
Adaptive Input-aware Compilation for Graphics Engines

Mehrzad Samadi

University of Michigan, Ann Arbor

mehrzads@umich.edu

Amir Hormati

Microsoft Research, Redmond

amir.hormati@microsoft.com

Mojtaba Mehrara

NVIDIA Research, Santa Clara

mmehrara@nvidia.com

Janghaeng Lee

University of Michigan, Ann Arbor

jhaeng@umich.edu

Scott Mahlke

University of Michigan, Ann Arbor

mahlke@umich.edu

Abstract

While graphics processing units (GPUs) provide low-cost and ef-
ficient platforms for accelerating high performance computations,
the tedious process of performance tuning required to optimize ap-
plications is an obstacle to wider adoption of GPUs. In addition
to the programmability challenges posed by GPU’s complex mem-
ory hierarchy and parallelism model, a well-known application de-
sign problem is target portability across different GPUs. However,
even for a single GPU target, changing a program’s input charac-
teristics can make an already-optimized implementation of a pro-
gram perform poorly. In this work, we propose Adaptic, an adaptive
input-aware compilation system to tackle this important, yet over-
looked, input portability problem. Using this system, programmers
develop their applications in a high-level streaming language and
let Adaptic undertake the difficult task of input portable optimiza-
tions and code generation. Several input-aware optimizations are
introduced to make efficient use of the memory hierarchy and cus-
tomize thread composition. At runtime, a properly optimized version
of the application is executed based on the actual program input. We
perform a head-to-head comparison between the Adaptic generated
and hand-optimized CUDA programs. The results show that Adaptic
is capable of generating codes that can perform on par with their
hand-optimized counterparts over certain input ranges and outper-
form them when the input falls out of the hand-optimized programs’
“comfort zone”. Furthermore, we show that input-aware results are
sustainable across different GPU targets making it possible to write
and optimize applications once and run them anywhere.

Categories and Subject Descriptors D.3.4 [Programming Lan-
guages]: Processors—Compilers

General Terms Design, Languages, Performance

Keywords Streaming, Compiler, GPU, Optimization, Portability

1. Introduction

GPUs are specialized hardware accelerators capable of rendering
graphics much faster than conventional general-purpose processors.
They are widely used in personal computers, tablets, mobile phones,
and game consoles. Modern GPUs are not only efficient at manipu-
lating computer graphics, but also are more effective than CPUs for
algorithms where processing of large data blocks is done in parallel.
This is mainly due to their highly parallel architecture. Recent works
have shown that in optimistic cases, speedups of 100-300x [20], and

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. To copy otherwise, to republish, to post on servers or to redistribute
to lists, requires prior specific permission and/or a fee.

PLDI’12, June 11–16, 2012, Beijing, China.
Copyright c© 2012 ACM 978-1-4503-1205-9/12/06. . . $10.00

16

18

20

Low

Utilization
Efficient Execution High

Overhead

10

12

14

16

O
P

S

Utilization Overhead

6

8

10

G
F

L
O

0

2

4

Input SizeInput Size

Figure 1: Performance of the transposed matrix vector multiplication bench-
mark from the CUBLAS library on an NVIDIA Tesla C2050. The X-axis
shows the input dimensions in number of rows x number of columns format.

in pessimistic cases, speedups of 2.5x [15], are achievable using
modern GPUs compared to the latest CPUs.

While GPUs provide inexpensive, highly parallel hardware for
accelerating parallel workloads, the programming complexity re-
mains a significant challenge for application developers. Developing
programs to effectively utilize GPU’s massive compute power and
memory bandwidth requires a thorough understanding of the appli-
cation and details of the underlying architecture. Graphics chip man-
ufacturers, such as NVIDIA and AMD, have tried to alleviate part of
the complexity by introducing new programming models, such as
CUDA and OpenCL. Although these models abstract the underlying
GPU architecture by providing unified processing interfaces, devel-
opers still need to deal with many problems such as managing the
amount of on-chip memory used per thread, total number of threads
per multiprocessor, and the off-chip memory access pattern in or-
der to maximize GPU utilization and application performance [24].
Therefore, programmers must manually perform a tedious cycle of
performance tuning to achieve the desired performance.

Many prior efforts have tried to address this programmability
challenge mainly along three interrelated angles. The works in [2, 3,
12,14] provide high-level abstractions at the language level to enable
easier expression of algorithms. These abstractions are later used by
the compiler to generate efficient binaries for GPUs. Adding anno-
tations to current models (CUDA or OpenCL) or popular languages
(C or Fortran) to guide compiler optimizations is another method
used in [8, 31, 34]. Finally, works in [1 , 25, 33] try to automatically
generate optimized code from a basic, possibly poorly performing,
parallel or sequential implementation of an application.

The hard problem of finding the optimal implementation of an
algorithm on a single GPU target is further complicated when at-
tempting to create software that can be run efficiently on multiple
GPU architectures. For example, NVIDIA GPUs have different ar-
chitectural parameters, such as number of registers and size of shared
memory, that can make an implementation which is optimal for one

architecture sub-optimal for another. The situation is even worse if
the goal is to have an optimal implementation for GPUs across mul-
tiple vendors. We call this issue the target portability problem.

The portability issue is not specific to moving applications across
different GPU targets. Even for a fixed GPU target, changing the
problem size and dimensions can make a specific implementation of
an algorithm sub-optimal, resulting in poor performance portability.
Figure 1 illustrates this issue for the transposed matrix vector mul-
tiplication (TMV) benchmark from the CUBLAS library . All input
matrices have the same number of elements but arranged in differ-
ent shapes. The benchmark performs consistently between 12 and
17 GFLOPs over the input dimension range of 1Kx4K to 128Kx32
on an NVIDIA Tesla C2050 GPU. However, when input dimensions
fall out of this range, the performance degrades rapidly by up to a
factor of more than 20x. The main reason for this effect is that the
number of blocks and threads in the application are set based on
the number of rows and columns in the input matrix. Therefore, this
benchmark works efficiently for a certain range of these values and
for other input dimensions, either there is not enough blocks to run
in parallel and hide memory latency (towards the left end of X-axis
in the figure), or the data chunk that each block is operating on is
too small to amortize the overhead of parallel block execution (to-
wards the right end of X-axis in the figure). We call this the input
portability problem.

There are various reasons for this problem in GPUs such as un-
balanced workload across processors, excessive number of threads,
and inefficient usage of local or off-chip memory bandwidth. Unbal-
anced workloads occur when a kernel has a small number of blocks
causing several processors to be idle during execution, which leads
to under-utilization of GPU resources and poor performance. Exces-
sive number of threads result in sequential thread execution due to
lack of enough resources in the GPU to run all threads in parallel.
Finally, inefficient memory bandwidth usage can be due to the pat-
tern of memory accesses which are determined based on the size or
dimensions of the input data in some programs. Therefore, mem-
ory optimizations must be adapted based on the input to efficiently
utilize the memory bandwidth.

One solution to the input portability problem is to have the pro-
grammer design and develop different algorithms for each input
range and size. However, this would impose a considerable imple-
mentation and verification overhead as applications become larger,
more complex, and need to work across a wide range of inputs. For
instance, as shown later, five distinct kernel implementations are
needed to efficiently utilize the processing power of a GPU across
the complete input spectrum in the TMV benchmark. Multi-kernel
applications complicate matters even more as programmers must
deal with the cross-product of choices for each kernel as the input
is varied. Clearly, automatic tools will become essential to guarantee
high performance across various input dimensions.

In this work, we focus on tackling the input portability prob-
lem while providing GPU target portability. We employ a high-
level streaming programming model to express target algorithms.
This model provides explicit communication between various pro-
gram kernels and its structured and constrained memory access lets
the compiler make intelligent optimization decisions without having
to worry about dependencies between kernels. An adaptive input-
aware compilation system, called Adaptic, is proposed that is capa-
ble of automatically generating optimized CUDA code for a wide
range of input sizes and dimensions from a high-level algorithm de-
scription. Adaptic decomposes the problem space based on the input
size into discrete scenarios and creates a customized implementa-
tion for each scenario. Decomposition and customization are accom-
plished through a suite of optimizations that include a set of memory
optimizations to coalesce memory access patterns employed by the
high-level streaming model and to efficiently execute algorithms that
access several neighboring memory locations at the same time. In ad-
dition, a group of optimizations are introduced to effectively break
up the work in large program segments for efficient execution across
many threads and blocks. Finally, two optimizations are introduced
to combine the work of two segments so that execution overhead can
be reduced.

