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Approximate computing, where computation accuracy is traded off for better performance or higher data
throughput, is one solution that can help data processing keep pace with the current and growing abundance
of information. For particular domains, such as multimedia and learning algorithms, approximation is com-
monly used today. We consider automation to be essential to provide transparent approximation, and we
show that larger benefits can be achieved by constructing the approximation techniques to fit the underlying
hardware. Our target platform is the GPU because of its high performance capabilities and difficult program-
ming challenges that can be alleviated with proper automation. Our approach—SAGE—combines a static
compiler that automatically generates a set of CUDA kernels with varying levels of approximation with a
runtime system that iteratively selects among the available kernels to achieve speedup while adhering to a
target output quality set by the user. The SAGE compiler employs three optimization techniques to gener-
ate approximate kernels that exploit the GPU microarchitecture: selective discarding of atomic operations,
data packing, and thread fusion. Across a set of machine learning and image processing kernels, SAGE’s
approximation yields an average of 2.5× speedup with less than 10% quality loss compared to the accurate
execution on a NVIDIA GTX 560 GPU.
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1. INTRODUCTION

To keep up with information growth, companies such as Microsoft, Google, and Amazon
are investing in larger data centers with thousands of machines equipped with mul-
ticore processors to provide the necessary processing capability on a yearly basis. The
latest industry reports show that in the next decade, the amount of information will
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Fig. 1. Application of image blurring filter with varying degrees of output quality. Four levels of output
quality are shown: 100%, 95%, 90%, and 86%.

Fig. 2. Clustering of a sample dataset into four clusters using the K-Means algorithm. Exact and approxi-
mate clusters’ centers are also shown at four levels of output quality: 100%, 95%, 90%, and 65%.

expand by a factor of 50, whereas the number of servers will only grow by a factor of
10 [EMC Corporation 2011]. At this rate, it will become more expensive for companies
to provide the compute and storage capacity required to keep pace with the growth of
information. To address this issue, one promising solution is to perform approximate
computations on massively data-parallel architectures, such as GPUs, and trade the
accuracy of the results for computation throughput.

There are many domains where it is acceptable to use approximation techniques.
In such cases, some variation in the output is acceptable, and some degree of quality
degradation is tolerable. Many image, audio, and video processing algorithms use ap-
proximation techniques to compress and encode multimedia data to various degrees
that provide trade-offs between size and correctness, such as lossy compression tech-
niques. For example, while trying to smooth an image, the exact output value of a pixel
can vary. If the output quality is acceptable for the user or the quality degradation is
not perceivable, approximation can be employed to improve the performance. In the
machine learning domain, exact learning and inference is often computationally in-
tractable due to the large size of input data. To mitigate this, approximate methods are
widely used to learn realistic models from large datasets by trading off computation
time for accuracy [Kulesza and Pereira 2008; Shindler et al. 2011]. We believe that as
the amount of information continues to grow, approximation techniques will become
ubiquitous to make processing such information feasible.

To illustrate this behavior more concretely, consider the two examples shown in
Figures 1 and 2. Figure 1 shows the output of a blurring filter applied to an image
with varying degrees of quality loss. The left-most image shows the correct output, and
the subsequent images to the right show the results with 5%, 10%, and 14% quality
loss, respectively. For most people, it is difficult to observe any significant differences
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between the first three images. Therefore, a range of outputs are acceptable. However,
the fourth image is noticeably distorted and would be unacceptable to many users. This
illustrates that limited losses in output quality may be unnoticeable, but approximation
must be controlled and closely monitored to ensure acceptable quality of results.

Figure 2 provides a similar set of results, but for the K-Means data clustering algo-
rithm. The left-most image shows the correct output: each input data (dot) is clustered
into one of four groups, as indicated by the color of the dot with the centroid of each
cluster marked by the triangle. The subsequent images show the results with 5%, 10%,
and 35% quality loss, respectively. In each image, the dots colored red represent the
misclassified data points, and the X’s show the approximate centroids. Again, for small
amounts of quality loss (three left-most images), the application output largely matches
the correct output due to the inherent error tolerance of data clustering. However, the
right-most image shows poor results, particularly for one of the clusters (green cluster),
with more than half the input data misclassified and the centroid substantially out of
position.

The idea of approximate computing is not a new one, and previous works have studied
this topic in the context of more traditional CPUs and proposed new programming mod-
els, compiler systems, and runtime systems to manage approximation [Rinard 2006,
2007; Agarwal et al. 2009; Baek and Chilimbi 2010; Sampson et al. 2011; Ansel et al.
2011; Esmaeilzadeh et al. 2012a]. In this work, we instead focus on approximation for
GPUs. GPUs represent affordable but powerful compute engines that can be used for
many of the domains that are amenable to approximation. However, in the context of
GPUs, previous approximation techniques have two limitations: (1) the programmer
is responsible for implementing and tuning most aspects of the approximation, and
(2) approximation is generally not cognizant of the hardware on which it is run. There
are several common bottlenecks on GPUs that can be alleviated with approximation.
These include the high cost of serialization, memory bandwidth limitations, and dimin-
ishing returns in performance as the degree of multithreading increases. Because many
variables affect each of these characteristics, it is very difficult and time consuming for
a programmer to manually implement and tune a kernel.

SAGE—our proposed framework for performing systematic runtime approximation
on GPUs—enables the programmer to implement a program once in CUDA, and de-
pending on the target output quality (TOQ) specified for the program, trade the accu-
racy for performance based on the evaluation metric provided by the user. SAGE has
two phases: offline compilation and runtime kernel management. During offline compi-
lation, SAGE performs approximation optimizations on each kernel to create multiple
versions with varying degrees of accuracy. At runtime, SAGE uses a greedy algorithm
to tune the parameters of the approximate kernels to identify configurations with high
performance and a quality that satisfies the TOQ. This approach reduces the overhead
of tuning, as measuring the quality and performance for all possible configurations can
be expensive. Since the behavior of approximate kernels may change during runtime,
SAGE periodically performs a calibration to check the output quality and performance,
updating the kernel configuration accordingly.

To automatically create approximate CUDA kernels, SAGE utilizes three optimiza-
tion techniques. The first optimization targets atomic operations, which are frequently
used in kernels where threads must sequentialize writes to a common variable (e.g.,
a histogram bucket). The atomic operation optimization selectively skips atomic op-
erations that cause frequent collisions and thus cause poor performance as threads
are sequentialized. The next optimization, data packing, reduces the number of bits
needed to represent input arrays, thereby sacrificing precision to reduce the number
of high-latency memory operations. The third optimization, thread fusion, eliminates
some thread computations by combining adjacent threads into one and replicating the
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output of one of the original threads. A common theme in these optimizations is to
exploit the specific microarchitectural characteristics of the GPU to achieve higher
performance gains than general methods, such as ignoring a random subset of the in-
put data or loop iterations [Agarwal et al. 2009], which are unaware of the underlying
hardware.

