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Abstract

To meet an insatiable consumer demand for greater perfagnan
at less power, silicon technology has scaled to unprecedetit
mensions. However, the pursuit of faster processors arytdrat-
tery life has come at the cost of device reliability. Givea ttse of
processor (un)reliability as a first-order design constrahere has
been a growing interest in low-cost, non-intrusive techai for
transient fault detection. Many of these recent proposate helied
on the availability of hardware recovery mechanisms. Altjto
common in aggressive out-of-order machines, hardwarecstipp
for speculative rollback and recovery is less common in lewe
end commodity and embedded processors. This paper pré&sents
core, a software-based fault recovery mechanism tailaethése
lower-cost systems that lack native hardware support fecsp-
tive rollback. New compiler analyses and algorithms arettped
that enable Encore to provide this fault recovery at very ¢osts.
By exploiting fine-grained idempotence analysis and ceas#ive
heuristics that only target statistically relevant codgiars, Encore
can achieve high recoverability coverage without the aquzom-
ing costs associated with traditional software-basedIqi@nting
solutions. Experimental results show that Encore can exdoom
up to 95% of detected faults for certain applications andvenage
only imposes 6% of runtime performance overhead.

1. Introduction

Given the news coverage of the high-profile Toyota recalislater
articles chronicling Apple’s antenna woes on their newhgased
iPhone, the reliability, or perhaps more appropriately dheelia-
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Figure 1: Inherent region idempotence as a function of region size.d&ta
reported is the average across an assortment of SPEC2K adtidbidach
workloads.

nizing this characteristic of transient faults, archiseict the past
have also designed systems that took periodic checkpdims (
cally snapshots of processor and memory state) and couiicetl

to these checkpoints and resume execution in the event oft a so
error. These highly robust fault recovery solutions hagtdmically
also relied on some form of modular redundancy to provide the
necessary detection capabilities. Available in spatiateamporal
variants, modular redundancy generally involved reduhdsgecu-
tion (either on separate hardware or in separate softwarexts)
followed by detailed comparisons that would identify thegence

of a fault [2, 12, 20, 22, 28]. However, the resultant ovedseaf

bility, of computer systems has taken center stage. Granted thesehese coupled detection and recovery scheme, a large cemipain

headlining stories were mostly the result of faulty sofvand
costly system engineering miscalculations. However, th#ip re-
sponse to these events has highlighted the frustratiorcdmearise
when computers, and the systems they are associated witfgtdo
function as advertised.

Although it is impossible to build a completely reliable @y,
hardware vendors target failure rates that are imperdgiball.
With the course of aggressive technology scaling that hes f-
lowed by the industry, many sources of unreliability are egimeg
in commercial microprocessors. One prominent source cliaAr
bility, and the focus of this paper, is soft errors. Also kmoas tran-
sient faults, they can be induced by external sources degtrieal
noise or high-energy particle strikes that result from dosradi-
ation and chip packaging impurities. Additionally, in ngwdro-
posed architectures that embrace the principles of sttict{2d]
and near threshold computing [5], they can also be the re$ult
extreme timing speculation and/or frequency and voltagdirsy
Whether they are the result of unexpected and uncontrelfabtes
or simply the cost of doing business for a cutting-edge &echire,
transient faults have been and continue to be a source dfabile
ity for processor designers.

Unlike manufacturing or design defects, which persist ant ¢
tinually degrade system reliability, transient faults,tlasir name
suggests, only intermittently cause errors in programui@a. For
the vast majority of time, a program executes undisturbet.oB-

which was the cost of creating checkpoints (requiring onotfaker
of minutes to an hour), usually relegated their use to to-eigh,
enterprise systems [4].

These simple yet elegant techniques, having served thake in
mission-critical server arena for decades, are not tylyigabhcti-
cal outside this niche domain. Although reliability canbetcom-
pletely ignored in lower-end systems, they are not usuagighed
to provide the “five-nines” of fault tolerance capable of dieg
someone safely to the moon. That said, the overheads agbcia
with these conventional solutions are prohibitively exgpea for
budget-conscious systems with less demanding relialdigyire-
ments. In fact, this is the same argument made by [8], and to a
similar extent [3], which argues that most commodity systeta
not require reliability guarantees but will settle for patiiistic es-
timates.

With that in mind we propose, Encore, a software-only fault
recovery solution that seeks to provide high (but not nerdgs
guaranteed) coverage at the least possible cost. Furtheras
an automated, compiler-driven technique it is able tozdilpro-
grammable heuristics that allow the end-user to dial in tgrele
of fault-tolerance that is desired and therefore only iresimuch
runtime overhead as they are able to budget. Encore canvachie
this behavior by mimicking the same checkpoint, rollbacid ee-
execute model used by earlier enterprise systems. Howaiber
than performing, full-system, heavyweight checkpointsc@e is



able to exploit thedempotencgroperty of applications to reduce,
and in certain situations nearly completely eliminate therbeads
required to support re-execution based fault recovery.

At a high-level, an idempotent region of code is simply one
that can be re-executed multiple times and still produces#me
correct result. In the context of rollback based recovdrig, imeans
that, at least to the first order, a fault occurring withiné@rpotent
piece of code can be recovered from without any overhead for
checkpointing state. This generally means that there ¢agxist
any paths through the region that can read, modify, and théa w
to the same (or overlapping) memory locatiorl(s)

To better understand the extent of idempotent code presant i
application, Figure 1 shows the distribution of idempotegions
across a set of desktop and media benchmarks. Results ava sho
as a function of region size. The definition of regions and o
data was generated will be discussed later in the papemEdinte
being, it is sufficient to treat regions simply as groups ofreexted
basic blocks. The surprisingly large percentage of ndjuecaicur-
ring idempotent regions seen in Figure 1 is what initiallg@umr-
aged the development of Encore. To the first order, the regluat
were identified as idempotent could be easily instrumerdetbil-
back recovery with almost no impact on runtime performaitice.
is important to point out however, that although there isiplef
opportunity present, only a few of these regions actualgnsan
entire function. Most are spread throughout the applicatinak-
ing manual inspection to identify these regions imprattica

This is not entirely unexpected since with more instruction
comes the greater chance that there exists some sequenge of i
structions that violate the read-modify-write constrairgquired to
maintain idempotence. This intuition is reinforced by tligtribu-
tion shown in the figure which exhibits a sharp drop when mgvin
from regions with just a handful of instructions to thosehas0 or
more. Lastly, it is also interesting to note that for the oegithat do
not exhibit full idempotence, many tend to hearly idempotent,
i.e., only a few offending instructions violate idempoten&imi-
larly, in others those that do break idempotence only octanga
statistically unlikely paths.

To make exploiting program idempotence feasible, this pape
proposes techniques to automate the analysis and insttatioen
within compiler optimization passes. We present the algors and
heuristics developed that enable Encore to carefullytpamtappli-
cation code into fine-grained regions with favorable idetapoe
behavior, and then to instrument them for rollback-recavidiev-
ertheless, despite the advantages, unlike its missitieaircoun-
terparts, Encore only provides probabilistic fault reagyvge., it is
likely able to recover from most faults) and cannot providevp
able guarantees on recoverability. Yet, this design datigllows it
to transparently provide fault recoverability on commypdiystems
at a price that they can afford. The contributions of thisgregore
as follows:

* We demonstrate how low-cost transient fault recovery can be
achieved for commodity systems without hardware support fo
aggressive performance speculation.

