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Abstract
To meet an insatiable consumer demand for greater performance
at less power, silicon technology has scaled to unprecedented di-
mensions. However, the pursuit of faster processors and longer bat-
tery life has come at the cost of device reliability. Given the rise of
processor (un)reliability as a first-order design constraint, there has
been a growing interest in low-cost, non-intrusive techniques for
transient fault detection. Many of these recent proposals have relied
on the availability of hardware recovery mechanisms. Although
common in aggressive out-of-order machines, hardware support
for speculative rollback and recovery is less common in lower-
end commodity and embedded processors. This paper presentsEn-
core, a software-based fault recovery mechanism tailored for these
lower-cost systems that lack native hardware support for specula-
tive rollback. New compiler analyses and algorithms are developed
that enable Encore to provide this fault recovery at very lowcosts.
By exploiting fine-grained idempotence analysis and cost-sensitive
heuristics that only target statistically relevant code regions, Encore
can achieve high recoverability coverage without the accompany-
ing costs associated with traditional software-based checkpointing
solutions. Experimental results show that Encore can recover from
up to 95% of detected faults for certain applications and on average
only imposes 6% of runtime performance overhead.

1. Introduction
Given the news coverage of the high-profile Toyota recalls and later
articles chronicling Apple’s antenna woes on their newly released
iPhone, the reliability, or perhaps more appropriately theunrelia-
bility, of computer systems has taken center stage. Granted these
headlining stories were mostly the result of faulty software and
costly system engineering miscalculations. However, the public re-
sponse to these events has highlighted the frustration thatcan arise
when computers, and the systems they are associated with, donot
function as advertised.

Although it is impossible to build a completely reliable system,
hardware vendors target failure rates that are imperceptibly small.
With the course of aggressive technology scaling that has been fol-
lowed by the industry, many sources of unreliability are emerging
in commercial microprocessors. One prominent source of unrelia-
bility, and the focus of this paper, is soft errors. Also known as tran-
sient faults, they can be induced by external sources e.g., electrical
noise or high-energy particle strikes that result from cosmic radi-
ation and chip packaging impurities. Additionally, in newly pro-
posed architectures that embrace the principles of stochastic [24]
and near threshold computing [5], they can also be the resultof
extreme timing speculation and/or frequency and voltage scaling.
Whether they are the result of unexpected and uncontrollable forces
or simply the cost of doing business for a cutting-edge architecture,
transient faults have been and continue to be a source of unreliabil-
ity for processor designers.

Unlike manufacturing or design defects, which persist and con-
tinually degrade system reliability, transient faults, astheir name
suggests, only intermittently cause errors in program execution. For
the vast majority of time, a program executes undisturbed. Recog-

Figure 1: Inherent region idempotence as a function of region size. The data
reported is the average across an assortment of SPEC2K and Mediabench
workloads.

nizing this characteristic of transient faults, architects in the past
have also designed systems that took periodic checkpoints (typi-
cally snapshots of processor and memory state) and could rollback
to these checkpoints and resume execution in the event of a soft
error. These highly robust fault recovery solutions have historically
also relied on some form of modular redundancy to provide the
necessary detection capabilities. Available in spatial antemporal
variants, modular redundancy generally involved redundant execu-
tion (either on separate hardware or in separate software contexts)
followed by detailed comparisons that would identify the presence
of a fault [2, 12, 20, 22, 28]. However, the resultant overheads of
these coupled detection and recovery scheme, a large component of
which was the cost of creating checkpoints (requiring on theorder
of minutes to an hour), usually relegated their use to to high-end,
enterprise systems [4].

These simple yet elegant techniques, having served those inthe
mission-critical server arena for decades, are not typically practi-
cal outside this niche domain. Although reliability cannotbe com-
pletely ignored in lower-end systems, they are not usually designed
to provide the “five-nines” of fault tolerance capable of sending
someone safely to the moon. That said, the overheads associated
with these conventional solutions are prohibitively expensive for
budget-conscious systems with less demanding reliabilityrequire-
ments. In fact, this is the same argument made by [8], and to a
similar extent [3], which argues that most commodity systems do
not require reliability guarantees but will settle for probabilistic es-
timates.

With that in mind we propose, Encore, a software-only fault
recovery solution that seeks to provide high (but not necessarily
guaranteed) coverage at the least possible cost. Furthermore, as
an automated, compiler-driven technique it is able to utilize pro-
grammable heuristics that allow the end-user to dial in the degree
of fault-tolerance that is desired and therefore only incuras much
runtime overhead as they are able to budget. Encore can achieve
this behavior by mimicking the same checkpoint, rollback, and re-
execute model used by earlier enterprise systems. However,rather
than performing, full-system, heavyweight checkpoints, Encore is



able to exploit theidempotenceproperty of applications to reduce,
and in certain situations nearly completely eliminate the overheads
required to support re-execution based fault recovery.

At a high-level, an idempotent region of code is simply one
that can be re-executed multiple times and still produces the same
correct result. In the context of rollback based recovery, this means
that, at least to the first order, a fault occurring within an idempotent
piece of code can be recovered from without any overhead for
checkpointing state. This generally means that there cannot exist
any paths through the region that can read, modify, and then write
to the same (or overlapping) memory location(s)1.

To better understand the extent of idempotent code present in an
application, Figure 1 shows the distribution of idempotentregions
across a set of desktop and media benchmarks. Results are shown
as a function of region size. The definition of regions and howthis
data was generated will be discussed later in the paper. For the time
being, it is sufficient to treat regions simply as groups of connected
basic blocks. The surprisingly large percentage of naturally occur-
ring idempotent regions seen in Figure 1 is what initially encour-
aged the development of Encore. To the first order, the regions that
were identified as idempotent could be easily instrumented for roll-
back recovery with almost no impact on runtime performance.It
is important to point out however, that although there is plenty of
opportunity present, only a few of these regions actually span an
entire function. Most are spread throughout the application, mak-
ing manual inspection to identify these regions impractical.

This is not entirely unexpected since with more instructions
comes the greater chance that there exists some sequence of in-
structions that violate the read-modify-write constraints required to
maintain idempotence. This intuition is reinforced by the distribu-
tion shown in the figure which exhibits a sharp drop when moving
from regions with just a handful of instructions to those with 50 or
more. Lastly, it is also interesting to note that for the regions that do
not exhibit full idempotence, many tend to benearly idempotent,
i.e., only a few offending instructions violate idempotence. Simi-
larly, in others those that do break idempotence only occur along
statistically unlikely paths.

To make exploiting program idempotence feasible, this paper
proposes techniques to automate the analysis and instrumentation
within compiler optimization passes. We present the algorithms and
heuristics developed that enable Encore to carefully partition appli-
cation code into fine-grained regions with favorable idempotence
behavior, and then to instrument them for rollback-recovery. Nev-
ertheless, despite the advantages, unlike its mission-critical coun-
terparts, Encore only provides probabilistic fault recovery (i.e., it is
likely able to recover from most faults) and cannot provide prov-
able guarantees on recoverability. Yet, this design decision allows it
to transparently provide fault recoverability on commodity systems
at a price that they can afford. The contributions of this paper are
as follows:

• We demonstrate how low-cost transient fault recovery can be
achieved for commodity systems without hardware support for
aggressive performance speculation.