In summary, the main contributions of this work are as follows:

—The first static compilation and runtime system for automatic approximate execution
on GPUs

—Three GPU-specific approximation optimizations that are utilized to automatically
generate kernels with variable accuracy

—A greedy parameter tuning approach that is utilized to determine the tuning param-
eters for approximate versions

—A dynamic calibration system that monitors the output quality during execution to
maintain quality with a high degree of confidence and takes corrective actions to
stay within the bounds of target quality for each kernel

—Evaluation of the proposed system and comparison of four different modes of cali-
brations and monitoring systems

The rest of the article is organized as follows. Section 2 discusses why SAGE chooses
these three approximation optimizations. Section 3 explains how the SAGE framework
operates. Approximation optimizations used by SAGE are discussed in Section 4. The
results of using SAGE for various benchmarks are presented in Section 5. Section 6 dis-
cusses different quality monitoring techniques. Section 7 discusses the related work in
this area and how SAGE is different from previous works. The summary and conclusion
of this work is outlined in Section 8.

2. GPU PROGRAMMING MODEL AND APPROXIMATION OPPORTUNITIES

2.1. GPU Programming Model

The CUDA programming model is a multithreaded single instruction multiple data
(SIMD) model that enables implementation of general-purpose programs on hetero-
geneous GPU/CPU systems. A CUDA program consists of a host code segment that
contains the sequential portion of the program, which is run on the CPU, and a parallel
code segment that is launched from the host onto one or more GPU devices.

The threading abstraction in CUDA consists of three levels of hierarchy. The ba-
sic block of work is a single thread. A group of threads executing the same code are
combined together to form a thread block or simply a block. Together, these thread
blocks combine to form the parallel segments called grids, where each grid is sched-
uled onto a GPU at a time. Threads within a thread block are synchronized together
through a barrier operation ( syncthreads()). However, there is no explicit software or
hardware support for synchronization across thread blocks. Synchronization between
thread blocks is performed through the global memory of the GPU, and the barriers
needed for synchronization are handled by the host processor.

The memory abstraction in CUDA consists of multiple levels of hierarchy. The lowest
level of memory is registers, which are on-chip memories private to a single thread. The
next level of memory is shared memory, which is an on-chip memory shared only by
threads within the same thread block. Access latency to both the registers and shared
memory is very low. The next level of memory is local memory, which is an off-chip
memory private to a single thread. Local memory is mainly used as spill memory for
local arrays. Mapping arrays to shared memory instead of spilling to local memory can
provide much better performance. Finally, the last level of memory is global memory,
which is an off-chip memory accessible to all threads in the grid. This memory is used
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primarily to stream data in and out of the GPU from the host processor. The latency
for off-chip memory is 100 to 150× more than that of on-chip memories, but to exploit
some locality of data, two levels of caches are introduced to make this latency more
tolerable.

The CUDA programming model is an abstraction layer to access GPUs. NVIDIA
GPUs use a single instruction multiple thread (SIMT) model of execution where mul-
tiple thread blocks are mapped to streaming multiprocessors (SMs). Each SM contains
a number of processing elements referred to as streaming processors (SPs). A thread
executes on a single SP. Threads in a block are executed in smaller execution groups of
threads called warps. All threads in a warp share one program counter and execute the
same instructions. If conditional branches within a warp take different paths, causing
control path divergence, the warp will execute each branch path serially, stalling the
other paths until all of the paths are complete. Such control path divergences severely
degrade the performance.

Because off-chip global memory access is very slow, GPUs support coalesced memory
accesses. Coalescing memory accesses allows one bulk memory request from multiple
threads in a half-warp (full warp in Fermi and Kepler architectures) to be sent to
global memory instead of multiple separate requests. To coalesce memory accesses
in recent generations of GPUs, all accesses of a warp should be adjacent and in the
same cache line. Effective memory bandwidth is an order of magnitude lower than
using noncoalesced memory accesses, which further signifies the importance of memory
coalescing for achieving high performance.

To avoid race conditions, CUDA supports atomic operations. An atomic construct
performs a read-modify-write atomic operation on one element residing in global or
shared memory. For example, atomicInc() reads a 32-bit word from an address in
the global or shared memory, increments it, and writes the result back to the same
address. The operation is atomic in the sense that it is guaranteed to be performed
without interference from other threads. In other words, no other thread can access
this address until the operation is complete [NVIDIA 2013].

2.2. Approximation Opportunities

The central idea behind SAGE is to automatically detect and systematically skip or
simplify processing of the operations that are particularly expensive to perform on
GPUs. To do this, SAGE exploits three specific characteristics of GPUs.

Contention caused by atomic operations has a significant impact on performance.
Atomic operations are widely used in parallel sorting and reduction operations
[NVIDIA 2013] so that many different threads can update the same memory ad-
dress in parallel code, as seen in the NVIDIA SDK Histogram application. As the
GPU serializes accesses to the same element, performance of atomic instructions is in-
versely proportional to the number of threads per warp that access the same address.
Figure 3(a) shows how the performance of atomicAdd decreases rapidly as the number
of conflicts per warp increases for the Histogram benchmark. SAGE’s first optimization
improves performance by skipping atomic instructions with high contention.

Efficiently utilizing memory bandwidth is essential to improving performance. Con-
sidering the large number of cores on a GPU, achieving high throughput often depends
on how quickly these cores can access data. Optimizing global memory bandwidth
utilization is therefore an important factor in improving performance on a GPU.
Figure 3(b) shows the impact of the number of memory accesses per thread on the total
performance of a synthetic benchmark. In this example, the number of computational
instructions per thread is constant, and only the number of memory accesses per
thread is varied. As the relative number of memory accesses increases, performance
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Fig. 3. Three GPU characteristics that SAGE’s optimizations exploit. These experiments are performed on
a NVIDIA GTX 560 GPU. (a) The graph shows how accessing the same element by atomic instructions affects
the performance for the Histogram kernel. (b) This graph illustrates how the number of memory accesses
impacts performance while the number of computational instructions per thread remains the same for a
synthetic benchmark. (c) The graph shows how the number of thread blocks impacts the performance of the
Blackscholes kernel.
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Fig. 4. An overview of the SAGE framework.

deteriorates as the memory bandwidth limitations of the GPU are exposed. The
second optimization improves the memory bandwidth utilization by packing the input
elements to reduce the number of memory accesses.

As long as there are enough threads, the number of threads does not significantly
affect the performance. Since the number of threads running on the GPU is usually
more than 10× the number of cores, fewer threads can finish the same job with simi-
lar performance. Figure 3(c) illustrates how changing the number of thread blocks in
a kernel can affect its performance for the Blackscholes benchmark with 4M options.
The baseline is the same kernel using 480 blocks. This figure shows that even 48 blocks
(10% of the baseline) can utilize most of the GPU resources and achieve comparable
performance. Based on these findings, SAGE’s third optimization performs a low over-
head thread fusion that joins together adjacent threads. After fusing threads, SAGE
computes the output for one of the original, or active, threads and broadcasts it to
the other neighboring inactive threads. By skipping the computation of the inactive
threads, SAGE can achieve considerable performance gain.

3. SAGE OVERVIEW

The main goal of the SAGE framework is to trade accuracy for performance on GPUs.
To achieve this goal, SAGE accepts CUDA code and a user-defined evaluation metric
as inputs and automatically generates approximate kernels with varying degrees of
accuracy using optimizations designed for GPUs. The SAGE framework consists of two
main steps: offline compilation and runtime kernel management. Figure 4 shows the
overall operation of the SAGE compiler framework and runtime.