An enhanced version of the performance model introduced
in [10] is employed to predict application behavior for each range of
input size and dimensions. Based on these predictions, optimizations
are applied selectively by the compiler. At runtime, based on the pro-
vided input to the program, the best version of the generated code
is selected and executed to maximize performance. This method
frees application developers from the tedious task of fine-tuning and
possibly changing the algorithm for each input range.

The specific contributions offered by this work are as follows:

• We propose a system that treats input portability as a first class
programmability challenge for GPUs and provide means to solve
it.

• We propose input-aware optimizations to overcome memory re-
lated performance deficiencies and break up the work fairly be-
tween working units based on the input size and dimensions.

• We develop an adaptive compilation and runtime system that op-
timizes performance for various input ranges by conforming to
the user input and identifying and adjusting required optimiza-
tions.

2. Background

Exposed communication and an abundance of parallelism are the
key features making stream programming a flexible and architectu-
re-independent solution for parallel programming. In this paper,
we employ a stream programming model based on Synchronous
Data Flow (SDF) model. In SDF, computation is performed by
actors, which are independent and isolated computational units,
communicating only through data-flow buffers such as FIFOs. SDF,
and its many variants, expose input and output processing rates of
actors. This provides many optimization opportunities that can lead
to efficient scheduling decisions for assignment of actors to cores,
and allocation of buffers in local memories.

One way of writing streaming programs is to include all the com-
putation performed in an actor inside a work method. This method
runs repeatedly as long as the actor has data to consume on its input
port. The amount of data that the work method consumes is called
the pop rate. Similarly, the amount of data each work invocation pro-
duces is called the push rate. Some streaming languages, including
StreamIt [27], also provide non-destructive reads, called peek, that
do not alter the state of the input buffer. In this work, we use the
StreamIt programming language to implement streaming programs.
StreamIt is an architecture-independent streaming language based
on SDF and allows the programmer to algorithmically describe the
computational graph. In StreamIt, actors can be organized hierar-
chically into pipelines (i.e., sequential composition), split-joins (i.e.,
parallel composition), and feedback loops (i.e., cyclic composition).

To ensure correct functionality in StreamIt programs, it is impor-
tant to create a steady state schedule which involves rate-matching
of the stream graph. There is a buffer between each two consecutive
actors and its size is determined based on the program’s input size
and pop and push rates of previous actors. Rate-matching assigns a
repetition number to each actor. In a StreamIt schedule, an actor is
enclosed by a for-loop that iterates as many times as this repetition
number.

Finally, since StreamIt programs are incognizant of input size and
dimensions, Adaptic’s input code is the same for all inputs but the
output implementation will be different for various input sizes. The
techniques that we propose in this paper are evaluated on StreamIt
but are applicable to other streaming languages as well.

3. Adaptic Overview

The Adaptic compiler takes a platform-independent StreamIt pro-
gram, ranges of its possible input size and dimension values, and the
target GPU as input, and generates optimized CUDA code based
on those ranges and the target. A StreamIt program consists of
several actors that can be described as fine-grained jobs executed
by each thread. Each actor in the stream graph is converted to a
CUDA kernel with a number of threads and blocks. By performing

Input: Platform Independent Code + Target GPU

+ Range of interest [a,b]

P
er

fo
rm

an
ce

 m
o
d
el

Input-unaware optimizations

CUDA Code Generation

Offline Compilation

Intra-actor

Parallelization

Actor Segmentation

Parameters Customization

Kernel Selection

Kernel 0 Kernel 4Kernel 3Kernel 2Kernel 1

Runtime Kernel Management

[m
1

,m
2

]

Stream

Reduction

Horizontal

Integration

Actor Integration

Vertical

Integration

Input-aware optimizations

NVCC

Execution Binary

Neighboring

Access

Memory Optimizations

Memory

Restructuring

Figure 2: Compilation Flow in Adaptic.

input-aware stream compilation, Adaptic decides how many threads
and blocks to assign to the CUDA kernel generated for each actor.
Figure 2 shows the Adaptic’s compilation flow which consists of
four main components: baseline input-unaware optimizations, per-
formance model, input-aware optimizations, and CUDA code gen-
eration. In addition, a matching runtime system selects appropriate
kernels and sets their input parameters according to the program in-
put at execution time. This section gives an overview of these four
components as well as the runtime kernel management, while Sec-
tion 4 details our proposed input-aware optimizations.

Input-unaware Optimizations: This step performs a set of input-
unaware optimizations on the program and decides whether each
actor should be executed on the CPU or GPU. This decision may
be changed later by input-aware optimizations. Input-unaware opti-
mizations are similar to those introduced in [12]. They include op-
timizations such as loop unrolling, data prefetching, and memory
transfer acceleration. They can be used to generate CUDA code that
is reasonably optimized and works for all input sizes, but its perfor-
mance peaks for certain ranges of input and is suboptimal outside
those ranges.

Performance Model: Adaptic relies on a high-level performance
model to estimate the execution time of each kernel and to decide
on using different optimizations for various problem sizes and GPU
targets. This model is similar to the one described in [10], and
classifies CUDA kernels into three categories of memory-bound,
computation-bound, and latency-bound.

Memory-bound kernels have enough warps to efficiently hide the
computation latency. Execution time of each warp is dominated by
memory accesses. In computation-bound kernels, since most of the
time is spent on computation, the execution time can be estimated as
the total computation time. It should be noted that in these kernels,
a large number of active warps is also assumed so that the scheduler
would be able to hide memory access latencies with computation.

The last category, latency-bound kernels, are those that do not
have enough active warps on each streaming multiprocessor (SM),
and the scheduler cannot hide the latency of the computation or
memory by switching between warps. Execution time of these
latency-bound kernels is estimated by adding up the computation
and memory access times. A kernel is latency-bound if there are not
enough active warps for hiding the latency. There are two situations
that lead to a small number of active warps: not enough data par-
allelism in the kernel or high shared resource consumption in each
thread block.

In order to determine the type of each kernel, Adaptic counts
the number of active warps on each SM. Based on this number and
the target GPU, it determines whether the kernel is latency-bound
or not. If not, Adaptic treats that kernel as both memory-bound and
computation-bound and calculates the corresponding execution cy-
cles based on the number of coalesced and non-coalesced memory
accesses, computation instructions and the number of synchroniza-
tion points, all of which are dependent on the input and can be com-
puted at compile time as a function of input size and dimensions.
The maximum of these two numbers determines the final kernel cat-
egory.

Based on these categories, The performance model estimates the
execution time of a kernel both before and after applying each opti-
mization as a function of input dimensions. The performance break-
even points determine the dimensions at which the corresponding
optimization should be enabled or disabled.

Input-aware Optimizations: During each input-aware optimiza-
tion phase, its potential performance impact for all input ranges is
estimated using the model. These input ranges are provided by previ-
ous input-aware phases. If the optimization is beneficial, it is added
to the optimization list for the whole range. However, if the opti-
mization is only suitable for a subset of that range, Adaptic divides
the range into smaller subranges, and populates optimization lists
for each new subrange accordingly. In other words, Adaptic divides
up operating input ranges to subranges if necessary, and applies dif-
ferent optimizations to each subrange. Therefore, separate kernels
should be later generated for these subranges.

Code Generation: At the end of the compilation flow, the code
generation stage generates optimized CUDA kernels for each input
range based on optimization lists constructed by the optimization
phase and the performance model. Since the performance model
uses the target specifications to make optimization decisions, code
generation is different for different targets. In addition, necessary
code for runtime kernel management is also generated by the code
generation unit based on the kernels and their operating input ranges.
All these codes are later translated to a binary using the native CUDA
compiler.

