
SAGE: Self-Tuning Approximation for Graphics Engines

Mehrzad Samadi1, Janghaeng Lee1, D. Anoushe Jamshidi1, Amir Hormati2, and Scott Mahlke1

1Advanced Computer Architecture Laboratory 2Google Inc.
University of Michigan - Ann Arbor, MI Seattle, WA

{mehrzads, jhaeng, ajamshid, mahlke}@umich.edu hormati@google.com

ABSTRACT

Approximate computing, where computation accuracy is traded off
for better performance or higher data throughput, is one solution
that can help data processing keep pace with the current and grow-
ing overabundance of information. For particular domains such as
multimedia and learning algorithms, approximation is commonly
used today. We consider automation to be essential to provide
transparent approximation and we show that larger benefits can be
achieved by constructing the approximation techniques to fit the
underlying hardware. Our target platform is the GPU because of
its high performance capabilities and difficult programming chal-
lenges that can be alleviated with proper automation. Our approach,
SAGE, combines a static compiler that automatically generates a
set of CUDA kernels with varying levels of approximation with
a run-time system that iteratively selects among the available ker-
nels to achieve speedup while adhering to a target output quality
set by the user. The SAGE compiler employs three optimization
techniques to generate approximate kernels that exploit the GPU
microarchitecture: selective discarding of atomic operations, data
packing, and thread fusion. Across a set of machine learning and
image processing kernels, SAGE’s approximation yields an aver-
age of 2.5x speedup with less than 10% quality loss compared to
the accurate execution on a NVIDIA GTX 560 GPU.

Categories and Subject Descriptors

D.3.4 [Programming Languages]: Processors—Code generation,

Compilers

General Terms

Design, Performance

Keywords

Approximation, Compiler, GPU, Optimization

Permission to make digital or hard copies of all or part of this work for per-
sonal or classroom use is granted without fee provided that copies are not
made or distributed for profit or commercial advantage and that copies bear
this notice and the full citation on the first page. Copyrights for components
of this work owned by others than the author(s) must be honored. Abstract-
ing with credit is permitted. To copy otherwise, or republish, to post on
servers or to redistribute to lists, requires prior specific permission and/or a
fee.
MICRO’46 December 7-11, 2013, Davis, CA, USA.
2013 Copyright is held by the owner/author(s). Publication rights licensed
to ACM
ACM 978-1-4503-2638-4/13/12 ...$15.00.

Quality: 100% 96% 90% 84%

Quality: 100% 96% 90% 84%

Figure 1: An example of variation of image quality with increasing
quality losses.

1. INTRODUCTION
To keep up with information growth, companies such as Mi-

crosoft, Google and Amazon are investing in larger data centers
with thousands of machines equipped with multi-core processors
to provide the necessary processing capability on a yearly basis.
The latest industry reports show that in the next decade the amount
of information will expand by a factor of 50 while the number of
servers will only grow by a factor of 10 [7]. At this rate, it will
become more expensive for companies to provide the compute and
storage capacity required to keep pace with the growth of infor-
mation. To address this issue, one promising solution is to perform
approximate computations on massively data-parallel architectures,
such as GPUs, and trade the accuracy of the results for computation
throughput.

There are many domains where it is acceptable to use approxi-
mation techniques. In such cases some variation in the output is ac-
ceptable, and some degree of quality degradation is tolerable. Many
image, audio, and video processing algorithms use approximation
techniques to compress and encode multimedia data to various de-
grees that provide tradeoffs between size and correctness such as
lossy compression techniques. For example, while trying to smooth
an image, the exact output value of a pixel can vary. If the output
quality is acceptable for the user or the quality degradation is not
perceivable, approximation can be employed to improve the perfor-
mance. As shown in Figure 1, smoothed images with 96% and 90%
quality are not discernible from the original image but differences
can be seen when enlarged. In the machine learning domain, exact
learning and inference is often computationally intractable due to
the large size of input data. To mitigate this, approximate meth-
ods are widely used to learn realistic models from large data sets
by trading off computation time for accuracy [12, 26]. We believe
that as the amount of information continues to grow, approxima-
tion techniques will become ubiquitous to make processing such
information feasible.

4

6

8

10

12

14

S
lo

w
d

o
w

n

0

2

0 2 4 6 8 10 12 14 16 18 20 22 24 26 28 30

Conflicts per Warp

(a) High cost of serialization

1

1.5

2

2.5

3

S
lo

w
d

o
w

n

0

0.5

2 4 8 16 32

Memory Accesses per Thread

(b) Memory bandwidth limitation

2

3

4

5

6

7

8

S
lo

w
d

o
w

n

0

1

2

0 20 40 60 80 100

#Blocks (percentage)

(c) Diminishing return of multithreading

Figure 2: Three GPU characteristics that SAGE’s optimizations exploit. These experiments are performed on a NVIDIA GTX 560 GPU.
(a) shows how accessing the same element by atomic instructions affects the performance for the Histogram kernel. (b) illustrates how the
number of memory accesses impacts performance while the number of computational instructions per thread remains the same for a synthetic
benchmark. (c) shows how the number of thread blocks impacts the performance of the Blackscholes kernel.

The idea of approximate computing is not a new one and previ-
ous works have studied this topic in the context of more traditional
CPUs and proposed new programming models, compiler systems,
and run-time systems to manage approximation [19, 20, 1, 4, 23,
3, 8]. In this work, we instead focus on approximation for GPUs.
GPUs represent affordable but powerful compute engines that can
be used for many of the domains that are amenable to approxima-
tion. However, in the context of GPUs, previous approximation
techniques have two limitations: (1) the programmer is responsible
for implementing and tuning most aspects of the approximation,
and (2) approximation is generally not cognizant of the hardware
upon which it is run. There are several common bottlenecks on
GPUs that can be alleviated with approximation. These include the
high cost of serialization, memory bandwidth limitations, and di-
minishing returns in performance as the degree of multithreading
increases. Because many variables affect each of these character-
istics, it is very difficult and time consuming for a programmer to
manually implement and tune a kernel.

Our proposed framework for performing systematic run-time ap-
proximation on GPUs, SAGE, enables the programmer to imple-
ment a program once in CUDA, and depending on the target out-

put quality (TOQ) specified for the program, trade the accuracy
for performance based on the evaluation metric provided by the
user. SAGE has two phases: offline compilation and run-time ker-
nel management. During offline compilation, SAGE performs ap-
proximation optimizations on each kernel to create multiple ver-
sions with varying degrees of accuracy. At run-time, SAGE uses a
greedy algorithm to tune the parameters of the approximate kernels
to identify configurations with high performance and a quality that
satisfies the TOQ. This approach reduces the overhead of tuning as
measuring the quality and performance for all possible configura-
tions can be expensive. Since the behavior of approximate kernels
may change during run-time, SAGE periodically performs a cali-
bration to check the output quality and performance and updates
the kernel configuration accordingly.

To automatically create approximate CUDA kernels, SAGE uti-
lizes three optimization techniques. The first optimization targets
atomic operations, which are frequently used in kernels where threads
must sequentialize writes to a common variable (e.g., a histogram
bucket). The atomic operation optimization selectively skips atomic
operations that cause frequent collisions and thus cause poor per-
formance as threads are sequentialized. The next optimization,
data packing, reduces the number of bits needed to represent in-
put arrays, thereby sacrificing precision to reduce the number of
high-latency memory operations. The third optimization, thread fu-
sion, eliminates some thread computations by combining adjacent
threads into one and replicating the output of one of the original

threads. A common theme in these optimizations is to exploit the
specific microarchitectural characteristics of the GPU to achieve
higher performance gains than general methods, such as ignoring
a random subset of the input data or loop iterations [1], which are
unaware of the underlying hardware.

