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Abstract

The rise of graphics engines as one of the main parallel platforms
for general purpose computing has ignited a wide search for bet-
ter programming support for GPUs. Due to their non-traditional
execution model, developing applications for GPUs is usually very
challenging, and as a result, these devices are left under-utilized
in many commodity systems. Several languages, such as CUDA,
have emerged to solve this challenge, but past research has shown
that developing applications in these languages is a daunting task
because of the tedious performance optimization cycle or inherent
algorithmic characteristics of an application, which could make it
unsuitable for GPUs. Also, previous approaches of automatically
generating optimized parallel code in CUDA for GPUs using com-
plex compilation techniques have failed to utilize GPUs that are
present in everyday computing devices such as laptops and mobile
systems.
In this work, we take a different approach. Although it is hard

to generate optimized code for GPU, it is beneficial to utilize them
speculatively rather than leaving them running idle due to their
high raw performance capabilities compared to CPUs. To achieve
this goal, we propose Paragon: a collaborative static/dynamic com-
piler platform to speculatively run possibly-data-parallel pieces of
sequential applications on GPUs. Paragon utilizes the GPU in an
opportunistic way for loops that are categorized as possibly-data-
parallel by its loop classification phase. While running the loop
speculatively, Paragon monitors the dependencies using a light-
weight kernel management unit, and transfers the execution to the
CPU in case a conflict is detected. Paragon resumes the execu-
tion on the GPU after the dependency is executed sequentially on
the CPU. Our experiments show that Paragon achieves up to 12x
speedup compared to unsafe CPU execution with 4 threads.

Categories and Subject Descriptors D.3.4 [Programming Lan-
guages]: Processors—Code generation, Compilers;

General Terms Design, Performance

Keywords Compiler, GPU, Speculation, Optimization

1. Introduction

In recent years, multi-core CPUs have become commonplace, as
they are widely used not only for high-performance computing in
servers but also in consumer devices such as laptops and mobile
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devices. Besides multi-core CPUs, GPUs, by introducing general
purpose programming models such as CUDA, have also presented
the programmer with a different approach to parallel execution.
Researchers have shown that for applications that fit the execution
model of GPUs, in the optimistic case, speedups of 100-300x [25]
and in the pessimistic case, speedups of 2.5x [18] can be achieved
between the most recent versions of GPUs compared to the latest
multicore CPUs.
The main languages for developing applications for GPUs are

CUDA and OpenCL.While they try to offer a more general purpose
way of programming GPUs, efficiently utilizing GPUs is still a
daunting challenge. Difficulty in extracting massive data-level par-
allelism, utilizing non-traditional memory hierarchy, complicated
thread scheduling and synchronization semantics, and lack of ef-
ficient handling of control instructions are the main complications
that arise while porting traditional applications to CUDA. As a re-
sult of this complexity, the computational power of graphics en-
gines is often under-utilized or not used at all in most systems.
Although many researchers have proposed new ways to solve

this problem, there is still no solution for the average programmer
to target GPUs. In most cases, it is difficult to reshape an applica-
tion for the massively data-parallel execution engines of GPUs. The
programmer has two choices to deal with these cases. The first com-
mon solution is to redesign the underlying algorithm used in the
application and try to manually extract data-parallelism. Then, the
program is re-implemented in CUDA. This solution is clearly not
suitable for average programmers and in some cases is very com-
plicated to apply. The second solution is to use automated compiler
analyses to automatically extract enough data-parallelism from an
application to gain some performance benefit from the resulting
code on the target GPU. The main problem with this approach is
that the compiler analyses used for auto-parallelization are usually
too conservative and fragile resulting in very small or no gains.
In this work, we take a different approach to this problem. Con-

sidering the amount of parallelism exposed by GPUs and their ubiq-
uity in consumer devices, we propose speculative loop execution
on GPUs using Paragon for general purpose programs written in
C/C++. This approach will not utilize the peak performance capa-
bilities of GPUs. However, it enables general purpose programmers
to transparently take advantage of GPUs for pieces of their applica-
tions that are possibly data-parallel without manually changing the
application or relying on complex compiler analyses.
The idea of speculative loop execution is not a new one. This ap-

