilient design.This was
the primary motivation for using throughput against failures as a
metric for StageNet CMP fabric. In addition to this, congestion de-
lay in the StageNet architecture comes into play only when some of
the stages in the pipeline fail (see section 3.2). Thus, a throughput
study would shed light on this aspect of the design as well.

A Monte-Carlo analysis was conducted (see figure 8) to mea-
sure the throughput with respect to the number of failures for the
StageNet CMP. Each simulation for the Monte-Carlo was an ex-
periment where faults were injected into the pipeline stages of a
StageNet CMP instance, and the throughput was computed as the
failures accumulated in the system. Each core of the StageNet CMP
ran a benchmark from the MiBench suite. The parameter valuesfor
the StageNet are mentioned in the caption for figure 8. As shown
in the figure, a similar analysis was done for a traditional CMP sys-
tem.

 0

 20

 40

 60

 80

 100

 0 10 20 30 40 50

T
hr

ou
gh

pu
t (

%
 o

f N
om

in
al

)

of Failures

Traditional CMP
StageNet CMP

Figure 8: Throughput degradation with the injection of failures in
the StageNet CMP and a traditional CMP. The StageNet architec-
ture has macro-op size = 6, transmission delay = 4, and numberof
stages = 10. Both the systems start off with resources equivalent to
4 cores, and the throughput is normalized to that of the traditional
CMP design when no failures exist.

The throughput degradation results highlight the resilience of
the StageNet CMP over a traditional CMP design. Note that for
a traditional system, any failed device in a core leads to itsfail-
ure. The rate of degradation is significantly less for the StageNet
CMP, which implies that it can tolerate more failures and maintain
a higher throughput, throughout its operational lifetime.The plot
also shows that the congestion delay does not have a significant
impact on the system throughput.

5. CONCLUSION
Technology trends project high failure rates for future CMOS

technology generations indicating a growing need for revolution-
ary new designs that can maintain functionality in the presence of
multiple failed components.

This paper demonstrates that traditional approaches to coarse-
grained replication for reliability is insufficient for tolerating high
failure rates. In general, the finer the granularity of reconfigura-
tion, the better the projected lifetime of the system. One caveat

to this generalization is that beyond a certain level, the complex-
ity of implementing this finer-grained reconfiguration nullifies the
gains in MTTF. As a solution, this paper presented StageNet,a
highly reconfigurable CMP fabric composed of interwoven pipeline
stages communicating with each other over an on-chip network.
StageNet allows for reconfiguration at the granularity of a pipeline
stage without adding significant interconnection design complex-
ity. The advantage of being reconfigurable at a finer granularity
than a processor core results in a longer lifetime for the system.

Finally, a Monte-Carlo analysis was done to evaluate the through-
put degradation of the StageNet CMP with the injection of failures.
The results demonstrated a significantly more graceful degradation
of throughput for the StageNet CMP as compared to a conventional
CMP, with a difference of as much as20% in throughput for the
same number of failures.

6. REFERENCES

[1] Openrisc 1200, 2006.
http://www.opencores.org/projects.cgi/web/or1k/openrisc 1200.

[2] N. Aggarwal, P. Ranganathan, N. P. Jouppi, and J. E. Smith.
Configurable isolation: building high availability systems
with commodity multi-core processors. InProc. of the 34th
Annual International Symposium on Computer Architecture,
pages 470–481, 2007.

[3] J. S. S. T. Association. Failure mechanisms and models for
semiconductor devices. Technical Report JEP122C, JEDEC
Solid State Technology Association, Mar. 2006.

[4] T. Austin. Diva: a reliable substrate for deep submicron
microarchitecture design. InProc. of the 32nd Annual
International Symposium on Microarchitecture, pages
196–207, 1999.

[5] K. Bernstein. Nano-meter scale cmos devices (tutorial
presentation), 2004.

[6] J. A. Blome, S. Feng, S. Gupta, and S. Mahlke. Online timing
analysis for wearout detection. InProc. of the 2nd Workshop
on Architectural Reliability (WAR), pages 51–60, 2006.

