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Abstract—The rapid advancements in the computational capabilities of the graphics processing unit (GPU) as well as the deployment

of general programming models for these devices have made the vision of a desktop supercomputer a reality. It is now possible to

assemble a system that provides several TFLOPs of performance on scientific applications for the cost of a high-end laptop computer.

While these devices have clearly changed the landscape of computing, there are two central problems that arise. First, GPUs are

designed and optimized for graphics applications resulting in delivered performance that is far below peak for more general scientific

and mathematical applications. Second, GPUs are power hungry devices that often consume 100-300 watts, which restricts the

scalability of the solution and requires expensive cooling. To combat these challenges, this paper presents the PEPSC

architecture—an architecture customized for the domain of data parallel dense matrix style scientific application where power

efficiency is the central focus. PEPSC utilizes a combination of a 2D single-instruction multiple-data (SIMD) datapath, an intelligent

dynamic prefetching mechanism, and a configurable SIMD control approach to increase execution efficiency over conventional GPUs.

A single PEPSC core has a peak performance of 120 GFLOPs while consuming 2 W of power when executing modern scientific

applications, which represents an increase in computation efficiency of more than 10X over existing GPUs.

Index Terms—Low-power design, hardware, SIMD processors, processor architectures, parallel processors, Graphics Processing

Unit (GPU), throughput computing, scientific computing
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1 INTRODUCTION

SCIENTISTS have traditionally relied on large-scale super-

computers to deliver the computational horsepower to

solve their problems. This landscape is rapidly changing as

relatively cheap computer systems that deliver supercom-

puter-level performance can be assembled from commodity

multicore chips available from Intel, AMD, and Nvidia. For

example, the Intel Xeon X7560, which uses the Nehalem
microarchitecture, has a peak performance of 144 GFLOPs

(8 cores, each with a 4 wide SSE unit, running at 2.266 GHz)

with a total power dissipation of 130 W. The AMD Radeon

6870 graphics processing unit (GPU) can deliver a peak

performance of nearly 2 TFLOPs (960 stream processor cores

running at 850 MHz) with a total power dissipation of 256 W.

For some applications, including medical imaging, electro-

nic design automation, physics simulations, and stock
pricing models, GPUs present a more attractive option in

terms of performance, with speedups of up to 300X over

conventional x86 processors (CPUs) [13], [14], [21], [18], [16].

However, these speedups are not universal as they depend

heavily on both the nature of the application as well as the

performance optimizations applied by the programmer [12].

But, due to their peak performance benefits, GPUs have

emerged as the computing substrate of choice for many

scientific applications.
A natural question is, “what is the proper substrate for

scientific computing—CPUs or GPUs?” This paper takes the
position that the answer to this question is neither. CPUs are
more focused on scalar program performance and do not
have sufficient raw floating-point computation resources.
Conversely, GPUs suffer from two major problems that limit
scalability as well as the ability to deliver the promised
throughputs for a wide range of applications: high power
consumption and long memory access latencies. Rather, a
new solution is required that offers high raw performance,
power efficiency, and a tenable memory system.

Though power is not necessarily a significant drawback
for video game graphics acceleration, requiring powerful
cooling systems is a significant impediment for more
portable platforms. Some of the algorithms that are com-
monly accelerated by GPUs are often deployed in systems
where portability or power consumption is a critical issue.
For instance, polynomial multiplication is used in advanced
cryptographic systems, real-time FFT solving is required for
complex GPS receivers, and low-density parity-check error
correcting codes are used in WiMAX and WiFi. Monte Carlo
Recycling or options-pricing algorithms for computational
finance, are often deployed in dense urban areas where,
while portability is not an issue, power, and cooling certainly
is an important cost concern. Even if the power consumption
of a single GPU is not a concern, combining many of these
chips to produce higher performance systems is untenable
beyond a modest number (e.g., 1,000 Nvidia GTX 280s to
create a petaFLOP system would require 200 kW).
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To understand the tradeoffs more clearly, Fig. 1 presents
performance versus power tradeoffs for a variety of CPUs

and GPUs. The GTX280 consumes over 200 W of power while
achieving a peak performance of 933 GFLOPs, resulting in a
relatively low power efficiency of less than 4 Mops/mW.
Other solutions that push performance higher, like the Tesla
S1070, can consume over 1 kW. Other general-purpose

solutions from IBM, Intel, and ARM, while consuming
significantly less power, have similar or worse performance-
per-Watt efficiency. The Core 2 and Core i7, while consum-
ing less power than the GPU solutions also fall behind in

terms of peak performance even when using the single-
instruction multiple-data (SIMD) SSE instructions, leading to
an overall loss of efficiency. Historically, high-performance
computers were designed using non-SIMD vector proces-

sors; examples of such designs include the CDC STAR-100
and the Cray-1. Modern designs, including the current
generation of Cray high-performance computers, primarily
use SIMD architectures for improved throughput. Therefore,
the processors mentioned in Fig. 1 are limited to those that

employ SIMD datapaths.
To overcome the limitations of CPUs and GPUs, we take

the approach of designing a processor customized for the

dense matrix scientific computing domain from the ground
up. We focus on dense matrix scientific applications that are
generally data parallel. The PEPSC processor is designed
with three guiding principles: power efficiency, maximizing

hardware utilization, and efficient handling of large memory
latencies. Our goal is one TFLOP performance at a power
level of tens of Watts at current technology nodes. As shown
in Fig. 1, this requires increasing the energy efficiency of

modern CPU and GPU solutions by an order of magnitude to
approximately 20-100 Mops/mW. One solution would be to
develop ASICs or hardwired accelerators for common
computations [23]. However, we believe this approach is
orthogonal and rather focus on a fully programmable SIMD

floating point datapath as the starting point of our design.
While CPUs and GPUs have economies of scale that make the
cost of their chips lower than PEPSC could ever achieve, the
design of PEPSC is useful to understand the limitations of

current GPU solutions and to provide microarchitectural
ideas that can be incorporated into future CPUs or GPUs.