In summary, the main contributions of this work are:

• The first static compilation and run-time system for auto-
matic approximate execution on GPUs.

• Three GPU-specific approximation optimizations that are uti-
lized to automatically generate kernels with variable accu-
racy.

• A greedy parameter tuning approach that is utilized to deter-
mine the tuning parameters for approximate versions.

• A dynamic calibration system that monitors the output qual-
ity during execution to maintain quality with a high degree
of confidence, and takes corrective actions to stay within the
bounds of target quality for each kernel.

The rest of the paper is organized as follows. Section 2 discusses
why SAGE chooses these three approximation optimizations. Sec-
tion 3 explains how the SAGE framework operates. Approximation
optimizations used by SAGE are discussed in Section 4. The results
of using SAGE for various benchmarks are presented in Section 5.
Section 6 discusses the related work in this area and how SAGE
is different from previous works. The summary and conclusion of
this work is outlined in Section 7.

2. APPROXIMATION OPPORTUNITIES
The central idea behind SAGE is to automatically detect and sys-

tematically skip or simplify processing of the operations that are
particularly expensive to perform on GPUs. In order to do this,
SAGE exploits three specific characteristics of GPUs.

Contention caused by atomic operations has a significant im-

pact on performance. An atomic construct performs a read-modify-
write atomic operation on one element residing in global or shared
memory. For example, atomicInc() reads a 32-bit word from an
address in the global or shared memory, increments it, and writes
the result back to the same address. The operation is atomic in
the sense that it is guaranteed to be performed without interference
from other threads. In other words, no other thread can access this
address until the operation is complete [17].

Atomic operations are widely used in parallel sorting and re-
duction operations [18] so that many different threads can update
the same memory address in parallel code, as seen in the NVIDIA

Original CUDA

program

User Input

Evaluation Metric

Offline Compilation

Execution
Calibration

Preprocessing
Atomic Operation

Data Packing

Thread Fusion

C
U

D
A

 k
er

n
el

 g
en

er
a

ti
o

n

CPU

GPU

Tuning

Run-time Kernel Management

Section 4.1

Section 4.2

Section 4.3

Section 3.2

Section 3.1 Section 3.3

Figure 3: An overview of the SAGE framework.

SDK Histogram application. As the GPU serializes accesses to the
same element, performance of atomic instructions is inversely pro-
portional to the number of threads per warp that access the same
address. Figure 2(a) shows how the performance of atomicAdd de-
creases rapidly as the number of conflicts per warp increases for the
Histogram benchmark. SAGE’s first optimization improves perfor-
mance by skipping atomic instructions with high contention.

Efficiently utilizing memory bandwidth is essential to im-

proving performance. Considering the large number of cores on
a GPU, achieving high throughput often depends on how quickly
these cores can access data. Optimizing global memory bandwidth
utilization is therefore an important factor in improving perfor-
mance on a GPU. Figure 2(b) shows the impact of the number
of memory accesses per thread on the total performance of a syn-
thetic benchmark. In this example, the number of computational
instructions per thread is constant and only the number of memory
accesses per thread is varied. As the relative number of memory
accesses increases, performance deteriorates as the memory band-
width limitations of the GPU are exposed. The second optimization
improves the memory bandwidth utilization by packing the input
elements to reduce the number of memory accesses.

As long as there are enough threads, the number of threads

does not significantly affect the performance. Since the num-
ber of threads running on the GPU is usually more than 10x the
number of cores, fewer threads can finish the same job with similar
performance. Figure 2(c) illustrates how changing the number of
thread blocks in a kernel can affect its performance for the Blacksc-
holes benchmark with 4M options. The baseline is the same kernel
using 480 blocks. This figure shows that even 48 blocks (10% of
the baseline) can utilize most of the GPU resources and achieve
comparable performance. Based on these findings, SAGE’s third
optimization performs a low overhead thread fusion that joins to-
gether adjacent threads. After fusing threads, SAGE computes the
output for one of the original, or active, threads and broadcasts it
to the other neighboring inactive threads. By skipping the com-
putation of the inactive threads, SAGE can achieve considerable
performance gain.

3. SAGE OVERVIEW
The main goal of the SAGE framework is to trade accuracy for

performance on GPUs. To achieve this goal, SAGE accepts CUDA
code and a user-defined evaluation metric as inputs and automati-
cally generates approximate kernels with varying degrees of accu-
racy using optimizations designed for GPUs. The SAGE frame-
work consists of two main steps: offline compilation and run-time

kernel management. Figure 3 shows the overall operation of the
SAGE compiler framework and run-time.

The offline compilation phase investigates the input code and

finds opportunities for trading accuracy for performance. This phase
automatically generates approximate versions of CUDA kernels us-
ing three optimizations which are tailored for GPU-enabled sys-
tems. These optimizations systematically detect and skip expensive
GPU operations. Each optimization has its own tuning parame-
ters that SAGE uses to manage the performance-accuracy tradeoff.
These optimizations are discussed in Section 4.

The run-time management phase dynamically selects the best
approximate kernel whose output quality is better than the user-
defined target output quality (TOQ). The run-time management
phase consists of three parts: tuning, preprocessing and optimiza-
tion calibration. Using a greedy algorithm, tuning finds the fastest
kernel with better quality than the TOQ. The main goal of prepro-
cessing is to make sure that the data needed by these approximate
kernels is ready before execution. As the program behavior can
change during run-time, SAGE monitors the accuracy and perfor-
mance dynamically in the calibration phase. If the output quality
does not meet the TOQ, calibration chooses a less aggressive ap-
proximate kernel to improve the output quality.

3.1 Tuning
The goal of the tuning phase is to find the fastest approximate

kernel whose output quality satisfies the TOQ. Instead of search-
ing all possible configurations, SAGE uses an online greedy tree
algorithm to find reasonable approximation parameters as fast as
possible to reduce the tuning overhead. Each node in the tree corre-
sponds to an approximate kernel with specific parameters as shown
in Figure 4. All nodes have the same number of children as the
number of optimizations used by SAGE, which is two in this ex-
ample. Each child node is more aggressive than its parent for that
specific optimization which means that a child node has lower out-
put quality than its parent. At the root of the tree is the unmodified,
accurate version of the program. SAGE starts from the exact ver-
sion and uses a steepest-ascent hill climbing algorithm [21] to reach
the best speedup while not violating the TOQ. SAGE checks all
children of each node and chooses the one with the highest speedup
that satisfies the TOQ. If the two nodes have similar speedups, the
node with better output quality will be chosen. This process will
continue until tuning finds one of three types of nodes:

1. A node that outperforms its siblings with an output quality
close to the TOQ. Tuning stops when a node has an output
quality within an adjustable margin above the TOQ. This
margin can be used to control the speed of tuning, and how
close the output quality is to the TOQ.

2. A node whose children’s output quality does not satisfy the
TOQ.

3. A node whose children have less speedup.

K(0,0)

K(1,0)

K(0,1)

K(2,0)

K(1,1)

K(3,0)

K(2,1)

Tuning path

Exact version

Final kernel

Figure 4: An example of the tuning process. A node, K(X, Y),
is a kernel optimized using two approximation methods. X and Y
are the aggressiveness of the first and second optimizations, respec-
tively.

In the example shown in Figure 4, it takes six invocations (nodes)
for the tuner to find the final kernel. Once tuning completes, SAGE
continues the execution by launching the kernel that the tuner found.
SAGE also stores the tuning path, or the path from the root to the
final node, and uses it in the calibration phase to choose a less ag-
gressive node in case the output quality drops below the TOQ. If
this occurs, the calibration phase traverses back along the tuning
path until the output quality again satisfies the TOQ.