proach has been extensively investigated in both hardware and soft-
ware (see Section 6) in the context of multi-core CPUs. Paragon’s
compilation system is the first that we are aware of that explores
this idea in the context of the GPUs and CPUs. In Paragon, the
CPU is used to execute parts of an application that are sequential
and both the GPU and CPU are utilized for execution of possibly-
parallel for-loops. In this approach, GPU and CPU both start ex-



ecuting their version of a possibly-parallel for-loop (sequential on
the CPU, data-parallel on GPU). The GPU executes the for-loop as-
suming there is no data-dependency between the iterations and also
checks for possible dependency violations and, if detected, waits
for the execution of that piece of the for-loop that has the depen-
dency on the CPU. After a certain number of iterations, the GPU
resumes the execution of the rest of the loop using the result of the
CPU as its starting input. This approach may not be able to fully
utilize the GPU but in many cases results in performance gains on
general purpose applications running on commodity systems with
GPUs.
The Paragon compilation system is divided into two parts: of-

fline compilation and runtime kernel management. The offline part
mainly performs loop classification and generates CUDA code for
the runtime system which monitors the loops on the GPU for
dependency violations. The runtime system also performs light-
weight profiling and decides which loops are more likely to ben-
efit from executing on the GPU. These two phases together enable
the execution of C/C++ loops with no data-dependencies, hard-to-
prove data-dependencies, and rare-dependencies on the GPU.
In summary the main contributions of this work are:

• A static/dynamic compilation system for hybrid speculative
execution on GPU/CPUs

• Light weight runtime conflict detection on GPUs

• Low overhead rollback mechanism by using the concurrency
between GPUs and CPUs

The rest of the paper is organized as follows. In Section 2, the
CUDA programming model and the basics of GPUs architecture
are discussed. Section 3 explains the motivation behind Paragon.
Static and runtime compilation phases of Paragon are discussed in
Section 4. Experiments are shown in Section 5. Finally, in Sec-
tion 6, we discuss related works.

2. Background

The CUDA programming model is a multi-threaded SIMD model
that enables implementation of general purpose programs on het-
erogeneous GPU/CPU systems. There are two different device
types in CUDA: the host processor and the GPU. A CUDA pro-
gram consists of a host code segment that contains the sequential
sections of the program, which is run on the CPU, and a parallel
code segment which is launched from the host onto one or more
GPU devices. Host code can be multithreaded and in this work,
Paragon launches two threads on the CPU: one for managing GPU
kernels and transferring data and the other one is for performing
computations. Data-level parallelism (DLP) and thread-level par-
allelism (TLP) are handled differently in these systems. DLP is
converted into TLP and executed onto the GPU devices, while TLP
is handled by executing multiple kernels on different GPU devices
launched by the host processor. The threading and memory abstrac-
tion of the CUDA model is shown in Figure 1.
The threading abstraction in CUDA consists of three lev-

els of hierarchy. The basic block of work is a single thread.
A group of threads executing the same code are combined to-
gether to form a thread block or simply a block. Threads within
a thread block are synchronized together through a barrier oper-
ation ( syncthreads()). However, there is no explicit software
or hardware support for synchronization across thread blocks. Syn-
chronization between thread blocks is performed through the global
memory of the GPU, and the barriers needed for synchronization
are handled by the host processor. Thread blocks communicate by
executing separate kernels on the GPU.
Together, these thread blocks combine to form the parallel seg-

ments called grids where each grid is scheduled onto a GPU one at
a time. However, the newer generation of NVIDIA’s GPUs, Fermi,
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Figure 1: CUDA/GPU Execution Model