Runtime Kernel Management: A runtime kernel management
unit is developed to dynamically select a properly optimized kernel
at runtime based on the program input. This unit also determines the
values of parameters that should be passed to each kernel at launch
time including the number of blocks, number of threads per block,
and the size of allocated shared memory. In order to remove kernel
management overhead at runtime, this unit is completely executed
on the CPU during the initial data transfer from CPU to GPU.

4. Input-aware Optimizations

As mentioned in Section 1, several factors such as inefficient use
of memory bandwidth, unbalanced workload across processors, and
excessive number of threads lead to ineffectiveness of input-unaware
optimizations in achieving high performance across different inputs.
The goal of input-aware optimizations in this work is to deal with
these inefficiencies.

Two memory optimizations are introduced in Section 4.1 to solve
inefficient use of local or off-chip memory bandwidth. In addition,
two other sets of optimizations, namely actor segmentation and
actor integration are detailed in Sections 4.2 and 4.3 respectively
to tackle both unbalanced processor workload and excessive number
of threads in the context of streaming.

�������

���	���

	
��
�
��

��������

��������

�������

���	���

������

������

������

������

��������������������������������

��������������������������������

�������

���	���

������

������

���

���

���

���

������

�

�

�

�

��

���

���

���

���

������

�

�

�

�

��

������

������

�� ���

	
��
�
��

�������

���	���

	
��
�
��
�

�������

���	���

	
��
�
��

�������

���	���

	
��
�
��
�

	
��
�
��

�������

���	���

	
��
�
��
�

�������

���	���

	
��
�
��
�

Figure 3: Memory restructuring optimization. (a) Global memory access pattern of an actor with four pops and four pushes. Accesses are not coalesced because
accessed addresses are not adjacent. (b) Access patterns after memory restructuring. Accessed addresses are adjacent at each point in time and accesses are all
coalesced.

4.1 Memory Optimizations

In this section, two memory optimizations, memory restructuring
and neighboring access optimization are explained. These optimiza-
tions are useful for several classes of applications that are suitable
for GPUs.

4.1.1 Memory Restructuring

One of the most effective ways to increase the performance of
GPU applications is coalescing off-chip memory accesses. When
all memory accesses of one warp are in a single cache line, the
memory controller is able to coalesce all accesses into a single
global memory access. Figure 3a illustrates how an actor with four
pops and four pushes accesses global memory. In this example,
each actor in each thread accesses four consecutive memory words.
The first pop operations in threads 0 to 64 access memory word
locations 0, 4, 8,. . . , 252, second pop operations access locations
1, 5, 9,. . . , 253, etc. Since these locations are not consecutive in
memory, non-coalesced global memory accesses occur, leading to
poor performance.

There are two ways to coalesce these memory accesses. One way
is to transfer all data to the shared memory in a coalesced manner
and since shared memory is accessible by all threads in a block,
each thread can work on its own data. In this method, each thread
fetches other threads’ data from global memory as well as part of its
own data. The same method can be applied for write-backs to global
memory as well. All threads write their output to shared memory
and then they transfer all data in a coalesced pattern to the global
memory. Although using shared memory for coalescing accesses can
improve performance, it has two shortcomings: number of threads
is limited by the size of shared memory and the total number of
instructions is increased due to address computations.

We use another method for coalescing accesses and that is to
restructure the input array in a way that each pop access in all
threads accesses consecutive elements of one row of the input in
global memory. Figure 3b shows how this restructuring coalesces all
memory accesses without using shared memory. This method has the
advantage of minimizing the number of additional instructions and
does not limit the number of threads by the size of shared memory.
In addition, since this optimization is not using shared memory to
coalesce off-chip memory accesses, shared memory can be utilized
to store real shared data.

This optimization is not applicable when there are two or more
actors with mismatching push and pop rates in the program. In those
cases, rate matched buffers between kernels also have to be restruc-
tured, which involves extra write and reads from global memory,
leading to poor performance.

However, as the work in [26] shows, since most consecutive
actors in streaming benchmarks have matching rates, using memory
restructuring would be beneficial. The CPU can restructure data at
generation time and transfer it to the global memory of the GPU.
The GPU launches kernels and when all of them are finished, the
CPU reads back the output data. Due to the dependency of pop and

push rates of some of the actors are on input size, this optimization
can have different effects for various sizes.

In addition to coalescing global memory accesses, memory re-
structuring can also be applied to shared memory to remove bank
conflicts. After applying this optimization, all threads access con-
secutive addresses in shared memory. Since adjacent addresses in
shared memory belong to different shared memory banks, there
would be no bank conflicts.

4.1.2 Neighboring Access Optimization

A common pattern in many applications is to access a point and
its neighboring locations to calculate the data for that point. These
benchmarks are very common in simulation benchmarks, for in-
stance, the temperature of each point on a surface is computed based
on the temperature of its neighbors. In streaming programs, non-
destructive reads (peek) are used to read the neighbors’ data while
the address of the main point increases linearly in each iteration.
Figure 4a shows an example StreamIt code for a five-point stencil
actor that has neighboring access pattern and Figure 4b illustrates
the access pattern for this code. In this example, each element is de-
pendent on its top, bottom, right, and left elements. Each thread first
reads all top elements, which are consecutive, leading to coalesced
memory accesses. The same pattern holds for bottom, right, left and
center elements. However, the main problem with this class of actors
is excessive global memory accesses. For instance, accessing all top,
bottom, left, right and center elements in each thread simply means
accessing the whole input five times.

An efficient way to alleviate this problem is to use shared mem-
ory such that each block brings in one tile of data to shared mem-
ory and works on that. Since the data close to tile edges is needed
for both neighboring tiles, tiles should be overlapping. These over-
lapping regions, called halo, are brought in for each tile at all four
edges. Since branch divergence occurs only within a warp, both tile
and halo widths should be multiples of warp size to make all ac-
cesses of each warp coalesced and prevent control flow divergence
for address calculations.

Since halo regions are fetched for each tile, they should be as
small as possible to minimize extra memory accesses. In order to
decrease the overhead of extra memory accesses, Adaptic uses super
tiles. In such a tile, the ratio of the halo size to the main tile size is
decreased by merging several simple tiles. Each super tile is assigned
to one block and each thread computes several output elements in
different tiles. In this case, each block brings in a super tile from
global memory to shared memory, performs the computation, and
writes back the super tile to global memory.

Figure 5 shows a super tile assigned to a block in our example.
Dark gray elements construct the main tiles while the light gray
elements are halo parts. The number in each element indicates the
thread index reading that element’s address. In this example, warp
size is set to 2 and there are 8 threads in each block. Each tile is 4x2
and by merging four tiles together, one super tile with 4x8 elements
is formed. Since all width values should be multiples of warp size to
maintain memory coalescing, the width of right and left halo parts in
this example are set to 2. As a result, One of the halo values on each

5-Point Stencil(pop,peek:size, push:size)

for (index=0; index<size; index++)

if (not on edge)

Top = peek(index – width)

Bottom = peek(index + width)

Right = peek(index + 1)

Left = peek(index – 1)

Center = peek(index – 1)

push(func(Top,Bottom,Right,Left,center))

(a) (b)

Figure 4: (a) An example StreamIt code of a five-point stencil actor. (b)
Memory access pattern of this actor.

��������

��

��

����

����

�

�

���

���

����������

�

�

�

�

��

����������

��������

��

�

�

�

�

��

��

Figure 5: A super tile assigned to one block. Dark gray addresses are main
part and light gray parts are halo parts. Numbers in each small box indicates
which thread reads this address.
side (left and right) are not used in the computations for this super
tile.

Increasing the size of super tiles leads to an increase in the
allocated shared memory for each block, which in turn, could result
in lower number of concurrent blocks executed on each GPU SM.
Since this issue may change the type of kernel from computation-
bound or memory-bound to latency-bound, the data size processed
by each block should be chosen carefully.