3.2 Preprocessing
Two of SAGE’s optimizations need preprocessing to prepare the

data necessary for the generated kernel. For the data packing op-
timization, preprocessing packs the input data for the next kernel.
For the atomic operation optimization, the preprocessor checks in-
put data to predict how much contention occurs during execution
of atomic instructions. Details of preprocessing for these approxi-
mation optimizations are described in Section 4.

SAGE runs the preprocessor on the CPU in parallel to GPU ex-
ecution using synchronous execution. At each time quantum, the
GPU runs the selected kernel on a chunk of data while the CPU
preprocesses the next chunk before transferring it to GPU memory.
This way preprocessing is completely overlapped by kernel execu-
tion and its overhead is negligible.

3.3 Optimization Calibration
As the program behavior can change at run-time, SAGE moni-

tors the accuracy and performance dynamically. After every N in-
vocations of the kernel, the calibration unit runs both the exact and
approximate kernels on the GPU to check the output quality and
performance. We call N the calibration interval. Computing the
output quality is also executed on the GPU in parallel to reduce the
overhead of calibration. If the measured quality is lower than the
TOQ, SAGE switches to a slower but more precise version of the
program. These decisions are based on the tuning path previously
described in Section 3.1. By backtracking along the tuning path,
SAGE identifies more accurate kernels and calibrates their qual-
ity. This process will continue until the output quality satisfies the
TOQ.

Although checking every N th invocation does not guarantee that
all invocations satisfy the TOQ, checking more samples will in-
crease our confidence that the quality of the output is acceptable.
In order to compute the confidence, we assume that the prior dis-
tribution is uniform. Therefore, the posterior distribution will be
BETA(k + 1, n + 1 − k), where n is the number of observed
samples and k is the number of samples that satisfies the hypoth-
esis [30]. In this case, the hypothesis is that the output quality is
better than the TOQ. Figure 5 shows how confidence increases as

60

70

80

90

100

C
o
n

fi
d

en
ce

 (
%

)

CI�=�90%

CI�=�95%

93

40

50

0 50 100 150 200 250 300 350 400

C

Calibration points

CI�=�98%

Figure 5: SAGE’s confidence in output quality versus the number
of calibrations points for three different confidence intervals (CI).

more samples are checked for three different confidence intervals.
For example, for a confidence interval equal to 95% and 50 cali-
bration points, confidence is 93%. In other words, after checking
50 invocations, we are 93% confident that more than 95% of the
invocations have better quality than the TOQ. If there is an ap-
plication working on frames of a video at a rate of 33 frames per
second and our calibration occurs every 10 kernel invocations, the
run-time will be 99.99% confident that more than 95% of output
frames will meet the TOQ in under a minute.

At the beginning of execution, there is low confidence and the
run-time management system performs calibration more frequently
to converge to a stable solution faster. As confidence improves, the
interval between two calibration points is gradually increased so
that the overhead of calibration is reduced. Every time the run-time
management needs to change the selected kernel, the interval be-
tween calibrations is reset to a minimum width and the confidence
is reset to zero.

4. APPROXIMATION OPTIMIZATIONS
This section details three GPU optimizations that SAGE applies

to improve performance by sacrificing some accuracy: atomic op-
eration optimization, data packing, and thread fusion.

4.1 Atomic Operation Optimization
Idea: An atomic operation is capable of reading, modifying, and

writing a value back to memory without interference from any other
thread. All threads that try to access the same location are sequen-
tialized to assure atomicity. Clearly, as more threads access the
same location, performance suffers due to serialization. However,
if all threads access different locations, there is no conflict and the
overhead of the atomic instruction is minimal. This optimization
discards instances of atomic instructions with the highest degree
of conflicts to eliminate execution segments that are predominantly
serial, while keeping those with little or no conflicts. As a result of
reducing serialization, SAGE can improve performance.
Detection: SAGE first finds all the atomic operations inside loops
used in the input CUDA kernel and categorizes them based on their
loop. For each category, SAGE generates two approximate kernels
which will be discussed later.

To make sure that dropping atomic instructions does not affect
the control flow of the program, SAGE checks the usage of the
output array of atomic operations. It traces the control and data de-
pendence graph to identify the branches which depend on the value
of the array. If it finds any, SAGE does not apply this optimization.
To detect failed convergence due to dropped atomic operations, a
watchdog timer can be instrumented around the kernel launch to
prevent infinite loops.
Implementation: The atomic operation optimization performs pre-

Conflict Det 0
Iteration 0

Iteration 1

Iteration 2

Iteration 3

Warp 0 Warp 0

Conflicts

2

8

17

12

Conflict Det 1

Iteration 0

Conflict Det 2

Iteration 1

Conflict Det 3

Iteration 3

Conflict Det 0

Warp 0

Conflict Det 1

Conflict Det 2

Conflict Det 3

Iteration 0

(a) Original execution (b) kerM execution (c) kerL execution

Figure 6: An illustration of how atomic operation optimization re-
duces the number of iterations in each thread.

processing to predict the most popular address for the next invoca-
tion of the kernel while the GPU continues execution of the current
invocation. To accomplish this, SAGE uses an approach introduced
in MCUDA [28] to translate the kernel’s CUDA code to C code,
and then profiles this code on the CPU. To expedite preprocess-
ing, SAGE marks the addresses as live-variables in the translated
version and performs dead code elimination to remove instructions
that are not used to generate addresses. In cases where the GPU
modifies addresses during execution, the CPU prediction may be
inaccurate. SAGE addresses this by launching a GPU kernel to
find the most popular address. The overhead of preprocessing will
be discussed in Section 5.

This optimization uses preprocessing results to find the number
of conflicts per warp during run-time as follows. First, it uses
the CUDA __ballot function1 to determine which threads access
the popular address. Next, it performs a population count on the
__ballot’s result using the __popc function2 in order to find the
number of threads within a warp which access the popular address.

By using run-time conflict detection, the atomic operation opti-
mization generates two types of approximate kernels: kerM and
kerL. kerM skips one iteration that contains the most conflicts.
kerL skips all iterations except the one containing the least num-
ber of conflicts. Both types of kernels contain the code necessary
to detect conflicts for each loop iteration at run-time. As all threads
within a warp continue to execute the same iterations, no control
divergence overhead is added by this optimization. Since kerL
skips more loop iterations than kerM , kerL is more aggressive than
kerM .

Figure 6 illustrates how kerM and kerL use conflict detection
to discard atomic instructions with a large number of conflicts for
sample code with four iterations per thread. In this example, each
iteration contains an atomic operation. The number of conflicts in
each iteration is shown on the left in Figure 6(a).

As shown in Figure 6(b), kerM computes the number of conflicts
for the first two iterations and executes the one with fewer conflicts
(Iteration 0). kerM continues execution by computing the number
of conflicts for Iteration 2. Since Iteration 2 has more conflicts
than the previously skipped Iteration 1, kerM executes Iteration 1

and skips Iteration 2. Finally, SAGE executes Iteration 3 because
it has fewer conflicts than Iteration 2, which was most recently
skipped. At the end of the kernel’s execution, kerM detected and
skipped the loop iteration which had the most conflicts (Iteration

1__ballot() takes a predicate as input, and evaluates the predicate

for all threads of the warp. It returns an integer whose Nth bit is

set if and only if the predicate is non-zero for the Nth thread of the
warp [17].
2__popc() sums the number of set bits in an integer input [17].

50

75

100

p
p

ed
 I

te
ra

ti
o

n
s(

%
)

1M points, kerL
1M points, kerM
4M Points, kerM
4M Points, kerL

0

25

128 512 2048 8192

D
ro

p

Blocks per Grid

Figure 7: SAGE controls the number of dropped iterations us-
ing Equations 1-3 by changing the number of blocks for one and
four million data points. kerM drops only one iteration per thread
and kerL executes only one iteration per thread. In this case, the
threads per block (TPB) is set to 256.