* Develop new compiler algorithms and heuristics for

= Automatically identifying candidate idempotent regions i
generalized code regions with support for cycles.

= Trading off recoverability with performance overheads by
exploiting application profiling statistics.

* Propose an analytical model for computing recoverability-c
erage without the aid of statistical fault injection.

11dempotence also requires that no live-in registers arensitéeen within
the region as well, but this issue will be addressed sepprate

Table 1: Comparison with conventional checkpointing schemes.

Attributes Enterprise | Architectural Encore
Recovery Recovery

Interval Length ~hours 100-500 K 100-1000
instructions | instructions

Storage Space 05-1GB 0.5-1MB ~10B

Checkpoint Time| ~minutes ~ms ~ns

Scope Full System Processor Processor

Guaranteed Yes Yes No

Recovery

Extra Hardware | Sometimes Yes No

2. Recovering from Transient Faults

Generally speaking, transient fault tolerance consistsvofcom-
ponents: 1) fault detection and 2) fault recovery. Thereishmort-
age of examples in the literature that address each of thate
(see Section 6). Encore falls squarely on the side of faativery.
That is to say, this paper is primarily concerned with beiblg o
recover from a soft error event once the fault has already bee
tected. It assumes that fault detection itself is perforimgdome
other low-cost means, some of which will be discussed iniGe6ét

As previously mentioned, traditional high-reliability stgms
have chiefly relied upon heavy-weight, full-system chedkipog
mechanisms to support rollback and recovery. Some higl-lev
characteristics of these traditional techniques are fggtéd in
Table 1. Compared to these conventional methods, Encovelpso
recoverability at much finer-granularities (on the ordefl00’s to
1000’s of instructions) without any specialized hardwarpport,
and all at a cost that is significantly lower in terms of perfance
and storage space.

Although this initial comparison may suggest that Encore is
strictly superior to these prior schemes, this is certaiolythe case.
In order to achieve the reductions in run time overhead witho
incurring hardware costs Encore has to sacrifice, albeititaited
degree, reliability. Relative to enterprise solutionsg414, 28], and
to a lesser extent recently proposed architectural solsifib7, 27],
which can provide guarantees on recoverability coveragepie
can only provide probabilistic estimates. This small cesam,
consistent with the needs of systems along the lower spaatfu
the commodity space [3, 8], enables numerous optimizatiagis
allow it to maintain dramatically lower costs.

2.1 Recovery with Fine-grained Re-execution

At the high-level, one of the simplest ways to recover fromaat
sient fault is by re-executing the application from a looatfar
enough back along the control flow graph (CFG) so as to cdyrect
reproduce the data that was corrupted by the fault. Withstbésn-
ingly straight-forward maneuver, the effects of all but thest in-
sidious transient faults can be tolerated, and in a senseletaty
eliminated. This assumes that during the initial executionead,
modify, write dependencies overwrote state that could teastro-
neous behavior upon re-execution.

Note, that employing this form of fault tolerance requires,
addition to a detection mechanism, the ability to identtig 1o-
cation from which to initiate re-execution, i.e., decidinbere the
code should rollback to in the event of a fault. Ideally theteyn
would be able to rollback to just before the fault site andurthier.
This would ensure correct forward progress while also miziimg
the amount of “wasted work,” the amount of code that was unec-
cessarily re-executed. However, this would necessitatevlaige
of the dynamic execution path of the program. Without hardwa
support, this would require some form of software-basedatyin
control flow signature generation [32], an expensive pritioos

Instead, Encore only operates on single-entry, multigle-e
(SEME) regions. This frees it from having to account for whic
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fine-grained re-execution to achieve fault recovery. (a)negrates potential rollback destinations that executénhe redirected once a fault, strikingbat
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region. (b) highlights how idempotence might constrainahilgode regions can actually be efficiently recovered. (p)ate how otherwise non-idempotent
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path of execution actually lead to the instruction corrdptg the

fault. It can safely redirect execution to the top of the SEME

gion, the header. Details regarding the algorithm and b8csithat

Encore uses to partition an application into these SEMEoregi
are described in Section 3.

Figure 2a is a simple illustration of how this type of fault
recovery is realized in the Encore system for a small sulbgrap
bb1 — bbr. In this example a transient fault corrupted an instruction
inside basic blockbbs. However, the fault is not detected until
bbs. Although expensive hardware detection schemes tend ® hav
much shorter detection latencies (on the order of a few syclee
lower-cost options that Encore is more likely to be pairethwaill
typically have much greater latencies (on the order of dez#n
instructions). Furthermore, these low-cost detectorsatge less
likely to be able to diagnosexactlythe location of originating fault,
e.g.,bbs. In this environment a potential recovery mechanism is left
with the difficult task of deciding where control should resi

When a transient fault is detected, Encore would like to to
redirect control back to “closest” basic block along thehpat
execution that that preceded the fault site, nanbély However,
without additional information about where the fault ocedrand
what dynamic execution path originally led to the fault sEacore
is left with choosing between five potential candidatés, — bbs.
Even after eliminatinghbr as a potential candidate, since there
does not exist any path frob; to bbs, the choice of where to
redirect control after a fault is detected is undecidableoatpile-
time. Fortunately, if Figure 2a were part of a SEME regiorg th
decision could easily be made to conservatively rollbagcation
to the region headebp’. Although some additional code would be
re-executed uneccessarily, namaly, this is still more agreeable
than the alternative of dynamic-flow tracking.

2.2 The Role of Idempotence

Figure 2b illustrates how recognizing idempotent regioas c
greatly reduce the effort required to provide fault recabdity.
The key principle behind using re-execution as a means of/eze

ing from transient faults is the expectation that the portécode
being re-executed will produce the same results, the setiored
around, as it did during the initial execution, preciselg tefini-
tion of idempotence. As long as no read, modify, write seqasn
to the same state throughout a region, the region is idempote
and it automatically becomes an attractive candidate f@oEsis
re-execution based fault recovery. In the example, sincpadhs
through region-; are idempotent, it is more desirable than for
which execution can be non-idempotent. Relying on conveati
heavy-weight, full-system checkpointing schemes (or eteir
more recent lighter-weight incarnations) to ensure thaegion
like r1 could be re-executed would be using a sledgehammer to
crack the proverbial nut. Because the region is naturakynigo-
tent, Encore can simply redirect all fault detection evénitsated
anywhere within the region tbs, the header of. It is important
to note here that although is not idempotent, if the increment of
variable X in bbs were the only instruction violating this property
then selectively checkpointing would transformrg into a readily
recoverable region. Small, cost-efficient transformatilike these,
described in greater detail in Section 3, are what enablei€rto
achieve high recoverability coverage.