For each application, Adaptic has to calculate the size and shape
of a super tile. In general, the size of each super tile should not
be more than the maximum shared memory per block, which is
a constant value based on the target GPU. The super tile’s size is
dependent on the input size. For small input sizes it is beneficial to
use smaller super tiles in order to have more blocks. Large super tiles
are advantageous for large input sizes to reduce excessive memory
accesses. Using the performance model and the input size, Adaptic
can calculate the size for each super tile. Then, given the size,
Adaptic needs to find the shape (width and height) of a super tile. For
this purpose, Adaptic uses a reuse metric to maximize the number
of served memory accesses while minimizing the size of extra halo
regions. Adaptic uses the following reuse metric to find the optimal
shape and size for each tile:

Reuse Metric =

∑

Tile

Element Accesses

Halo Size

In this formula, Element Accesses is the number of times each
element in the shared memory is accessed during the computation
of the whole output matrix, and the summation is taken over all
elements in the tile. Since the best tile is the one with small halo
region that can compute a large chunk of output, Adaptic chooses
rectangular tiles with maximum possible Reuse Metrics.

Once the size and shape of super tiles and halo regions are
determined, the output CUDA code will be similar to the code
shown in Figure 6. First, the kernel reads in the super tile and all
its halos to the shared memory, after which synchronization makes
shared memory visible to all threads. Subsequently, each block starts
working on its own data residing in the shared memory to perform
the computation and output the results.

4.2 Actor Segmentation

Optimizations in this category attempt to divide the job of one large
actor between several threads/blocks to increase the performance.
In order to have balanced workload across processors with efficient
number of threads, this segmentation should be done based on the
input size.

The two main optimizations in this category are stream reduction
and intra-actor parallelization. Reduction is one of the important
algorithms used in many GPU applications. The goal of stream

�������������� ���	
���
��	

�������������� ���	
���
��	

�������������� ���	
���
��	

�
������������ ���	
���
��	

��� ���
��� ���
	����

���
� ���	
���
��	

����	
�

���������������������	��
�	
�����

��

Figure 6: A generic neighboring access CUDA code. First, different halo
parts and the super tile are moved from global to shared memory. Subse-
quently, computations are performed on the shared memory data.

reduction optimization is to efficiently translate reduction operations
to CUDA in streaming programs. Intra-actor parallelization’s goal
is to break the dependency between iterations of large loops and
make them more amenable to execution on GPUs.

4.2.1 Stream Reduction

A reduction operation generally takes a large array as input, per-
forms computations on it, and generates a single element as output.
This operation is usually parallelized on GPUs using a tree-based
approach, such that each level in the computation tree consumes the
outputs from the previous level and produces the input for the next
level. In uniform reduction, each tree level reduces the number of
elements by a fixed factor and the last level outputs one element as
the final result. The only condition for using this method is that the
reduction operation needs to be associative and commutative.

A naive way of implementing the tree-based approach in a stream
graph is to represent each tree node as an individual actor with small
pop/push rates. Executing one kernel for each small actor would
make the kernel launching overhead significant and degrade the per-
formance dramatically. Another method of representing reduction is
by using one filter that pops the whole input array and pushes the
final result as shown in Figure 7a. The actor can not be translated
to an efficient kernel due to the limited number of possible in-flight
threads.

On the other hand, Adaptic automatically detects reduction op-
erations in its streaming graph input using pattern matching. After
this detection phase, it replaces the reduction actor with a highly
optimized kernel in its output CUDA code based on the input size
and the target GPU. This reduction kernel receives Narrays differ-
ent arrays with Nelements elements each as input, and produces one
element per array as output. Data is initially read from global mem-
ory, reduced and written to shared memory, and read again from
shared memory and reduced to the final result for each array. In this
work, we introduce two approaches for translating reduction actors
to CUDA kernels.

When the array input size, Nelements , is small compared to the
total number of input arrays (Narrays) Adaptic produces a single
reduction kernel in which each block computes the reduction output
for one input array (Figure 7b). Thus, this kernel should be launched
with Narrays blocks. This approach is beneficial for large array
counts so that Adaptic can launch enough blocks to fill up the
resources during execution.

However, when the array input size (Nelements), is large com-
pared to total number of input arrays (Narrays), the reduction output
for each array is computed individually by two kernels (Figure 7c).
The first kernel, called the initial reduction kernel, chunks up the
input array and lets each block reduce a different data chunk. The
number of these blocks, Ninitial blocks is dependent on the value
of Nelements and the target GPU. Since there is no global syn-
chronization between threads of different blocks, results of these
blocks (Ninitial blocks ∗ Narrays elements) are written back to
global memory. Subsequently, another kernel, called the merge ker-
nel, is launched to merge the outputs from different blocks of the
initial reduction kernel down to Narrays elements. In the merge ker-
nel, each block is used to compute the reduction output of one in-
put array. Therefore, this kernel should be launched with Narrays

blocks.

�������

���	
����������������

��
�����������������

���������������

�������

����������

������������

�����	
�������
�����������

��� �	
�
�
	
�
�	��
	���

�������
������
 ����

���

�	��
�

���	
�������

��������

��
��������

��������

������� ������� �������

Figure 7: Stream reduction technique. (a) StreamIt code for a reduction actor. (b) Each block is responsible for computing output for one chunk of data in two
phases. In the first phase, each thread reads from global memory and writes reduction output to the shared memory and in the second phase, shared memory data
is reduced to one output element. (c) In the two kernel approach, different blocks of the first kernel work on different chunks of data and the second kernel reads
all reduction kernel’s output and compute final result.

for (index=tid; index<size; index+= numberOfThreads)

Result = Result Input[Index];

Result = 0;

SharedData[tid] = Result;

activeThreads = blockDim;

while (activeThreads > WARP_SIZE){

if (tid <activethreads)

activeThreads /=2;

sync();

SharedData[tid] = SharedData[tid+activeThreads];

}

Output[bid] = SharedData[0];

if tid = 0

Initial Kernel Reduction<<<reductionBlocks, threads>>>

Stride = WARP_SIZE;

if (tid < WARP_SIZE)

while (stride > 1){

sync();

SharedData[tid] = SharedData[tid + stride];

stride /=2;}

/* Global memory reduction phase */

/* Shared memory reduction phase */

L1

L2

numberOfThreads = BlockDim * gridDim;

Figure 8: The initial reduction kernel’s CUDA code.

Figure 8 shows Adaptic’s resulting CUDA code for the initial
reduction kernel. In the first phase, the input array in global memory
is divided into chunks of data. Each thread computes the output for
each chunk, and copies it to shared memory. The amount of shared
memory usage in each block is equal to Threads per Block ∗

Element Size. As discussed in Section 4.1.1, all global memory
accesses are coalesced as a result of memory restructuring and there
would be no bank conflicts in shared memory in this phase.

In the next phase, the results stored in shared memory are re-
duced in multiple steps to form the input to the merge kernel. At each
step of this phase, the number of active threads performing reduc-
tion are reduced by half. Loop L1 in Figure 8 represents these steps.
They continue until the number of active threads equals the number
of threads in a single warp. At this point, reducing the number of
threads any further would cause control-flow divergence and infe-
rior performance. Therefore, we keep the number of active threads
constant and just have some threads doing unnecessary computation
(Loop L2 in Figure 8). It should be noted that after each step, syn-
chronization is necessary to make shared memory changes visible to
other threads. Finally, the thread with tid = 0 computes the final
reduction result and writes it back to the global memory.

4.2.2 Intra-actor Parallelization

The goal of intra-actor parallelization is to find data parallelism in
large actors. As mentioned before, it is difficult to generate opti-
mized CUDA code for actors with large pop or push rates, consisting
of loops with high trip counts. This optimization breaks these actors
into individual iterations which are later efficiently mapped to the
GPU. Using data flow analysis, Adaptic detects cross-iteration de-
pendencies. If no dependency is found, Adaptic simply assigns each
iteration to one thread and executes all iterations in parallel. It also
replaces all induction variable uses with their correct value based on
the thread index.