• Develop new compiler algorithms and heuristics for

Automatically identifying candidate idempotent regions in
generalized code regions with support for cycles.

Trading off recoverability with performance overheads by
exploiting application profiling statistics.

• Propose an analytical model for computing recoverability cov-
erage without the aid of statistical fault injection.

1 Idempotence also requires that no live-in registers are overwritten within
the region as well, but this issue will be addressed separately.

Table 1: Comparison with conventional checkpointing schemes.
Attributes Enterprise Architectural Encore

Recovery Recovery
Interval Length ~hours 100-500 K 100-1000

instructions instructions
Storage Space 0.5 - 1 GB 0.5 - 1 MB ~10 B
Checkpoint Time ~minutes ~ms ~ns
Scope Full System Processor Processor
Guaranteed Yes Yes No
Recovery
Extra Hardware Sometimes Yes No

2. Recovering from Transient Faults
Generally speaking, transient fault tolerance consists oftwo com-
ponents: 1) fault detection and 2) fault recovery. There is no short-
age of examples in the literature that address each of these parts
(see Section 6). Encore falls squarely on the side of fault recovery.
That is to say, this paper is primarily concerned with being able to
recover from a soft error event once the fault has already been de-
tected. It assumes that fault detection itself is performedby some
other low-cost means, some of which will be discussed in Section 6.

As previously mentioned, traditional high-reliability systems
have chiefly relied upon heavy-weight, full-system checkpointing
mechanisms to support rollback and recovery. Some high-level
characteristics of these traditional techniques are highlighted in
Table 1. Compared to these conventional methods, Encore provides
recoverability at much finer-granularities (on the order of100’s to
1000’s of instructions) without any specialized hardware support,
and all at a cost that is significantly lower in terms of performance
and storage space.

Although this initial comparison may suggest that Encore is
strictly superior to these prior schemes, this is certainlynot the case.
In order to achieve the reductions in run time overhead without
incurring hardware costs Encore has to sacrifice, albeit to alimited
degree, reliability. Relative to enterprise solutions [4,6, 14, 28], and
to a lesser extent recently proposed architectural solutions [17, 27],
which can provide guarantees on recoverability coverage, Encore
can only provide probabilistic estimates. This small concession,
consistent with the needs of systems along the lower spectrum of
the commodity space [3, 8], enables numerous optimizationsthat
allow it to maintain dramatically lower costs.

2.1 Recovery with Fine-grained Re-execution

At the high-level, one of the simplest ways to recover from a tran-
sient fault is by re-executing the application from a location far
enough back along the control flow graph (CFG) so as to correctly
reproduce the data that was corrupted by the fault. With thisseem-
ingly straight-forward maneuver, the effects of all but themost in-
sidious transient faults can be tolerated, and in a sense completely
eliminated. This assumes that during the initial executionno read,
modify, write dependencies overwrote state that could leadto erro-
neous behavior upon re-execution.

Note, that employing this form of fault tolerance requires,in
addition to a detection mechanism, the ability to identify the lo-
cation from which to initiate re-execution, i.e., decidingwhere the
code should rollback to in the event of a fault. Ideally the system
would be able to rollback to just before the fault site and no further.
This would ensure correct forward progress while also minimizing
the amount of “wasted work,” the amount of code that was unec-
cessarily re-executed. However, this would necessitate knowledge
of the dynamic execution path of the program. Without hardware
support, this would require some form of software-based dynamic
control flow signature generation [32], an expensive proposition.

Instead, Encore only operates on single-entry, multiple-exit
(SEME) regions. This frees it from having to account for which
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Figure 2: Fine-grained transient fault recovery with re-execution.(a), (b), and (c) illustrate some of the challenges and opportunities that exist when leveraging
fine-grained re-execution to achieve fault recovery. (a) enumerates potential rollback destinations that execution can be redirected once a fault, striking atbb4
is detected, atbb6. Ideally bb1 andbb3 would share a common predecessorbb′ that could serve as the rollback destination for all faults that are detected in the
region. (b) highlights how idempotence might constrain which code regions can actually be efficiently recovered. (c) depicts how otherwise non-idempotent
regions can still frequently exhibit idempotent behavior (hot path). The region shown in (c) is taken from the CFG corresponding to the dominant hot function
in 175.vpr.

path of execution actually lead to the instruction corrupted by the
fault. It can safely redirect execution to the top of the SEMEre-
gion, the header. Details regarding the algorithm and heuristics that
Encore uses to partition an application into these SEME regions
are described in Section 3.

Figure 2a is a simple illustration of how this type of fault
recovery is realized in the Encore system for a small subgraph
bb1 − bb7. In this example a transient fault corrupted an instruction
inside basic blockbb4. However, the fault is not detected until
bb6. Although expensive hardware detection schemes tend to have
much shorter detection latencies (on the order of a few cycles), the
lower-cost options that Encore is more likely to be paired with will
typically have much greater latencies (on the order of dozens of
instructions). Furthermore, these low-cost detectors arealso less
likely to be able to diagnoseexactlythe location of originating fault,
e.g.,bb4. In this environment a potential recovery mechanism is left
with the difficult task of deciding where control should resume.

When a transient fault is detected, Encore would like to to
redirect control back to “closest” basic block along the path of
execution that that preceded the fault site, namelybb2. However,
without additional information about where the fault occurredand
what dynamic execution path originally led to the fault site, Encore
is left with choosing between five potential candidates,bb1 − bb5.
Even after eliminatingbb7 as a potential candidate, since there
does not exist any path frombb7 to bb6, the choice of where to
redirect control after a fault is detected is undecidable atcompile-
time. Fortunately, if Figure 2a were part of a SEME region, the
decision could easily be made to conservatively rollback execution
to the region header,bb′. Although some additional code would be
re-executed uneccessarily, namelybb1, this is still more agreeable
than the alternative of dynamic-flow tracking.

2.2 The Role of Idempotence

Figure 2b illustrates how recognizing idempotent regions can
greatly reduce the effort required to provide fault recoverability.
The key principle behind using re-execution as a means of recover-

ing from transient faults is the expectation that the portion of code
being re-executed will produce the same results, the secondtime
around, as it did during the initial execution, precisely the defini-
tion of idempotence. As long as no read, modify, write sequences
to the same state throughout a region, the region is idempotent
and it automatically becomes an attractive candidate for Encore’s
re-execution based fault recovery. In the example, since all paths
through regionr1 are idempotent, it is more desirable thanr0, for
which execution can be non-idempotent. Relying on conventional,
heavy-weight, full-system checkpointing schemes (or eventheir
more recent lighter-weight incarnations) to ensure that a region
like r1 could be re-executed would be using a sledgehammer to
crack the proverbial nut. Because the region is naturally idempo-
tent, Encore can simply redirect all fault detection eventsinitiated
anywhere within the region tobb6, the header ofr1. It is important
to note here that althoughr0 is not idempotent, if the increment of
variableX in bb4 were the only instruction violating this property
then selectively checkpointingX would transformr0 into a readily
recoverable region. Small, cost-efficient transformations like these,
described in greater detail in Section 3, are what enable Encore to
achieve high recoverability coverage.