can support concurrent kernel execution, where different kernels of
the same application context can execute on the GPU at the same
time. Concurrent kernel execution allows programs that execute a
number of small kernels to utilize the whole GPU. It is also pos-
sible to overlap data transfers between CPU and GPU, and kernel
execution.
The memory abstraction in CUDA consists of multiple levels of

hierarchy. The lowest level of memory is registers, which are on-
chip memories private to a single thread. The next level of memory
is shared memory, which is an on-chip memory shared only by
threads within the same thread block. Access latency to both the
registers and shared memory is extremely low. The next level of
memory is local memory, which is an off-chip memory private to
a single thread. Local memory is mainly used as spill memory for
local arrays. Mapping arrays to shared memory instead of spilling
to local memory can provide much better performance. Finally,
the last level of memory is global memory, which is an off-chip
memory that is accessible to all threads in the grid. This memory
is used primarily to stream data in and out of the GPU from the
host processor. The latency for off-chip memory is 100-150x more
than that for on-chip memories. Two other memory levels exist
called the texture memory and constant memory. Texture memory
is accessible through special built-in texture functions and constant
memory is accessible to all threads in the grid.
The CUDA programming model is an abstraction layer to

access GPUs. NVIDIA GPUs use a single instruction multiple
thread (SIMT) model of execution where multiple thread blocks
are mapped to streaming multiprocessors (SM). Each SM contains
a number of processing elements called Streaming Processors (SP).
A thread executes on a single SP. Threads in a block are executed in
smaller execution groups of threads called warps. All threads in a
warp share one program counter and execute the same instructions.
If conditional branches within a warp take different paths, called
control path divergence, the warp will execute each branch path
serially, stalling the other paths until all the paths are complete.
Such control path divergences severely degrade the performance.
In modern GPUs, such as the NVIDIA GTX 560, there are 8

SMs each with 48 SPs. Each SM processes warp sizes of 32 threads.
The memory sizes for this GPU are: 48K of registers per SM and
1GB of global memory shared across all threads in the GPU.

3. Motivation

Parallelizing an existing single-threaded application for a multi-
core system is often more challenging as it may not have been
developed to be easily parallelized in the first place. It will be even
harder to extract the fine-grained parallelism necessary for efficient
use of many core systems like GPUs with thousands of threads.



1 for(t=0; t<nt; t++) for(z=0; z<nz; z++){

2 for(y=0; y<ny; y++) for(x=0; x<nx; x++){

3 if(node_number(x,y,z,t)==mynode()){

4 xr=x%squaresize[XUP];

5 yr=y%squaresize[YUP];

6 zr=z%squaresize[ZUP];

7 tr=t%squaresize[TUP];

8 i=xr+squaresize[XUP]

9 *(yr+squaresize[YUP]

10 *(zr+squaresize[ZUP]*tr));

11 lattice[i].x = x;

12 lattice[i].y = y;

13 lattice[i].z = z;

14 lattice[i].t = t;

15 lattice[i].index=x+nx*(y+ny*(z+nz*t));

16 }

17 }

18 }

(a)

1 for(i=1; i<n; i++){

2 for(j=iaL[i]; j<iaL[i+1]-1; j++){

3 x[i] = x[i] - aL[j] * x[jaL[j]];

4 }

5 }

(b)

1 void VectorAdd(int n,

2 float *c, float *a, float *b)

3 {

4 for(int i=0; i<n; i++){

5 *c = *a + *b;

6 a++;

7 b++;

8 c++;

9 }

10 }

(c)

Figure 2: Code examples for (a) non-linear array access, (b) indirect array
access, (c) array access through pointer

Therefore, several automatic parallelization techniques for GPUs
have been proposed to exploit more parallelism.
However, even the best static parallelization techniques can-

not parallelize programs that contain irregular dependencies that
manifest infrequently, or statically-unresolvable dependencies that
may not manifest at runtime. Removing these dependencies spec-
ulatively can dramatically improve the parallelization. This work
optimistically assumes that these programs can be executed in par-
allel on the GPU, and relies on a runtime monitor to ensure that no
dependency violation is produced.
Parallel non-analyzable codes usually contain three types of

loops: non-linear array access , indirect array access and array
access through pointers. The rest of this section illustrates these
kinds of loops.