In some cases, Adaptic breaks the dependence between differ-
ent iterations by eliminating recurrences. One common source of
recurrence is accumulator variables. This happens when a loop con-
tains an accumulator variable count incremented by a constant C
in every iteration (count = count + C). This accumulation causes
cross-iteration dependencies in the loop, making thread assignment
as described impossible. However, intra-actor parallelization tech-
nique breaks this dependence by changing the original accumulation
construct to count = initial value+ induction variable∗C and
making all iterations independent.

In general, this optimization is able to remove all linear re-
currence constructs and replace them by independent induction
variable-based counterparts. This is similar to the induction vari-
able substitution optimization that parallelizing compilers perform to
break these recurrences and exploit loop level parallelism on CPUs.

4.3 Actor Integration

This optimization merges several actors or threads together to bal-
ance threads’ workloads based on the input size in order to get the
best performance. Two types of actor integration optimization are
introduced in this paper. Vertical integration technique reduces off-
chip memory traffic by storing intermediate results in the shared
rather than global memory. Horizontal integration technique reduces
off chip memory accesses and synchronization overhead and also
lets the merged actors share instructions.

4.3.1 Vertical Integration

During this optimization, Adaptic vertically integrates some actors
to improve performance by reducing memory accesses, removing
kernel call overhead, and increasing instruction overlap. The rea-
son for its effectiveness is that integrated actors can communicate
through shared memory and there is no need to write back to the
global off-chip memory. Also, integrating all actors together results
in one kernel and global memory accesses of this one kernel are co-
alesced by the memory restructuring optimization. However, since
input and output buffers of the middle actors in the integrated kernel

are allocated in the shared memory, the number of active threads ex-
ecuting these actors are limited by the size of shared memory. This
limitation often prevents Adaptic from integrating all actors together.
Based on the performance model, Adaptic finds the best candidates
for this optimizations. Since push and pop rates of some actors can
be dependant on the input size, this optimization is beneficial for
some ranges of input size.

Another optimization made possible after actor integration is
replacing transfer actors with index translation. Transfer actors are
the ones that do not perform any computation and only reorganize
input buffer’s data and write it to the output buffer. Since input and
output buffers of the middle actors in integrated kernels are both
allocated in the shared memory, there is no need to read the data from
input buffer, shuffle it, and write it to the output buffer. This task can
be done by index translation. Index translation gets thread indexes
based on the transfer pattern, generates the new index pattern, and
passes it to the next actor.

4.3.2 Horizontal Integration

The goal of horizontal integration is removing excessive computa-
tions or synchronizations by merging several threads or actors that
can run in parallel. There are two kinds of horizontal integration
techniques: horizontal actor integration and horizontal thread inte-
gration. In streaming languages, we use a duplicate splitter to allow
different actors to work on the same data. In this case, instead of
launching one kernel for each actor, one kernel is launched to do
the job of all the actors working on the same data. Therefore, in
addition to reducing kernel overheads, memory access and synchro-
nization overheads are also reduced. For example, assume there is
a program that needs maximum and summation of all elements in
an array. Instead of running two kernels to compute these values,
Adaptic launches one kernel to compute both. In this case, off-chip
memory accesses and synchronizations only happen once instead of
twice.

Horizontal thread integration merges several consecutive threads
working on consecutive memory locations in one kernel. This
method reduces the number of threads and blocks used by the ker-
nel. Merged threads can share part of the computation that had to be
done independently in each of the original threads and decrease the
number of issued instructions. When the number of thread blocks
is high, it is beneficial to use horizontal thread integration to reduce
the number of threads and blocks and allow them to run in parallel.
Otherwise it is better not to integrate threads and have more threads
with less work to increase the possibility hiding memory latency by
switching between threads.

5. Experiments

A set of benchmarks from the NVIDIA CUDA SDK and the
CUBLAS library 3.2 are used to evaluate Adaptic. We developed
StreamIt versions of these benchmarks, compiled them with Adaptic,
and compared their performance with the original hand-optimized
benchmarks. We also present three case studies to better demon-
strate and explain the effectiveness of Adaptic’s compilation algo-
rithms. The first case study is performed on a CUBLAS benchmark
to investigate the effect of our optimizations over a wide range of
inputs. Then, we present two more case studies on real world appli-
cations, biconjugate gradient stabilized method and support vector
machine [4], executed on two different GPUs, to demonstrate how
Adaptic performs on larger programs with many actors and on dif-
ferent GPU targets. Adaptic compilation phases are implemented in
the backend of the StreamIt compiler [27] and its C code generator
is modified to generate CUDA code. Both Adaptic’s output codes
and the original benchmarks are compiled for execution on the GPU
using NVIDIA nvcc 3.2. GCC 4.1 is used to generate the x86 binary
for execution on the host processor. The target system has an Intel
Xeon X5650 CPU and an NVIDIA Tesla C2050 GPU with 3GB
GDDR5 global memory with NVIDIA driver 260.04. The other sys-
tem used for experiments in Sections 5.2.2 and 5.2.3 has an Intel
Core 2 Extreme CPU and an NVIDIA GeForce GTX 285 GPU with
2GB GDDR2 global memory.

5.1 Input Portability

In order to show how Adaptic handles portability across different
input problem sizes, we set up seven different input sizes for each
benchmark and compared their performance with the original CUDA
code running with the same input sizes. It should be noted that
these seven input sizes are chosen from the working range of the
CUDA benchmarks because there are many sizes for which the SDK
benchmarks would not operate correctly.

Figure 9 shows the results for eight CUDA benchmarks that
were sensitive to changes in the input size, while results for input-
insensitive benchmarks are discussed in Section 5.3. As can be seen,
Adaptic-generated code is better than the hand-optimized CUDA
code for all problem sizes in Scalar Product, MonteCarlo, Ocean
FFT, and Convolution Separable from the SDK, and Isamax/Isamin,
Snrm2, Sasum, and Sdot from CUBLAS. A combination of ac-
tor segmentation and actor integration were used to optimize all
CUBLAS benchmarks. In addition to these optimizations, memory
restructuring was applied to Sdot.
Sdot is computing the dot product of two vectors. For large vec-

tors, using the two kernel reduction is beneficial, but for small sizes,
in order to reduce kernel launch overhead, Adaptic uses the one ker-
nel reduction. Using input-aware optimizations leads to upto 4.5x
speedup in this benchmark compared to the original program. Con-
volution Separable has two actors, and processes data row-wise in
one and column-wise in the other. Memory optimizations are effec-
tive for this benchmark as both of these two actors have neighbor-
ing memory access pattern. Therefore, as the input becomes smaller,
Adaptic reduces the super tile sizes adaptively to retain the high
number of blocks and, therefore, achieves better performance than
the baseline hand-optimized code. OceanFFT also has a neighbor-
ing access actor and Adaptic uses different tile sizes to improve per-
formance over the hand-optimized code. Scalar Product computes
scalar products of pairs of vectors. The original benchmark uses
the single kernel reduction, and it achieves good performance when
there are many pairs of vectors in the input. However, for fewer pairs
of vectors, it is better to use the whole GPU to compute the result for
each pair. Using the two kernel reduction for those inputs, Adaptic
is able to achieve upto 6x speedup compared to the original hand-
optimized version.
MonteCarlo performs about the same as the original hand-

optimized version. The reason is that the original benchmark already
has two kernels performing the same task, but optimized for differ-
ent ranges of input problem sizes. In other words, MonteCarlo has
originally been developed in an input portable way. Therefore, the
output of Adaptic is similar to the original version and the perfor-
mance is the same for all sizes but it is generated automatically by
the compiler.

Since Adaptic generates different kernels for some actors in the
streaming program, the output binary size could be larger than the
original binary optimized for one specific range. In our experiments
including the case studies, Adaptic’s output binaries were on average
1.4x and upto 2.5x larger than their input-unaware counterparts,
which is quite reasonable considering the fact that some kernels
could have upto five different versions for various input ranges.
However, because each program also has kernels with one versions,
the combination leads to this moderate code size increase.