This paper offers the following contributions:

. An analysis of the performance/efficiency bottle-
necks of current GPUs on dense matrix scientific
applications (Section 2).

. Three microarchitectual mechanisms to overcome
GPU inefficiencies due to datapath execution, mem-
ory stalls, and control divergence (Sections 3.1, 3.2,
and 3.3, respectively):

- An optimized 2D SIMD datapath design which
leverages the power-efficiency of data-parallel
architectures and aggressively fused floating-
point units (FPUs).

- Dynamic degree prefetching to more efficiently
hide large memory latency while not exacerbat-
ing the memory bandwidth requirements of the
application.

- Divergence-folding integrated into the floating-
point (FP) datapath to reduce the cost of control
divergence in wide SIMD datapaths and exploit
“branch-level” parallelism.

. An analysis of the performance and power efficiency
of the PEPSC architecture across a range of scientific
applications.

2 ANALYSIS OF SCIENTIFIC APPLICATIONS ON

GPUs

GPUs are currently the preferred solution for scientific
computing, but they have their own set of inefficiencies. In
order to motivate an improved architecture, we first analyze
the efficiency of GPUs on various scientific and numerical
applications. While the specific domains that these applica-
tions belong to vary widely, the set of applications used
here, encompassing several classes of the Berkeley “dwarf”
taxonomy [1] is representative of nongraphics applications
executed on GPUs.

2.1 Application Analysis

Ten benchmarks were analyzed. The source code for these
applications is derived from a variety of sources, includ-
ing the Nvidia CUDA software development kit, the
GPGPU-SIM [2] benchmark suite, the Rodinia [3] bench-
mark suite, the Parboil benchmark suite, and the Nvidia
CUDA Zone.

. binomialOptions (binOpt). The pricing of stock
options is a very important problem encountered
in financial engineering. The binomial option pricing
method is a numerical method used for valuing
stock options.

. BlackScholes (black). A pricing model used princi-
pally for European-style options that uses partial
differential equations to calculate prices.

. Fast fourier transform (fft). A high-performance
implementation of the discrete Fourier Transform,
used for converting a function from the time domain
to the frequency domain.

. Fast walsh transform (fwt). The matrix product of a
square set of data and a matrix of basis vectors.
Walsh transforms are used for signal/image proces-
sing and image compression.
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Fig. 1. Peak performance and power characteristics of several high-
performance commercial CPUs and GPUs are provided: ARM Cortex-
A8, Intel Pentium M, Core 2, and Core i7; IBM Cell; Nvidia GTX 280,
Tesla S1070, and Tesla C2050; and AMD/ATI Radeon 5850 and 6850.



. Laplace transform (lps). An integral transform for
solving differential and integral equations.

. LU decomposition (lu). A matrix decomposition
which writes a matrix as the product of a lower
triangular matrix and an upper triangular matrix for
solving linear equations or calculating determinants.

. Monte-Carlo (mc). A method used to value and
analyzes financial instruments by simulating various
sources of uncertainty.

. Needleman-Wunsch (nw). A bioinformatics algorithm
used to align protein and nucleotide sequences.

. Stochastic different equation solver (sde). Numer-
ical integration of stochastic differential equations
commonly used in many branches of science.

. Speckle-reducing anisotropic diffusion (srad). A
diffusion algorithm based on partial differential
equations that is used for removing the speckles in
an image for ultrasonic and radar imaging.

Fig. 2 characterizes the type and frequency of instruc-
tions in each benchmark, showing the percentage of FP
arithmetic instructions, load/store instructions, address-
generation instructions, special-function floating-point li-
brary instructions (e.g., logarithms, trigonometry), control-
flow (CF) instructions, respectively.

The computation in these benchmarks is predominantly
FP arithmetic with sde having as much as 62 percent floating
point instructions. Other than that, the instruction break-
down of these benchmarks varies widely. Some benchmarks
like fft and fwt that access a number of different arrays
have a higher number of integer arithmetic operations in
order to perform address calculations. While most control-
flow instructions in these applications are used for checking
loop terminating conditions, a few benchmarks are quite
control-flow intensive. Control flow can also be caused
because of aggregation operations like summing of an array.
These applications are all comprised primarily of paralleliz-
able loops that will run efficiently on GPU-style architec-
tures. This also motivates the case for having a wide SIMD
architecture which can do same computations on different
data in parallel.

2.2 GPU Utilization

We analyze the benchmarks’ behavior on GPUs using the
GPGPU-SIM simulator [2]. The configuration used closely
matches the Nvidia FX5800 configuration used in [2] and
provided by their simulator. Modifications were made to

make the simulated design very similar to the GTX 285
GPU, the most recent GPU that uses the FX5800’s micro-
architecture.

Fig. 3 illustrates the performance of each of our bench-
marks and the sources of underutilization. “Utilization”
here is the percentage of the theoretical peak performance of
the simulated architecture actually achieved by each of these
benchmarks. Idle times between kernel executions when
data was being transferred between the GPU and CPU were
not considered. On top of every bar in Fig. 3 is the overall
percentage of underutilization. Even though the overall
performance of these applications on GPUs is impressive, the
utilization of the hardware is low. The underutilization
varies from 37 percent in srad to 90 percent in lu. It is
important to note here that the utilizations of individual
benchmarks vary widely. Further, the extent to which
specific causes lead to underutilization also varies from one
application to another.

Fig. 3 illustrates three principal reasons for under-
utilization in GPUs:

. Datapath stalls. This portion of the graph indicates
the amount of time the shader core datapath itself is
stalled for reasons such as read-after-write hazards.
This is especially of concern on GPUs, which tend to
have very deep floating-point pipelines.