Lastly, Figure 2c shows an actual subgraph taken ft@&vpr
a benchmark from the SPEC2K integer benchmark suite. leeorr
sponds to a slice of the CFG from the functimp_swap which is
the hottest function within the application, accounting fimughly
half of its execution time. The details of the basic blockd #me
surrounding CFG have been abstracted away for clarity. fiaded
basic blocksbbs, bb1o, bbi1, andbb; » are locations where the idem-
potence of the region can be violated. The code within thas&b
blocks is responsible for memory allocation to dynamic alales.
Consequently, these are only executed the first timeswapis
called. For the remaining invocationstoj_swap the path through
basic blockbs, bbr, bbg, andbb,2 dominates the execution time.
This suggests that although regionis not strictly speaking idem-
potent, it does exhibit idempotebehaviorfor the vast majority of
the time. Thigprobabilisticidempotence is yet another property of
applications that Encore exploits to reduce its overheads.



Admittedly the notion of idempotence is not new. For example
Kim et al. [9] leveraged idempotent properties of inner lmopFor-
tran applications to minimize the instances of storageftoves in
a speculative execution system. However, relying on thopgity
for low-cost, transient fault recovery in a systematic fasfnas not
yet been fully addressed. Doing so is a promising yet chgilten
problem. A recent proposal by Kruijf et al. [3] overcame soofie
these challenges by resorting to manually inspecting andifyro
ing of source code to take advantage of the function-widmjute
tence and fault tolerant properties of multimedia and daitsing
applications. Although the work is in the same spirit as Eacby
resorting to domain/application-specific algorithmic whedge to
identify and condition candidate functions significanilyits the
applicability of the approach.

Establishing a generalized methodology for exploiting fine
grained idempotence to enable low-cost fault recovery haputir-
pose of developing Encore. The algorithms and heuristiesled
to achieve this efficiently in the compiler is the main cdmiition
of this paper. The remaining sections of this paper desdtibe
analysis and instrumentation passes utilized by Encoreti(®e3),
the methodology to evaluate the recoverability coverage ¢an
be achieved (Section 4), analysis of the resulting faukrtice
and performance overheads of Encore (Section 5), and aexlu
with a brief discussion of the the implications this has on-tmst
fault-tolerant system designs (Section 7).

3. Encore

Achieving the goals laid out in the title of this work, lowsto
transient fault recovery, involves identifying naturaligcurring
regions of code that are amenable to re-execution, andijudiy
sacrificing fault tolerance to maintain low overheads. Hstion
will elaborate on the means by which this is done in a metladic
automated fashion at compile-time.

Section 3.1 begins by describing the analysis that is usdd-to
termine the idempotence of candidate code regions, Sek@atis-
cusses how idempotence is enforced cost-effectively iprotise
non-idempotent regions, Section 3.3 addresses how thelgeree
gions are actually formed, and lastly Section 3.4 elabsratethe
heuristics developed to maximize Encore’s recoverabilityerage
while maintaining minimal overheads.

3.1 Identifying Inherent Idempotence

Before the discussion proceeds any further, a few termsniitidte
used throughout this paper first need to be defined.

Region in its unqualified fornregion will refer to a subgraph
of basic blocks connected in the program CFG.

Reachable Storeat a given locatiomp (e.qg., instruction or basic
block) in the CFG, aeachable storerelative top, is a store
instruction that may potentially execute after

Dominating Store: with respect to a given locatign a domi-
nating storeis one that is guaranteed to execute prior to reach-
ing p.

Exposed Load with respect to a given location anexposed
loadis one that is guaranteed to execute prior to reachiagd

is unguarded. A load, has a correspondindgominating store
(or stores) that writes to the same address alalhgpossible
paths td is considered guarded. All others are not.

Inherent Idempotence a property of a region that indicates
that the region has no read-modify-write sequences to tne sa
address that would prevent it from being safely re-executed
without altering the live-outs of the region (i.e., is sieffect
free).

Although these definitions (and text throughout this papaty
reference store and load instructions, this is done simplgan

effort to improve readability. In reality all instructiorthat can
potentially reference and/or modify memory are consideiaihg
the idempotence analysis. Additionally register statésis mitially
ignored in the analysis and will be treated separately ini@e8.2.

3.1.1 Path Insensitive Analysis

Determining the idempotence of a regionbegins by generating
the region-widereachable storedominating store and exposed-
load sets for all basic blocksb; € r. This is done by performing
multiple post-order traversals of the region’s CFG. For tihee
being, the details surrounding these regions will be igtharéh
the exception of saying that they are limited to SEME sublgsayd
basic blocks. Initially the discussion will also be limitemlacyclic
regions. Cycles (i.e., loops) will be incorporated in Satt8.1.2
once the initial acyclic algorithm has been described.

The initial post-order traversal begins from the entry kltc
the region. As each basic block() is encountered, Equation 1 is
used to update the corresponding reachable stor&®Se,. Note
that the set notations used in subsequent equatiorn{N) are
actually comparing the addresses being referenced anddtified,
not actually whether the instructions within the respectets are
actually identicaf.

RSps, U

Vbb; €Cyy,

whereRSy, is the set of reachable storesbat, Cys, is the set of
bb;’s children, and&Sb;,j is the set of all stores withibb;.

(RSuw,; U ASw, ) (1)

Next, all edges i are reversed and multiple post-order traver-
sals are performed on this new subgraph starting from eattheof
region’s exiting blocks (all basic blocks with outgoing edgto
blocks outside the region). As each basic blddk, is encountered
during these “reverse” post-order traversals, Equatioas®3 are
used to update the corresponding dominating store and eapos
load sets. Note that the dominating store38{;,, must be up-
dated before the exposed load $#t,, .

DSw, = [ (]D)S;,b]. U Asbb].) @)
Vbb; €Cy,
ELpy, = U (ELbbj U for (ELy:", DSu, )) 3)

where,

DSws, : is the set of dominating stores;.
ELys,: is the set of exposed loadsidi.

fer(X,Y): operates on sets of loads, and storesy,
returning the set of all loads € X that are not
aliased by any storegc Y.

ELi2¢*: is the set of all loads ihb; that are not preceded
by a store, also withiab;, that writes to the same
address, effectively the set lofcal exposed loads
for bb;.

Once all the basic blocks within the region have been preckss
and the associateRlS, DS, andEL sets have been updated, a de-
termination can be made as to whethds idempotent according
to Equations 4 and 5. Equation 5 essentially determineihjb-

2This was done using standard, static memory alias analgstnigques
which are necessarily conservative.



Regionr is idempotentff I(bb;) = true,Vbb; € r  (4)
where,
) true, iff ELbbi N RSbbi =0
I(bb:) {false otherwise ®)

tence can be violated by executing basic bléekalong any pos-
sible path through region. Admittedly, identifying idempotence
in this manner leads to conservative answers. By leveratliisg
analysis, Encore is essentially operating under worst-aasump-
tions. In fact, Equations 4 and 5 do not account for any caticis
among branches between basic blocks and consequently rteay ca
gorize regions as non-idempotent because of paths thatvanipe
realized given the structure of the application. Howevempared
with path-sensitive alternatives, which are effectiveiyractable,
the algorithm proposed here is efficient and reasonablyrate{r].