The offline compilation phase investigates the input code and finds opportunities
for trading accuracy for performance. This phase automatically generates approximate
versions of CUDA kernels using three optimizations that are tailored for GPU-enabled
systems. These optimizations systematically detect and skip expensive GPU opera-
tions. Each optimization has its own tuning parameters that SAGE uses to manage
the performance–accuracy trade-off. These optimizations are discussed in Section 4.

The runtime management phase dynamically selects the best approximate kernel
whose output quality is better than the user-defined TOQ. The runtime management
phase consists of three parts: tuning, preprocessing, and optimization calibration. Us-
ing a greedy algorithm, tuning finds the fastest kernel with better quality than the
TOQ. The main goal of preprocessing is to make sure that the data needed by these
approximate kernels is ready before execution. As the program behavior can change
during runtime, SAGE monitors the accuracy and performance dynamically in the cal-
ibration phase. If the output quality does not meet the TOQ, calibration chooses a less
aggressive approximate kernel to improve the output quality.
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Fig. 5. An example of the tuning process. A node, K(X, Y ), is a kernel optimized using two approximation
methods. X and Y are the aggressiveness of the first and second optimizations, respectively.

3.1. Tuning

The goal of the tuning phase is to find the fastest approximate kernel whose output
quality satisfies the TOQ. Instead of searching all possible configurations, SAGE uses
an online greedy tree algorithm to find reasonable approximation parameters as fast
as possible to reduce the tuning overhead. Each node in the tree corresponds to an
approximate kernel with specific parameters, as shown in Figure 5. All nodes have the
same number of children as the number of optimizations used by SAGE, which is two
in this example. Each child node is more aggressive than its parent for that specific
optimization, which means that a child node has lower output quality than its parent.
At the root of the tree is the unmodified, accurate version of the program. SAGE starts
from the exact version and uses a steepest-ascent hill climbing algorithm [Russell and
Norvig 2009] to reach the best speedup while not violating the TOQ. SAGE checks all
children of each node and chooses the one with the highest speedup that satisfies the
TOQ. If the two nodes have similar speedups, the node with better output quality will
be chosen. This process will continue until tuning finds one of three types of nodes:

(1) A node that outperforms its siblings with an output quality close to the TOQ. Tuning
stops when a node has an output quality within an adjustable margin above the
TOQ. This margin can be used to control the speed of tuning and how close the
output quality is to the TOQ.

(2) A node whose children’s output quality does not satisfy the TOQ.
(3) A node whose children have less speedup.

In the example shown in Figure 5, it takes six invocations (nodes) for the tuner to find
the final kernel. Once tuning completes, SAGE continues the execution by launching
the kernel that the tuner found. SAGE also stores the tuning path, or the path from the
root to the final node, and uses it in the calibration phase to choose a less aggressive
node in case the output quality drops below the TOQ. If this occurs, the calibration
phase traverses back along the tuning path until the output quality again satisfies the
TOQ.

3.2. Preprocessing

Two of SAGE’s optimizations need preprocessing to prepare the data necessary for
the generated kernel. For the data packing optimization, preprocessing packs the in-
put data for the next kernel. For the atomic operation optimization, the preprocessor
checks input data to predict how much contention occurs during execution of atomic
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Fig. 6. SAGE’s confidence in output quality versus the number of calibrations points for three different
confidence intervals (CI).

instructions. Details of preprocessing for these approximation optimizations are de-
scribed in Section 4.

SAGE runs the preprocessor on the CPU in parallel to GPU execution using syn-
chronous execution. At each time quantum, the GPU runs the selected kernel on a
chunk of data while the CPU preprocesses the next chunk before transferring it to
GPU memory. This way, preprocessing is completely overlapped by kernel execution
and its overhead is negligible.

3.3. Optimization Calibration

As the program behavior can change at runtime, SAGE monitors the accuracy and per-
formance dynamically. After every N invocation of the kernel, the calibration unit runs
both the exact and approximate kernels on the GPU to check the output quality and
performance. We call N the calibration interval. Computing the output quality is also
executed on the GPU in parallel to reduce the overhead of calibration. If the measured
quality is lower than the TOQ, SAGE switches to a slower but more precise version
of the program. These decisions are based on the tuning path previously described in
Section 3.1. By backtracking along the tuning path, SAGE identifies more accurate
kernels and calibrates their quality. This process will continue until the output quality
satisfies the TOQ. Section 6 discusses different variations of the quality monitoring
techniques and their impact on the overall output quality and performance.

Although checking every Nth invocation does not guarantee that all invocations sat-
isfy the TOQ, checking more samples will increase our confidence that the quality of the
output is acceptable. To compute the confidence, we assume that the prior distribution
is uniform. Therefore, the posterior distribution will be BETA(k + 1, n + 1 − k), where
n is the number of observed samples and k is the number of samples that satisfies
the hypothesis [Tamhane and Dunlop 2000]. In this case, the hypothesis is that the
output quality is better than the TOQ. Figure 6 shows how confidence increases as
more samples are checked for three different confidence intervals. For example, for a
confidence interval equal to 95% and 50 calibration points, confidence is 93%. In other
words, after checking 50 invocations, we are 93% confident that more than 95% of the
invocations have better quality than the TOQ. If there is an application working on
frames of a video at a rate of 33 frames per second and our calibration occurs every 10
kernel invocations, the runtime will be 99.99% confident that more than 95% of output
frames will meet the TOQ in less than a minute.

At the beginning of execution, there is low confidence and the runtime management
system performs calibration more frequently to converge to a stable solution faster. As
confidence improves, the interval between two calibration points is gradually increased
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so that the overhead of calibration is reduced. Every time the runtime management
needs to change the selected kernel, the interval between calibrations is reset to a
minimum width and the confidence is reset to zero.

4. APPROXIMATION OPTIMIZATIONS

This section details three GPU optimizations that SAGE applies to improve perfor-
mance by sacrificing some accuracy: atomic operation, data packing, and thread fusion.

4.1. Atomic Operation Optimization

Idea: An atomic operation is capable of reading, modifying, and writing a value back to
memory without interference from any other thread. All threads that try to access the
same location are sequentialized to ensure atomicity. Clearly, as more threads access
the same location, performance suffers due to serialization. However, if all threads
access different locations, there is no conflict and the overhead of the atomic instruction
is minimal. This optimization discards instances of atomic instructions with the highest
degree of conflicts to eliminate execution segments that are predominantly serial while
keeping those with little or no conflicts. As a result of reducing serialization, SAGE can
improve performance.

Detection: SAGE first finds all atomic operations inside loops used in the input CUDA
kernel and categorizes them based on their loop. For each category, SAGE generates
two approximate kernels that will be discussed later.

To make sure that dropping atomic instructions does not affect the control flow of the
program, SAGE checks the usage of the output array of atomic operations. It traces the
control and data dependence graph to identify the branches that depend on the value
of the array. If it finds any, SAGE does not apply this optimization. To detect failed
convergence due to dropped atomic operations, a watchdog timer can be instrumented
around the kernel launch to prevent infinite loops.