2) using SAGE’s online conflict detection. It accomplished this
without needing to run the loop once to gather conflict data, and a
second time to apply approximation using this data.

On the other hand, kerL performs conflict detection by running
the original loop without any atomic instructions. This finds the
iteration with the minimum number of conflicts per warp. After
conflict detection, kerL executes the found iteration, this time run-
ning the atomic instruction. In the example in Figure 6(c), kerL
selected Iteration 0 after it found that this iteration had the mini-
mum number of conflicts (two).
Parameter Tuning: In order to tune how many atomic instructions
kerM or kerL skip, SAGE modifies the number of blocks of the
CUDA kernel. Equations 1, 2, and 3 show the relationship between
the number of blocks and the percentage of skipped instructions
for both kerM and kerL. Since the number of threads per block
(TPB) is usually constant, if the total number of iterations (the
trip count of the loop) is constant, more blocks will increase the
number of threads and reduce the number of iterations per thread
which can be derived from Equation 1. A lower number of iter-
ations per thread (IPT) results in more dropped iterations which
can be computed by Equation 2. However, even with the highest
possible number of blocks (two iterations per thread), the dropped
percentage of iterations is at most 50% for kerM . In order to dis-
card more than 50% of iterations, tuning switches to kerL. With
this kernel, the dropped iteration percentage can go from 50% to
near 100% which can be computed using Equation 3. Figure 7
shows how this optimization affects the percentage of dropped iter-
ations by varying the number of blocks per kernel for two different
input sizes.

total = IPT × TPB ×Blocks (1)

skipped_kerM =
1

IPT
× TotalIts (2)

skipped_kerL =
IPT − 1

IPT
× TotalIts (3)

4.2 Data Packing Optimization
Idea: In GPUs, memory bandwidth is a critical shared resource

that often throttles performance as the combined data required by
all the threads often exceeds the memory system’s capabilities. To
overcome this limitation, the data packing optimization uses a lossy
compression approach to sacrifice the accuracy of input data to

2

258

514

Thread 2

770

1

257

513

Thread 1

769

Global Memory

0

256

512

Thread 0

768

255

511

767

Thread 255

1023

4 bytes

(a) Original memory accesses

Thread 2Thread 1

Global Memory

Thread 0 Thread 255

4 bytes

0

512 768

256 1

513 769

257 2

514 770

258 255

767 1023

511

(b) After applying data packing optimization
Figure 8: An example of how the data packing optimization re-
duces the number of global memory accesses.

lower the memory bandwidth requirements of a kernel. SAGE ac-
complishes this by reducing the number of memory accesses by
packing the input data, thereby accessing more data with fewer re-
quests but at the cost of more computation. This optimization packs
the read-only input data in the preprocessing phase and stores it in
the global memory. Each thread that accesses the global memory
is required to unpack the data first. This approach is more bene-
ficial for iterative applications which read the same array in every
iteration. Most iterative machine learning applications perform the
same computation on the same data repeatedly until convergence is
achieved.

Unlike other approximate data type techniques used for CPUs
which are implemented in hardware and target computations [23],
this software optimization’s goal is to reduce the number of mem-
ory requests with an overhead of a few additional computation in-
structions. All computations are done with full precision after un-
packing. The added computation overhead is justifiable because,
for most GPU kernels which are memory bound, it is more benefi-
cial to optimize memory accesses at the cost of a few extra compu-
tation instructions than to optimize the computation of the kernel.
Detection: To apply this optimization, SAGE finds the read-only
input arrays of kernels. As unpacking occurs in each thread, the
memory access pattern must be known statically so that SAGE is
able to pack the data before the kernel executes. In many appli-
cations which operate on a matrix, each thread is working on the
columns/rows of the input matrix. Therefore, SAGE packs the
columns/rows of the input matrix and each thread must unpack a
column/row before performing the computation. For each candi-
date input array, SAGE generates an approximate kernel.

It is possible that this optimization causes a divide by zero situ-
ation as the least significant bits are truncated. However, the GPU
does not throw divide by zero exceptions. Rather, it produces a
large number as the result. Therefore, the program will continue
without stopping and only the output quality may be affected.
Implementation: This optimization performs a preprocessing step

which normalizes the data in the input matrix to the range [0,1).
The scaling coefficients used are stored in the constant memory of
the GPU.

After deciding the number of quantization bits (q_bits), the pre-
processor packs ratio(= number of bits per int

q_bits
) number of floats

into one unsigned integer. The packing process is done by keeping
the most significant q_bits of each float and truncating the rest of
the bits. Figure 8(a) shows the original memory accesses before ap-
plying the data packing optimization and Figure 8(b) illustrates an
example of packing two floats in the place of one integer. When a
GPU thread accesses the packed data, it reads an unsigned integer.
Each thread unpacks that integer and rescales the data by using co-
efficients residing in the constant memory and uses the results for
the computation.
Parameter Tuning: To control the accuracy of this optimization,
SAGE sweeps the number of quantization bits per float from 16 to
2 to change the memory access ratio from 2 to 16.

4.3 Thread Fusion Optimization
Idea: The underlying idea of the thread fusion optimization is

based on the assumption that outputs of adjacent threads are simi-
lar to each other. For domains such as image or video processing
where neighboring pixels tend to have similar values, this assump-
tion is often true. In this approach, SAGE executes a single thread
out of every group of consecutive threads and copies its output to
the other inactive threads. By doing this, most of the computations
of the inactive threads are eliminated.
Detection: The thread fusion approach works for kernels with threads
that do not share data. In kernels which use shared memory, all
threads both read and write data to the shared memory. Therefore,
by deactivating some of the threads, the output of active threads
might be changed too, and this will result in an unacceptable out-
put quality. Therefore, SAGE uses this optimization for kernels
which do not use shared memory.
Implementation: In this approach, one thread computes its result
and copies its output to adjacent threads. This data movement can
be done through shared memory, but the overhead of sharing data
is quite high due to synchronizations and shared memory latency.
It also introduces control divergence overhead, and the resulting
execution is too slow to make the optimization worthwhile. Instead,
SAGE reduces the number of threads through fusion. Fused threads
compute the output data for one of the original threads which are
called active threads. Fused threads copy the results of the active
threads to the inactive threads. Since this data movement occurs
inside the fused thread, the transferring overhead is much less than
that of using shared memory. However, in order to copy the data,
fused threads should compute output addresses for inactive threads.

To fuse threads, SAGE translates the block ID and thread ID of
the fused threads to use in the active threads. For inactive threads,
SAGE walks back up the use-def chain to mark instructions that
are necessary to compute the output index. Fused threads compute
these instructions for all inactive threads to find which addresses
they write to, and copy the active thread output values to those ad-
dresses.

There are two ways to fuse the threads: One involves reducing
the number of threads per block and the other one involves fusing
blocks in addition to threads and reducing the number of blocks
of the kernel. Since reducing the number of threads per block re-
sults in poor resource utilization, SAGE additionally fuses blocks
of each kernel. Figure 9(a) shows the original thread configuration
before applying the optimization, and Figure 9(b) shows the thread
configuration after fusing two adjacent threads and thread blocks.
In the new configuration, each thread computes one output element

T
2

5
4

T
2
5
5

T
0

T
1

B0

T
2

5
4

T
2
5
5

T
0

T
1

B1

T
2

5
4

T
2
5
5

T
0

T
1

BN-1

T
2

5
4

T
2
5
5

T
0

T
1

BN

C
o

m
p

u
ta

ti
o

n
O

u
tp

u
t-

w
ri

ti
n

g

(a) Original thread configuration

B0

T
0
,T

1

T
2

5
4

,T
2

5
5

B1

Fused B0

BN-1 BN

Fused BN/2

T
0
,T

1

T
2

5
4

,T
2

5
5

T
0
,T

1

T
2

5
4

,T
2

5
5

T
0
,T

1

T
2

5
4

,T
2

5
5

(b) After applying thread fusion optimization

Figure 9: The thread fusion optimization reduces the computation executed by this kernel by fusing two adjacent threads together and
broadcasting the single output for both threads.