3.1.2 Incorporating Cycles

Up to this point the analysis has focused on acyclic regibmiso-
ducing cycles can complicate matters dramatically. To nedyn-
tain the scalability of the analysis, loops within a regioe ieated
in a hierarchical manner. Initially, prior to idempotencabysis, a
conventional compiler pass ensures that all loops are imarca
ical form 2 (i.e., single header block and no side-entries). Next,
whenever boundaries of loops are encountered, headershitock
ing the forward post-order traversals and exit blocks dutire re-
verse post-order traversals, no attempt is made to entéottheof
the loop. Instead, previously generated meta-informatoreach
loop that summarizes the net impact of all the load/storeatjmns
within the loop is used to update idempotence data strutiitas
enables entire loops to be treated as if they were simplyhanot
basic block. The details of this process is described below.
When analyzing regions containing cycles, all loops are pro
cessed first. If nested loops are present they are analyaetfre
inner-most loop outward. When processing an (inner-mastp |
the constituent basic blocks can initially be analyzed &y were
just a simple acyclic region. The dominating store and exgdsad
sets for each basic block within the loop are generated dicapr
to Section 3.1.1. The set of reachable stores for each bhxik,b
however, are identified in a slightly different manner. Bépra 6
describes how the set of reachable stores is generateddiohbea
sic block within the loop. Defining’%{S})bi in this fashion ensures

RShy, = fr(AS', DSh,) (6)

where,

RS'bb;: the set of reachable stores for basic bléekwith
respect to loop.

AS': the set of all store instructions within lodp

fr(X,Y): operates on sets of storésandY, returning the
set of all stores: € X with a destination not
guaranteed to be overwritten by a store(g) Y.

that all cross-iteration, write-after-read dependenaresaccounted
for in the analysis. Once the loop-wide reachable storenlating
store, and exposed-load sets have been generated forialbhmsk
within the loop, the loop itself can be treated as any othgiore
and idempotence can be determined using Equation 4. Onpe loo
idempotence has been determined the next step is to gemleeate
meta-information associated with the loop.

3Not all cycles within a CFG can be converted into canonicahtdn these
extremely rare cases, only one was encountered during alirodnalyses
in Section 5, Encore chooses to ignore the enclosing regidneaves it
unprotected (i.e., does not instrument it for recovery).

The goal of loop-wide meta-information is to capture and ex-
pose loop-wide side-effects to simplify subsequent regialyses.
It is a summary of all the load/store operations within theplao
that the entire loop itself can be treated effectively asrale basic
block. The contents of this data structure are enumeratedlzand
are used in an analogous fashion to their basic block cquentst

* Loop-wide reachable storesRRS;,: the set of all stores that
could potentially execute if control ever enters ldpBy virtue
of being a cycle, this set effectively contains all storethimithe
loop.

RS, = RS}, .. = AS" (7)

where RS cqqer 1S the set of reachable stores for the header
block of ;.

Loop-wide dominating stores DS;, : the set of all dominating
stores within loof;, i.e., the stores that are guaranteed to have
executed before control exits the loop. Since loops can have
multiple exiting blocks (a basic block with an outgoing edge
another block outsidé) this is effectively the intersection of

all dominating store sets across all exiting blocks; of

ﬂ DSps,

Vbb; €X),

DS;; = (8)

whereX, is the set of exiting blocks fd.

Loop-wide exposed loadsEL;, : analogous to the definition of
local exposed loads for basic block,;;°*, the exposed load
set forl; is the set of all loads withi#; that are not dominated
by a store(s) that writes to the same address along all pessib

paths.
U ElLps,

Vbb; €X),

EL,, 9)

With the loop-wide meta-data generated for all loops withie
CFG, analysis of any arbitrary region can proceed as if cydld
not exist. The region traversals simply “step-over” loogsewever
they are encountered and update idempotence data stsuetithe
the loop-wide meta-data.

3.2 Preserving Idempotence

Once the idempotence of the various regions within an agidtic
has been determined, the next step is to identify whetherartly
non-idempotent regions can be efficiently (with low runtiper-
formance overhead) transformed into idempotent regioosER-
core, this transformation is achieved by instrumentingrading
non-idempotent regions with instructions to checkpoiatesthat
may otherwise be overwritten upon re-execution.

While performing the idempotence checks in Section 3.1fall o
fending stores that violate Equation 4 are recorded in akgioot
set,CP, associated with every region. If Encore decides to enable
recovery , see Section 3.4, on a non-idempotent regiahwill
proceed to instrument the header blockrpfwith checkpointing
instructions that preserves all addresses that can be oitermby
any store inCP,; with memory-to-memory moves (pairs of load
and store instructions). Note that multiple offending stmstruc-
tions at different locations within the region may only requa
single checkpoint pair if they all alias the same memory tioca
Additional optimizations that help reduce the overheachd se-
lective checkpointing are described in Section 3.4.

Additionally, in order to ensure that no write-after-readister
dependencies violate idempotence, all live-in (with respe ;)
register values are also checkpoint ed with a registeraaiory
move (a single store to memory). How register live-in valaes
identified for each region will not be discussed here sindge &
standard analysis in modern compilers.



With the necessary checkpointing instructions identified ia-
serted into the region headers, all that remains is to crzate
covery blockthe destination of all rollbacks, initiated from exiting
blocks, if and when a fault is detected. Within this blocK,the
previously checkpointed state (registers and memory)esi®ired
before redirecting control back to the region header. Algiothis
additional instrumentation also contributes to runtimerbeads,
it is only executed upon the detection of a transient faulttter-
more, the conditional rollback to the recovery block carodie
amortized with the cost of the detection scheme (assumis@iso
software-based).

3.3 Region Formation

Having discussed how idempotence is analyzed, and enfafced
necessary, for any arbitrary region it is time to tackle hdw t
CFG is actually partitioned into these segments. Candicagi®en
formation is done in Encore by building upon traditionaleirvial
analysis [1]. In general an interval, as defined by Aho etisl.,
essentially a loop plus acyclic “tails” that dangle from tilecks
within the loop. In practice the initial loop at the “top” ohe
interval may not exist (i.e., an interval can simply be a $mal

focus on the heuristics used to glean the best reliabilifyevfor-
mance trade-offs from Encore. First we discuss how profiling
formation can be used to probabilistically prune basic kédcom
the idempotence analysis followed by the heuristic useddntify
which regions are chosen as candidates for rollback regover

3.4.1 Relaxing Idempotence

Since Encore is intended to supply probabilistic fault rahee
(specifically recoverability) for non-mission critical tgms, one
opportunity for optimization is to leverage applicatiorofiling
data. Since conventional techniques targeting ultraiptgisystems
must guarantee recoverability their mechanisms are ldhtibere-
lying upon provable analyses. Encore, on the other handtisen
quired to provide such guarantees and without such contres
free to utilize profile-based, not necessarily provablalyses.
Presented with this flexibility the algorithm described iacS
tion 3.1 can selectively ignore any basic blocks that do neetm
a certain “liveness” criteria. As previously mentioneds tlempo-
tence determination made by Equation 4 is necessarily camse
tive since it accounts for all possible (and even impos}iptghs
through the region. By exploiting profiling information, &re can

SEME subgraph that shares a single dominating header node).now exclude basic blocks that are along paths that have lobepr

Since partitioning typical application CFG’s into disjbintervals
is a standard pass within most modern compilers, the dedhils
how this initial partitioning is achieved are omitted. Howee the
following two properties of this partitioning are importan keep
in mind.