Lastly, Figure 2c shows an actual subgraph taken from175.vpr,
a benchmark from the SPEC2K integer benchmark suite. It corre-
sponds to a slice of the CFG from the functiontry swap, which is
the hottest function within the application, accounting for roughly
half of its execution time. The details of the basic blocks and the
surrounding CFG have been abstracted away for clarity. The shaded
basic blocks,bb8, bb10, bb11, andbb12 are locations where the idem-
potence of the region can be violated. The code within these basic
blocks is responsible for memory allocation to dynamic variables.
Consequently, these are only executed the first timetry swap is
called. For the remaining invocations oftry swap, the path through
basic blocksbb6, bb7, bb9, andbb12 dominates the execution time.
This suggests that although regionr2 is not strictly speaking idem-
potent, it does exhibit idempotentbehaviorfor the vast majority of
the time. Thisprobabilistic idempotence is yet another property of
applications that Encore exploits to reduce its overheads.



Admittedly the notion of idempotence is not new. For example,
Kim et al. [9] leveraged idempotent properties of inner loops in For-
tran applications to minimize the instances of storage overflows in
a speculative execution system. However, relying on this property
for low-cost, transient fault recovery in a systematic fashion has not
yet been fully addressed. Doing so is a promising yet challenging
problem. A recent proposal by Kruijf et al. [3] overcame someof
these challenges by resorting to manually inspecting and modify-
ing of source code to take advantage of the function-wide idempo-
tence and fault tolerant properties of multimedia and data-mining
applications. Although the work is in the same spirit as Encore, by
resorting to domain/application-specific algorithmic knowledge to
identify and condition candidate functions significantly limits the
applicability of the approach.

Establishing a generalized methodology for exploiting fine-
grained idempotence to enable low-cost fault recovery was the pur-
pose of developing Encore. The algorithms and heuristics needed
to achieve this efficiently in the compiler is the main contribution
of this paper. The remaining sections of this paper describethe
analysis and instrumentation passes utilized by Encore (Section 3),
the methodology to evaluate the recoverability coverage that can
be achieved (Section 4), analysis of the resulting fault tolerance
and performance overheads of Encore (Section 5), and concludes
with a brief discussion of the the implications this has on low-cost
fault-tolerant system designs (Section 7).

3. Encore
Achieving the goals laid out in the title of this work, low-cost
transient fault recovery, involves identifying naturallyoccurring
regions of code that are amenable to re-execution, and judiciously
sacrificing fault tolerance to maintain low overheads. Thissection
will elaborate on the means by which this is done in a methodical,
automated fashion at compile-time.

Section 3.1 begins by describing the analysis that is used tode-
termine the idempotence of candidate code regions, Section3.2 dis-
cusses how idempotence is enforced cost-effectively in otherwise
non-idempotent regions, Section 3.3 addresses how these code re-
gions are actually formed, and lastly Section 3.4 elaborates on the
heuristics developed to maximize Encore’s recoverabilitycoverage
while maintaining minimal overheads.

3.1 Identifying Inherent Idempotence

Before the discussion proceeds any further, a few terms thatwill be
used throughout this paper first need to be defined.

Region: in its unqualified formregionwill refer to a subgraph
of basic blocks connected in the program CFG.

Reachable Store: at a given locationp (e.g., instruction or basic
block) in the CFG, areachable store, relative top, is a store
instruction that may potentially execute afterp.

Dominating Store: with respect to a given locationp, adomi-
nating storeis one that is guaranteed to execute prior to reach-
ing p.

Exposed Load: with respect to a given locationp, anexposed
load is one that is guaranteed to execute prior to reachingp and
is unguarded. A load,l, has a correspondingdominating store
(or stores) that writes to the same address alongall possible
paths tol is considered guarded. All others are not.

Inherent Idempotence: a property of a region that indicates
that the region has no read-modify-write sequences to the same
address that would prevent it from being safely re-executed
without altering the live-outs of the region (i.e., is side-effect
free).

Although these definitions (and text throughout this paper)only
reference store and load instructions, this is done simply in an

effort to improve readability. In reality all instructionsthat can
potentially reference and/or modify memory are consideredduring
the idempotence analysis. Additionally register state is also initially
ignored in the analysis and will be treated separately in Section 3.2.

3.1.1 Path Insensitive Analysis

Determining the idempotence of a region,r, begins by generating
the region-widereachable store, dominating store, and exposed-
load sets for all basic blocksbbi ∈ r. This is done by performing
multiple post-order traversals of the region’s CFG. For thetime
being, the details surrounding these regions will be ignored with
the exception of saying that they are limited to SEME subgraphs of
basic blocks. Initially the discussion will also be limitedto acyclic
regions. Cycles (i.e., loops) will be incorporated in Section 3.1.2
once the initial acyclic algorithm has been described.

The initial post-order traversal begins from the entry block to
the region. As each basic block (bbi) is encountered, Equation 1 is
used to update the corresponding reachable store set,RSbbi

. Note
that the set notations used in subsequent equations (∪ and∩) are
actually comparing the addresses being referenced and/or modified,
not actually whether the instructions within the respective sets are
actually identical2.

RSbbi
=

[

∀bbj∈Cbbi

“

RSbbj
∪ ASbbj

”

(1)

whereRSbbi
is the set of reachable stores atbbi, Cbbi

is the set of
bbi’s children, andASbbj

is the set of all stores withinbbj .

Next, all edges inr are reversed and multiple post-order traver-
sals are performed on this new subgraph starting from each ofthe
region’s exiting blocks (all basic blocks with outgoing edges to
blocks outside the region). As each basic block,bbi, is encountered
during these “reverse” post-order traversals, Equations 2and 3 are
used to update the corresponding dominating store and exposed
load sets. Note that the dominating store set,DSbbi

, must be up-
dated before the exposed load set,ELbbi

.

DSbbi
=

\

∀bbj∈Cbbi

“

DSbbj
∪ ASbbj

”

(2)

ELbbi
=

[

∀bbj∈Cbbi

“

ELbbj
∪ fEL(EL

local
bbi

, DSbbj
)
”

(3)

where,

DSbbi
: is the set of dominating stores atbbi.

ELbbi
: is the set of exposed loads atbbi.

fEL(X, Y): operates on sets of loads,X, and stores,Y,
returning the set of all loadsx ∈ X that are not
aliased by any storesy ∈ Y.

EL
local
bbi

: is the set of all loads inbbi that are not preceded
by a store, also withinbbi, that writes to the same
address, effectively the set oflocal exposed loads
for bbi.

Once all the basic blocks within the region have been processed,
and the associatedRS, DS, andEL sets have been updated, a de-
termination can be made as to whetherr is idempotent according
to Equations 4 and 5. Equation 5 essentially determines if idempo-

2 This was done using standard, static memory alias analysis techniques
which are necessarily conservative.



Regionr is idempotentiff I(bbi) = true,∀bbi ∈ r (4)

where,

I(bbi)

(

true, iff ELbbi
∩ RSbbi

= ∅

false, otherwise
(5)

tence can be violated by executing basic blockbbi along any pos-
sible path through regionr. Admittedly, identifying idempotence
in this manner leads to conservative answers. By leveragingthis
analysis, Encore is essentially operating under worst-case assump-
tions. In fact, Equations 4 and 5 do not account for any correlations
among branches between basic blocks and consequently may cate-
gorize regions as non-idempotent because of paths that can never be
realized given the structure of the application. However, compared
with path-sensitive alternatives, which are effectively intractable,
the algorithm proposed here is efficient and reasonably accurate [7].