[7] S. Borkar. Designing reliable systems from unreliable
components: The challenges of transistor variability and
degradation.IEEE Micro, 25(6):10–16, 2005.

[8] F. A. Bower, P. G. Shealy, S. Ozev, and D. J. Sorin.
Tolerating hard faults in microprocessor array structures. In
Proc. of the 2004 International Conference on Dependable
Systems and Networks, page 51, 2004.

[9] A. Christou.Electromigration and Electronic Device
Degradation. John Wiley and Sons, Inc., 1994.

[10] K. Constantinides et al. Bulletproof: A defect-tolerant CMP
switch architecture. InProc. of the 12th International
Symposium on High-Performance Computer Architecture,
pages 3–14, Feb. 2006.

[11] W. Dally and B. Towles.Principles and Practices of
Interconnection Networks. Morgan Kaufmann Publishers
Inc., 2003.

[12] D. Dumin.Oxide Reliability: A Summary of Silicon Oxide
Wearout, Breakdown, and Reliability. World Scientific
Publishing Co. Pte. Ltd., 2002.

[13] M. Guthaus, J. Ringenberg, D. Ernst, T. Austin, T. Mudge,
and R. Brown. MiBench: A free, commercially
representative embedded benchmark suite. InProc. of the 4th
IEEE Workshop on Workload Characterization, pages
10–22, Dec. 2001.

[14] P. Shivakumar, S. Keckler, C. Moore, and D. Burger.

Exploiting microarchitectural redundancy for defect
tolerance. InProc. of the 2003 International Conference on
Computer Design, page 481, Oct. 2003.

[15] D. Siewiorek et al.Reliable Computer Systems: Design and
Evaluation, 3rd Edition. AK Peters, Ltd., 1998.

[16] J. Smolens, J. Kim, J. Hoe, and B. Falsafi. Efficient resource
sharing in concurrent error detecting superscalar
microarchitectures. InProc. of the 37th Annual International
Symposium on Microarchitecture, pages 256–268, Dec.
2004.

[17] J. C. Smolens, B. T. Gold, B. Falsafi, and J. C. Hoe. Reunion:
Complexity-effective multicore redundancy. InProc. of the
39th Annual International Symposium on Microarchitecture,
pages 223–234, 2006.

[18] L. Spainhower and T. Gregg. IBM S/390 Parallel Enterprise
Server G5 Fault Tolerance: A Historical Perspective.IBM
Journal of Research and Development, 43(6):863–873, 1999.

[19] J. Srinivasan, S. V. Adve, P. Bose, and J. A. Rivers. The case
for lifetime reliability-aware microprocessors. InProc. of the
31st Annual International Symposium on Computer
Architecture, pages 276–287, June 2004.

[20] J. Srinivasan, S. V. Adve, P. Bose, and J. A. Rivers. The
impact of technology scaling on lifetime reliability. InProc.
of the 2004 International Conference on Dependable
Systems and Networks, pages 177–186, June 2004.

[21] J. Srinivasan, S. V. Adve, P. Bose, and J. A. Rivers.
Exploiting structural duplication for lifetime reliability
enhancement. InProc. of the 32nd Annual International
Symposium on Computer Architecture, pages 520–531, June
2005.

[22] D. Sylvester, D. Blaauw, and E. Karl. Elastic: An adaptive
self-healing architecture for unpredictable silicon.IEEE
Journal of Design and Test, 23(6):484–490, 2006.

[23] S. Vrudhula, D. Blaauw, and S. Sirichotiyakul. Estimation of
the likelihood of capacitive coupling noise. InProc. of the
39th Design Automation Conference, pages 653–658, 2002.

[24] C. Weaver and T. M. Austin. A fault tolerant approach to
microprocessor design. InProc. of the 2001 International
Conference on Dependable Systems and Networks, pages
411–420, Washington, DC, USA, 2001. IEEE Computer
Society.

[25] E. Wu et al. Interplay of voltage and temperature
acceleration of oxide breakdown for ultra-thin gate oxides.
Solid-State Electronics, 46:1787–1798, 2002.

[26] J. Zeigler. Terrestrial cosmic ray intensities.IBM Journal of
Research and Development, 42(1):117–139, 1998.