1. All intervals are by definition SEME regions: all blocks
within a partition are dominated by a single the region heade

2. Interval partitioning can be applied hierarchically : once a
CFG is partitioned into intervals, the intervals themsglfig@m
aninterval graphthat can also be partitioned into intervals. This
repeated partitioning can be applied until theit flow graph

of the CFG is reached, which for most CFGs means that all the

basic blocks are entirely contained within a single intefva

The first property of interval partitioning greatly simpé§ the
process of recovery. By ensuring that all regions are SEMiEQEe
can avoid the costly task of tracking dynamic execution gath
(see Section 2.1). This property is what allows Encore telgaf
insert the recovery block described in Section 3.2 just teefbe
region’s header. Irrespective of which path lead to theadault
site, redirecting control to this recovery block will ensuhat it is
corrected.

The second property of interval partitioning is what alld#rs
core to create candidate regions with varying sizes. Byrobnt
ling the size of the regions, Encore is able to effectivelynage
the trade-off between fault tolerance and performanceheaat.
Generally speaking, the larger the region that Encore atieno
recover from, the greater the likelihood that the regionads in-
herently idempotent. Recall that non-idempotent regi@tuire
instrumentation to enable safe re-execution. This instntation
contributes to the overall runtime overhead. On the othedha
the larger the region, the more likely that a transient fatrik-
ing within the region will be detected before control exitg tre-
gion and the fault is no longer recoverable (see Sectiod).8ec-
tion 3.4.2 will discuss how heuristics are used to identifg aip-
propriate region size given a budget for acceptable pedooa
overhead.

3.4 Encore Heuristics

Now that the basic procedures for forming regions and ifienti
ing/enforcing idempotence have been described, thisoseutill

4Technically, not all possible CFGs are reducible in thisifas, down to a
single node. However, irreducible CFGs are rare and iggatiem did not
measurably degrade Encore’s coverage.

bilities of being traversed when updatii®&p, DS, andEL sets for
each basic block. More formally, this means that Equatign®, 1
and 3 can be re-formulated limiting the union and intersectp-
erations, which originally operating over all the childmefra basic
block, Cy, , to a subset set of childrely,,. where thedynamically-

deadchildren have been pruned away. The degree to which Encore

filters these rarely executed basic blocks from its idenpmenal-
ysis is controlled by Equation 10.

A basic blockbb; is considered dynamically-dead w.hb; iff

where,

W, (bb;, bb;): is the weight of the profiled edge frobh; to bb;,
the probability that the transition frobb; to bb;
occurs given that execution has entered region

P.in: is the heuristic threshold controlling the extent to
which Encore prunes dynamically-dead code.

3.4.2 Region Selection

Another opportunity for trading off fault tolerance for fammance
is in the area of region selection. Since Encore has coraiter
control over the size of the regions that are created, Equdti
describes heuristic that determines when it terminatepitheess
of merging existing intervals to form larger regions.

C) =32, C ()
22ier C(0)

OI) = 3¢, O()
22ier O1)

> 1y

where,

I: is a larger interval that was formed by merging a set of
smaller intervalg € I., according to the algorithm
from Section 3.3.

C(I): is the coverage achievable by protecting inteial

O(I): is the performance overhead associated with protecting
1, essentially the cost of instrumentation to preserve
idempotence if is otherwise inherently non-idempotent.

(: is a heuristic parametelf), o), that configures Encore to
target different reliability requirements.



Only when Equation 11 is satisfied does Encore consider merg-

ing existing intervals to form a larger region. Small valuss

[ < 1.0 predisposes the system to try and create the largest re-

gions possible in pursuit of greater reliability. In comstralarger
value of 3 > 1.0 shift the focus toward minimizing performance
overheads, preventing Encore from forming larger parigionless
they are also accompanied by significant improvements iereov
age. The details of how coverage is evaluated in our expetsne
can be found in Section 4, however, during compilation Eacor
uses the distance of the hot path through a region as a cetipie
surrogate for coverag€;(I). Similarly, the ratio of checkpointing
instructions inserted to total instructions along the hathpserves
as a compile-time estimate of overhead coStg).

In addition to identifying the optimal region size, a degisi
must be made as to whether protecting a region is actuallpfa pr
itable endeavor. For inherently idempotent regions thavanss
almost always yes. The cost of instrumenting the exitingckdo
of a region to rollback to the header when faults are detected
is negligible for all but the smallest possible regions. ldwer,
for small non-idempotent code portions the overhead iecuto
preserve idempotence can potentially make it more atvadt
simply concede fault coverage for those regions. To acctamt
this possibility, only regions that have reasonable costeverage
ratios are candidates for protection, and are subsequierstisu-
mented with checkpointing and recovery instructions. Iheot
words O(I)/C(I) < ® must be satisfied for every region in-
strumented for recovery, wher@ is a heuristic threshold. It is
important to mention that this constraint is imposed sintpligeep
performance overheads in check. Even in regions where thte co
to-coverage ratios are suboptimal the addition of checkpw
instructions will not negatively impact reliability (see@&ion 4.4).

4. Experimental Methodology

As with all reliability schemes dealing with transient fesjlan ideal
evaluation of Encore would involve electron beam experismen

real hardware. However, given limited resources an acbbpt-

ternative has been statistical fault injection (SFI) oradetl sys-

tem models (architecture, microarchitecture, RTL, modkxts).

Nevertheless, we propose to evaluate Encore’s capasilising

an analytical fault coverage model. Because recovery (tirae-

execution) is less sensitive to the details of the undeglyiard-

ware, an appropriate analytical model can provide an aabépt
level of fidelity without necessitating time consuming slations.

The details of the experimental methodology and analytizadiel

used for calculating coverage is described below.

4.1 Compilation Framework

The compiler analysis and instrumentation passes desddriligec-

tion 3 were implemented in the LLVM compiler [10]. An assort-
ment of SPEC2K integerl64.gzip, 175.vpr, 181.mcf, 197.parser,
256.bzip2, 300.twalfloating point 72.mgrid, 173.applu, 177.mesa,
179.art, 183.equakeand Mediabenclt(djpeg, un/epic, g721encode/
decode, mpge2enc/dec, pegwitenc/dec, rawc/dauagiplications
serve as representative workloads for our experimentsrancban-
piled with standard -O3 optimizations.

4.2 Recoverability Coverage Model

As previously stated, Encore is only targeting theoveryaspect
of processor reliability. Within this context “coveragefjll refer
specifically torecoverability coveragethe ability of the system to
recover from a transient fault once the fault has been d=de€&or
software-only schemes like Encore that rely on rollbaclovecy,
coverage is equivalent to the percentage of the applicatide that
can safely be re-executed in the presence of a fault. Equafo
describes the fraction of program execution that is pciéintie-
coverable by Encore.

n

> W

=0

c(A) = (i) wal

3=0

V(W nor) - 1(pnor)) (12)
where,

C(A):
WA(f:):

is the (recoverability) coverage for an applicatidn

is the fraction of applicatiom spent inside function
fi, the runtime weight of; relative toA.