Implementation: The atomic operation optimization performs preprocessing to pre-
dict the most popular address for the next invocation of the kernel while the GPU
continues execution of the current invocation. To accomplish this, SAGE uses an ap-
proach introduced in MCUDA [Stratton et al. 2008] to translate the kernel’s CUDA
code to C code and then profiles this code on the CPU. To expedite preprocessing, SAGE
marks the addresses as live variables in the translated version and performs dead
code elimination to remove instructions that are not used to generate addresses. In
cases where the GPU modifies addresses during execution, the CPU prediction may be
inaccurate. SAGE addresses this by launching a GPU kernel to find the most popular
address. The overhead of preprocessing will be discussed in Section 5.

This optimization uses preprocessing results to find the number of conflicts per warp
during runtime as follows. First, it uses the CUDA ballot function1 to determine
which threads access the popular address. Next, it performs a population count on the

ballot’s result using the popc function2 to find the number of threads within a warp
that access the popular address.

By using runtime conflict detection, the atomic operation optimization generates two
types of approximate kernels: kerM and kerL. kerM skips one iteration that contains the
most conflicts. kerL skips all iterations except the one containing the least number of
conflicts. Both types of kernels contain the code necessary to detect conflicts for each

1 ballot() takes a predicate as input and evaluates the predicate for all threads of the warp. It returns an
integer whose Nth bit is set if and only if the predicate is nonzero for the Nth thread of the warp [NVIDIA
2013].
2 popc() sums the number of set bits in an integer input [NVIDIA 2013].
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Fig. 7. An illustration of how atomic operation optimization reduces the number of iterations in each thread.

loop iteration at runtime. As all threads within a warp continue to execute the same
iterations, no control divergence overhead is added by this optimization. Since kerL
skips more loop iterations than kerM, kerL is more aggressive than kerM.

Figure 7 illustrates how kerM and kerL use conflict detection to discard atomic instruc-
tions with a large number of conflicts for sample code with four iterations per thread
(IPTs). In this example, each iteration contains an atomic operation. The number of
conflicts in each iteration is shown on the left in Figure 7(a).

As shown in Figure 7(b), kerM computes the number of conflicts for the first two
iterations and executes the one with fewer conflicts (Iteration 0). kerM continues exe-
cution by computing the number of conflicts for Iteration 2. Since Iteration 2 has more
conflicts than the previously skipped Iteration 1, kerM executes Iteration 1 and skips
Iteration 2. Finally, SAGE executes Iteration 3 because it has fewer conflicts than It-
eration 2, which was most recently skipped. At the end of the kernel’s execution, kerM
detected and skipped the loop iteration that had the most conflicts (Iteration 2) us-
ing SAGE’s online conflict detection. It accomplished this without needing to run the
loop once to gather conflict data, and a second time to apply approximation using this
data.

On the other hand, kerL performs conflict detection by running the original loop
without any atomic instructions. This finds the iteration with the minimum number of
conflicts per warp. After conflict detection, kerL executes the found iteration, this time
running the atomic instruction. In the example in Figure 7(c), kerL selected Iteration 0
after it found that this iteration had the minimum number of conflicts (two).

Parameter tuning: To tune how many atomic instructions kerM or kerL skip, SAGE
modifies the number of blocks of the CUDA kernel. Equations (1) through (3) show the
relationship between the number of blocks and the percentage of skipped instructions
for both kerM and kerL. Since the number of threads per block (TPBs) is usually constant,
if the total number of iterations (the trip count of the loop) is constant, more blocks will
increase the number of threads and reduce the number of IPTs, which can be derived
from Equation (1). A lower number of IPTs results in more dropped iterations, which
can be computed by Equation (2). However, even with the highest possible number of
blocks (two IPTs), the dropped percentage of iterations is at most 50% for kerM. To
discard more than 50% of iterations, tuning switches to kerL. With this kernel, the
dropped iteration percentage can go from 50% to near 100%, which can be computed
using Equation (3). Figure 8 shows how this optimization affects the percentage of
dropped iterations by varying the number of blocks per kernel for two different input
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Fig. 8. SAGE controls the number of dropped iterations using Equations (1) through (3) by changing the
number of blocks for one and four million data points. kerM drops only one iteration per thread, and kerL
executes only one iteration per thread. In this case, the threads per block (TPBs) set to 256.

sizes.

total = IPT × TPB × Blocks (1)

skipped kerM = 1
IPT

× TotalIts (2)

skipped kerL = IPT − 1
IPT

× TotalIts (3)

4.2. Data Packing Optimization

Idea: In GPUs, memory bandwidth is a critical shared resource that often throttles
performance, as the combined data required by all of the threads often exceeds the
memory system’s capabilities. To overcome this limitation, the data packing optimiza-
tion uses a lossy compression approach to sacrifice the accuracy of input data to lower
the memory bandwidth requirements of a kernel. SAGE accomplishes this by reducing
the number of memory accesses by packing the input data, thereby accessing more
data with fewer requests but at the cost of more computation. This optimization packs
the read-only input data in the preprocessing phase and stores it in the global memory.
Each thread that accesses the global memory is required to unpack the data first. This
approach is more beneficial for iterative applications that read the same array in every
iteration. Most iterative machine learning applications perform the same computation
on the same data repeatedly until convergence is achieved.

Unlike other approximate data type techniques used for CPUs that are implemented
in hardware and target computations [Sampson et al. 2011], this software optimiza-
tion’s goal is to reduce the number of memory requests with an overhead of a few
additional computation instructions. All computations are done with full precision af-
ter unpacking. The added computation overhead is justifiable because for most GPU
kernels that are memory bound, it is more beneficial to optimize memory accesses at
the cost of a few extra computation instructions than to optimize the computation of
the kernel.

Detection: To apply this optimization, SAGE finds the read-only input arrays of
kernels. As unpacking occurs in each thread, the memory access pattern must be known
statically so that SAGE is able to pack the data before the kernel executes. In many
applications that operate on a matrix, each thread is working on the columns/rows of
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Fig. 9. An example of how the data packing optimization reduces the number of global memory accesses.

the input matrix. Therefore, SAGE packs the columns/rows of the input matrix, and
each thread must unpack a column/row before performing the computation. For each
candidate input array, SAGE generates an approximate kernel.

It is possible that this optimization causes a divide by zero situation, as the least
significant bits are truncated. However, the GPU does not throw divide by zero excep-
tions. Rather, it produces a large number as the result. Therefore, the program will
continue without stopping, and only the output quality may be affected.

Implementation: This optimization performs a preprocessing step that normalizes
the data in the input matrix to the range [0,1). The scaling coefficients used are stored
in the constant memory of the GPU.

After deciding the number of quantization bits (q bits), the preprocessor packs
ratio(= number of bits per int

q bits ) number of floats into one unsigned integer. The packing
process is done by keeping the most significant q bits of each float and truncating
the rest of the bits. Figure 9(a) shows the original memory accesses before applying
the data packing optimization, and Figure 9(b) illustrates an example of packing two
floats in the place of one integer. When a GPU thread accesses the packed data, it
reads an unsigned integer. Each thread unpacks that integer and rescales the data
by using coefficients residing in the constant memory and uses the results for the
computation.