These results further show the fact that our approach in Adaptic
is able to adaptively generate optimized CUDA code for different
problem sizes without any source code modifications.

5.2 Case studies

5.2.1 Transposed Matrix Vector multiplication

In this section, we look into the effects of our optimizations on the
performance of the transposed matrix vector multiplication bench-
mark from CUBLAS over a wide range of input sizes and dimen-
sions. As was mentioned in Section 1, the original benchmark can-
not provide sustainable performance gains for different input dimen-
sions. However, with the aid of input-aware optimizations, Adaptic
is able to generate five different kernels with different structures,
where each kernel is parametrized to get better performance for a

0

1

2

3

4

5

6

M M K K K K K M M K K K K K M M K K K K K M M K K K K K M M M K K 8
k M M M K K 8
k K K K K K 2

5
6 K K K K K 2

5
6

S
p

ee
d

u
p

(X
)

4
M

1
M

2
5
6

K

6
4

K

1
6

K

4
K

1
K

4
M

1
M

2
5
6

K

6
4

K

1
6

K

4
K

1
K

4
M

1
M

2
5
6

K

6
4

K

1
6

K

4
K

1
K

4
M

1
M

2
5
6

K

6
4

K

1
6

K

4
K

1
K

2
x

4
M

4
x

2
M

8
x

1
M

1
6

x
5
1

2
K

3
2

x
2
5

6
K

6
4
x

1
2

8

2
x

4
M

4
x

2
M

8
x

1
M

1
6

x
5
1

2
K

3
2

x
2
5

6
K

6
4
x

1
2

8

2
5

6
x
1

6
K

5
1
2

x
8
K

1
K

x
4

K

2
K

x
2

K

4
K

x
1

K

8
K

x
5

1

1
6

K
x
2

5

2
5

6
x
1

6
K

5
1
2

x
8
K

1
K

x
4

K

2
K

x
2

K

4
K

x
1

K

8
K

x
5

1

1
6

K
x
2

5

Isamax/Isamin Snrm2 Sasum Sdot Scalar Product MonteCarlo Ocean FFT Convolution Separable

CUBLAS SDK

Figure 9: Adaptic-generated code speedups normalized to the hand-optimized CUDA code for 7 different input sizes.

30

35

40

45

Adaptic CUBLAS

1M numbers 4M numbers 16M numbers

5

10

15

20

25

30

G
F

L
O

P
S

0

4
x
2

5
6
K

8
x
1

2
8
K

1
6
x

6
4
K

3
2
x

3
2
K

6
4
x

1
6
K

1
2
8

x
8
K

2
5
6

x
4
K

5
1
2

x
2
K

1
K

x
1

K

2
K

x
5
1

2

4
K

x
2
5

6

8
K

x
1
2

8

1
6
K

x
6

4

3
2
K

x
3

2

6
4
K

x
1

6

1
2
8

K
x

8

2
5
6

K
x

4

4
x

1
M

8
x
5

1
2
K

1
6

x
2

5
6

K

3
2

x
1

2
8

K

6
4
x

6
4
K

1
2

8
x

3
2

K

2
5

6
x

1
6

K

5
1
2

x
8
K

1
K

x
4

K

2
K

x
2

K

4
K

x
1

K

8
K

x
5
1

2

1
6

K
x

2
5

6

3
2

K
x

1
2

8

6
4
K

x
6

4

1
2

8
K

x
3

2

2
5

6
K

x
1

6

5
1
2

K
x

8

1
M

x
4

1
6

x
1

M

3
2

x
5

1
2

K

6
4

x
2

5
6

K

1
2

8
x

1
2

8
K

2
5

6
x

6
4

K

5
1

2
x

3
2

K

1
K

x
1

6
K

2
K

x
8

K

4
K

x
4

K

8
K

x
2

K

1
6
K

x
1

K

3
2

K
x

5
1

2

6
4

K
x

2
5

6

1
2

8
K

x
1
2

8

2
5

6
K

x
6

4

5
1

2
K

x
3

2

1
M

x
1

6

Input Size

Figure 10: Transposed matrix vector multiplication performance comparison of CUBLAS and Adaptic.

specific range of input dimensions. At runtime the proper kernel is
launched based on the program input.

In the first kernel, which is beneficial for matrices with many
columns and few rows, Adaptic uses the two kernel version of re-
duction. For each row, one kernel is launched and the whole GPU
is used to compute the dot product of one row with the input vec-
tor. The second kernel is a single-kernel reduction function where
each block is responsible for one row. This kernel achieves its best
performance for square matrices. In the third kernel, in addition to
the single-kernel reduction function, by using horizontal thread in-
tegration, Adaptic adaptively merges several rows and each block is
responsible for computing several dot products instead of one. This
kernel is beneficial for matrices with more rows than columns. The
fourth kernel is also similar to the single-kernel reduction, except
that in its shared memory reduction phase, each thread is responsi-
ble for computing one output. The last kernel generated by Adaptic
achieves its best performance for matrices with many rows and few
columns. In this case, the size of each row is small and the corre-
sponding actor has small pop rates. For this kind of actor, our base-
line optimizations are effective in generating efficient code. There-
fore, Adaptic does not need to add optimization to that. In this kernel,
each thread is responsible for computing the dot product of a single
row and the input vector.

Figure 10 compares the performance of this benchmark with
Adaptic-generated code for three different matrix sizes over a range
of matrix dimensions. As it can be seen, although for some input
dimensions Adaptic’s performance is really close to CUBLAS, for
most of them Adaptic outperforms CUBLAS by a large margin.

5.2.2 Biconjugate gradient stabilized method

The biconjugate gradient stabilized method (BiCGSTAB) is an iter-
ative method used for finding the numeral solution of nonsymmet-
ric linear systems such as Ax=B for x where A is a square matrix.
This method has 11 linear steps that can be written easily with the
CUBLAS library for GPUs. We wrote this program both in StreamIt
and CUDA with CUBLAS functions and measured the performance
of the two for different sizes of A. Figure 11 shows an in-depth com-

B li A t S t ti M O ti i ti A t I t ti

9

10

Baseline Actor Segmentation Memory Optimizations Actor Integration

6

7

8

X
)

4

5

6

p
ee

d
u

p
(X

1

2

3S
p

0

1

C2050 GTX285 C2050 GTX285 C2050 GTX285 C2050 GTX285 C2050 GTX285

512x512 1024x1024 2048x2048 4096x4096 8192x8192

Input Size

Figure 11: Performance of the Adaptic-generated Biconjugate gradient
stabilized method benchmark normalized to the CUBLAS implementation on
two different GPU targets.

parison and breakdown of the effects of Adaptic’s individual op-
timizations on this benchmark for different input sizes across two
GPU targets - NVIDIA Tesla C2050 and GTX285. The baseline in
this figure is the generated code after only applying size-unaware op-
timizations. The Sgemv, Sdot, Sscal and Saxpy CUBLAS functions
were used to implement the CUDA version of this benchmark. The
problem of using the CUBLAS library is that the programmer should
split each step into several sub-steps to be able to use CUBLAS func-
tions. Execution of these sub-steps leads to more memory accesses
and kernel launch overhead.

On the other hand, Adaptic merges all these sub-steps together
and launches a single kernel for one step. As shown in Figure 11,
most of the speedup for small sizes comes from the integration opti-
mization. Since most of the execution time is spent in matrix vector
multiplication for large sizes such as 8192x8192, the effect of inte-
gration is not as high for these sizes. However, actor segmentation
that generates smaller actors and increases parallelism, and memory
restructuring play more important roles in achieving better perfor-
mance for larger sizes.

0.9

1

S
V

M

Baseline Actor Segmentation Memory Optimizations Actor Integration

0.7

0.8

to
 G

P
U

S

0.4

0.5

0.6

m
al

iz
ed

 t

0 1

0.2

0.3

an
ce

n
o
rm

0

0.1

C2050 GTX285 C2050 GTX285 C2050 GTX285 C2050 GTX285 C2050 GTX285

P
er

fo
rm

a

Adult Web MNIST USPS Average

P

Datasets

Figure 12: Performance of the Adaptic-generated SVM training benchmark
compared to the hand-optimized CUDA code in the GPUSVM implementa-
tion on two different GPU targets.