Non-linear array access: If a loop accesses an array with an
index that is not linear with respect to the loop’s induction vari-
ables, it is hard to statically disambiguate the loop-carried depen-
dencies. To illustrate, Figure 2(a) shows the make lattice()

function in the milc benchmark from SPEC2006. This function
tries to manipulate the lattice array with the index i, which
depends on the induction variables (x, y, z, and t) and the
loop-independent variable squaresize. As shown in lines 4 to
8 of Figure 2(a), the index is calculated through modulo operation

with loop-independent variables, which makes it difficult to disam-
biguate cross-iteration dependencies at the compile time. In fact,
this loop may or may not have dependencies between iterations de-
pending on squaresize.

Indirect array access: This type of access occurs when an array
index is produced in runtime. For example, Figure 2(b) shows
codes for forward elimination of a matrix in compressed sparse row
(CSR) format where suffix L denotes the array for lower triangular
matrix. Forward elimination is generally used as a part of gaussian
elimination algorithm, which changes the matrix to a triangular
form to solve the linear equations. CSR format consists of three
arrays to store a sparse matrix, (1) a real array a[1:nnz] contains
the nonzero elements of the matrix row by row, (2) an integer array
ja[1:nnz] stores the column indices of the nonzero elements
stored in a, and (3) an integer array ia[1:n+1] contains the
indices to the beginning of each row in the arrays a and ja.
Like the previous example, a static compiler cannot determine

whether these loops are parallelizable since the inner loop in Fig-
ure 2 accesses arrays using another array value as an index, which
can be identified only at runtime. Since the inner loop is a sparse dot
product of the i-th row of array a and the dense vector x, runtime-
profiling will categorize this loop as a do-all loop.

Array access through pointers: Many applications are modular-
ized taking pointers as parameters. This makes it difficult for static
compilers to parallelize even with a simple loop. Figure 2(c) shows
a function that simply adds two vectors taking pointers as param-
eters. If there is a possibility that the pointer c overlaps with the
operands either a or b, the loop cannot be parallelized. Conserva-
tive static compiler will give up parallelizing the loop if there is a
little chance of pointers overlapping each other. If the runtime be-
havior shows that there is a very low probability of pointers over-
lapping each other, it is valuable to speculatively parallelize the
loop at the runtime.
As described in these examples, loops that are not possible to

parallelize at compile time must be re-investigated at runtime. For
loops that have cross-iteration dependencies with low probabilities,
speculatively parallelizing loops on the GPU will yield a great
performance speed up.

4. Paragon Execution System

The main goal of Paragon’s execution system is to automatically
extract fine-grained parallelism from its sequential input code and
generate efficient C/CUDA code to run on heterogeneous systems.
However, applications with irregular or complex data-dependencies
are hard or even impossible to parallelize at compile time. To
overcome this problem, Paragon detects possibly-parallel parts and
runs them speculatively on the GPU. In order to guarantee the
correctness of the execution, like all speculative execution systems
such as transactional memory systems, Paragon has checkpointing.
At each checkpoint, before starting speculative thread execution,
the system takes a snapshot of the architectural state. Storing copies
for a few registers at transaction threads in a CPU core is relatively
cheap. For GPUs, however, with thousands of threads running on
the GPU, naively checkpointing large register files would incur
significant overhead [12].
However, since GPUs and CPUs have separate memory sys-

tems, there is no need for special checkpointing before launching
a speculative kernel. Paragon always keeps one version of the cor-
rect data in the CPU’s memory and in case of conflict, it uses the
CPU’s data to recover. To remove the overhead of recovery, instead
of waiting for a speculative kernel to finish and run the recovery
process if it is needed, Paragon runs the safe sequential version of
the kernel on the CPU in parallel to the GPU version. If there was a
conflict in the speculative execution on the GPU, Paragon ignores
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Figure 3: An example of running a program with Paragon. (a) sequential
run (b) execution without any conflict (c) execution with conflict.