. Memory stalls. The benefit from having numerous
thread contexts in GPUs is the ability to hide
memory latency by issuing a different thread warp
from the same block of instructions when one warp
is waiting on memory. This is not always enough,
however, and this portion of the graph indicates the
amount of time that all available warps are waiting
for data from memory. To check whether it is
memory bandwidth or memory latency that is the
limiting factor, a separate study was done using a
machine configuration that had double the band-
width of the GTX 285. The change in utilization was
negligible.

. Serialization. The CUDA system collects 32 indivi-
dual threads into a “warp” and executes them in a
manner similar to a 32 wide SIMD machine. In
sequential code, threads in a warp all execute the
same series of instructions. However, in the event
that some threads take a different execution path, the
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Fig. 2. Static instruction type breakdown showing the percent of
instructions used for floating-point operations, loads, and stores
(Mem), address generation, special math library functions (SFU), control
flow and other instructions such as integer math operations and loads
from constant memory (other).

Fig. 3. Benchmark utilization on an Nvidia GTX 285 model. Utilization is
measured as a percentage of peak FLOPs. The number above each bar
show the underutilization of the entire benchmark on the GPU. The
components of the bar represent a different source of stall cycles in the
GPU. The mean utilization is 45 percent.



warp is split into the taken and not taken portions
and these two newly formed warps are executed
back to back rather than concurrently, reducing the
overall utilization of the processor. The “control
divergence” portion of the graph indicates the
amount of time that is spent executing fractions of
a warp rather than an entire warp at a given time.

Although a newer generation of Nvidia GPUs than the
GTX 285 has been released, the major changes made to

design—such as allowing multiple kernels to execute

concurrently—do not affect the observations made in this

analysis.

3 THE PEPSC ARCHITECTURE

An overview of the PEPSC architecture is presented in Fig. 4.

It has the following architectural components to fulfill the

basic computational requirements for data-parallel scientific

applications:

1. A wide SIMD machine to effectively exploit data-
level parallelism.

2. A scalar pipeline for non-SIMD operations such as
nonkernel code and incrementing loop-induction
variables.

3. A dedicated address generation unit (AGU).
4. Special function units for math library functions

such as sine, cosine, and divide.

PEPSC employs several additional techniques to im-

prove the efficiency of scientific computing, each addres-

sing a different source of the current reduced utilization.

These are

. A 2D design that extracts power efficiency from both
the width and the depth of a SIMD datapath.

. Fine-grain control of the SIMD datapath to mitigate
the cost of control divergence.

. A dynamically adjusting prefetcher to mitigate
memory latency.

. An integrated reduction floating-point adder tree for
fast, parallel accumulation with low hardware over-
head.

These features are explained in more detail in the

following sections.

3.1 Two-Dimensional SIMD Datapath

In a SIMD datapath, multiple data elements are processed
in parallel. The processing of each element is handled by a
SIMD lane. The first dimension of the SIMD datapath is the
number of lanes. The optimal number of lanes in a domain-
specific architecture is generally decided by the amount of
data parallelism available in the domain. In massively
parallel scientific computing applications, however, the
prevalence of “DOALL” loops allows for an effectively
infinite amount of data parallelism. The deciding metric in
such situations is the change in power efficiency of a SIMD
datapath with increasing width due to factors such as
control and memory divergence.

The PEPSC datapath introduces a second dimension
with an operation chaining technique. The basic concept of
operation chaining to efficiently execute back to back,
dependent operations dates back to the Cray-vector archi-
tectures. The architecture had separate pipelines for
different opcodes allowing, for example, forwarding the
result of an add instruction to an adjacent multiply unit to
execute an add multiply operation. In older, memory-to-
memory datapaths with few registers, chaining was seen as
an effective method to eliminate the need to write a value to
a high-latency main memory only to read it back again.

The PEPSC architecture uses a different style of chaining.
It allows for several back-to-back dependent floating-point
operations to be executed on a novel, deeply pipelined
fusion of multiple full-function FPUs. This results in
performance improvement due to fewer read-after-write
stalls and power savings from fewer accesses to the register
file (RF).

Fig. 5 illustrates the power efficiency of varying SIMD
widths between 8 and 64 lanes when compounded on the
power efficiency of 1- to 5-op FPU chaining. The efficiency is
normalized to that of an 8 wide, 1-op FPU design, averaged
across all benchmarks. These results indicate that a SIMD
width of 32 lanes using a 5-op-deep chained FPU provides an
optimal point, balancing the increasing efficiency of execut-
ing more operations per instruction with efficiency-reducing
divergences. This 32x5 SIMD datapath has 3.4X the power
efficiency of the 8x1 datapath.
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Fig. 4. PEPSC architecture template. The shaded components are part
of conventional SIMD datapaths.

Fig. 5. Effect of length and width on the power efficiency of a 2D SIMD
datapath, normalized to the 8 wide, 1-long case.



The remainder of this section explores the FPU micro-
architecture in more detail.

3.1.1 Reducing FPU Latency

Scientific applications typically have chains of dependent
FP operations longer than two operations. In the bench-
marks studied in this work, nearly all have instances of
3 back to back floating point operations and some have
instances of 5 back to back operations.

Table 1 illustrates the frequency of such chains. Each set
of columns shows how many back to back dependent
operations of a given length occur when hardware of a
given length is provided. For example, in the benchmark
lps, there is a sequence of five dependent FPU operations.
When a 2-deep FPU is made available, these five FPU
operations are executed as two successive 2-operation
chains, followed by one 1-operation chain. If a 5-deep FPU
is made available, these five FPU operations can be executed
in a single 5-operation chain.