Domain Input Data Approximation Opportunity Evaluation Metric

K-Means Machine Learning 1M random points, 32 features Atomic, Packing Mean relative difference

Naive Bayes Machine Learning KDD Cup [10] Atomic Mean relative difference

Histogram Image Processing 2048 x 2048 images Atomic Mean relative difference

SVM Machine Learning USPS [10] Fusion, Packing Mean relative difference

Fuzzy K-Means Machine Learning KDD Cup [10] Packing Mean relative difference

Means Shift Machine Learning KDD Cup [10] Packing Mean relative difference

Image Binarization Image Processing 2048 x 2048 images Fusion 1 if incorrect, 0 if correct

Dynamic Range Compression Image Processing 2048 x 2048 images Fusion Mean pixel difference

Mean Filter Image Processing 2048 x 2048 images Fusion Mean pixel difference

Gaussian Smoothing Image Processing 2048 x 2048 images Fusion Mean pixel difference

Table 1: Application specifications

and writes it to two memory locations. Although the thread fu-
sion optimization reduces the overall computations performed by
the kernel, reducing more blocks may result in poor GPU utiliza-
tion as shown in Figure 2(c). Therefore, at some point, SAGE stops
the fusion process as it eventually leads to slowdown.
Parameter Tuning: SAGE changes the number of threads that are
fused together to control performance and output accuracy.

5. EXPERIMENTAL EVALUATION
In this section, we show how the optimizations in SAGE affect

the execution time and accuracy of different applications. Ten ap-
plications from two domains are used: machine learning and image
processing. A summary of the application characteristics is shown
in Table 1. As each optimization targets specific, common perfor-
mance bottlenecks of GPU applications, each application has usu-
ally one or two bottlenecks that SAGE optimizes as described in
Table 1.

5.1 Applications
The Naive Bayes Classifier is based on the Bayesian theorem.

The training process is done by counting the number of points in
each cluster and the number of different feature values in each clus-
ter. To implement Naive Bayes Classifier training, we divide the
data points between the threads and each thread uses an atomicInc

operation to compute number of points in each cluster. This imple-
mentation is based on OptiML’s implementation [29].

K-Means is a commonly used clustering algorithm used for data
mining. This algorithm has two steps which are iteratively exe-
cuted. The first step computes the centroids of all clusters. The
second step finds the nearest centroid to each point. We launch one
kernel to compute all centroids. Each thread processes a chunk of
data points and each block has an intermediate sum and the num-
ber of points for all clusters. Atomic instructions are used in this
kernel because different threads may update the same cluster’s sum
or number. After launching this kernel, a reduction operation adds
these intermediate sums and counters to compute centroids. As

each iteration reads the same input data and changes the centroids
based on that, SAGE applies both atomic operation and data pack-
ing optimizations to this benchmark.

Support Vector Machines (SVMs) are used for analyzing and rec-
ognizing patterns in the input data. The standard two class SVM
takes a set of input data and for each input, predicts which class it
belongs to from the two possible classes. We used Catanzaro’s [5]
implementation for this application. Fuzzy K-Means is similar to
K-Means clustering except that in fuzzy clustering, each point has a
degree of belonging to clusters rather than belonging completely to
just one cluster. Unlike K-Means, cluster centroids are a weighted
average of all data points. Therefore, there is no need to use atomic
operations.

Mean Shift Clustering is a non-parametric clustering that does
not need to know the number of clusters apriori. The main idea
behind this application is to shift the points toward local density
points at each iteration. Points that end up in approximately the
same place belong to the same cluster. Histogram is one of the
most common kernels used in image processing applications such
as histogram equalization for contrast enhancement or image seg-
mentation. Histogram plots the number of pixels for each tonal
value.

Image Binarization converts an image to a black and white im-
age. This application is used before optical character recognition.
Dynamic Range Compression increases the dynamic range of the
image. Mean Filter is a smoothing filter which is used to reduce
noise in images. It smoothes an image by replacing each pixel
with the average intensity of its neighbors. Gaussian Smoothing

is another smoothing filter which is used to blur images. We used
the texture memory to store the input image to improve the perfor-
mance of these two applications.

5.2 Methodology
The SAGE compilation phases are implemented in the backend

of the Cetus compiler [13]. We modified the C code generator in
Cetus to read and generate CUDA code. SAGE’s output codes

1 5

2

2.5

3

3.5

4

S
p

ee
d

u
p

SAGE Loop perforation

1

1.5

(a) TOQ = 95%

2

2.5

3

3.5

4

S
p

ee
d

u
p

SAGE Loop perforation
6.4

1

1.5

(b) TOQ = 90%

Figure 10: Performance for all applications approximated using SAGE compared to the loop perforation technique for two different TOQs.
The results are relative to the accurate execution of each application on the GPU.

are compiled for execution on the GPU using NVIDIA nvcc 4.0.
GCC 4.4.6 is used to generate the x86 binary for execution on the
host processor. The target system has an Intel Core i7 CPU and an
NVIDIA GTX 560 GPU with 2GB GDDR5 global memory.
Output Quality: To assess the quality of each application’s out-
put, we used an application-specific evaluation metric as shown in
Table 1. Since SAGE uses an online calibration, it is limited to a
computationally simple metric that minimizes the overhead. Also,
the chosen metric is normalized (0%-100%) so that we can present
results that can easily be compared to one another. It is very easy to
modify SAGE so that different metrics, like PSNR or MSE, can be
used. In all cases, we compare the output of the original application
to the output of the approximate kernel.

Based on a case study by Misailovic et al. [16], the preferred
quality loss range is between 0-10% for applications such as video
decoding. Other works [23, 4, 9] have benchmarks that have quality
loss around 10%. We also used the LIVE image quality assessment
database [25, 31] to verify this threshold. Images in this database
have different levels of distortion by white noise and were evalu-
ated by 24 human subjects. The quality scale is divided into five
equal portions: "Bad","Poor","Fair","Good", and "Excellent". We
measured output quality of images used in the LIVE study with our
evaluation metric. The results show that more than 86% of images
with quality loss less than 10% were evaluated as "Good" or "Ex-
cellent" by human subjects in the LIVE study. Therefore, we used
90% as the target output quality in our experiments. We also per-
form our experiments with 95% target quality to show how SAGE
trades off accuracy for performance per application.
Loop Perforation: SAGE optimizations are compared to another
well-known and general approximation approach, loop perforation [1],
which drops a set of iterations of a loop. For atomic operation
and data packing optimizations, we drop every Nth iteration of the
loops. For thread fusion optimization, dropping the Nth thread
results in poor performance due to thread divergence. Instead, we
dropped the last N iterations to avoid such divergence. We changed
N to control the speedup and output quality generated by loop per-
foration. The loop perforation technique is only applied to loops
that are modified by SAGE to evaluate the efficiency of SAGE’s
optimizations. Also, it should be noted that loop perforation and
data packing are orthogonal approaches and can be used together.

5.3 Performance Improvement
Figures 10(a) and 10(b) show the results for all applications with

a TOQ of 95% and 90%, respectively. Speedup is compared to
the exact execution of each program. As computing centroids in
K-Means is done by averaging over points in that cluster, ignor-
ing some percentage of data points does not dramatically change
the final result. However, since computing the centroids is not the
dominant part of K-Means, the K-Means application achieves bet-
ter performance by using the data packing optimization rather than
the atomic operation optimization. In Section 5.4, we show how
SAGE gets better speedup by combining these optimizations.