5.2.3 Nonlinear Support Vector Machine Training

Support Vector Machines (SVMs) are used for analyzing and recog-
nizing patterns in the input data. The standard two class SVM takes
a set of input data and for each input predicts which class it be-
longs to among the two possible classes. This classification is based
on a model, which is generated after training with a set of example
inputs. Support vector machine training and classification are both
very computationally intensive.

We implemented a StreamIt version of this algorithm based on
the implementation in [4]. Figure 12 shows the performance of
the Adaptic-generated code compared to the GPUSVM [4] hand-
optimized CUDA code in this benchmark for four different input
datasets. On average, Adaptic achieves 65% of the performance of
the GPUSVM implementation. The reason for the large performance
gap in Adult and USPS datasets is that GPUSVM performs an
application-specific optimization where it utilizes unused regions of
the GPU memory to cache the results of some heavy computations.
In case those computations have to be performed again, it simply
reads the results in from the memory. Therefore, for input sets which
cause a lot of duplicate computations, including Adult and USPS,
GPUSVM performs better than Adaptic-generated code.

In this program, unlike the previous example, actor integration is
not very effective and most of the performance improvement comes
from actor segmentation. On average, actor segmentation, mem-
ory restructuring, and actor integration improve the performance by
37%, 4%, and 1%, respectively.

5.3 Performance of Input Insensitive Applications

Although the main goal of Adaptic compiler is to maintain good
performance across a wide range of inputs, it also performs well
on the benchmarks that are not sensitive to input. Our experiments
show that a combination of Adaptic optimizations makes the average
performance of our compiler-generated code on par with the hand-
optimized benchmarks, while writing StreamIt applications as the
input to Adaptic involves much less effort by the programmer com-
pared to the hand-optimized programs.

We ran Adaptic on a set of benchmarks from CUBLAS and
the SDK (BlackScholes, VectorAdd, Saxpy, Scopy, Sscal, Sswap,
and Srot, DCT, QuasiRandomGenerator, and Histogram), and on
average the performance of Adaptic’s output is within 5% of the
original CUDA versions. This shows that Adaptic does not cause
slowdowns for applications that are not sensitive to input size.

6. Related Work

The most common languages GPU programmers use to write GPU
code are CUDA and OpenCL. Although these new languages par-
tially alleviate the complexity of GPU programming, they do not
provide an architecture-independent solution. There is an extensive
literature investigating many alternative methods to support target
portability.

Works in [2, 3, 7, 9, 12, 14, 21, 30] focus on generating opti-
mized CUDA code from higher levels of abstraction. The Sponge
compiler [12] compiles StreamIt programs and generates optimized
CUDA to provide portability between different GPU targets. The

work in [30] compiles stream programs for GPUs using software
pipelining techniques. The work in [5] compiles Python programs
for graphic processors. Copperhead [3] provides a nested set of par-
allel abstractions expressed in the Python programming language.
Their compiler gets Python code as input and generates optimized
CUDA code. It uses built-in functions of Python such as sort, scan,
and reduce to abstract common CUDA program constructs. The
work in [14] automatically generates optimized CUDA programs
from OpenMP programs. MapCG [9] uses MapReduce framework
to run high level programs on both multi-core CPUs and GPUs.
Brook for GPUs [2] is one of the first papers about compilation
for GPUs, which extends the C language to include simple data-
parallel constructs. Compiling Matlab file to CUDA is also investi-
gated in [21]. CnC CUDA [7] use Intel’s Concurrent Collections
programming model to generate optimized CUDA code. All these
works look into improving the programmability of GPUs, and in
some cases, provide target portability. However, Adaptic provides
portability across different inputs as well as GPU targets. In addition,
Adaptic employs various input-aware optimizations and its output
performance is comparable to hand written CUDA code.

Several other works have focused on automatically optimizing
CUDA kernels [10, 33, 34]. The work in [33] performs GPU code
compilation with a focus on memory optimizations and parallelism
management. The input to this compiler is a naive GPU kernel func-
tion and their compiler analyzes the code and generates optimized
CUDA code for various GPU targets. CUDA-Lite [34] is another
compilation framework that takes naive GPU kernel functions as in-
put and tries to coalesce all memory accesses by using shared mem-
ory. Hong et al. [10] propose an analytical performance model for
GPUs that compilers can use to predict the behavior of their gener-
ated code. None of these works provide means to address the input
portability problem.

The problem of input-aware optimizations has been studied in
several previous works [17, 18, 28, 29]. The only work that tackles
the input portability problem in the context of GPUs is introduced
in [18]. In this work, programmers should provide optimizations’
pragmas for the compiler and then compiler generates different pro-
grams with different optimizations based on those pragmas. Their
approach is to run all these different versions of one program for dif-
ferent inputs and save all the results into a database. For each input,
they check this database and find the best version and run it on the
GPU.

There are other works that have focused on generating CUDA
code from sequential input [1, 8, 16, 25, 31]. hiCUDA [8] is a high-
level directive-based compiler framework for CUDA programming
where programmers need to insert directives into sequential C code
to define the boundaries of kernel functions. The work in [1] is an au-
tomatic code transformation system that generates CUDA code from
input sequential C code without annotations for affine programs.
In [31], by using C pragma preprocessor directives, programmers
help compiler to generate efficient CUDA code. In [25], program-
mers use C# language and a library to write their programs and let
the compiler generate efficient GPU code.The work in [16] proposes
an extension to a Java JIT compiler that executes program on the
GPU.

Gordon et al. [6] perform stream-graph refinements to statically
determine the best mapping of a StreamIt program to a multi-core
CPU. Researchers have also proposed ways to map and optimize
synchronous data-flow languages to SIMD engines [11], distributed
shared memory systems [13]. In a recent work [26], the authors talk
about the usefulness of different features of StreamIt to a wide range
of streaming applications.

Works in [22, 23, 32] map reduction to heterogeneous systems
with GPUs. Mapping stencil loops to GPUs and tiling size tradeoff
are also studied by [1] and [19]. However, Adaptic applies input-
aware optimizations adaptively and more generally on streaming
applications to provide input portability

7. Conclusion

GPUs provide an attractive platform for accelerating parallel work-
loads. However, their programming complexity poses a significant

challenge to application developers. In addition, they have to deal
with portability problems across both different targets and various
inputs. While target portability has received a great deal of atten-
tion in the research community, the input portability problem has not
been investigated before. This problem arises when a program opti-
mized for a certain range of inputs, shows poor performance along
different input ranges.

In this work, we proposed Adaptic, an adaptive input-aware com-
piler for GPUs. Using this compiler, programmers can implement
their algorithms once using the high-level constructs of a stream-
ing language and compile them to CUDA code for all possible in-
put sizes and various GPUs targets. Adaptic, with the help of its
input-aware optimizations, can generate highly-optimized GPU ker-
nels to maintain high performance across different problem sizes.
At runtime, Adaptic’s runtime kernel management chooses the best
performing kernel based on the input. Our results show that Adap-
tic’s generated code has similar performance to the hand-optimized
CUDA code over the original program’s input comfort zone, while
achieving upto 6x speedup when the input falls out of this range.

Acknowledgement

Much gratitude goes to the anonymous referees who provided excel-
lent feedback on this work. This research was supported by ARM
Ltd., the Gigascale Systems Research Center, and the National Sci-
ence Foundation under grant CNS-0964478.

References
[1] M. M. Baskaran, J. Ramanujam, and P. Sadayappan. Automatic C-

to-CUDA code generation for affine programs. In Proc. of the 19th
International Conference on Compiler Construction, pages 244–263,
2010.

[2] I. Buck et al. Brook for GPUs: Stream computing on graphics hardware.
ACM Transactions on Graphics, 23(3):777–786, Aug. 2004.