This work introduces generalized chains of FPUs. These
chains allow for back-to-back execution of several floating-
point operations, improving performance/power efficiency
by eliminating redundant hardware and reducing accesses
to the RF. All of the individual FPUs in the chained FPU
retain full functionality and are able to execute any of the
FP operations as a nonchained FPU. In order to achieve this,
considerably more hardware modifications have to be made
to the FPU than what is traditionally done for a simple
fused multiply-add/subtract FPU commonly seen in DSPs
or GPUs.

Conventional FPU architecture. A typical FP adder
consists of a zero detector, an exponent aligner, a mantissa
adder, a normalizer, and an overflow/underflow detector.
The exponent aligner in the FP adder aligns the mantissa
for the two operands so as to use the same exponent to
compute the addition operation. Meanwhile, a FP multi-
plier generally consists of a zero detector, an exponent
adder, a mantissa multiplier, a normalizer, and an over-
flow/underflow detector.

Chained FPU design. As depicted in Fig. 6a, the FPU
implementation used in this work is divided into four
conceptual stages preprocessor, arithmetic unit, postproces-
sor, and normalizer. Typically, all FPUs operate only on
normalized FP numbers and this is enforced by the normal-
izer. In general terms, the earlier parts of the FPU pipeline
consist of components that expand the IEEE standard-form
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Fig. 6. (a) FPU internal structure. (b) Chained FPU design where the
Normalizer stage may be removed for all but the last in a chain of FPUs.

TABLE 1
Scientific Application FPU Operation-Depth Characteristics



input operands into intermediate representations suitable for
the main arithmetic units, and the later parts of the FPU
pipeline compact the results of the computation back into the
IEEE representation. When operations are performed back-
to-back, the intermediate values are never committed to
architected state and, as such, need not be represented in the
standard form, saving time on the FPU critical path and
reducing the required hardware.

When the normalizer takes the result from the postpro-
cessor, it primarily detects leading zeroes and shifts them as
necessary so as to conform to the IEEE-754 FP format. If
multiple FPUs are chained together and the value computed
in the postprocessor is only an intermediate value, and not
one committed to architectural state, the normalizing step
may be removed and the next stage in the FPU chain can treat
this result as a denormalized value. The normalizer con-
sumes a significant amount of computation time—close to
30 percent—so its removal results in marked performance
improvements. More details about the achievable improve-
ments are presented in Section 4.

Extra logic that is necessary to make chaining work
properly includes the shifter placed in the postprocessor to
process varying result widths, resolving temporary over-
flows, and detecting the true location of leading ones so
that they may be correctly appended for the next stage of
the computation. Control logic is also added to shorten the
length of the datapath if an instruction with fewer than the
maximum allowed number of operations is being executed.
The conceptual operation of the chained design is illu-
strated in Fig. 6b.

Identifying FP chains. We use modifications made to the
Trimaran [22] compiler to identify and select sequences of
instructions for execution on the chained FPU. First, an
abstract representation of the possible sequences of execu-
tion is created in a data-flow graph (DFG) form. In the DFG,
nodes are used to represent each input, output, and
individual FPUs in the chain. Directed edges are used to
represent all possible communication between these nodes.
An abstract graph representation for the 4-Op chained FPU
in Fig. 6b is shown in Fig. 7a. A greedy algorithm is then
used to select the largest of these subgraphs that occur
within the benchmark, e.g., a single, 4-long sequence of
operations is preferred over two, 2-op sequences.

Fig. 7b shows a sample DFG of a benchmark’s inner-
most loop. Two chained FPUs are identified here—one four
FP operations in length and the other three FP operations
in length. The subgraphs used in this work were sequences
of dependent FP add, subtract, and multiply operations
where intermediate values were not live out of the DFG but
were only consumed locally. The internal interconnection is
illustrated in Fig. 6b.

Operating on floating-point values in this manner results
in final answers that differ from those obtained by a fully
IEEE 754-compliant FPU. As per our experiments, the
results of the chained FPU datapath’s execution diferred
from those of a strictly IEEE 754 compliant one by less than
0.05 percent.

Chain coalescence. Using a 5-deep chained FP unit as
suggested by Fig. 5 will obviously result in underutilization
in some benchmarks. To combat this, a few hardware
extensions to the chained FPU design allow for multiple
independent 2 or 3-long FPU chains to execute in parallel on

the FPU datapath. These extensions are indicated by dotted
lines on Fig. 6b. To allow for this, the RF has to have an
additional read port and an additional write port. The FPU
datapath will require an additional MUX to allow for one of
the FPUs to select between receiving its inputs from either a
previous FPU or from the RF. A second normalizer stage
will also have to be added since there will now be two
possible exit points from the chained datapath.

3.1.2 Hiding FPU Latency

While the total time taken to execute several back-to-back FP
operations may be reduced using FPU chaining, it signifi-
cantly increases the total pipeline depth and, consequently,
the latency of any FP instruction. Traditional architectures
use hardware multithreading to hide various sources of
latency—control latency, computation latency, memory
latency, etc. While hardware multithreading helps increase
the overall performance, it has a few drawbacks. First, the
control when using multithreading is significantly more
complicated as each thread has its own PC, machine status
register, execution trace, etc. In addition, each thread must be
presented with the same architectural state. This work takes a
compiler-directed approach of hiding the long FPU pipeline
latency by software pipelining the inner-most loops [15] and
overlapping independent successive iterations as shown in
Fig. 7c. When using software pipelining, since more data is
being processed in parallel, the RF must be increased in size
to provide enough data for the required computation.
Instantaneous power will also increase due to the increase
in operations at any given time, but the overall energy of
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Fig. 7. Example using chained FPUs (CFPs). (a) Abstract graph
representation of chained FPU hardware. (b) Operation identification.
(c) Latency hiding via software pipelining.



computation will decrease since the processor is spending
more time doing useful work rather than idling and waiting
to issue a new instruction.