For the Naive Bayes classifier, computing probabilities is sim-
ilar to averaging in K-Means. Since the atomic instructions take
most of the execution time in this application, SAGE gets a large
speedup by using this approximation optimization. On the other
hand, loop perforation proportionally decreases the output quality.
By decreasing the TOQ from 95% to 90%, the speedup increased
from 3.6x to 6.4x.

For the Histogram application, although most of the execution
time is dedicated to atomic operations, SAGE gets a smaller speedup
than K-Means. The reason is that unlike K-Means, Histogram does
not have similar averaging to compute the results and dropping data
points directly affects the output quality. Therefore, quality loss
is increased rapidly by dropping more data, and as a result, the
speedup is only 1.45x for 90% TOQ.

The data packing optimization shows strong performance for
memory bound applications such as fuzzy K-Means. Fuzzy K-
Means is one of the more error-tolerant applications and ignoring
half of the input bits does not affect the output quality significantly.
SVM also shows good speedup when using 16 bits and 8 bits per
float, but the quality drops below the TOQ at 4 bits per float.
For MeanShift, the speedup does not increase with more packing.
Therefore, the speedup of SAGE is similar for both 90% and 95%
TOQ.

SAGE uses the thread fusion optimization for four applications:
Dynamic range compression, Image Binarization, Mean Filter, and
Gaussian Smoothing. We used 2048 x 2048 pixel images to com-
pute the quality for these applications. Dynamic Range compres-
sion and Image Binarization performances are reduced after fusing
more than four threads. This is mainly because of the memory
accesses and fewer numbers of blocks needed to fully utilize the
GPU. Therefore, tuning stops increasing the aggressiveness of the
optimization because it does not provide any further speedup. As
seen in the figures, these two applications show the same speedup
for both quality targets. However, for Mean Filter and Gaussian

3

4

5

6

7

S
p

ee
d

u
p

Naïve Bayes Fuzzy Kmeans Mean Filter

1

2

90919293949596979899100

Output Quality(%)

Figure 11: Performance-accuracy curves for three sample applica-
tions. The atomic operation optimization is used for Naive Bayes
classifier. The data packing is used for Fuzzy K-Means application
and the thread Fusion is applied to Mean Filter.

Smoothing, increasing the number of fused threads results in better
performance. By decreasing the TOQ, the speedup of Mean Filter
goes from 1.7x to 3.1x.
Performance-Accuracy Curve: Figure 11 shows a performance-
accuracy curve for three sample applications to show how SAGE
manages the speedup-accuracy tradeoff. Here, the atomic oper-
ation optimization is used for Naive Bayes. As the percentage
of dropped iterations is increased, both quality loss and speedup
are increased. Since SAGE changes the approximate kernel from
kernelmax to kernelmin, there is a performance jump between
96% and 95% output qualities. SAGE uses the data packing opti-
mization for Fuzzy K-Means and controls the speedup by changing
the number of floats that are packed. The performance-accuracy
curve for Mean Filter is also shown in Figure 11 to show how the
thread fusion optimization impacts speedup and quality. By fusing
more threads, both speedup and quality loss are increased. After
fusing more than eight threads, speedup decreases because of poor
GPU utilization.
Error Distribution: To study the application level quality loss in
more detail, Figure 12 shows the cumulative distribution function
(CDF) of final error for each element of the application’s output
with a TOQ of 90%. The CDF shows the distribution of output
errors among an application’s output elements and shows that only
a modest number of output elements see large error. The majority
(78% to 100%) of each transformed application’s output elements
have an error of less than 10%. As can be seen in this figure, for
Image Binarization, most of the pixels have zero percent error but
others have 100 percent. These pixels correspond to the edges of
objects in the picture where adjacent threads outputs are dissimilar.

5.4 Case Studies
This section describes how SAGE uses the tuning and calibration

phase to control the accuracy and performance for two example
applications. In both cases, the tuning margin is set to 1% which
means that tuning stops if it finds a kernel with output quality one
percent better than the TOQ. In these examples, we assumed that
we have enough confidence about the output quality to show how
the calibration interval changes during run-time.

In the first example, we run the Gaussian Smoothing applica-
tion on 100 consecutive frames of a video. Figure 13(a) shows the
accumulative speedup and accuracy for this example. For this ex-
periment, we assume that the TOQ is 90%. SAGE starts with the
exact kernel and increases the aggressiveness of the optimization
until the output quality is near 90%. In order to compute the output
quality for tuning, SAGE runs the approximate and exact versions
one after the other. Therefore, during tuning, the output quality
that the user observes is 100% and there is a temporary slowdown.
As seen in Figure 13(a), it takes three different invocations to tune

30%

40%

50%

60%

70%

80%

90%

100%

er
ce

n
ta

g
e

o
f

E
le

m
en

ts

Histogram

Kmeans

Naïve�Bayes

Fuzzy�Kmeans

SVM

Dynamic

Mean�Filter

Gaussian

0%

10%

20%

0% 10% 20% 30% 40% 50% 60% 70% 80% 90% 100%

P

Error

Gaussian

Binarization

Meanshift

Figure 12: Cumulative distribution function (CDF) of final error
for each element of all application’s output with the TOQ equal to
90%. The majority of output elements (more than 78%) have less
than 10% error.

this application. After tuning, SAGE uses the final kernel that is
found by tuning to continue the execution and the speedup starts
to increase. The initial interval between two calibrations is set to
10 invocations. SAGE runs both versions (exact and approximate)
to compute the output quality for calibration. The first calibration
happens at the 10th invocation after tuning and the output quality is
now better than the TOQ. Therefore, there is no need to change the
kernel. As it is shown in the figure, each calibration has a negative
impact on the overall performance. Therefore, after each calibra-
tion where output quality is better than TOQ, SAGE increases the
interval between two consecutive calibrations to reduce the calibra-
tion overhead.

The second example is K-Means. We run K-Means with 100
random input data sets of 1M points each and 32 dimensions. Each
data set has 32 clusters with a random radius and one of the clus-
ters is dominant. Figure 13(b) shows the accuracy and speedup for
all invocations. K-Means starts with the exact kernel, after which
SAGE increases the aggressiveness of both optimizations: atomic
operation and data packing. Since data packing is more effective
than atomic operation, SAGE continues tuning the kernel by pack-
ing two floats. Again, SAGE checks both child nodes and packing
still provides the best speedup for the next tuning level. At the
end of tuning, packing more data does not further improve perfor-
mance. Therefore, SAGE increases the dropped iterations by using
the atomic operation optimization. Tuning is stopped because the
output quality is between 91% and 90%. As seen in the figure, it
takes six different invocations to tune. The first calibration happens
10 invocations after tuning is finished. In subsequent calibrations,
accuracy is in the margin of the TOQ and SAGE begins to gradu-
ally increase the interval between two calibrations.

As mentioned in Section 3.3, SAGE does not guarantee that out-
put quality is always better than the TOQ. As seen in Figure 13,
at some point, quality drops below 90%. This is because we sam-
ple invocations for calibration and there is a difference between
the maximum sampled error (MSE) and the maximum real error
(MRE). Figure 14 illustrates the difference between the MSE and
the MRE for one calibration interval of Gaussian Smoothing from
Figure 13(a). To illustrate this difference for various input sets, we
applied Gaussian Smoothing to all frames of 10 videos. Figure 15
shows the percent difference between MSE and MRE. As the in-
terval between two calibrations increases, this difference increases.
However, even with a calibration interval of 100 invocations, the
difference between these errors is less than 10% for most of the
videos.