3.1.2 Incorporating Cycles

Up to this point the analysis has focused on acyclic regions.Intro-
ducing cycles can complicate matters dramatically. To helpmain-
tain the scalability of the analysis, loops within a region are treated
in a hierarchical manner. Initially, prior to idempotence analysis, a
conventional compiler pass ensures that all loops are in a canon-
ical form 3 (i.e., single header block and no side-entries). Next,
whenever boundaries of loops are encountered, header blocks dur-
ing the forward post-order traversals and exit blocks during the re-
verse post-order traversals, no attempt is made to enter thebody of
the loop. Instead, previously generated meta-informationfor each
loop that summarizes the net impact of all the load/store operations
within the loop is used to update idempotence data structures. This
enables entire loops to be treated as if they were simply another
basic block. The details of this process is described below.

When analyzing regions containing cycles, all loops are pro-
cessed first. If nested loops are present they are analyzed from the
inner-most loop outward. When processing an (inner-most) loop
the constituent basic blocks can initially be analyzed as ifthey were
just a simple acyclic region. The dominating store and exposed load
sets for each basic block within the loop are generated according
to Section 3.1.1. The set of reachable stores for each basic block,
however, are identified in a slightly different manner. Equation 6
describes how the set of reachable stores is generated for each ba-
sic block within the loop. DefiningRSl

bbi
in this fashion ensures

RS
l
bbi

= fR(AS
l, DS

l
bbi

) (6)

where,

RS
lbbi: the set of reachable stores for basic blockbbi with

respect to loopl.

AS
l: the set of all store instructions within loopl.

fR(X, Y): operates on sets of stores,X andY, returning the
set of all storesx ∈ X with a destination not
guaranteed to be overwritten by a store(s)y ∈ Y.

that all cross-iteration, write-after-read dependenciesare accounted
for in the analysis. Once the loop-wide reachable store, dominating
store, and exposed-load sets have been generated for all basic block
within the loop, the loop itself can be treated as any other region
and idempotence can be determined using Equation 4. Once loop
idempotence has been determined the next step is to generatethe
meta-information associated with the loop.

3 Not all cycles within a CFG can be converted into canonical form. In these
extremely rare cases, only one was encountered during all ofour analyses
in Section 5, Encore chooses to ignore the enclosing region and leaves it
unprotected (i.e., does not instrument it for recovery).

The goal of loop-wide meta-information is to capture and ex-
pose loop-wide side-effects to simplify subsequent regionanalyses.
It is a summary of all the load/store operations within the loop so
that the entire loop itself can be treated effectively as a simple basic
block. The contents of this data structure are enumerated below and
are used in an analogous fashion to their basic block counterparts.

• Loop-wide reachable stores, RSli : the set of all stores that
could potentially execute if control ever enters loopli. By virtue
of being a cycle, this set effectively contains all stores within the
loop.

RSli = RS
li
header = AS

li (7)

whereRSheader is the set of reachable stores for the header
block of li.

• Loop-wide dominating stores, DSli : the set of all dominating
stores within loopli, i.e., the stores that are guaranteed to have
executed before control exits the loop. Since loops can have
multiple exiting blocks (a basic block with an outgoing edgeto
another block outsideli) this is effectively the intersection of
all dominating store sets across all exiting blocks ofli.

DSli =
\

∀bbi∈Xli

DSbbi
(8)

whereXli is the set of exiting blocks forli.

• Loop-wide exposed loads, ELli : analogous to the definition of
local exposed loads for basic blocks,EL

local
bbi

, the exposed load
set forli is the set of all loads withinli that are not dominated
by a store(s) that writes to the same address along all possible
paths.

ELli =
[

∀bbi∈Xli

ELbbi
(9)

With the loop-wide meta-data generated for all loops withinthe
CFG, analysis of any arbitrary region can proceed as if cycles did
not exist. The region traversals simply “step-over” loops whenever
they are encountered and update idempotence data structures with
the loop-wide meta-data.

3.2 Preserving Idempotence

Once the idempotence of the various regions within an application
has been determined, the next step is to identify whether inherently
non-idempotent regions can be efficiently (with low runtimeper-
formance overhead) transformed into idempotent regions. For En-
core, this transformation is achieved by instrumenting offending
non-idempotent regions with instructions to checkpoint state that
may otherwise be overwritten upon re-execution.

While performing the idempotence checks in Section 3.1 all of-
fending stores that violate Equation 4 are recorded in a checkpoint
set,CP, associated with every region. If Encore decides to enable
recovery , see Section 3.4, on a non-idempotent regionri it will
proceed to instrument the header block ofri with checkpointing
instructions that preserves all addresses that can be overwritten by
any store inCPri with memory-to-memory moves (pairs of load
and store instructions). Note that multiple offending store instruc-
tions at different locations within the region may only require a
single checkpoint pair if they all alias the same memory location.
Additional optimizations that help reduce the overhead of this se-
lective checkpointing are described in Section 3.4.

Additionally, in order to ensure that no write-after-read register
dependencies violate idempotence, all live-in (with respect to ri)
register values are also checkpoint ed with a register-to-memory
move (a single store to memory). How register live-in valuesare
identified for each region will not be discussed here since itis a
standard analysis in modern compilers.



With the necessary checkpointing instructions identified and in-
serted into the region headers, all that remains is to createa re-
covery block–the destination of all rollbacks, initiated from exiting
blocks, if and when a fault is detected. Within this block, all the
previously checkpointed state (registers and memory) are restored
before redirecting control back to the region header. Although this
additional instrumentation also contributes to runtime overheads,
it is only executed upon the detection of a transient fault. Further-
more, the conditional rollback to the recovery block can also be
amortized with the cost of the detection scheme (assuming itis also
software-based).

3.3 Region Formation

Having discussed how idempotence is analyzed, and enforcedif
necessary, for any arbitrary region it is time to tackle how the
CFG is actually partitioned into these segments. Candidateregion
formation is done in Encore by building upon traditional interval
analysis [1]. In general an interval, as defined by Aho et al.,is
essentially a loop plus acyclic “tails” that dangle from theblocks
within the loop. In practice the initial loop at the “top” of the
interval may not exist (i.e., an interval can simply be a small
SEME subgraph that shares a single dominating header node).
Since partitioning typical application CFG’s into disjoint intervals
is a standard pass within most modern compilers, the detailsof
how this initial partitioning is achieved are omitted. However the
following two properties of this partitioning are important to keep
in mind.

1. All intervals are by definition SEME regions: all blocks
within a partition are dominated by a single the region header.

2. Interval partitioning can be applied hierarchically : once a
CFG is partitioned into intervals, the intervals themselves form
aninterval graphthat can also be partitioned into intervals. This
repeated partitioning can be applied until thelimit flow graph
of the CFG is reached, which for most CFGs means that all the
basic blocks are entirely contained within a single interval 4.

The first property of interval partitioning greatly simplifies the
process of recovery. By ensuring that all regions are SEME, Encore
can avoid the costly task of tracking dynamic execution paths
(see Section 2.1). This property is what allows Encore to safely
insert the recovery block described in Section 3.2 just before the
region’s header. Irrespective of which path lead to the actual fault
site, redirecting control to this recovery block will ensure that it is
corrected.