3.2 Reducing Memory Stalls

There are a few different alternatives when trying to
mitigate problems with off-chip memory latency. Large
caches offer a dense, lower power alternative to register
contexts to store the data required in future iterations of the
program kernel. Even though modern GPUs have very
large caches, these are often in the form of graphics-specific
texture caches, and not easily used for other applications.
Further, many scientific computing benchmarks access data
in a streaming manner—values that are loaded are located
in contiguous, or fixed-offset, memory locations, and
computed results are also stored in contiguous locations
and are rarely ever reused. This allows for creating a
memory system that can easily predict what data is
required when. Some GPUs have small, fast shared memory
structures but they are generally software managed and, as
such, it is difficult to accurately place data in them exactly
when it is required.

3.2.1 Stride Prefetcher

A conventional stride prefetcher [4], [6], [7], [19], [27] consists

of the “prefetch table”—a table to store the address of a load

instruction, the confidence of prefetching, and the access

stride as shown in Fig. 8. The program counter value (PC) of

the load instruction is used as a unique identifier to index into

the prefetch table. Whenever a load is done the address is

stored in the address column and its difference with the

previously stored address is kept as the access stride.

3.2.2 Dynamic Degree Prefetcher (DDP)

Stride prefetchers often have a notion of degree associated

with them, indicating how early data should be prefetched.

In cyclic code, it is the difference between the current loop

iteration number and the iteration number for which data is

being prefetched. A traditional stride prefetcher uses a

degree of one for all the entries in the prefetch table. With

large loop bodies, degree-one prefetchers perform well as

the time required for prefetching data is hidden by the time

taken to execute one iteration of the loop. However, if the

time taken to execute a single iteration of the loop is less

than the time required for the prefetcher to get the next
working data, the processor will stall.

Fig. 9a shows the number of times all the loads of a
particular degree are executed in one of our benchmarks,
lps. In this figure, the degree of prefetching in different
loops varies between one and eight. An experiment was
conducted to determine the variance of degrees across all
benchmarks as shown in Fig. 9b. This figure demonstrates
that the prefetch degree in scientific applications is a
characteristic of the benchmark itself. From Figs. 9a and
9b, it can be concluded that there is enough variance in
degree within and across benchmarks that would offset the
advantages of presetting a fixed degree. Having a lower
degree leads to a performance penalty as the processor
would have to stall for data. But if the degree is too large,
more data will be fetched than is necessary, which leads to
an overutilization of bandwidth. Further, prefetched data
may evict useful data. These factors indicate a dynamic
solution is preferred. Loop-unrolling can decrease the
degree of a load instruction and different amount of
unrolling can be applied to the loops to change their degree
to a fixed number. However, the performance benefits of
this technique would vary between systems with different
memory latencies. Loop unrolling also increases code size.

This work proposes a dynamic degree prefetcher that
varies the prefetch degree based on application behavior;
higher degrees are assigned to cyclic code with shorter
iteration lengths and lower degrees are assigned to code
with longer iteration lengths. The computation of the
degree is done at runtime, based on the miss patterns of
the application. The DDP is illustrated in Fig. 10. In the
DDP, the initial degree of prefetching is set to 1. When an
address is requested either by a load instruction or by a
prefetch request, the prefetch queue is first checked to see if
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Fig. 8. Traditional stride prefetcher with a fixed degree of prefetching.

Fig. 9. (a) Varying prefetcher degrees in the lps benchmark. (b) Varying
weighted prefetcher degrees in different benchmarks.



a prefetch request for data at that address has already been
made. If so, it indicates that the prefetching for that load
instruction is short sighted. In response to this, the degree
for the corresponding PC is incremented. By increasing the
degree of the prefetcher, data is then prefetched from
further ahead and, hence, by the time later iterations are
executed, the required data will be present in the cache. As
the degree is not fixed but dependent on the characteristics
of the loop itself, different loops settle at different degrees.

3.3 Reducing Control Divergence and Serialization

SIMD architectures are normally programmed by explicitly
specifying SIMD operations in high-level languages like C
or C++ using intrinsic operations. In order to specify that
only specific lanes in a SIMD operation should commit, a
programmer has to express this explicitly using SIMD mask
registers. Many SIMD architectures employ a “write mask”
to specify whether or not a given lane commits its value.
This write mask is specified as an additional operand.
Destination registers for individual lanes are only over-
written by the values computed in the corresponding lane if
the write mask for that lane is a “1.” While this gives the
programmer control over the exact implementation of the
code, handling such a low-level issue can become tedious.

The CUDA environment circumvents the issue of diver-
gence in SIMD architectures by abstracting out the under-
lying SIMD hardware and allowing a programmer to
essentially write scalar code and have the hardware assemble
threads of scalar code into SIMD code. However, this now
means that the hardware has to handle all control diver-
gences. Fig. 11 shows an example of divergent code.
Divergence in Nvidia shader cores is handled using a
technique called “immediate post-dominator reconver-
gence,” shown in Fig. 11 which illustrates the way that
postdominator reconvergence works for a simple 4-wide
SIMD [8]. Here, different lanes execute code on the “then”
and “else” paths. The execution of the “then” and “else” basic
blocks is serialized, and no computation is done on the
unused lanes for each path, as shown by the white arrows,
reducing the overall utilization of the datapath.

The AMD/ATI shader core architecture differs from the
Nvidia one in its ability to extract intrathread instruction-
level parallelism using 5-wide VLIW “thread processors.”
These thread processors are in turn clustered into 16-wide

SIMD arrays with each element executing the same VLIW
instruction word at any given time so this configuration,
too, is vulnerable to reduced efficiency from divergence.