5.5 Run-time Overhead
Preprocessing Overhead: For the data packing optimization,

0

0.5

1

1.5

2

2.5

80

82

84

86

88

90

92

94

96

98

100

1 4 7

1
0

1
3

1
6

1
9

2
2

2
5

2
8

3
1

3
4

3
7

4
0

4
3

4
6

4
9

5
2

5
5

5
8

6
1

6
4

6
7

7
0

7
3

7
6

7
9

8
2

8
5

8
8

9
1

9
4

9
7

1
0

0

1
0

3

1
0

6

S
p

ee
d

u
p

O
u

tp
u

t
Q

u
a
li

ty
(%

)

Quality Accumulative Speedup������

(a) Gaussian Smoothing

0

0.5

1

1.5

2

80

82

84

86

88

90

92

94

96

98

100

1 4 7

1
0

1
3

1
6

1
9

2
2

2
5

2
8

3
1

3
4

3
7

4
0

4
3

4
6

4
9

5
2

5
5

5
8

6
1

6
4

6
7

7
0

7
3

7
6

7
9

8
2

8
5

8
8

9
1

9
4

9
7

1
0

0

1
0

3

1
0

6

1
0

9

1
1

2

1
1

5

S
p

ee
d

u
p

O
u

tp
u

t
Q

u
a
li

ty
(%

)

Quality Accumulative Speedup������

(b) K-Means

Figure 13: Performance and output quality for two applications for 100 invocations with different input-sets. The horizontal dashed line
represents the TOQ.

9.6

9.8

10

10.2

O
u

tp
u

t
E

rr
o

r
(%

)

MRE

E
rr

o
r

D
if

fe
re

n
ce

MSE

9

9.2

9.4

12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36

O

Figure 14: The difference between maximum real error (MRE)
and maximum sampled error (MSE) for one calibration interval
of Gaussian Smoothing from Figure 13(a). Since SAGE runs the
exact version to compare output quality, the output error is zero for
invocations 14 and 34.

30%

40%

50%

60%

70%

80%

90%

100%

E
rr

o
r

D
if

fe
re

n
ce

flower(250)

grandma(800)

deadline(900)

foreman(300)

harbour(300)

ice(240)

akiyo(300)

carphone(380)

crew(300)

galleon(350)

0%

10%

20%

10 20 30 40 50 60 70 80 90 100

Calibration Interval

galleon(350)

Figure 15: The percent difference between maximum real error
(MRE) and maximum sampled error (MSE) during calibrations
for 10 videos. The number of frames is displayed next to the
video’s name in parentheses.

SAGE transfers the packed data instead of the actual data. For the
atomic optimization, preprocessing sends the most popular address
as a new argument to the approximate kernel. Therefore, there is
no additional transferring overhead for these two optimizations.

Since preprocessing is done on the CPU in parallel to GPU ex-
ecution, the overhead is negligible for all benchmarks except K-
Means. In K-Means, addresses used by atomic operations are changed
dynamically during GPU execution, and SAGE finds the most pop-
ular address on the GPU. However, the preprocessing overhead is
less than 1% to find the cluster with maximum number of points.
Tuning overhead: Tuning overhead is dependent on how many in-
vocations are needed to tune the application for the specified TOQ.
When it is 90%, all our applications take three to six invocations to

10

15

20

25

ti
o
n

 O
v
er

h
ea

d
 (

%
)

Gaussian K-Means

0

5

0 20 40 60 80 100 120 140 160 180 200

C
a

li
b

ra
t

Calibration Interval

Figure 16: Calibration overhead for two benchmarks for different
calibration intervals.

tune. These results are considerably better than checking all con-
figurations. For example, searching the whole configuration for
K-Means needs 20x more invocations. This gain will be larger for
benchmarks with more kernels and approximation opportunities.
Calibration overhead: Calibration overhead is a function of how
much speedup SAGE can achieve by using approximation and the
interval between two consecutive calibration phases. Equation 4
shows the calibration overhead for calibration interval N . te is the
execution time of one exact invocation of the application, G is the
gain achieved by SAGE using approximation, and tc is the time
that SAGE spends to compute the output quality. Since this qual-
ity checking phase is done in parallel on the GPU, it is negligible
compared to the actual execution of the application.

overheadcalibration =
tcalibration

ttotal
=

te + tc
N × te/G+ te + tc

(4)

Figure 16 illustrates the calibration overhead for the two case stud-
ies (TOQ is 90%) for different calibration intervals. This over-
head is about 1% for calibration intervals more than 100. Gaussian
Smoothing has a higher overhead compared to K-Means because
SAGE enables a better speedup for Gaussian Smoothing. There-
fore, for Gaussian Smoothing, the difference between execution
time of the exact and approximate versions is larger.

6. RELATED WORK
Trading accuracy for other benefits such as improved perfor-

mance or energy consumption is a well-known technique [20, 1,
27, 11, 4, 23, 3, 8]. Some of these techniques are software-based
and can be utilized without any hardware modifications [20, 27,
11, 1, 24]. Agarwal et al. [1] used code perforation to improve

performance and reduce energy consumption. They perform code
perforation by discarding loop iterations. Instead of skipping every
N th iteration or random iterations, SAGE skips iterations with the
highest performance overhead which results in the same accuracy
loss but better performance gain. Rinard et al. [20] terminate par-
allel phases as soon as there are too few remaining tasks to keep all
of the processors busy. Since there are usually enough threads to
utilize the GPU resources, this approach is not beneficial for GPUs.
Sartori et al. [24] also use a software approach which targets control
divergence that can be added to the SAGE framework.

Green [4] is another flexible framework that developers can use
to take advantages of approximation opportunities to achieve bet-
ter performance or energy consumption. The Green framework re-
quires the programmer to provide approximate kernels or to an-
notate their code using extensions to C and C++. In contrast to
these techniques, this paper automatically generates different ap-
proximate kernels for each application. Another difference is that
SAGE’s framework is specially designed for GPUs with thousands
of threads and its approximation techniques are specially tailored
for GPU-enabled devices. Also, the process of finding the candi-
date kernel to execute is different from that of the Green frame-
work. Instead of offline training, SAGE uses an online greedy tree
algorithm to find the final kernel more quickly.

EnerJ [23] uses type qualifiers to mark approximate variables.
Using this type system, EnerJ automatically maps approximate vari-
ables to low power storage and uses low power operations to save
energy. Esmaeilzadeh et al. [8] used the same approach to map ap-
proximate variables to approximate storage and operations. While
these approximate data type optimizations need hardware support,
our data packing optimization is applicable to current GPU archi-
tectures and does not require any hardware modification. Another
work by Esmaeilzadeh [9] designs neural processing unit (NPU)
accelerators to accelerate approximate programs. Li and Yeung
[14] used approximate computing concept to design a light weight
recovery mechanism. Relax [6] is a framework that discards the
faulty computations in fault-tolerant applications.

Finally, there exists a large variety of work which maps machine
learning and image processing applications to the GPU such as
Support Vector Machine [5] and K-Means [15]. OptiML [29] is
another approach which proposes a new domain specific language
(DSL) for machine learning applications that target GPUs.

Besides approximate systems, there are a number of systems [2,
22] that support adaptive algorithm selection to evaluate and guide
performance tuning. PetaBricks [2] introduces a new language and
provides compiler support to select amongst multiple implementa-
tions of algorithms in order to solve a problem. Adaptic [22] is a
compiler which automatically generates different kernels based on
the input size for GPUs.

7. CONCLUSION
Approximate computing, where computation accuracy is traded

for better performance or higher data throughput, provides an effi-
cient mechanism for computation to keep up with exponential in-
formation growth. For several domains such as multimedia and
learning algorithms, approximation is commonly used today. In
this work, we proposed the SAGE framework for performing sys-
tematic run-time approximation on GPUs.