Parameter tuning: To control the accuracy of this optimization, SAGE sweeps the
number of quantization bits per float from 16 to 2 to change the memory access ratio
from 2 to 16.
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4.3. Thread Fusion Optimization

Idea: The underlying idea of the thread fusion optimization is based on the assumption
that outputs of adjacent threads are similar to each other. For domains such as image or
video processing, where neighboring pixels tend to have similar values, this assumption
is often true. In this approach, SAGE executes a single thread out of every group of
consecutive threads and copies its output to the other inactive threads. By doing this,
most of the computations of the inactive threads are eliminated.

Detection: The thread fusion approach works for kernels with threads that do not
share data. In kernels that use shared memory, all threads both read and write data
to the shared memory. Therefore, by deactivating some of the threads, the output of
active threads might be changed as well, and this will result in an unacceptable output
quality. Therefore, SAGE uses this optimization for kernels that do not use shared
memory.

Implementation: In this approach, one thread computes its result and copies its
output to adjacent threads. This data movement can be done through shared memory,
but the overhead of sharing data is quite high due to synchronizations and shared
memory latency. It also introduces control divergence overhead, and the resulting
execution is too slow to make the optimization worthwhile. Instead, SAGE reduces the
number of threads through fusion. Fused threads compute the output data for one of
the original threads, which are called active threads. Fused threads copy the results of
the active threads to the inactive threads. Since this data movement occurs inside the
fused thread, the transferring overhead is much less than that of using shared memory.
However, to copy the data, fused threads should compute output addresses for inactive
threads.

To fuse threads, SAGE translates the block ID and thread ID of the fused threads to
use in the active threads. For inactive threads, SAGE walks back up the use-def chain
to mark instructions that are necessary to compute the output index. Fused threads
compute these instructions for all inactive threads to find which addresses they write
to and copy the active thread output values to those addresses.

There are two ways to fuse the threads: one involves reducing the number of TPBs,
and the other one involves fusing blocks in addition to threads and reducing the number
of blocks of the kernel. Since reducing the number of TPBs results in poor resource
utilization, SAGE additionally fuses blocks of each kernel. Figure 10(a) shows the
original thread configuration before applying the optimization, and Figure 10(b) shows
the thread configuration after fusing two adjacent threads and thread blocks. In the new
configuration, each thread computes one output element and writes it to two memory
locations. Although the thread fusion optimization reduces the overall computations
performed by the kernel, reducing more blocks may result in poor GPU utilization, as
shown in Figure 3(c). Therefore, at some point, SAGE stops the fusion process, as it
eventually leads to slowdown.

Parameter tuning: SAGE changes the number of threads that are fused together to
control performance and output accuracy.

5. EXPERIMENTAL EVALUATION

In this section, we show how the optimizations in SAGE affect the execution time and
accuracy of different applications. Ten applications from two domains are used: ma-
chine learning and image processing. A summary of the application characteristics is
shown in Table I. As each optimization targets specific, common performance bottle-
necks of GPU applications, each application has usually one or two bottlenecks that
SAGE optimizes, as described in Table I.
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Fig. 10. The thread fusion optimization reduces the computation executed by this kernel by fusing two
adjacent threads together and broadcasting the single output for both threads.

Table I. Application Specifications

Domain Input Data
Approximation

Opportunity Evaluation Metric
K-Means ML 1M random points,

32 features
Atomic, Packing Mean relative

difference
Naive Bayes ML KDD Cup [Frank

and Asuncion 2010]
Atomic Mean relative

difference
Histogram IP 2,048 × 2,048

images
Atomic Mean relative

difference
SVM ML USPS [Frank and

Asuncion 2010]
Fusion, Packing Mean relative

difference
Fuzzy K-Means ML KDD Cup [Frank

and Asuncion 2010]
Packing Mean relative

difference
Mean Shift ML KDD Cup [Frank

and Asuncion 2010]
Packing Mean relative

difference
Image
Binarization

IP 2,048 × 2,048
images

Fusion 1 if incorrect, 0 if
correct

Dynamic Range
Compression

IP 2,048 × 2,048
images

Fusion Mean pixel
difference

Mean Filter IP 2,048 × 2,048
images

Fusion Mean pixel
difference

Gaussian
Smoothing

IP 2,048 × 2,048
images

Fusion Mean pixel
difference

ML, machine learning; IP, image processing.
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5.1. Applications

The Naive Bayes Classifier is based on the Bayesian theorem. The training process
is done by counting the number of points in each cluster and the number of different
feature values in each cluster. To implement Naive Bayes Classifier training, we divide
the data points between the threads, and each thread uses an atomicInc operation to
compute number of points in each cluster. This implementation is based on OptiML’s
implementation [Sujeeth et al. 2011].

K-Means is a commonly used clustering algorithm used for data mining. This algo-
rithm has two steps that are iteratively executed. The first step computes the centroids
of all clusters. The second step finds the nearest centroid to each point. We launch one
kernel to compute all centroids. Each thread processes a chunk of data points, and
each block has an intermediate sum and the number of points for all clusters. Atomic
instructions are used in this kernel because different threads may update the same
cluster’s sum or number. After launching this kernel, a reduction operation adds these
intermediate sums and counters to compute centroids. As each iteration reads the
same input data and changes the centroids based on that, SAGE applies both atomic
operation and data packing optimizations to this benchmark.

Support vector machines (SVMs) are used for analyzing and recognizing patterns
in the input data. The standard two-class SVM takes a set of input data and for
each input predicts which class it belongs to from the two possible classes. We used
the implementation of Catanzaro et al. [2008] for this application. Fuzzy K-Means is
similar to K-Means clustering; however, in fuzzy clustering, each point has a degree
of belonging to clusters rather than belonging completely to just one cluster. Unlike
K-Means, cluster centroids are a weighted average of all data points. Therefore, there
is no need to use atomic operations.

Mean Shift Clustering is a nonparametric clustering that does not need to know the
number of clusters a priori. The main idea behind this application is to shift the points
toward local density points at each iteration. Points that end up in approximately the
same place belong to the same cluster. Histogram is one of the most common kernels
used in image processing applications, such as histogram equalization for contrast
enhancement or image segmentation. Histogram plots the number of pixels for each
tonal value.

Image Binarization converts an image to a black and white image. This application
is used before optical character recognition. Dynamic Range Compression increases the
dynamic range of the image. Mean Filter is a smoothing filter used to reduce noise in
images. It smoothes an image by replacing each pixel with the average intensity of its
neighbors. Gaussian Smoothing is another smoothing filter used to blur images. We
used the texture memory to store the input image to improve the performance of these
two applications.

5.2. Methodology

The SAGE compilation phases are implemented in the backend of the Cetus compiler
[Lee et al. 2003]. We modified the C code generator in Cetus to read and generate CUDA
code. SAGE’s output codes are compiled for execution on the GPU using NVIDIA nvcc
4.0. GCC 4.4.6 is used to generate the ×86 binary for execution on the host processor.
The target system has an Intel Core i7 CPU and an NVIDIA GTX 560 GPU with 2GB
GDDR5 global memory.