Solutions such as dynamic warp formation (DWF) [8]
address the general problem of control divergence in SIMD
architectures by grouping together CUDA threads that
execute the same side of a branch. Such techniques, while
effective at reducing divergence, are often limited by other
effects; migrated threads must still execute in the same SIMD
lane from which they originate, and mixing-and-matching
threads from different warps reduces memory coalescence,
reducing the effectiveness of the memory system.

3.3.1 Divergence Folding

All lanes in a nonmultithreaded SIMD architecture like
PEPSC must apply the traditional technique of SIMD
predicate masks and execute both sides of a branch for every
lane. The per-lane masks are then used to decide whether the
“then” or the “else” path of the branch for a given lane is
finally committed to the RF. The performance penalty
incurred by executing both sides of a branch due to the SIMD
nature of the architecture can be reduced by the effective
mapping of instructions on PEPSC’s chained datapath.

Operations with complementary predicates can be exe-
cuted simultaneously if two FUs are available. The 2D SIMD
datapath allows such execution as there are multiple FPUs in
each lane. The modified, dual-output chained FPU has
sufficient register inputs and outputs to execute and commit
two FPU chains concurrently. Therefore, independent
FP operations on opposite sides of a branch can also be
executed concurrently. A few modifications are made to the
infrastructure to support this. First, the compiler is modified
to allow FPU operations guarded by complementary pre-
dicates to be executed on the FPU datapath at the same time.
Second, the control logic for the output selector MUXes of the
FPU datapath is modified to select which of the two
concurrently executing subgraphs should write their values
to the RF based on a given SIMD lane’s predicate mask bit.
Since support for writing to two different registers already
exists, this technique still works even if the two sides of a
branch are writing to different registers.

There are a few caveats to this technique—the “then”
and “else” paths should both be comprised of floating-point
operations and the operation chain length should be limited
to 2 or 3-long chains for these paths at most in order for
both sides to fit on the FPU datapath.
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Fig. 10. Dynamic-degree prefetcher.

Fig. 11. An example diverging code fragment and the associated

control-flow graph. The black and white arrows indicate which SIMD

lanes are used and unused, respectively, when using an immediate-

post-dominator-reconvergence strategy.



Where the traditional predicate mask technique would
require sequential execution of both sides of the branch, this
divergence-folding technique exploits “branch-level” par-
allelism and executes both sides of the branch in parallel.

3.3.2 Reduction Tree

Another source of serialization are “reduction” operations
such as accumulation of all the values computed so far.
Since such operations only involve addition to a single
value, they are inherently serial and, as such, not SIMD-
izable via a traditional SIMD machine.

In order to minimize the amount of time spent perform-
ing these serial reduction operations, an “adder tree” can be
used to sum up all the values in logarithmic time, e.g.,
accumulation of 32 values, this requires the use of a total of
31 floating-point adders, arranged five adders deep.

Normally, the hardware cost of having an adder tree
would be quite substantial on a traditional SIMD machine
which only has a depth of one. The other alternative is to
underutilize the SIMD lanes and have a lower efficiency as
we move along the adder tree. However, due to the FPU
chaining techniques presented in Section 3.1.1, this hardware
cost can be reduced. Essentially, adding some interconnect
logic to half of the 2D datapath creates an FPU tree. For a
SIMD width of n, the first level of the FPU chain (FPU0 in
Fig. 6) sums together n2 pairs of adjacent elements, the second
level (FPU1) sums together the resulting n

4 pairs, etc. until the
last element adds one pair. For a 5-deep FPU chain, this
technique can only be used to add together 25, or 32, values.

4 RESULTS

The major components of PEPSC were designed in Verilog
and synthesized using the Synopsys Design Compiler and
Physical Compiler tools. Power results were obtained via
VCS and Primetime-PX, assuming 100 percent utilization.
Power characteristics for regular memory structures like
dual-ported RFs and caches were obtained through an
Artisan memory compiler while RFs with more than two
read ports were designed in Verilog and synthesized.

The M5 simulator system was used to study the cache
design and the DDP. The main memory latency was set at
200 cycles. The L2 size was 4 kB per SIMD lane with four-
way associativity and a delay of 20 cycles. The L1 size was
512B per SIMD lane with four-way associativity and a delay
of one cycle.

Sections 4.1, 4.2, and 4.3 present speedup information for
the specific problem solved in isolation. Combined results
showing the aggregate affect of all the modifications are
presented in Sections 4.4 and 4.5.

4.1 Datapath Optimizations

Fig. 5 indicates that a number of the applications in this
domain have several long sequences of back-to-back FP
operations. Based on this data, the FP datapath in PEPSC
was designed with an FPU consisting of 5 back-to-back
operations. Fig. 12 shows the effects of varying the number
of operations in the chained FPU.

In Fig. 12a, the x-axis for all the graphs, “FP ops/
instruction” is the number of successive, dependent FP
operations executed in the chained FPU. The “latency” graph

shows the time (in clock cycles) taken to execute an input
subgraph. The baseline 3-cycle FPU takes three cycles for
each operation and thus has a latency that increases by three
cycles for every added operation. The removal of redundant
hardware in the optimized FPU chain results in significantly
lower overall latency—a savings of four cycles when five
FPUs are connected back to back.

The “power” graph in Fig. 12a illustrates the power
savings obtained from optimized normalizing. Here, the
baseline is multiple unmodified FPUs executing operations
back to back. In this graph, too, the gap between optimized
and unoptimized FPUs widens quite dramatically as the
number of operations per instruction increases. The power
measurement in this graph is the sum of the RF access
power and the FPU execution power to better reflect the
power penalty from increasing the number of RF read ports.

The “normalized perf/power” graph in Fig. 12a ad-
dresses the efficiency of the different solutions. Here, too,
the power consumed for the amount of work done steadily
reduces as the number of FP operations per instruction
increases. While the access power for an RF increases for
every added read port, the improvement in the efficiency of
the RF shown in the graph indicates that this is amortized
by the reduction in overall accesses and by the performance
improvement achieved by chaining together FPUs.