The second property of interval partitioning is what allowsEn-
core to create candidate regions with varying sizes. By control-
ling the size of the regions, Encore is able to effectively manage
the trade-off between fault tolerance and performance overhead.
Generally speaking, the larger the region that Encore attempts to
recover from, the greater the likelihood that the region is not in-
herently idempotent. Recall that non-idempotent regions require
instrumentation to enable safe re-execution. This instrumentation
contributes to the overall runtime overhead. On the other hand,
the larger the region, the more likely that a transient faultstrik-
ing within the region will be detected before control exits the re-
gion and the fault is no longer recoverable (see Section 4.2.1). Sec-
tion 3.4.2 will discuss how heuristics are used to identify the ap-
propriate region size given a budget for acceptable performance
overhead.

3.4 Encore Heuristics

Now that the basic procedures for forming regions and identify-
ing/enforcing idempotence have been described, this section will

4 Technically, not all possible CFGs are reducible in this fashion, down to a
single node. However, irreducible CFGs are rare and ignoring them did not
measurably degrade Encore’s coverage.

focus on the heuristics used to glean the best reliability v.perfor-
mance trade-offs from Encore. First we discuss how profilingin-
formation can be used to probabilistically prune basic blocks from
the idempotence analysis followed by the heuristic used to identify
which regions are chosen as candidates for rollback recovery.

3.4.1 Relaxing Idempotence

Since Encore is intended to supply probabilistic fault tolerance
(specifically recoverability) for non-mission critical systems, one
opportunity for optimization is to leverage application profiling
data. Since conventional techniques targeting ultra-reliable systems
must guarantee recoverability their mechanisms are limited to re-
lying upon provable analyses. Encore, on the other hand, is not re-
quired to provide such guarantees and without such constraints is
free to utilize profile-based, not necessarily provable, analyses.

Presented with this flexibility the algorithm described in Sec-
tion 3.1 can selectively ignore any basic blocks that do not meet
a certain “liveness” criteria. As previously mentioned, the idempo-
tence determination made by Equation 4 is necessarily conserva-
tive since it accounts for all possible (and even impossible) paths
through the region. By exploiting profiling information, Encore can
now exclude basic blocks that are along paths that have low proba-
bilities of being traversed when updatingRS, DS, andEL sets for
each basic block. More formally, this means that Equations 1, 2,
and 3 can be re-formulated limiting the union and intersection op-
erations, which originally operating over all the childrenof a basic
block,Cbbi

, to a subset set of childrenC′
bbi

where thedynamically-
deadchildren have been pruned away. The degree to which Encore
filters these rarely executed basic blocks from its idempotence anal-
ysis is controlled by Equation 10.

A basic blockbbj is considered dynamically-dead w.r.t.bbi iff

Wri
(bbi, bbj) ≤ Pmin (10)

where,

Wri
(bbi, bbj): is the weight of the profiled edge frombbi to bbj ,

the probability that the transition frombbi to bbj

occurs given that execution has entered regionri.

Pmin: is the heuristic threshold controlling the extent to
which Encore prunes dynamically-dead code.

3.4.2 Region Selection

Another opportunity for trading off fault tolerance for performance
is in the area of region selection. Since Encore has considerable
control over the size of the regions that are created, Equation 11
describes heuristic that determines when it terminates theprocess
of merging existing intervals to form larger regions.

C(I) −
P

i∈I
C(i)

P

i∈I
C(i)

≥ β
O(I) −

P

i∈I
O(i)

P

i∈I
O(i)

(11)

where,

I : is a larger interval that was formed by merging a set of
smaller intervalsi ∈ I ., according to the algorithm
from Section 3.3.

C(I): is the coverage achievable by protecting intervalI .

O(I): is the performance overhead associated with protecting
I , essentially the cost of instrumentation to preserve
idempotence ifI is otherwise inherently non-idempotent.

β: is a heuristic parameter,[0,∞), that configures Encore to
target different reliability requirements.



Only when Equation 11 is satisfied does Encore consider merg-
ing existing intervals to form a larger region. Small valuesof
β < 1.0 predisposes the system to try and create the largest re-
gions possible in pursuit of greater reliability. In contrast, larger
value ofβ > 1.0 shift the focus toward minimizing performance
overheads, preventing Encore from forming larger partitions unless
they are also accompanied by significant improvements in cover-
age. The details of how coverage is evaluated in our experiments
can be found in Section 4, however, during compilation Encore
uses the distance of the hot path through a region as a compile-time
surrogate for coverage,C(I). Similarly, the ratio of checkpointing
instructions inserted to total instructions along the hot path serves
as a compile-time estimate of overhead costs,O(I).

In addition to identifying the optimal region size, a decision
must be made as to whether protecting a region is actually a prof-
itable endeavor. For inherently idempotent regions the answer is
almost always yes. The cost of instrumenting the exiting blocks
of a region to rollback to the header when faults are detected
is negligible for all but the smallest possible regions. However,
for small non-idempotent code portions the overhead incurred to
preserve idempotence can potentially make it more attractive to
simply concede fault coverage for those regions. To accountfor
this possibility, only regions that have reasonable cost-to-coverage
ratios are candidates for protection, and are subsequentlyinstru-
mented with checkpointing and recovery instructions. In other
words O(I)/C(I) < Φ must be satisfied for every region in-
strumented for recovery, whereΦ is a heuristic threshold. It is
important to mention that this constraint is imposed simplyto keep
performance overheads in check. Even in regions where the cost-
to-coverage ratios are suboptimal the addition of checkpointing
instructions will not negatively impact reliability (see Section 4.4).

4. Experimental Methodology
As with all reliability schemes dealing with transient faults, an ideal
evaluation of Encore would involve electron beam experiments on
real hardware. However, given limited resources an acceptable al-
ternative has been statistical fault injection (SFI) on detailed sys-
tem models (architecture, microarchitecture, RTL, modelsetc.).
Nevertheless, we propose to evaluate Encore’s capabilities using
an analytical fault coverage model. Because recovery (through re-
execution) is less sensitive to the details of the underlying hard-
ware, an appropriate analytical model can provide an acceptable
level of fidelity without necessitating time consuming simulations.
The details of the experimental methodology and analyticalmodel
used for calculating coverage is described below.

4.1 Compilation Framework

The compiler analysis and instrumentation passes described in Sec-
tion 3 were implemented in the LLVM compiler [10]. An assort-
ment of SPEC2K integer (164.gzip, 175.vpr, 181.mcf, 197.parser,
256.bzip2, 300.twolf, floating point (172.mgrid, 173.applu, 177.mesa,
179.art, 183.equake), and Mediabench (c/djpeg, un/epic, g721encode/
decode, mpge2enc/dec, pegwitenc/dec, rawc/daudio) applications
serve as representative workloads for our experiments and are com-
piled with standard -O3 optimizations.

4.2 Recoverability Coverage Model

As previously stated, Encore is only targeting therecoveryaspect
of processor reliability. Within this context “coverage”,will refer
specifically torecoverability coverage–the ability of the system to
recover from a transient fault once the fault has been detected. For
software-only schemes like Encore that rely on rollback recovery,
coverage is equivalent to the percentage of the applicationcode that
can safely be re-executed in the presence of a fault. Equation 12
describes the fraction of program execution that is potentially re-
coverable by Encore.