Output quality: To assess the quality of each application’s output, we used an
application-specific evaluation metric as shown in Table 1. Since SAGE uses an on-
line calibration, it is limited to a computationally simple metric that minimizes the
overhead. In addition, the chosen metric is normalized (0% to 100%) so that we can
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present results that can easily be compared to one another. It is very easy to mod-
ify SAGE so that different metrics, like PSNR or MSE, can be used. In all cases, we
compare the output of the original application to the output of the approximate kernel.

Based on a case study by Misailovic et al. [2010], the preferred quality loss range is
between 0% and 10% for applications such as video decoding. Other works [Sampson
et al. 2011; Baek and Chilimbi 2010; Esmaeilzadeh et al. 2012b] have benchmarks that
have quality loss of around 10%. We also used the LIVE image quality assessment
database [Sheikh et al. 2006a, 2006b] to verify this threshold. Images in this database
have different levels of distortion by white noise and were evaluated by 24 human
subjects. The quality scale is divided into five equal portions: Bad, Poor, Fair, Good,
and Excellent. We measured output quality of images used in the LIVE study with
our evaluation metric. The results show that more than 86% of images with quality
loss of less than 10% were evaluated as Good or Excellent by human subjects in the
LIVE study. Therefore, we used 90% as the TOQ in our experiments. We also perform
our experiments with 95% target quality to show how SAGE trades off accuracy for
performance per application.

Loop perforation: SAGE optimizations are compared to another well-known and
general approximation approach, loop perforation [Agarwal et al. 2009], which drops a
set of iterations of a loop. For atomic operation and data packing optimizations, we drop
every Nth iteration of the loops. For thread fusion optimization, dropping the Nth thread
results in poor performance due to thread divergence. Instead, we dropped the last N
iterations to avoid such divergence. We changed N to control the speedup and output
quality generated by loop perforation. The loop perforation technique is only applied
to loops that are modified by SAGE to evaluate the efficiency of SAGE’s optimizations.
Additionally, it should be noted that loop perforation and data packing are orthogonal
approaches and can be used together.

5.3. Performance Improvement

Figure 11(a) and (b) show the results for all applications with a TOQ of 95% and 90%,
respectively. Speedup is compared to the exact execution of each program. As computing
centroids in K-Means is done by averaging over points in that cluster, ignoring some
percentage of data points does not dramatically change the final result. However, since
computing the centroids is not the dominant part of K-Means, the K-Means application
achieves better performance by using the data packing optimization rather than the
atomic operation optimization. In Section 5.4, we show how SAGE gets better speedup
by combining these optimizations.

For the Naive Bayes Classifier, computing probabilities is similar to averaging in
K-Means. Since the atomic instructions take most of the execution time in this appli-
cation, SAGE gets a large speedup by using this approximation optimization. On the
other hand, loop perforation proportionally decreases the output quality. By decreasing
the TOQ from 95% to 90%, the speedup increased from 3.6× to 6.4×.

For the Histogram application, although most of the execution time is dedicated to
atomic operations, SAGE gets a smaller speedup than K-Means. The reason is that
unlike K-Means, Histogram does not have similar averaging to compute the results,
and dropping data points directly affects the output quality. Therefore, quality loss is
increased rapidly by dropping more data, and as a result, the speedup is only 1.45× for
90% TOQ. The data packing optimization shows strong performance for memory-bound
applications such as Fuzzy K-Means. Fuzzy K-Means is one of the more error-tolerant
applications, and ignoring half of the input bits does not affect the output quality
significantly. SVM also shows good speedup when using 16 bits and 8 bits per float, but
the quality drops below the TOQ at 4 bits per float. For Mean Shift, the speedup does
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Fig. 11. Performance for all applications approximated using SAGE compared to the loop perforation tech-
nique for two different TOQs. The results are relative to the accurate execution of each application on the
GPU.

not increase with more packing. Therefore, the speedup of SAGE is similar for both
90% and 95% TOQ.

SAGE uses the thread fusion optimization for four applications: Dynamic Range
Compression, Image Binarization, Mean Filter, and Gaussian Smoothing. We used
2,048 × 2,048 pixel images to compute the quality for these applications. Dynamic
Range Compression and Image Binarization performances are reduced after fusing
more than four threads. This is mainly because of the memory accesses and fewer
numbers of blocks needed to fully utilize the GPU. Therefore, tuning stops increasing
the aggressiveness of the optimization because it does not provide any further speedup.
As seen in the figures, these two applications show the same speedup for both quality
targets. However, for Mean Filter and Gaussian Smoothing, increasing the number of
fused threads results in better performance. By decreasing the TOQ, the speedup of
Mean Filter goes from 1.7× to 3.1×.
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Fig. 12. Performance-accuracy curves for three sample applications. The atomic operation optimization is
used for Naive Bayes Classifier. The data packing is used for Fuzzy K-Means application, and the thread
Fusion is applied to Mean Filter.

Fig. 13. CDF of final error for each element of all applications’ output with the TOQ equal to 90%. Most
output elements (more than 78%) have less than 10% error.

Performance-accuracy curve: Figure 12 shows a performance-accuracy curve for
three sample applications to show how SAGE manages the speedup-accuracy trade-
off. Here, the atomic operation optimization is used for Naive Bayes. As the percent-
age of dropped iterations is increased, both quality loss and speedup are increased.
Since SAGE changes the approximate kernel from kernelmax to kernelmin, there is
a performance jump between 96% and 95% output qualities. SAGE uses the data
packing optimization for Fuzzy K-Means and controls the speedup by changing the
number of floats that are packed. The performance-accuracy curve for Mean Fil-
ter is also shown in Figure 12 to show how the thread fusion optimization impacts
speedup and quality. By fusing more threads, both speedup and quality loss are in-
creased. After fusing more than eight threads, speedup decreases because of poor GPU
utilization.

Error distribution: To study the application-level quality loss in more detail,
Figure 13 shows the cumulative distribution function (CDF) of final error for each
element of the application’s output with a TOQ of 90%. The CDF shows the distribu-
tion of output errors among an application’s output elements and shows that only a
modest number of output elements see large error. The majority (78% to 100%) of each
transformed application’s output elements have an error of less than 10%. As can be
seen in this figure, for Image Binarization, most of the pixels have 0% error but others
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Fig. 14. Performance and output quality for two applications for 100 invocations with different input sets.
The horizontal dashed line represents the TOQ.

have 100% error. These pixels correspond to the edges of objects in the picture where
adjacent threads outputs are dissimilar.

5.4. Case Studies

This section describes how SAGE uses the tuning and calibration phase to control
the accuracy and performance for two example applications. In both cases, the tuning
margin is set to 1%, which means that tuning stops if it finds a kernel with output
quality 1% better than the TOQ. In these examples, we assumed that we have enough
confidence about the output quality to show how the calibration interval changes during
runtime.

In the first example, we run the Gaussian Smoothing application on 100 consecutive
frames of a video. Figure 14(a) shows the accumulative speedup and accuracy for
this example. For this experiment, we assume that the TOQ is 90%. SAGE starts
with the exact kernel and increases the aggressiveness of the optimization until the
output quality is near 90%. To compute the output quality for tuning, SAGE runs
the approximate and exact versions one after the other. Therefore, during tuning, the
output quality that the user observes is 100%, and there is a temporary slowdown. As
seen in Figure 14(a), it takes three different invocations to tune this application. After
tuning, SAGE uses the final kernel that is found by tuning to continue the execution,
and the speedup starts to increase. The initial interval between two calibrations is set
to 10 invocations. SAGE runs both versions (exact and approximate) to compute the
output quality for calibration. The first calibration happens at the 10th invocation after

ACM Transactions on Computer Systems, Vol. 32, No. 3, Article 7, Publication date: August 2014.