the GPU’s results and waits for safe execution to finish and uses its
result to run the next kernel.
Figure 3 shows an example of Paragon’s execution for a pro-

gram with five different code segments. Like most programs, this
program starts with a sequential code. There are four loops with dif-
ferent characteristics in this example. Loops L1 and L3 are parallel.
L2 is a possibly-parallel loop that has complex or data-dependent
cross-iteration dependency so the compiler is unable to guarantee
safe parallel execution of this loop. L4 has cross-iteration depen-
dencies and it is classified as a sequential loop. Paragon launches
the conflict management unit’s (CMU) thread on the CPU. The con-
flict management unit is responsible for managing GPU-CPU trans-
fers and running kernels on the GPU or the CPU. In order to run a
kernel on the CPU, the CMU launches another thread on the CPU.
For simplicity, Figure 3 just has one line for the CPU but there are
two threads running on the CPU while Paragon executes kernels on
the CPU.
In this example, Paragon starts execution by running the sequen-

tial part on the CPU. After running the sequential code, Paragon
transfers the data needed for the execution of loop L1 to the GPU
and runs L1 in parallel. Since loop L2 is possibly-parallel, it should
be speculatively executed on the GPU. In order to keep the correct
data at this checkpoint, Paragon transfers data to the CPU. By using
asynchronous concurrent execution, Paragon launches the CUDA
kernel for loop L2 at the same time. It should be noted that if L2
reads and writes to the same array, Paragon should wait for data
to be completely transferred to the CPU, and then launch the GPU
kernel. CPU executes the safe and sequential version of L2 after it
receives the data needed for execution of L2 from the GPU. Paragon
checks for conflicts in parallel execution of possibly-parallel loops
like L2. The conflict detection process is done in parallel on the
GPU and will set a conflict flag if it detects any dependency viola-
tion. After loop L2 is finished, the GPU transfers the conflict flag
to the CPU. Based on the conflict flag, there are two possibilities:
First, if there was no conflict, the CMU stops the working thread
which executes loop L2 on the CPU and uses the GPU data to exe-
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Figure 4: Compilation flow in Paragon.

cute loop L3. The second case is when a conflict is found in parallel
execution of loop L2. In this case, Paragon waits for CPU execu-
tion to finish, then transfers data needed for the loop L3 to the GPU.
Since loop L3 is parallel, this loop will be executed on the GPU. In
order to run the sequential loop L4, Paragon copies the output of L3
to the GPU.
The rest of this section illustrates different parts of the Paragon

execution system. As shown in Figure 4, Paragon consists of two
main steps: offline compilation and runtime management. Offline
compilation performs loop classification to determine whether or
not it is safe to parallelize code segments. Based on this informa-
tion, loop classification categorizes different loops into three cate-
gories: parallel, sequential and possibly-parallel. Parallel loops do
not have any cross-iteration dependency and can be run in parallel
on the GPU. Sequential parts, which will be run on the CPU, are
parts that do not have enough parallelism to run on the GPU or have
system function calls. Loops that static analysis cannot determine
if they are parallel or sequential, will be in the last group called
possibly-parallel loops.
Loop classification passes all this information to the code gen-

eration unit. The sequential loops will be run on the CPU there-
fore Paragon generates only C code for such loops. For parallel
loops, CUDA kernels will be generated. Details of this compila-
tion will be discussed in section 4.1. Code generation generates
the CPU and GPU code with instrumentation for possibly-parallel
loops. The purpose of the instrumentation is to find any possible
conflict in the execution of unsafe kernels. These will be discussed



1 #pragma unroll

2 for (i = 0; i < iterationsPerThread ; i ++){

3 perform iteration #(i * blockDim + threadId)

4 }

(a)

1 for (i = threadId ; i < tripCount ; i +=

blockDim)

2 perform iteration #(i)

(b)