Our results demonstrate that SAGE enables the programmer to
implement a program once in CUDA and, depending on the tar-
get output quality (TOQ) specified for the program, automatically
trade accuracy for performance. Across ten machine learning and
image processing applications, SAGE yields an average of 2.5x
speedup with less than 10% quality loss compared to the accurate

execution on a NVIDIA GTX 560 GPU. This paper also shows
that there are GPU-specific characteristics that can be exploited to
gain significant speedups compared to hardware-incognizant ap-
proximation approaches. We also discussed how SAGE controls
the accuracy and performance at run-time using optimization cali-
bration in two case studies.

8. ACKNOWLEDGEMENT
Much gratitude goes to the anonymous referees who provided

excellent feedback on this work. This research was supported by
ARM Ltd. and the National Science Foundation under grants CNS-
0964478 and CCF-0916689. We would like to thank Ankit Sethia
and Gaurav Chadha for their comments.

9. REFERENCES
[1] A. Agarwal, M. Rinard, S. Sidiroglou, S. Misailovic, and

H. Hoffmann. Using code perforation to improve
performance, reduce energy consumption, and respond to
failures. Technical Report MIT-CSAIL-TR-2009-042, MIT,
Mar. 2009.

[2] J. Ansel, C. Chan, Y. L. Wong, M. Olszewski, Q. Zhao,
A. Edelman, and S. Amarasinghe. PetaBricks: a language
and compiler for algorithmic choice. In Proc. of the ’09

Conference on Programming Language Design and

Implementation, pages 38–49, June 2009.

[3] J. Ansel, Y. L. Wong, C. Chan, M. Olszewski, A. Edelman,
and S. Amarasinghe. Language and compiler support for
auto-tuning variable-accuracy algorithms. In Proc. of the

2011 International Symposium on Code Generation and

Optimization, pages 85 –96, 2011.

[4] W. Baek and T. M. Chilimbi. Green: a framework for
supporting energy-conscious programming using controlled
approximation. In Proc. of the ’10 Conference on

Programming Language Design and Implementation, pages
198–209, 2010.

[5] B. Catanzaro, N. Sundaram, and K. Keutzer. Fast support
vector machine training and classification on graphics
processors. In Proc. of the 25th International Conference on

Machine learning, pages 104–111, 2008.

[6] M. de Kruijf, S. Nomura, and K. Sankaralingam. Relax: An
architectural framework for software recovery of hardware
faults. In Proc. of the 37th Annual International Symposium

on Computer Architecture, pages 497–508, June 2010.

[7] EMC Corporation. Extracting value from chaos, 2011.
www.emc.com /collateral/analyst-reports/idc-extracting-
value-from-chaos-ar.pdf.

[8] H. Esmaeilzadeh, A. Sampson, L. Ceze, and D. Burger.
Architecture support for disciplined approximate
programming. In 17th International Conference on

Architectural Support for Programming Languages and

Operating Systems, pages 301–312, 2012.

[9] H. Esmaeilzadeh, A. Sampson, L. Ceze, and D. Burger.
Neural acceleration for general-purpose approximate
programs. In Proc. of the 45th Annual International

Symposium on Microarchitecture, pages 449–460, 2012.

[10] A. Frank and A. Asuncion. UCI machine learning repository,
2010.

[11] H. Hoffmann, S. Sidiroglou, M. Carbin, S. Misailovic,
A. Agarwal, and M. Rinard. Dynamic knobs for responsive
power-aware computing. In 19th International Conference

on Architectural Support for Programming Languages and

Operating Systems, pages 199–212, 2011.

[12] A. Kulesza and F. Pereira. Structured learning with
approximate inference. In Advances in Neural Information

Processing Systems 20, pages 785–792, 2008.

[13] S. I. Lee, T. Johnson, and R. Eigenmann. Cetus - an
extensible compiler infrastructure for source-to-source
transformation. In Proc. of the 16th Workshop on Languages

and Compilers for Parallel Computing, 2003.

[14] X. Li and D. Yeung. Application-level correctness and its
impact on fault tolerance. In Proc. of the 13th International

Symposium on High-Performance Computer Architecture,
pages 181–192, Feb. 2007.

[15] Y. Li, K. Zhao, X. Chu, and J. Liu. Speeding up K-Means
algorithm by GPUs. In Proc. of the 2010 10th International

Conference on Computers and Information Technology,
pages 115 –122, 2010.

[16] S. Misailovic, S. Sidiroglou, H. Hoffmann, and M. Rinard.
Quality of service profiling. In Proc. of the 32nd ACM/IEEE

conference on Software Engineering, pages 25 –34, 2010.

[17] NVIDIA. CUDA C Programming Guide, Oct. 2012.

[18] NVIDIA. NVIDIA’s next generation CUDA compute
architecture: Kepler GK110, 2012.
www.nvidia.com/content/PDF/NVIDIA_Kepler
_GK110_Architecture_Whitepaper.pdf.

[19] M. Rinard. Probabilistic accuracy bounds for fault-tolerant
computations that discard tasks. In Proc. of the 2006

International Conference on Supercomputing, pages
324–334, 2006.

[20] M. C. Rinard. Using early phase termination to eliminate
load imbalances at barrier synchronization points. In Proc. of

the 22nd annual ACM SIGPLAN conference on

Object-Oriented Systems and applications, pages 369–386,
2007.

[21] S. Russell and P. Norvig. Artificial Intelligence: A Modern

Approach. Prentice Hall, 2009.

[22] M. Samadi, A. Hormati, M. Mehrara, J. Lee, and S. Mahlke.
Adaptive input-aware compilation for graphics engines. In

Proc. of the ’12 Conference on Programming Language

Design and Implementation, pages 13–22, 2012.

[23] A. Sampson, W. Dietl, E. Fortuna, D. Gnanapragasam,
L. Ceze, and D. Grossman. EnerJ: approximate data types for
safe and general low-power computation. Proc. of the ’11
Conference on Programming Language Design and

Implementation, 46(6):164–174, June 2011.

[24] J. Sartori and R. Kumar. Branch and data herding: Reducing
control and memory divergence for error-tolerant GPU
applications. In IEEE Transactions on on Multimedia, pages
427–428, 2012.

[25] H. Sheikh, M. Sabir, and A. Bovik. A statistical evaluation of
recent full reference image quality assessment algorithms.
IEEE Transactions on Image Processing, 15(11):3440–3451,
2006.

[26] M. Shindler, A. Wong, and A. W. Meyerson. Fast and
accurate k-means for large datasets. In Advances in Neural

Information Processing Systems24, pages 2375–2383. 2011.

[27] S. Sidiroglou-Douskos, S. Misailovic, H. Hoffmann, and
M. Rinard. Managing performance vs. accuracy trade-offs
with loop perforation. In Proc. of the 19th ACM SIGSOFT

symposium and the 13th European conference on

Foundations of software engineering, pages 124–134, 2011.

[28] J. A. Stratton, S. S. Stone, and W.-M. W. Hwu. MCUDA: An
efficient implementation of CUDA kernels for multi-core
CPUs. In Proc. of the 13th ACM SIGPLAN Symposium on

Principles and Practice of Parallel Programming, pages
16–30, 2008.

[29] A. K. Sujeeth, H. Lee, K. J. Brown, H. Chafi, M. Wu, A. R.
Atreya, K. Olukotun, T. Rompf, and M. Odersky. OptiML:
an implicitly parallel domain specific language for machine
learning. In Proc. of the 28th International Conference on

Machine learning, pages 609–616, 2011.

[30] A. C. Tamhane and D. D. Dunlop. Statistics and Data

Analysis. Prentice-Hall, 2000.

[31] H. S. Z.Wang, L. Cormack, and A. Bovik. Live image quality
assessment database release 2.
http://live.ece.utexas.edu/research/quality.