Scaling Performance via Self-Tuning Approximation for Graphics Engines 7:21

tuning, and the output quality is now better than the TOQ. Therefore, there is no need
to change the kernel. As shown in the figure, each calibration has a negative impact
on the overall performance. Therefore, after each calibration where output quality is
better than TOQ, SAGE increases the interval between two consecutive calibrations to
reduce the calibration overhead.

The second example is K-Means. We run K-Means with 100 random input datasets of
1M points each and 32 dimensions. Each data set has 32 clusters with a random radius,
and one of the clusters is dominant. Figure 14(b) shows the accuracy and speedup for
all invocations. K-Means starts with the exact kernel, after which SAGE increases the
aggressiveness of both optimizations: atomic operation and data packing. Since data
packing is more effective than atomic operation, SAGE continues tuning the kernel by
packing two floats. Again, SAGE checks both child nodes, and packing still provides the
best speedup for the next tuning level. At the end of tuning, packing more data does
not further improve performance. Therefore, SAGE increases the dropped iterations by
using the atomic operation optimization. Tuning is stopped because the output quality
is between 91% and 90%. As seen in the figure, it takes six different invocations to tune.
The first calibration happens 10 invocations after tuning is finished. In subsequent
calibrations, accuracy is in the margin of the TOQ, and SAGE begins to gradually
increase the interval between two calibrations.

As mentioned in Section 3.3, SAGE does not guarantee that output quality is always
better than the TOQ. As seen in Figure 14, at some point, quality drops below 90%.
This is because we sample invocations for calibration.

5.5. Runtime Overhead

Preprocessing overhead: For the data packing optimization, SAGE transfers the packed
data instead of the actual data. For the atomic optimization, preprocessing sends the
most popular address as a new argument to the approximate kernel. Therefore, there
is no additional transferring overhead for these two optimizations.

Since preprocessing is done on the CPU in parallel to GPU execution, the overhead is
negligible for all benchmarks except K-Means. In K-Means, addresses used by atomic
operations are changed dynamically during GPU execution, and SAGE finds the most
popular address on the GPU. However, the preprocessing overhead is less than 1% to
find the cluster with maximum number of points.

Tuning overhead: Tuning overhead depends on how many invocations are needed to
tune the application for the specified TOQ. When it is 90%, all of our applications take
three to six invocations to tune. These results are considerably better than checking
all configurations. For example, searching the whole configuration for K-Means needs
20× more invocations. This gain will be larger for benchmarks with more kernels and
approximation opportunities.

Calibration overhead: Calibration overhead is a function of how much speedup SAGE
can achieve by using approximation and the interval between two consecutive calibra-
tion phases. Equation (4) shows the calibration overhead for calibration interval N. te
is the execution time of one exact invocation of the application, G is the gain achieved
by SAGE using approximation, and tc is the time that SAGE spends to compute the
output quality. Since this quality-checking phase is done in parallel on the GPU, it is
negligible compared to the actual execution of the application:

overheadcalibration = tcalibration

ttotal
= te + tc

N × te/G + te + tc
(4)

Figure 15 illustrates the calibration overhead for the two case studies (TOQ is 90%)
for different calibration intervals. This overhead is about 1% for calibration intervals
more than 100. Gaussian Smoothing has a higher overhead compared to K-Means
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Fig. 15. Calibration overhead for two benchmarks for different calibration intervals.

Fig. 16. The difference between MRE and MSE for one calibration interval of Gaussian Smoothing from
Figure 14(a). Since SAGE runs the exact version to compare output quality, the output error is zero for
invocations 14 and 34.

because SAGE enables a better speedup for Gaussian Smoothing. Therefore, for Gaus-
sian Smoothing, the difference between execution time of the exact and approximate
versions is larger.

6. QUALITY MONITORING STUDY

This section describes different variations of the quality monitoring and calibration
technique proposed in this article. As mentioned in Section 3, to reduce the calibration
overhead, SAGE only checks every Nth invocation of the program. This approach works
efficiently for applications that have temporal similarity, where two consecutive input
sets shows similar output quality using the same configuration of approximation meth-
ods. One example of this type of application is applying the Gaussian filter on different
frames of a video as shown in Section 5.4. Maximum sampled error (MSE) is the maxi-
mum error that SAGE observes during runtime, and maximum real error (MRE) is the
actual maximum error. There is a difference between MSE and MRE because SAGE
does not check the output quality of all invocations. However, this difference is small
for the Gaussian Smoothing application because of its temporal similarity. Figure 16
illustrates the difference between the MSE and the MRE for one calibration interval of
Gaussian Smoothing from Figure 14(a). To illustrate this difference for various input
sets, we applied Gaussian Smoothing to all frames of 10 different videos. Figure 17
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Fig. 17. The percentage difference between MRE and MSE during calibrations for 10 videos. The number
of frames is displayed next to the video’s name in parentheses.

shows the percentage difference between MSE and MRE. As the interval between two
calibrations increases, this difference increases. However, even with a calibration in-
terval of 100 invocations, the difference between these errors is less than 10% for most
of the videos.

To show the calibration efficiency, we considered four alternatives to SAGE’s calibra-
tion technique.

Conservative fixed interval (CFI): This technique checks the output quality every
Nth invocation. The output quality is computed by running the approximate and exact
versions sequentially. After that, the runtime system computes the output quality by
comparing the exact and approximate outputs. Since this process has a high overhead,
quality checking has a high impact on the overall performance of this technique.

At the point of quality checking, if the measured quality is lower than TOQ − delta,
the runtime system switches to a slower but more precise version of the program. Since
this technique only reduces the aggressiveness of the approximate versions, we call it
conservative.

Conservative adaptive interval (CAI): This approach reduces the monitoring overhead
of CFI by performing quality checking more frequently to converge to a stable solution
faster at the beginning of kernel execution. If the output quality is higher than TOQ −
delta, the interval between two checking points is gradually increased so that the
overhead of quality checking is reduced. Every time the runtime management needs
to change the selected kernel (output quality is lower than TOQ − delta), the interval
between checking points is reset to a minimum width. Like CFI, this technique is
conservative, so the overall performance might be less than ideal. This approach is the
same as the calibration technique used in SAGE if delta = 0.

Aggressive fixed interval (AFI): To improve performance, unlike the aforementioned
techniques, AFI looks for opportunities to reduce the output quality. At the checking
point, if the output quality is higher than TOQ + delta, the runtime system increases
the aggressiveness of the approximate versions. On the other hand, if the output quality
is lower than TOQ − delta, the runtime system decreases the aggressiveness of the
approximate versions.