Wi(r;): is the fraction of functiorf; spent inside region;,

the runtime weight of; relative tof;.

W' (prot): is the fraction regiom; spent along its hot path

Dhot, the runtime weight opy,.. relative tor;.

I(phot): {

4.2.1 Impact of Detection Latency

Note that Equation 12 is incomplete since it assumes that any
region that is idempotent, whether inherently or becauseas
instrumented, can be recovered. This neglects to accourihéo
latency of the fault detection scheme. Assume that the htit pa
through regionr consists of instructionso, i1, ..., i,. If a fault
corrupts the output of, (where0 < s < n) and the detection
latency for the system i instructions, Encore can only recover
from this fault if s + I < n. To account for the detection latency
of the system we calculate a latency scaling fact@ccording to
Equation 13.

, =Pr(s+1<mn), Vs €[0,n],Vl € [0, Dmnaa]

[ [ o

is the scaling factor associated with regign
that accounts for detection latency.

1,
0,

if the hot pathps.: is idempotent
otherwise

s)dlds (13)

where,

Qi L

i

. is the number of (dynamic) instructions along the
hot path through region;.

1 is arandom variable, distributed over the interval
[0, n], representing the instruction (number) at
which a transient fault occurs.

l: is arandom variable, distributed over the interval
[0, Dmaa], Which represents the detection latency
of a system with a maximum latency 6%,
measured in terms of instructions.

Pr(s+1 < n): the probability that a fault at instruction
s is detected before execution proceeds
beyond the boundary of region.

f(1): is the probability density function for the detection

latencies of the system.

. is the probability density function for the fault sites
within regionr;.

In our evaluation of Encore in Section 5 we assume an uniform
distribution for the fault distribution, insisting thatewy dynamic
instruction over the course of an application’s runtime kas
same probability of being “struck” by a transient fault. Ither
words, every dynamic instruction has an equal chance ofgbein
the fault site. In reality, because of (micro)architectureasking
not all instructions are necessarily equally vulnerabla tansient



event. However, for this establishing the merits of Encdris, an
acceptable approximation.

Similarly, results in Section 5 also assume uniformly dsired
fault detection latencies that are independent of faulatioo.
Whereas detection latencies for hardware schemes arealiypic
predictable, the low-cost mechanisms that complementieneill
likely rely more on software techniques, for which detectiaten-
cies are more erratic and dependent on complex interdepeiede
between instructions. A proper SFI framework could captiueeef-
fects of these behaviors. Unfortunately, the requisitemaational
resources necessary to generate statistically signifiesotts can
be prohibitive. Comparatively, our simplifying assumptipro-
vides an acceptable approximation, which can be easilytagda
with more accurate statistical models without needing toure
massive Monte Carlo simulation sets.

Given independent, uniform distributions for fault dibtrtion
and detection latency, Equation 13 can be re-written astifoui4.
It is important to note that although experimental resukésergen-
erated using uniform distributions fgi!) andg(s), Encore and the
analytical model for coverage being proposed are not thieese
limited to these distributions but are generally applieabl

n min(y,Dmaz) 1 1
_ - dxd
Qr; /0 /0 (n)(Dmaw) B
Dmax min(y,Dmaz) 1 1
mzn(y,Dmaz) 1 1
/ / ) (me )dady

max

Dmax
= / / )d:rdy
0 m(u
D
max 1
/ / Dmaz )dmdy

max

{ — Dpazr >

gl (EESRY 4

Factoring in detection latency,(pro:) in Equation 12 can be
re-written to account foty; (Equation 15).

I/(phot) = Qyp,; - I(phot)
{1 - D;nnamv L(phot) Z Dmaw
ﬁy L(phot) < Dmaz

(15)

whereL(ppot) is the length of the hot patby,o: .

4.3 Performance Modeling

The runtime performance overheads in Section 5.3 are pgeben
in terms of dynamic instructions. The use of dynamic ingtans
may appear at first to be a less desirable alternative to mgnni
natively on a real machine and/or a microarchitectural ftoun
However, it allows us to abstract away the details of the tlyiohg
hardware and present, to some extent, architecture-heesults.
Since Encore only inserts a small fraction of additionalrinstions
(that are actually executed at runtime) the instrumematgguired
for recovery should not significantly alter the cycles-pestruction
(CPI) an application can achieve on the hardware. This bisiag
case, dynamic instruction counts can serve as a reasorchliese
performance metric.

4.4 Assumptions and Limitations

Below are some of the other assumptions made by our evatuatio
infrastructure.

* Faults corrupting control and/or address calculation: Both
address faults that result in writing or overwriting dataete
roneous locations, and faults that lead to deviations froen t
correct control path cannot be recovered by the current fenco
system. Fortunately, these categories of faults also majopee
those that are most readily detected by low-cost detectimrhm
anisms [8, 31]. Oftentimes, these faults can be detecteatdef
they propagate to memory and/or divert control flow (i.e-, be
fore they become unrecoverable).

Faults corrupting instrumentation code: Although the in-
structions inserted by Encore can themselves be subjeetrto t
sient faults, we assume that Encore, working in tandem with
the detection mechanism, can choose to elide rollback ezgov
events initiated by faults detected in the instrumentatiode
itself. This does not appreciably impact recoverabilityamage
since the checkpointing code does not perform substartive ¢
putation (i.e., does not influence region live-outs). Altgb a
fault in the instrumentation code would temporarily digaBh-
core’s ability to rollback correctly, it would require a fatio
corrupt a checkpoint instruction followed almost immeeligat
by a subsequent fault elsewhere within the same region erord
for this to impact coverage. Given a standard single evesgtup
model this scenario is highly improbable.

Cold-path execution: To reduce the dependence on path-
sensitive analysis the coverage results reported in thpgmpa
are limited to recoverable hot paths. We conservativelyrass
that any execution time spent along “colder” paths are not re
coverable. Obviously this under-estimates coverage, lag w
necessary to reign in the complexity of our evaluation frame
work.

Masking (software, micro/architectural): We do not account

for masking at the various levels of the stack. We assume all
dynamic instructions can lead to equally deleterious testil
subject to a transient fault. This necessarily results mseova-

tive estimate of coverage. Analysis of characteristios #ikchi-
tectural, and similarly software, vulnerability factork3] can

be used to enhance improve results presented in Section 5 but
were beyond the scope of this work.

Dynamically-linked library/system calls: Consistent with
similar reliability works in the literature we do not consid
faults outside of code that is visible to the compiler. Theneo
mon practice is to assume that these portions are protegted b
other means, although they can be addressed by Encorerif thei
source is available.

Multi-threaded Applications: Since multi-threaded programs
are less common (albeit growing) in the low-cost, commodity
domains being targeted we do not explicitly evaluate Encore
in the context of these workloads. However, the idempotence
analysis described in Section 3 could extended to handlg-mul
threaded applications. Encore’s efficacy in these systeousdwv

be in large part dependent on the power of the memory analysis
infrastructure. Of course step would also need to be taken to
ensure that rollback recovery instrumentation did notatiothe
semantics of synchronization events.