Fig. 12b shows the reduction of stall cycles observed for
the different benchmarks when using 2, 4, and 5-operation
chained FPU datapaths. The speedup varies based on how
frequently the various chained FP operations occur in each
benchmark and the latency penalty incurred when issuing
back-to-back dependent FP operations. The benchmarks
that had the most to gain from chaining FPUs were, in
general, the ones with the most number of 5-long chains of
FP operations—black, and lps, for example. The fwt
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Fig. 12. (a) Datapath latency, power, and efficiency effects of varying the
number of FPUs when increasing FPU chain length. (b) Speedup with
increasing chain length. The chain lengths are indicated in bold numbers
below each bar; the dark portion, “Dual,” above the “4” and “5” bars
indicate the additional performance improvement from allowing multiple
subgraphs to execute concurrently.



benchmark had no operation patterns that could be
accelerated using the chained FPU and, therefore, had no
performance improvement. The “dual” bars indicate the
additional performance improvement from allowing multi-
ple independent subgraphs from executing on the FPU
datapath. Significant performance improvement is observed
in the majority of benchmarks, the most notable being fwt

which previously could not exploit the improved datapath
design. On average, the speedup for a 5-long chain
increased from 1.12X to 1.18X.

Speedup saturates at five operations and adding a sixth
operation in the chain only reduces the overall utilization of
the FPU. Using a 5-op chain is, therefore, the best solution,
from both a performance and an efficiency perspective.

4.2 Memory System

To ascertain the effectiveness of our prefetching techniques,
we measured the performance of a baseline no-prefetcher
system, the performance with an added degree-1 prefetcher
and the performance with the DDP. These results are shown
in Fig. 13a. The baseline degree-1 provides, on average, a
speedup of 2.3X, with the best speedup achieved for srad
at 5.95X and no speedup for nw. The more sophisticated and
adaptive DDP shown in Fig. 10 provides a speedup of 3.4X
on average, with the best speedup of 6.2X for nw and
minimum speed up of 1.35X in sde. This amounts to a
speedup of 1.5X speedup over the traditional degree-1
prefetcher. The srad benchmark presents a pathological
case; the main inner loop has 5 separate, equally spaced
loads from the same array, leading to higher than expected

conflict and pollution in one particular set in our four-way
associative cache. To confirm this, we repeated the experi-
ment but with an 8 kB, eight-way associative L2; for this
configuration, the performance of the DDP was better than
that of the degree-1 prefetcher.

The memory system used for the results in Fig. 13a
prefetched data from main memory into the L2 cache, but
not from the L2 cache into the L1 cache. The effect of adding
an additional prefetcher from the L2 cache to the L1 cache
was studied. and the results are presented in Fig. 13b. While
there was a performance improvement in some benchmarks
by the addition of a prefetcher from the L2 cache to the
L1 cache, this was offset by the performance loss observed
in others, resulting in a negligible average performance
difference between the two cases. The performance reduc-
tion observed was primarily caused by the pollution of the
L1 cache by data prefetched too soon, resulting in the
eviction of needed data such as local variables on the stack.
Since, we want to target for a design that is energy-efficient
prefetching from L2 to L1 was discarded.

The two common concerns when using prefetchers is the
transfer of unnecessary data and timeliness of prefetching.
We did a detailed study of both the factors. Fig. 14 shows
the reduction in the average D-cache wait latency whenever
it encounters a miss. For deg1 prefetching, the average
reduction in D-cache wait latency was around 62.2 percent.
DDP showed a further increase of 53.1 percent over the deg-
1 prefetching leading a total reduction of D-cache wait
latency to around 19 percent of the baseline case. We setup
the simulation infrastructure to measure the amount of
additional data brought in from memory to L2 due to
prefetching for degree-1 and DDP over the baseline. Fig. 15
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Fig. 13. (a) Comparison of DDP and degree-1 prefetching. (b) Comparison

of prefetching from mem to L2 and mem to L2 to L1.

Fig. 14. Reduction in the D-cache wait latency with deg1 and DDP

prefetching with respect to no prefetching.

Fig. 15. Percent of extra data that was fetched from memory to L2 cache
as a result of prefetching.



shows the data for additional data fetched from memory to
L2. The degree-1 prefetcher transferred, on average, only
0.2 percent more data than the no-prefetcher case, and DDP
transferred 0.6 percent more than the no-prefetcher case.
This shows that all the access streams that have been
classified as strided are indeed strided and incorrect data
is fetched. As DDP prefetches from a further iteration,
sometimes the prefetching of the is beyond the trip-count of
the loops and hence, brings in extra data. Even then, the
overall additional amount of data brought in negligible.

4.3 Control Divergence and Serialization

Four of the benchmarks studied demonstrated speedup
using the control-flow techniques discussed in Section 3.3:
lps, lu, mc, and srad. The source of the improvement
between them varies.

The benchmarks lps, lu, and srad benefit primarily
from the use of the divergence-folding technique. All these
benchmarks are control-flow intensive, and have predomi-
nantly symmetrical control-flow graphs, performing similar,
short computations on either side of a divergence which is
the perfect use case for the technique. These benchmarks
saw reductions of 38, 30, and 50 percent in control-flow
overhead, respectively.

The mc benchmark employs reduction operations at the
end of its loops which are not amenable to SIMD-ization.
Making use of the reduction adder tree proposed in
Section 3.3.2 rather than serially summing values provides
a 16 percent reduction of control-flow overhead.

4.4 Application to GPU

Rather than creating an entirely new architecture, another
option would be to augment existing GPUs with the
hardware introduced in this work. Our estimates for the
impact this would have are illustrated in Fig. 16. The first bar
for each benchmark is the baseline underutilization break-
down from Fig. 3 and each subsequent bar is the revised
breakdown with cumulatively adding the FPU chaining,
divergence folding and a reduction tree, and the dynamic-
degree prefetcher. This average utilization increases to
around 73 percent—a significant improvement over the
45 percent utilization baseline.