C(A) =
n

X

i=0

W A(fi)
m

X

j=0

W fi(rj)
“

W ri(phot) · I(phot)
”

(12)

where,

C(A): is the (recoverability) coverage for an applicationA.

W A(fi): is the fraction of applicationA spent inside function
fi, the runtime weight offi relative toA.

W fi(rj): is the fraction of functionfi spent inside regionrj ,
the runtime weight ofrj relative tofi.

W ri(phot): is the fraction regionrj spent along its hot path
phot, the runtime weight ofphot relative torj .

I(phot):

(

1, if the hot pathphot is idempotent
0, otherwise.

4.2.1 Impact of Detection Latency

Note that Equation 12 is incomplete since it assumes that any
region that is idempotent, whether inherently or because itwas
instrumented, can be recovered. This neglects to account for the
latency of the fault detection scheme. Assume that the hot path
through regionr consists of instructionsi0, i1, ..., in. If a fault
corrupts the output ofis (where0 ≤ s ≤ n) and the detection
latency for the system isl instructions, Encore can only recover
from this fault if s + l < n. To account for the detection latency
of the system we calculate a latency scaling factorα according to
Equation 13.

αri
= Pr(s + l < n), ∀s ∈ [0, n],∀l ∈ [0, Dmax]

=

Z n

0

Z s

0

f(l)g(s)dlds (13)

where,

αri
: is the scaling factor associated with regionri

that accounts for detection latency.

n: is the number of (dynamic) instructions along the
hot path through regionri.

s: is a random variable, distributed over the interval
[0, n], representing the instruction (number) at
which a transient fault occurs.

l: is a random variable, distributed over the interval
[0, Dmax], which represents the detection latency
of a system with a maximum latency ofDmax,
measured in terms of instructions.

Pr(s + l < n): the probability that a fault at instruction
s is detected before execution proceeds
beyond the boundary of regionri.

f(l): is the probability density function for the detection
latencies of the system.

g(s): is the probability density function for the fault sites
within regionri.

In our evaluation of Encore in Section 5 we assume an uniform
distribution for the fault distribution, insisting that every dynamic
instruction over the course of an application’s runtime hasthe
same probability of being “struck” by a transient fault. In other
words, every dynamic instruction has an equal chance of being
the fault site. In reality, because of (micro)architectural masking
not all instructions are necessarily equally vulnerable toa transient



event. However, for this establishing the merits of Encore,it is an
acceptable approximation.

Similarly, results in Section 5 also assume uniformly distributed
fault detection latencies that are independent of fault location.
Whereas detection latencies for hardware schemes are typically
predictable, the low-cost mechanisms that complement Encore will
likely rely more on software techniques, for which detection laten-
cies are more erratic and dependent on complex interdependencies
between instructions. A proper SFI framework could capturethe ef-
fects of these behaviors. Unfortunately, the requisite computational
resources necessary to generate statistically significantresults can
be prohibitive. Comparatively, our simplifying assumption pro-
vides an acceptable approximation, which can be easily updated
with more accurate statistical models without needing to re-run
massive Monte Carlo simulation sets.

Given independent, uniform distributions for fault distribution
and detection latency, Equation 13 can be re-written as Equation 14.
It is important to note that although experimental results were gen-
erated using uniform distributions forf(l) andg(s), Encore and the
analytical model for coverage being proposed are not themselves
limited to these distributions but are generally applicable.

αri
=

Z n

0
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0

“ 1

n

”“ 1
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”

dxdy
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0
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2n
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n
2Dmax
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(14)

Factoring in detection latency,I(phot) in Equation 12 can be
re-written to account forαl (Equation 15).

I ′(phot) = αri
· I(phot)

=



1 − Dmax

2n
, L(phot) ≥ Dmax

n
2Dmax

, L(phot) < Dmax
(15)

whereL(phot) is the length of the hot pathphot.

4.3 Performance Modeling

The runtime performance overheads in Section 5.3 are presented
in terms of dynamic instructions. The use of dynamic instructions
may appear at first to be a less desirable alternative to running
natively on a real machine and/or a microarchitectural simulator.
However, it allows us to abstract away the details of the underlying
hardware and present, to some extent, architecture-neutral results.
Since Encore only inserts a small fraction of additional instructions
(that are actually executed at runtime) the instrumentation required
for recovery should not significantly alter the cycles-per-instruction
(CPI) an application can achieve on the hardware. This beingthe
case, dynamic instruction counts can serve as a reasonably accurate
performance metric.

4.4 Assumptions and Limitations

Below are some of the other assumptions made by our evaluation
infrastructure.

• Faults corrupting control and/or address calculation: Both
address faults that result in writing or overwriting data toer-
roneous locations, and faults that lead to deviations from the
correct control path cannot be recovered by the current Encore
system. Fortunately, these categories of faults also happen to be
those that are most readily detected by low-cost detection mech-
anisms [8, 31]. Oftentimes, these faults can be detected before
they propagate to memory and/or divert control flow (i.e., be-
fore they become unrecoverable).

• Faults corrupting instrumentation code: Although the in-
structions inserted by Encore can themselves be subject to tran-
sient faults, we assume that Encore, working in tandem with
the detection mechanism, can choose to elide rollback recovery
events initiated by faults detected in the instrumentationcode
itself. This does not appreciably impact recoverability coverage
since the checkpointing code does not perform substantive com-
putation (i.e., does not influence region live-outs). Although a
fault in the instrumentation code would temporarily disable En-
core’s ability to rollback correctly, it would require a fault to
corrupt a checkpoint instruction followed almost immediately
by a subsequent fault elsewhere within the same region in order
for this to impact coverage. Given a standard single event upset
model this scenario is highly improbable.

• Cold-path execution: To reduce the dependence on path-
sensitive analysis the coverage results reported in this paper
are limited to recoverable hot paths. We conservatively assume
that any execution time spent along “colder” paths are not re-
coverable. Obviously this under-estimates coverage, but was
necessary to reign in the complexity of our evaluation frame-
work.

• Masking (software, micro/architectural): We do not account
for masking at the various levels of the stack. We assume all
dynamic instructions can lead to equally deleterious results if
subject to a transient fault. This necessarily results in conserva-
tive estimate of coverage. Analysis of characteristics like archi-
tectural, and similarly software, vulnerability factors [13] can
be used to enhance improve results presented in Section 5 but
were beyond the scope of this work.

• Dynamically-linked library/system calls: Consistent with
similar reliability works in the literature we do not consider
faults outside of code that is visible to the compiler. The com-
mon practice is to assume that these portions are protected by
other means, although they can be addressed by Encore if their
source is available.

• Multi-threaded Applications: Since multi-threaded programs
are less common (albeit growing) in the low-cost, commodity
domains being targeted we do not explicitly evaluate Encore
in the context of these workloads. However, the idempotence
analysis described in Section 3 could extended to handle multi-
threaded applications. Encore’s efficacy in these systems would
be in large part dependent on the power of the memory analysis
infrastructure. Of course step would also need to be taken to
ensure that rollback recovery instrumentation did not violate the
semantics of synchronization events.