5. Evaluation and Analysis

This section demonstrates quantitative evidence of Erscabdity

to provide recoverability coverage without incurring agx@able
overheads. Section 5.1 begins by analyzing the idempotefice
candidate recovery regions. This is followed by coverageilte
in Section 5.3. Lastly, Section 5.3 concludes with a discusef
performance overheads. All experimental results reparietthis
section were generated with = 0.25, ® = 0.1, and values of
Ppin € {0,0.0,0.1,0.25}. A value of § for & means that no



dynamically-dead blocks are pruned from the analysis aralwev
of 0.0 indicates only code that iseverobserved to execute during
profiling is pruned.

5.1 Region Idempotence

Figure 3 examines the inherent idempotence of candidatveeg
regions as a function oP,,;,. From left to right, the different
columns for each application correspond to the idempotéorce
the different values o € {0,0.0,0.1,0.25}. The different
segments represent the fraction of regions that were fishto be
idempotentnon-idempotentand unknown Unknown regions are
those that Encore’s compiler analysis was unable to praeegs
mainly system and library function calls), preventing igmtence
determinations.

Note that, as expected, the fraction of regions that are ddem
idempotent grows as more dynamically-dead code is prumed (i
creasing values aP,.;»). Furthermore, nearly all of the benefit can
be garnered by simply pruning the code that waserexecuted
during profiling runs. This suggests that a good portion efiti
strumentation optimizations described in Section 3 carcheged
without incurring any measurable risk.

Not surprisingly the SPEC2K floating point and Mediabench
applications exhibit slightly better idempotence behatan the
SPEC2K integer benchmarks. As suggested by Kruijf et al tiig]
multimedia and embedded-type codes typical of emergindj-app
cations tend to have fewer memory side-effects, great fmjb-
tence. However, it is interesting to note that at least imseof static
code, on average, the extent of idempotence present abeo$se¢e
benchmark suites are comparable (a few poor-performinticapp
tions in the floating point and Mediabench groups drag doweir th
averages).

More importantly it is encouraging to observe that even in
control-heavy SPEC2K integer applications there is stdbasid-
erable fraction of code that isherentlyidempotent. On average,
across all applications, 47% of regions are inherently joleient
without pruning and 76% are idempotent wig,;,, = 0.0. This
suggests that little, if any instrumentation code will néedbe in-
serted by Encore, across much of the application, to maiidaim-
potence for recovery rollback

5.2 Recoverability Coverage

Next we examine the recoverability coverage that can becaeti
by Encore. Figure 4 presents coverage numbers for diffesdues
of Dn,qz. Recall coverage here refers to the fraction of runtime ex-
ecution that can be recovered once a fault has been detBetedo
space limitations results are only shown féy;,, = 0.0, meaning
that idempotence analysis only filters out completely dyicatty-
dead code (anything thatever executed during profiling runs).
This corresponds to the best coverage Encore can achiebeuivi
running the risk of introducing faults (because idempotenas
not maintained) during rollback recovery, by filtering oatrfoons
of code that have non-negligible probabilities of exeaytin

The segments labeleldecoverableare inherently idempotent
and can be recovered effectively “for free,” provided thwe fault
was detected in timdRecoverable w/ Instrumentatioagions also
contribute to the coverage Encore can achieve, but requsteur
mentation to ensure idempotence is preserved, i.e., tarancadlate
read-modify-write chains and register live-ins. Therecoverable
segments refer to the portion of runtime execution that Emtails
to recover from because the fault was detected after exechtd
left the region containing the original fault site and ttiere cannot
be recovered. Lastly, the sections labelénknowncorrespond to
time spent in regions of code that Encore could not analydeaas
therefore conservatively considered unrecoverable.

Inspection of Figure 4 reveals the expected inverse reistip
between coverage and expected detection latebgy,.. (in in-
structions). Consistent with the idempotence results guig 3,

coverage also exhibits better behavior for the more mutlimand
embedded-centric applications. In fact, this applicatiependence
is even more pronounced for coverage, supporting the claan t
these benchmarks tend to spend the majority of their timielens
tight, largely idempotent loops. For example wifh,.. = 10
(Figure 4d) the audio codeg72lencodean recover from 85% of
detected faults naturally, withoahy additional instrumentation to
preserve idempotence. Similarly the floating point heExg.mgrid
is able to achieve a dramatic 95% coverage rate with the Help o
Encore’s selective checkpointing. Those correspond tanéx28x
improvements in the fault tolerance (in terms of recovéitgtiiov-
erage) of these two applications!

5.3 Performance Overheads

Lastly we investigate the performance overheads incuryeBr
core. Figure 5a reports the runtime overheads for diffevahtes

of Pnin. At first glance the results may appear counter intuitive.
One might expect that as the degree of dynamically-dead filede
tering becomes more and more aggressive (i.e., increasings/
for P..:») that there would be a corresponding decrease in runtime
costs since more and more potentially idempotence-brgaikin
structions would be pruned and not require instrumentattamy
applications (e.g181.mcf300.twolf and183.equakesupport this
intuition. However others (e.gl64.gzip 175.vpr and197.parsey
seems to contradict this idea, with performance actuallyatéing

as more code is pruned.

Upon close inspection we discovered that in the latter set of
benchmarks, the act of aggressively pruning dynamicatigaede
actually made certain regions (corresponding todh&nownseg-
ments in earlier results) that previously could not be pseed sub-
ject to idempotence analysis. As these formerly blacldiségions
were analyzed, some were identified as non-idempotent hwhic
quired Encore to insert code to preserve idempotence,rngadi
additional runtime overheads.

Yet, with few exceptions, most notabl81.mcf Encore im-
poses minimal performance overheads independent of the wél
Ppin. For P, = 0.0, which corresponds to the coverage re-
ported in Figure 4, on average across all applications o%yo
execution time can be attributed to Encore instrumentatifpon
further examination, we learned that the bulk of executioretfor
181.mcfwas spent within a single function with a single hot re-
gion, a region which only had a roughly 20 instruction hothpat
Unfortunately the region also contained 10 idempotenoéating
stores and 14 register live-in values! Despite there baing a high
cost for instrumenting this undesirable region, so mucthefdp-
plication’s execution was spent within this portion of cdbat not
to protect would have meant sacrificing dramatically on cage.
This was an example where even obeying the heurdstizhich is
designed to prevent instrumenting poorly behaved coddd cmt
avoid dramatic performance penalties. Although this wasl@se
to a pathological case study as we saw in our experiments)@esi
hard upper bound on performance penalty would prevent rapaw
overheads.