Aggressive adaptive interval (AAI): This technique is similar to AFI but with adap-
tive intervals. Since this technique is both adaptive and nonconservative, its overall
performance should be higher than the last three mentioned techniques.
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Fig. 18. (a) Percentage of frames with unacceptable quality (lower than TOQ − delta) for different quality
monitoring techniques. (b) Overall speedup of applying Gaussian filter on all frames of flower video with and
without considering the calibration overhead.

To evaluate these four techniques, we applied Gaussian Smoothing on all frames of
the flower video. Figure 18(a) shows the percentage of frames for which their output
quality is not acceptable (lower than TOQ − delta), and Figure 18(b) shows the overall
speedup. As expected, the output qualities of the conservative techniques (CFI and
CAI) are always better than those of the aggressive techniques. Aggressive techniques
provide better speedups if we ignore calibration overhead. However, the quality of
more than 30% of frames is not acceptable using such techniques. Since aggressive
techniques increase the aggressiveness of the approximation during runtime, the
performance for processing each frame is higher compared to the conservative
approaches. However, at the same time, aggressive techniques more frequently
make incorrect decisions and SAGE calibrates more often to catch and correct these
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Fig. 19. The aggressiveness of the approximation method used for each frame using two calibration intervals
(CAI and AAI).

decisions. Due to the large number of incorrect decisions, aggressive techniques suffer
higher calibration costs.

To study the impact of conservative/aggressive methods on performance, Figure 19
shows the aggressiveness parameter that different techniques choose for each frame.
Figure 19(a) shows the aggressiveness of approximation when calibrating using the
CAI technique. Since this approach is conservative, the speedup just decreases over
time, and it will choose a pessimistic approximation method to make sure that fewer
frames have unacceptable quality. On the other hand, Figure 19(b) shows the aggres-
siveness of approximation for the AAI. This technique switches between two most
aggressive approximation methods for all of the frames. Therefore, AAI provides bet-
ter performance than conservative techniques without considering the calibration
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overhead. However, using this technique, many frames have unacceptable output qual-
ity like that shown in Figure 18(a).

These results show that conservative techniques work better than aggressive tech-
niques for applications with temporal similarity. Although aggressive techniques might
achieve better performance than conservative techniques, their overall output quality
is unacceptable.

7. RELATED WORK

Trading accuracy for other benefits such as improved performance or energy consump-
tion is a well-known technique [Rinard 2007; Agarwal et al. 2009; Sidiroglou-Douskos
et al. 2011; Hoffmann et al. 2011; Baek and Chilimbi 2010; Sampson et al. 2011;
Ansel et al. 2011; Esmaeilzadeh et al. 2012a; Samadi et al. 2014; Samadi and Mahlke
2014]. Some of these techniques are software based and can be utilized without any
hardware modifications [Rinard 2007; Sidiroglou-Douskos et al. 2011; Hoffmann et al.
2011; Agarwal et al. 2009; Sartori and Kumar 2012; Samadi et al. 2014; Samadi and
Mahlke 2014]. Agarwal et al. [2009] used code perforation to improve performance
and reduce energy consumption. They perform code perforation by discarding loop it-
erations. Instead of skipping every Nth iteration or random iterations, SAGE skips
iterations with the highest performance overhead, which results in the same accuracy
loss but better performance gain. Rinard [2007] terminates parallel phases as soon as
there are too few remaining tasks to keep all of the processors busy. Since there are
usually enough threads to utilize the GPU resources, this approach is not beneficial
for GPUs. Sartori and Kumar [2012] also use a software approach that targets control
divergence that can be added to the SAGE framework. Samadi et al. [2014] introduced
pattern-based approximation framework, Paraprox, which detects common patterns in
the input data-parallel program and applies pattern-specific approximation methods.

Green [Baek and Chilimbi 2010] is another flexible framework that developers can
use to take advantages of approximation opportunities to achieve better performance
or energy consumption. The Green framework requires the programmer to provide ap-
proximate kernels or to annotate their code using extensions to C and C++. In contrast
to these techniques, this work automatically generates different approximate kernels
for each application. Another difference is that SAGE’s framework is specially designed
for GPUs with thousands of threads, and its approximation techniques are specially
tailored for GPU-enabled devices. In addition, the process of finding the candidate ker-
nel to execute is different from that of the Green framework. Instead of offline training,
SAGE uses an online greedy tree algorithm to find the final kernel more quickly. Ansel
et al. [2011] also propose language extensions to allow the programmer to mark parts
of code as approximate. They use a genetic algorithm to select the best approximate
version to run. Unlike these approaches, Paraprox chooses the approximation opti-
mization based on the patterns detected in the input code and generates approximate
versions automatically for each pattern without programmer annotation. Paraprox,
however, can be utilized by the runtime systems introduced in these works to optimize
performance. Samadi and Mahlke [2014] proposed CPU-GPU collaborative monitoring
technique, which predicts the quality for all kernel invocations instead of the time
sampling method used in SAGE.

EnerJ [Sampson et al. 2011] uses type qualifiers to mark approximate variables.
Using this type system, EnerJ automatically maps approximate variables to low power
storage and uses low power operations to save energy. Esmaeilzadeh et al. [2012a] used
the same approach to map approximate variables to approximate storage and opera-
tions. Whereas these approximate data type optimizations need hardware support, our
data packing optimization is applicable to current GPU architectures and does not re-
quire any hardware modification. Another work by Esmaeilzadeh et al. [2012b] designs
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neural processing unit (NPU) accelerators to accelerate approximate programs. Li and
Yeung [2007] used approximate computing concept to design a lightweight recovery
mechanism. Relax [De Kruijf et al. 2010] is a framework that discards the faulty com-
putations in fault-tolerant applications. Sampson et al. [2013] show how to improve
memory array lifetime using approximation.

Finally, there exists a large variety of work that maps machine learning and image
processing applications to the GPU, such as SVM [Catanzaro et al. 2008] and K-Means
[Li et al. 2010]. OptiML [Sujeeth et al. 2011] is another approach that proposes a new
domain-specific language (DSL) for machine learning applications that target GPUs.

Besides approximate systems, there are a number of systems [Ansel et al. 2009;
Samadi et al. 2012] that support adaptive algorithm selection to evaluate and guide
performance tuning. PetaBricks [Ansel et al. 2009] introduces a new language and
provides compiler support to select among multiple implementations of algorithms to
solve a problem. Adaptic [Samadi et al. 2012] is a compiler that automatically generates
different kernels based on the input size for GPUs.

8. CONCLUSION

Approximate computing, where computation accuracy is traded for better performance
or higher data throughput, provides an efficient mechanism for computation to keep
up with exponential information growth. For several domains, such as multimedia and
learning algorithms, approximation is commonly used today. In this work, we proposed
the SAGE framework for performing systematic runtime approximation on GPUs.

Our results demonstrate that SAGE enables the programmer to implement a pro-
gram once in CUDA and, depending on the TOQ specified for the program, automati-
cally trade accuracy for performance. Across 10 machine learning and image processing
applications, SAGE yields an average of 2.5× speedup with less than 10% quality loss
compared to the accurate execution on a NVIDIA GTX 560 GPU. This article also
shows that there are GPU-specific characteristics that can be exploited to gain sig-
nificant speedups compared to hardware-incognizant approximation approaches. We
also discussed how SAGE controls the accuracy and performance at runtime using
optimization calibration in two case studies.
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