5. Evaluation and Analysis
This section demonstrates quantitative evidence of Encore’s ability
to provide recoverability coverage without incurring appreciable
overheads. Section 5.1 begins by analyzing the idempotenceof
candidate recovery regions. This is followed by coverage results
in Section 5.3. Lastly, Section 5.3 concludes with a discussion of
performance overheads. All experimental results reportedin this
section were generated withβ = 0.25, Φ = 0.1, and values of
Pmin ∈ {∅, 0.0, 0.1, 0.25}. A value of ∅ for Φ means that no



dynamically-dead blocks are pruned from the analysis and a value
of 0.0 indicates only code that isneverobserved to execute during
profiling is pruned.

5.1 Region Idempotence

Figure 3 examines the inherent idempotence of candidate recovery
regions as a function ofPmin. From left to right, the different
columns for each application correspond to the idempotencefor
the different values ofPmin ∈ {∅, 0.0, 0.1, 0.25}. The different
segments represent the fraction of regions that were identified to be
idempotent, non-idempotent, andunknown. Unknown regions are
those that Encore’s compiler analysis was unable to process(e.g.,
mainly system and library function calls), preventing idempotence
determinations.

Note that, as expected, the fraction of regions that are deemed
idempotent grows as more dynamically-dead code is pruned (in-
creasing values ofPmin). Furthermore, nearly all of the benefit can
be garnered by simply pruning the code that wasneverexecuted
during profiling runs. This suggests that a good portion of the in-
strumentation optimizations described in Section 3 can be achieved
without incurring any measurable risk.

Not surprisingly the SPEC2K floating point and Mediabench
applications exhibit slightly better idempotence behavior than the
SPEC2K integer benchmarks. As suggested by Kruijf et al. [3], the
multimedia and embedded-type codes typical of emerging appli-
cations tend to have fewer memory side-effects, great for idempo-
tence. However, it is interesting to note that at least in terms of static
code, on average, the extent of idempotence present across the three
benchmark suites are comparable (a few poor-performing applica-
tions in the floating point and Mediabench groups drag down their
averages).

More importantly it is encouraging to observe that even in
control-heavy SPEC2K integer applications there is still aconsid-
erable fraction of code that isinherentlyidempotent. On average,
across all applications, 47% of regions are inherently idempotent
without pruning and 76% are idempotent withPmin = 0.0. This
suggests that little, if any instrumentation code will needto be in-
serted by Encore, across much of the application, to maintain idem-
potence for recovery rollback

5.2 Recoverability Coverage

Next we examine the recoverability coverage that can be achieved
by Encore. Figure 4 presents coverage numbers for differentvalues
of Dmax. Recall coverage here refers to the fraction of runtime ex-
ecution that can be recovered once a fault has been detected.Due to
space limitations results are only shown forPmin = 0.0, meaning
that idempotence analysis only filters out completely dynamically-
dead code (anything thatnever executed during profiling runs).
This corresponds to the best coverage Encore can achieve, without
running the risk of introducing faults (because idempotence was
not maintained) during rollback recovery, by filtering out portions
of code that have non-negligible probabilities of executing.

The segments labeledRecoverableare inherently idempotent
and can be recovered effectively “for free,” provided that the fault
was detected in time.Recoverable w/ Instrumentationregions also
contribute to the coverage Encore can achieve, but require instru-
mentation to ensure idempotence is preserved, i.e., to accommodate
read-modify-write chains and register live-ins. TheUnrecoverable
segments refer to the portion of runtime execution that Encore fails
to recover from because the fault was detected after execution had
left the region containing the original fault site and therefore cannot
be recovered. Lastly, the sections labeledUnknowncorrespond to
time spent in regions of code that Encore could not analyze and are
therefore conservatively considered unrecoverable.

Inspection of Figure 4 reveals the expected inverse relationship
between coverage and expected detection latency,Dmax (in in-
structions). Consistent with the idempotence results in Figure 3,

coverage also exhibits better behavior for the more multimedia and
embedded-centric applications. In fact, this applicationdependence
is even more pronounced for coverage, supporting the claim that
these benchmarks tend to spend the majority of their time inside
tight, largely idempotent loops. For example withDmax = 10
(Figure 4d) the audio codecg721encodecan recover from 85% of
detected faults naturally, withoutanyadditional instrumentation to
preserve idempotence. Similarly the floating point heavy172.mgrid
is able to achieve a dramatic 95% coverage rate with the help of
Encore’s selective checkpointing. Those correspond to 6x and 20x
improvements in the fault tolerance (in terms of recoverability cov-
erage) of these two applications!

5.3 Performance Overheads

Lastly we investigate the performance overheads incurred by En-
core. Figure 5a reports the runtime overheads for differentvalues
of Pmin. At first glance the results may appear counter intuitive.
One might expect that as the degree of dynamically-dead codefil-
tering becomes more and more aggressive (i.e., increasing values
for Pmin) that there would be a corresponding decrease in runtime
costs since more and more potentially idempotence-breaking in-
structions would be pruned and not require instrumentation. Many
applications (e.g.,181.mcf, 300.twolf, and183.equake) support this
intuition. However others (e.g.,164.gzip, 175.vpr, and197.parser)
seems to contradict this idea, with performance actually degrading
as more code is pruned.

Upon close inspection we discovered that in the latter set of
benchmarks, the act of aggressively pruning dynamically dead code
actually made certain regions (corresponding to theUnknownseg-
ments in earlier results) that previously could not be processed sub-
ject to idempotence analysis. As these formerly blacklisted regions
were analyzed, some were identified as non-idempotent, which re-
quired Encore to insert code to preserve idempotence, leading to
additional runtime overheads.

Yet, with few exceptions, most notably181.mcf, Encore im-
poses minimal performance overheads independent of the value of
Pmin. For Pmin = 0.0, which corresponds to the coverage re-
ported in Figure 4, on average across all applications only 6% of
execution time can be attributed to Encore instrumentation. Upon
further examination, we learned that the bulk of execution time for
181.mcfwas spent within a single function with a single hot re-
gion, a region which only had a roughly 20 instruction hot path.
Unfortunately the region also contained 10 idempotence-violating
stores and 14 register live-in values! Despite there being such a high
cost for instrumenting this undesirable region, so much of the ap-
plication’s execution was spent within this portion of codethat not
to protect would have meant sacrificing dramatically on coverage.
This was an example where even obeying the heuristicΦ, which is
designed to prevent instrumenting poorly behaved code, could not
avoid dramatic performance penalties. Although this was asclose
to a pathological case study as we saw in our experiments, a simple
hard upper bound on performance penalty would prevent runaway
overheads.

It is also important to mention that these overheads do not ac-
count for the time required to recover from a fault once it is detected
(i.e., restoring state if needed and re-executing). Although this ad-
ditional overhead is dependent on the specific fault rate that is ex-
pected, for the usage scenarios described in Section 2 the fault rates
are typically high but still orders of magnitude low enough that the
fault-free execution case dominates the negligible rollback recov-
ery overhead. This approximation holds for Encore-style recovery
(very fine-grained with minimal, if any, state restoration)but breaks
down if traditional system-wide checkpointing and re-execution of
large portions of code (e.g., entire functions) is required.