It is also important to mention that these overheads do not ac
count for the time required to recover from a fault once idtedted
(i.e., restoring state if needed and re-executing). Algothis ad-
ditional overhead is dependent on the specific fault rateishex-
pected, for the usage scenarios described in Section 2uhedtes
are typically high but still orders of magnitude low enoughttthe
fault-free execution case dominates the negligible rakbacov-
ery overhead. This approximation holds for Encore-stytevery
(very fine-grained with minimal, if any, state restoratibn} breaks
down if traditional system-wide checkpointing and re-exém of
large portions of code (e.qg., entire functions) is required

Finally, although Section 3.4.2 presented a heuristic ¢cbatd
be used to temper runtime overhead by sacrificing on covemage
practice not much appreciable coverage was obtained bgdser
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Figure 3: Inherent region idempotence as a functionf;,,. From left to right, the columns illustrate the fraction efjions within each application that is
inherently idempotent for different values Bf,;,, € {0,0.0,0.1,0.25}. With P,,,;,, = 0, the left-most column for each application depicts the igetance
breakdown when no dynamically-dead code is pruned from lagysis. TheUnknownsegments correspond to portions of the application sowde that
could not be analyzed by Encore.
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Figure 4: Recoverability coverage for different values of maximumltfaetection latencyD,, .. (in instructions). Coverage is presented as the % of program
executiontime (excluding system/library calls) that can be protected bgdte. Results shown correspondfg,;,, = 0.0. Unknownsegments correspond to
execution time spent in portions of the application souaedhat could not be analyzed.

ing region sizes beyond an initial partitioning. Consedlyeper- 6.1 Fault Detection

formance_ and coverage results if‘ thi_s sectic_m correspor_mj;tons There exists a large body of research addressing the cpallein

formed without subsequent applications of interval pariing. fault detection [8, 11, 12, 16, 19, 2123, 30]. These effoats be
broadly divided into three categories. First, there aratsmis that
utilize some form of spatial redundancy to execute multgapies

of an application simultaneously, periodically compariegults.
6. Related Work. o ~ Redundant multi-threading [22] and dual-core executidd] e
Fault tolerance in microprocessors can be broadly divided i  good examples of this. Second are solutions that exploipteat
three requisite steps: 1) detection/diagnosis of faultsy§tem redundancy, where the same work is re-executed on the samhe ha
repair/reconfiguration and 3) recovery to an error-fretest@/hile ware resource. Instruction duplication [21] and seledtigéruction

dealing with transient faults, the second step becomescessary  duplication [15] are well known techniques that fall intdsticate-
since they do not cause any persistent damage. Thus, feutince gory. Third category is of techniques that rely on high-lessenp-
for transient faults boils down to simpfault detectiorandsystem toms [18, 23, 30] or specialized detectors [11, 32] to catfdub.
recovery As the focus of our paper is on system recovery, this Finally, there have also been recent proposals that fotebigbrid

section provides only a brief overview of detection solngipwhile solutions [8, 19] that combine techniques from the abovegmates
providing a more detailed discussion of previous effortsyistem for a lower cost and higher coverage.
recovery.
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(b) The average number of checkpointing (static) instructimsgrted per region. Enforcing idempotence in otherwise-idempotent regions requires two
types of checkpointing instructions: WAR - needed for write-after-read memory dependences ahd/é)n - needed for register to memory checkpoint of
live-in registers WAR instructions are simply memory-to-memory moves (loadofey andLiveln instructions are register-to-memory moves (store).

Figure 5: Encore overheads. In both (a) and (b) overheads, for eaditatpm, are shown for different values ét,,;,. From left to right the columns

correspond to values d@®,,;,, € {0,0.0,0.1,0.25}. For P,,;,, = @ no dynamically-dead code is pruned from the idempotentaisalOverheads are shown
for fault-free executions. In (a), the negligible performa for recovery is omitted since fault events are still csd# magnitude “rarer” than the fault free
cases. For (b), the instructions required for recovery, (pench and state restoration) are not included becaese tten typically be amortized with the

detection scheme.

6.2 System Recovery

Once a fault has been detected, the system must rollbaclkdér or
to continue execution from a previous clean state. Recos@ly-
tions are tasked with maintaining this clean state, andigiay
an interface (in hardware or software) to enable the rokbabte
most popular category of recovery solutions are checkpmised.
In their simplest incarnation, checkpoint-recovery sols period-
ically save off the entire system state, and revert to thet nezent
version in the event of a fault. In the remainder of this settive
examine few prominent examples of checkpoint-recovergises
in greater detail.

Enterprise-level Recovery.  Traditionally, checkpoint-recovery
solutions have been used in large scale enterprise systeprs-t
vide the guarantee the often touted “5 nines” of reliahilitiiese
systems, with 100-1000s of nodes, take periodic snapsfidteo
entire memory system, usually storing it onto a globallyessible
disk [4]. To maintain consistency, all the nodes in the systeke
their checkpoints at the same time, causing a surge in baltiolwi
requirements. In order to accelerate this process fasiemiigi-
nal application running on the system is stalled while thec&h
point is being created. Enterprise-level checkpoints aeaally
created using software libraries [14], some of which areemen
source [6]. In additions to these library based solutioos)es|IBM
mainframes also rely on small hardware modifications likg- re
ister file checkpointing mechanisms and write-through eado
recover from processor and memory system errors [28]. lemgén
these enterprise-level solutions are appropriate for themain,
but the cost of these creating these checkpoints (requinmthe
order of minutes) are prohibitively high outside all but timest
mission-critical systems.

Architectural Recovery. A cheaper alternative to taking a com-
plete system snapshot is to record incremental changeg &yt

tem state in a log. In the event of a failure, these changedean
unrolled as needed. SafetyNet [27] and ReVive [17] are two ex
amples of such log-based recovery solutions. SafetyNattaias
the log in local cache and memory buffers, storing the firgrov
write to every memory location. By using a distributed methian,
checkpoint creation and recovery times are very short. Re\dn
the other hand, does not modify the cache hierarchy, andsstoe
log in the main memory. This allows it to recover even if a nae
permanently lost. However, this ability comes at the costxdfa
network and memory traffic, resulting in a larger perforneaocer-
head. Although log-based recovery solutions are scalabteare
frequent checkpoints, and smaller intervals, the overhi&ad the
required hardware additions and the accompanying contpléast

is introduced as a result are not insignificant. This makemtim-
practical for budget weary commodity systems.

Opportunistic Recovery. This last category of recovery solutions
may not technically be recovery schemes in the conventeerae.
Works like Relax [3] and others [24, 25, 29] have recognieat t
not all applications, or even functions within an applioatirequire
the same degree of “correctness.” Many, especially muttime
and embedded codes can naturally tolerate a non-trivialuato
of errors. Consequently, an attempt is not always made t@cior
the effects of a transient fault. Only when the fault is expdc
to significantly impact the “quality” of externally visibleesults is
proper rollback recovery every initiated [3].

7. Conclusion

Whether due to environmental phenomena or ambitious design
pushing the envelop of low power architectures, transiguit$ are
re-emerging as a prominent reliability issue in modern day-c
puting. Yet despite this growing reliability concern, wewla ar-
gue that instead of appropriating large transistor bud@@tgro-
cessor cycles) to hedge against growing fault rates, syatehi-



tects should embrace the high degree of fault tolerancectdyat
be had simply by trading in provable guarantees for prolsiigil
estimates. Such tradeoffs may be the most attractive forelosy
commodity and embedded markets, where systems often cafinot
ford to devote a substantial portion of their computing teeses to
anything other than actually performing computations.hftcov-
erability coverage at 70% on average for floating point and em
bedded applications, and as high as 85% and 95% for individua
programs, relying on Encore would be sufficient. Simply betelg
ing a 6% performance overhead could provide sufficient teas
tolerance, freeing designers to focus their attention baraspects

of the system architecture.
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