4.5 PEPSC Specifications

The PEPSC processor’s design characteristics and power
consumption breakdown are shown in Fig. 17a. The top

table in Fig. 17a shows the specifications of each individual
core. The efficiency of 56.9 Mops/mW is approximately 10X
that of the Nvidia GTX 285 and over 10X that of the Nvidia
GTX 280. The bottom table in Fig. 17a shows a component-
by-component breakdown of the power consumed in the
PEPSC processor. The FPU power includes the power
consumed by the additional control logic required by the
op-selection scheme presented in Section 3.3.1 and also the
extra routing and FP adder required by the reduction tree
presented in Section 3.3.2. Since there are components to
this FPU datapath that go across lanes, the per-lane power
consumption number is an approximation. The “Memory
system” power includes the power consumed by the two
levels of caches and the dynamic-degree prefetching engine.

Fig. 17b is a modified version of Fig. 1. It illustrates the
power consumption and performance of PEPSC relative to
other current designs. The white dot under the GTX 280 dot

is the average realized performance for the baseline design.
The gray dots below the PEPSC and GTX 280 dots indicated
the average realized performance, as opposed to the peak
performance.

For both peak and average use cases, the PEPSC design is
over 10X as power efficient as modern GPUs.

5 RELATED WORK

There are several other examples of low power, high-
throughput SIMD architectures like SODA [24] for signal
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Fig. 16. Reduction in GPU overheads after cumulatively applying
various techniques. “B” is the baseline bar, “D” is after adding the
chained FPU datapath, “C” is after adding divergence folding to mitigate
control overhead and “M” is after adding the prefetcher to reduce
memory latency.

Fig. 17. PEPSC specifications. (a) Overall per-core specifications and

power breakdown of individual components. (b) (Modified Fig. 1) Power

efficiency of PEPSC. Black points are peak performances, and the gray

and white points represent different points of underutilization.



processing but it, being a purely integer architecture, is
unsuitable for this domain space. VTA [11] has a control
processor with a vector of virtual processors, which are far
more complex and power-consuming than the SIMD lanes of
PEPSC. There are also high-throughput floating point
architectures such as Merrimac [5], TRIPS [17], and RAW
[20] but these are more focused on general-purpose comput-
ing and do not have the same power efficiency as PEPSC. The
streaming buffers in Merrimac are a potential alternative to
the memory system employed in this paper, but are less
general than using a cache hierarchy. There has also been
recent work on image processing [10] and physics simula-
tions [25], targeting domains traditionally addressed by
commercial GPUs but these, too, do not address power to the
extent that this work does. ParallAX [25] is a heterogenous
domain-specific architecture for real-time physics with
coarse-grain and fine-grain cores coupled together to
distribute the workload to achieve high performance.

Some Cray systems use a “chained FPU” design.
However, these are essentially just forwarding paths across
different FUs. While this connectivity reduces register
accesses, the FPU itself was not redesigned the way the
PEPSC FPU is. In [26], the Yehia et al. create a compound
functional unit used to accelerate a variety of different
applications but do not optimize the functional unit by
removing overlapping hardware the way that this work’s
FPU chaining implementation does; further, it provides a
solution that is more amenable for use as a coprocessor
rather than a within datapath FU. Other works which
arrange FPUs in 2D matrix like [9] have dedicated
interconnect between FPUs. The overhead of such infra-
structure is not feasible at the power/performance point
that this work is interested in.

An alternative technique to mitigate the serialization
problem of modern GPUs was presented in [8]. This
“dynamic warp formation” technique collects warps of SIMT
threads in Nvidia GPUs that branch in the same direction.
This technique is quite effective but is limited in that the
relative position of a thread within a warp can never change
in order to maintain program correctness.

Hardware-based stride prefetchers have been in existence
for some time [4], [7]. Even though the current trend in data
prefetching [6] is to look for correlation in data accesses, we
feel that a simple strategy is more effective for scientific
applications which have more regular access patterns.
Variation of degree has been studied by [19]. They take
periodic samples of various parameters of prefetching and
change the aggressiveness of prefetching at the end of every
sampling interval. Furthermore, they change the aggressive-
ness of the prefetcher in quanta, rather than reaching a
general sweet spot. Increasing degree one at a time is more
effective for scientific applications as the application execu-
tion times are quite high and the initial delay in ramping up
the stride degree is only a small factor. In [19], they fix the
aggressiveness of the prefetcher for a region which is
effective for the SPECint benchmarks, whereas in the
benchmarks that we have used, precise prefetching on a
per-stream basis is possible because of the regularity in
memory accesses. TAS [27] also increments the degree of
prefetching but in that work interval state is computed from
global time and on its basis the degree is increased in discrete
preset quanta.

6 CONCLUSION

The PEPSC architecture—a power-efficient architecture for
scientific computing—is presented in this work. When
running modern scientific, throughput intensive, dense
matrix style applications, it demonstrates a significant
improvement in performance/power efficiency over existing
off-the-shelf processors. This architecture was designed by
addressing specific sources of inefficiencies in the current
state-of-the-art processors. Architectural improvements in-
clude an efficient chained-operation datapath to reduce
register file accesses and computation latency, an intelligent
data prefetching mechanism to mitigate memory access
penalties, and a finely controllable SIMD datapath to exploit
data-level parallelism while mitigating any control diver-
gence penalty. The PEPSC processor provides a perfor-
mance/power efficiency improvement of more than 10X over
modern GPUs. While a single domain-specific design is
presented here, many of the architectural techniques intro-
duced are general enough to be deployed on current designs.
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