Finally, although Section 3.4.2 presented a heuristic thatcould
be used to temper runtime overhead by sacrificing on coverage, in
practice not much appreciable coverage was obtained by increas-



Figure 3: Inherent region idempotence as a function ofPmin. From left to right, the columns illustrate the fraction of regions within each application that is
inherently idempotent for different values ofPmin ∈ {∅, 0.0, 0.1, 0.25}. With Pmin = ∅, the left-most column for each application depicts the idempotence
breakdown when no dynamically-dead code is pruned from the analysis. TheUnknownsegments correspond to portions of the application source code that
could not be analyzed by Encore.

(a) Dmax = 100 (b) Dmax = 50

(c) Dmax = 25 (d) Dmax = 10

Figure 4: Recoverability coverage for different values of maximum fault detection latency,Dmax (in instructions). Coverage is presented as the % of program
executiontime(excluding system/library calls) that can be protected by Encore. Results shown correspond toPmin = 0.0. Unknownsegments correspond to
execution time spent in portions of the application source code that could not be analyzed.

ing region sizes beyond an initial partitioning. Consequently, per-
formance and coverage results in this section correspond toregions
formed without subsequent applications of interval partitioning.

6. Related Work
Fault tolerance in microprocessors can be broadly divided into
three requisite steps: 1) detection/diagnosis of fault, 2)system
repair/reconfiguration and 3) recovery to an error-free state. While
dealing with transient faults, the second step becomes uneccessary
since they do not cause any persistent damage. Thus, fault tolerance
for transient faults boils down to simplyfault detectionandsystem
recovery. As the focus of our paper is on system recovery, this
section provides only a brief overview of detection solutions, while
providing a more detailed discussion of previous efforts insystem
recovery.

6.1 Fault Detection

There exists a large body of research addressing the challenge of
fault detection [8, 11, 12, 16, 19, 21–23, 30]. These effortscan be
broadly divided into three categories. First, there are solutions that
utilize some form of spatial redundancy to execute multiplecopies
of an application simultaneously, periodically comparingresults.
Redundant multi-threading [22] and dual-core execution [26] are
good examples of this. Second are solutions that exploit temporal
redundancy, where the same work is re-executed on the same hard-
ware resource. Instruction duplication [21] and selectiveinstruction
duplication [15] are well known techniques that fall into this cate-
gory. Third category is of techniques that rely on high-level symp-
toms [18, 23, 30] or specialized detectors [11, 32] to catch afault.
Finally, there have also been recent proposals that formulate hybrid
solutions [8, 19] that combine techniques from the above categories
for a lower cost and higher coverage.



(a) Overall runtime performance overhead.

(b) The average number of checkpointing (static) instructionsinserted per region. Enforcing idempotence in otherwise non-idempotent regions requires two
types of checkpointing instructions: 1)WAR - needed for write-after-read memory dependences and 1)LiveIn - needed for register to memory checkpoint of
live-in registers.WAR instructions are simply memory-to-memory moves (load + store) andLiveIn instructions are register-to-memory moves (store).

Figure 5: Encore overheads. In both (a) and (b) overheads, for each application, are shown for different values ofPmin. From left to right the columns
correspond to values ofPmin ∈ {∅, 0.0, 0.1, 0.25}. ForPmin = ∅ no dynamically-dead code is pruned from the idempotent analysis. Overheads are shown
for fault-free executions. In (a), the negligible performance for recovery is omitted since fault events are still orders of magnitude “rarer” than the fault free
cases. For (b), the instructions required for recovery (i.e., branch and state restoration) are not included because these can typically be amortized with the
detection scheme.

6.2 System Recovery

Once a fault has been detected, the system must rollback in order
to continue execution from a previous clean state. Recoverysolu-
tions are tasked with maintaining this clean state, and providing
an interface (in hardware or software) to enable the rollback. The
most popular category of recovery solutions are checkpointbased.
In their simplest incarnation, checkpoint-recovery solutions period-
ically save off the entire system state, and revert to the most recent
version in the event of a fault. In the remainder of this section, we
examine few prominent examples of checkpoint-recovery schemes
in greater detail.

Enterprise-level Recovery. Traditionally, checkpoint-recovery
solutions have been used in large scale enterprise systems to pro-
vide the guarantee the often touted “5 nines” of reliability. These
systems, with 100-1000s of nodes, take periodic snapshots of the
entire memory system, usually storing it onto a globally accessible
disk [4]. To maintain consistency, all the nodes in the system take
their checkpoints at the same time, causing a surge in bandwidth
requirements. In order to accelerate this process faster, the origi-
nal application running on the system is stalled while the check-
point is being created. Enterprise-level checkpoints are usually
created using software libraries [14], some of which are even open
source [6]. In additions to these library based solutions, some IBM
mainframes also rely on small hardware modifications like reg-
ister file checkpointing mechanisms and write-through caches to
recover from processor and memory system errors [28]. In general
these enterprise-level solutions are appropriate for their domain,
but the cost of these creating these checkpoints (requiringon the
order of minutes) are prohibitively high outside all but themost
mission-critical systems.

Architectural Recovery. A cheaper alternative to taking a com-
plete system snapshot is to record incremental changes to the sys-

tem state in a log. In the event of a failure, these changes canbe
unrolled as needed. SafetyNet [27] and ReVive [17] are two ex-
amples of such log-based recovery solutions. SafetyNet maintains
the log in local cache and memory buffers, storing the first over-
write to every memory location. By using a distributed mechanism,
checkpoint creation and recovery times are very short. ReVive, on
the other hand, does not modify the cache hierarchy, and stores the
log in the main memory. This allows it to recover even if a nodeis
permanently lost. However, this ability comes at the cost ofextra
network and memory traffic, resulting in a larger performance over-
head. Although log-based recovery solutions are scalable to more
frequent checkpoints, and smaller intervals, the overheads from the
required hardware additions and the accompanying complexity that
is introduced as a result are not insignificant. This makes them im-
practical for budget weary commodity systems.

Opportunistic Recovery. This last category of recovery solutions
may not technically be recovery schemes in the conventionalsense.
Works like Relax [3] and others [24, 25, 29] have recognized that
not all applications, or even functions within an application, require
the same degree of “correctness.” Many, especially multimedia
and embedded codes can naturally tolerate a non-trivial amount
of errors. Consequently, an attempt is not always made to correct
the effects of a transient fault. Only when the fault is expected
to significantly impact the “quality” of externally visibleresults is
proper rollback recovery every initiated [3].

7. Conclusion
Whether due to environmental phenomena or ambitious designs
pushing the envelop of low power architectures, transient faults are
re-emerging as a prominent reliability issue in modern day com-
puting. Yet despite this growing reliability concern, we would ar-
gue that instead of appropriating large transistor budgets(or pro-
cessor cycles) to hedge against growing fault rates, systemarchi-



tects should embrace the high degree of fault tolerance thatcan
be had simply by trading in provable guarantees for probabilistic
estimates. Such tradeoffs may be the most attractive for low-end
commodity and embedded markets, where systems often cannotaf-
ford to devote a substantial portion of their computing resources to
anything other than actually performing computations. With recov-
erability coverage at 70% on average for floating point and em-
bedded applications, and as high as 85% and 95% for individual
programs, relying on Encore would be sufficient. Simply budget-
ing a 6% performance overhead could provide sufficient transient
tolerance, freeing designers to focus their attention on other aspects
of the system architecture.
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