[3] B. Catanzaro, M. Garland, and K. Keutzer. Copperhead: compiling an
embedded data parallel language. In Proc. of the 16th ACM SIGPLAN
Symposium on Principles and Practice of Parallel Programming, pages
47–56, 2011.

[4] B. Catanzaro, N. Sundaram, and K. Keutzer. Fast support vector ma-
chine training and classification on graphics processors. In Proc. of the
25th International Conference on Machine learning, pages 104–111,
2008.

[5] R. Garg and J. N. Amaral. Compiling python to a hybrid execution envi-
ronment. In Proc. of the 3rd Workshop on General Purpose Processing
on Graphics Processing Units, pages 19–30, 2010.

[6] M. I. Gordon, W. Thies, and S. Amarasinghe. Exploiting coarse-
grained task, data, and pipeline parallelism in stream programs. In 14th
International Conference on Architectural Support for Programming
Languages and Operating Systems, pages 151–162, 2006.

[7] M. Grossman, A. Simion, Z. Budimli, and V. Sarkar. CnC-CUDA:
Declarative Programming for GPUs. In Proc. of the 23rd Workshop
on Languages and Compilers for Parallel Computing, pages 230–245,
2010.

[8] T. Han and T. Abdelrahman. hiCUDA: High-level GPGPU pro-
gramming. IEEE Transactions on Parallel and Distributed Systems,
22(1):52–61, 2010.

[9] C. Hong, D. Chen, W. Chen, W. Zheng, and H. Lin. Mapcg: writing
parallel program portable between CPU and GPU. In Proc. of the 19th
International Conference on Parallel Architectures and Compilation
Techniques, pages 217–226, 2010.

[10] S. Hong and H. Kim. An analytical model for a GPU architecture with
memory-level and thread-level parallelism awareness. In Proc. of the
36th Annual International Symposium on Computer Architecture, pages
152–163, 2009.

[11] A. Hormati, Y. Choi, M. Woh, M. Kudlur, R. Rabbah, T. Mudge, and
S. Mahlke. Macross: Macro-simdization of streaming applications. In
18th International Conference on Architectural Support for Program-
ming Languages and Operating Systems, pages 285–296, 2010.

[12] A. H. Hormati, M. Samadi, M. Woh, T. Mudge, and S. Mahlke. Sponge:
portable stream programming on graphics engines. In 19th Inter-
national Conference on Architectural Support for Programming Lan-
guages and Operating Systems, pages 381–392, 2011.

[13] M. Kudlur and S. Mahlke. Orchestrating the execution of stream
programs on multicore platforms. In Proc. of the ’08 Conference on
Programming Language Design and Implementation, pages 114–124,
June 2008.

[14] S. Lee, S.-J. Min, and R. Eigenmann. OpenMP to GPGPU: a compiler
framework for automatic translation and optimization. In Proc. of the

14th ACM SIGPLAN Symposium on Principles and Practice of Parallel
Programming, pages 101–110, 2009.

[15] V. W. Lee, C. Kim, J. Chhugani, M. Deisher, D. Kim, A. D. Nguyen,
N. Satish, M. Smelyanskiy, S. Chennupaty, P. Hammarlund, R. Singhal,
and P. Dubey. Debunking the 100x GPU vs. CPU myth: an evaluation
of throughput computing on CPU and GPU. In Proc. of the 37th Annual
International Symposium on Computer Architecture, pages 451–460,
2010.

[16] A. Leung, O. Lhoták, and G. Lashari. Automatic parallelization for
graphics processing units. In Proc. of the 7th International Conference
on Principles and Practice of Programming in Java, pages 91–100,
2009.

[17] X. Li, M. J. Garzarán, and D. Padua. A dynamically tuned sorting li-
brary. In Proc. of the 2004 International Symposium on Code Genera-
tion and Optimization, pages 111–, 2004.

[18] Y. Liu, E. Z. Zhang, and X. Shen. A cross-input adaptive framework for
GPU program optimizations. In 2009 IEEE International Symposium
on Parallel and Distributed Processing, pages 1–10, 2009.

[19] J. Meng and K. Skadron. Performance modeling and automatic ghost
zone optimization for iterative stencil loops on GPUs. In Proc. of
the 2009 International Conference on Supercomputing, pages 256–265,
2009.

[20] NVIDIA. GPUs Are Only Up To 14 Times Faster than CPUs says
Intel, 2010. http://blogs.nvidia.com/ntersect/2010/06/gpus-are-only-up-
to-14-times-faster-than-cpus-says-intel.html.

[21] A. Prasad, J. Anantpur, and R. Govindarajan. Automatic compilation of
MATLAB programs for synergistic execution on heterogeneous proces-
sors. In Proc. of the ’11 Conference on Programming Language Design
and Implementation, pages 152–163, 2011.

[22] V. T. Ravi, W. Ma, D. Chiu, and G. Agrawal. Compiler and runtime sup-
port for enabling generalized reduction computations on heterogeneous
parallel configurations. In Proc. of the 2010 International Conference
on Supercomputing, pages 137–146, 2010.

[23] D. Roger, U. Assarsson, and N. Holzschuch. Efficient stream reduc-
tion on the GPU. In Proc. of the 1st Workshop on General Purpose
Processing on Graphics Processing Units, pages 1–4, 2007.

[24] S. Ryoo, C. I. Rodrigues, S. S. Baghsorkhi, S. S. Stone, D. B. Kirk, and
W. mei W. Hwu. Optimization principles and application performance
evaluation of a multithreaded GPU using CUDA. In Proc. of the
13th ACM SIGPLAN Symposium on Principles and Practice of Parallel
Programming, pages 73–82, 2008.

[25] D. Tarditi, S. Puri, and J. Oglesby. Accelerator: using data parallelism
to program GPUs for general-purpose uses. In 14th International
Conference on Architectural Support for Programming Languages and
Operating Systems, pages 325–335, 2006.

[26] W. Thies and S. Amarasinghe. An empirical characterization of stream
programs and its implications for language and compiler design. In
Proc. of the 19th International Conference on Parallel Architectures
and Compilation Techniques, pages 365–376, 2010.

[27] W. Thies, M. Karczmarek, and S. P. Amarasinghe. StreamIt: A lan-
guage for streaming applications. In Proc. of the 2002 International
Conference on Compiler Construction, pages 179–196, 2002.

[28] N. Thomas, G. Tanase, O. Tkachyshyn, J. Perdue, N. M. Amato, and
L. Rauchwerger. A framework for adaptive algorithm selection in stapl.
In Proc. of the 10th ACM SIGPLAN Symposium on Principles and
Practice of Parallel Programming, pages 277–288, 2005.

[29] K. Tian, Y. Jiang, E. Z. Zhang, and X. Shen. An input-centric paradigm
for program dynamic optimizations. In Proceedings of the OOPSLA’10,
pages 125–139, 2010.

[30] A. Udupa, R. Govindarajan, and M. J. Thazhuthaveetil. Software
pipelined execution of stream programs on GPUs. In Proc. of the 2009
International Symposium on Code Generation and Optimization, pages
200–209, 2009.

[31] M. Wolfe. Implementing the PGI accelerator model. In Proc. of the
3rd Workshop on General Purpose Processing on Graphics Processing
Units, pages 43–50, 2010.

[32] X.-L. Wu, N. Obeid, and W.-M. Hwu. Exploiting more parallelism
from applications having generalized reductions on GPU architectures.
In Proc. of the 2010 10th International Conference on Computers and
Information Technology, pages 1175–1180, 2010.

[33] Y. Yang, P. Xiang, J. Kong, and H. Zhou. A GPGPU compiler for
memory optimization and parallelism management. In Proc. of the ’10
Conference on Programming Language Design and Implementation,
pages 86–97, 2010.

[34] S. zee Ueng, M. Lathara, S. S. Baghsorkhi, and W. mei W. Hwu. CUDA-
Lite: Reducing GPU programming complexity. In Proc. of the 21st
Workshop on Languages and Compilers for Parallel Computing, pages
1–15, 2008.