Figure 5: Generated CUDA code for parallel loops with (a) Fixed trip
count, (b) Variable trip count.

in section 4.1.2. After compiling all loops, transfer management
puts all necessary memory copy instructions in the code.
Runtime kernel management profiles all possibly-parallel loops

executing on the GPU and in case of misspeculation, runs a re-
covery process to guarantee the correctness of execution. Runtime
management is also responsible for transferring data between the
CPU and GPU.
During runtime, each possibly-parallel loop will be profiled

to find any dependency between different iterations of that loop.
After profiling, possibly-parallel loops will be categorized as a
parallel or sequential loop based on the number of dependencies
found in the profiling result. Sequential loops will be run on the
CPU, and parallel loops will be run speculatively on the GPU. For
speculative execution on the GPU, Paragon requires the original
code to be augmented with the instructions that drive the runtime
dependence analysis. For those loops with rare conflicts, a loop
fission optimization is used to break that loop into multiple parallel
loops.
The main unit of runtime management is the conflict manage-

ment unit. The CMU uses profiling information to decide which
kernels should be executed on the GPU and which of them should
be run on the CPU. The CMU also takes care of data movement
between CPU and GPU especially in misspeculation cases.

4.1 Offline Compilation

This section describes Paragon’s CUDA compilation process.
Paragon generates CUDA kernels for parallel and possibly-parallel
loops and instruments the possibly-parallel kernels to make detec-
tion of any dependency violation possible at runtime.

4.1.1 Loop Classification and Kernel Generation

Distributing the workload evenly among thousands of threads is
the main key to gaining good performance on the GPU. How to
assign loop iterations to threads running on the GPU is a significant
challenge for the compiler. This section illustrates how Paragon
distributes iterations of the loop among GPU threads.
For single do-all loops, Paragon assigns the loop’s iterations

to the GPU’s threads based on the trip count. If the trip count is
smaller than the maximum number of possible threads, Paragon
assigns one iteration per thread. Since our experiments show that
the best number of threads per block is constant (for our GPUs, it
is equal to 256), the number of threads per block is always equal
to 256 and the number of blocks will be equal to the trip count
divided by 256. This number can be easily changed based on the
GPU for which Paragon is compiling. If the trip count is more than
the maximum possible number of threads, Paragon assigns more
than one iteration per thread. The number of iterations per thread is
always a power of two to make it easier to handle on the GPU. In
this case, number of blocks will be:

Number of Blocks =
Trip Count

Threads per Block

×
1

Iterations per Thread

If the trip count is not known during compile time, the compiler
cannot assign a specific number of iterations to each thread. In this
case, Paragon sets the number of blocks to a predefined value but
this number will be tuned based on previous runs of this kernel.
As shown in Figure 5b each thread will run iterations until no
iterations are left.
We could use the same method for loops with a fixed trip count,

but our experiments show that assigning the exact iterations per
thread increases the performance for these loops. If the number of
threads launched is less than the number of iterations, some threads
will be idle during the kernel execution and that can degrade the
performance. Another advantage is that for loops similar to the loop
in Figure 5a which has a fixed trip count the compiler can unroll the
loop efficiently.
Nested do-all loops will be easy to compile if Paragon can

merge those loops and generate one do-all loop. However, it is not
always possible. If the outer loop has instructions that are not in
the inner loop, it is hard to merge nested loops. In these cases,
Paragon merges nested loops as far as it is possible. Finally, two
loops will be mapped to the GPU. The outer loop will be mapped to
the blocks, and the inner loop will be mapped to threads of blocks.
Therefore, number of blocks will be equal to the trip count of the
outer loop and the number of threads per block is still equal to 256.

reduction loop: Another common loop is a reduction loop. A re-
duction operation generally takes a large array as an input, performs
computations on it, and generates a single element as an output.
This operation is usually parallelized on GPUs using a tree-based
approach, such that each level in the computation tree gets its input
from the previous level and produces the input for the next level.
In a uniform reduction, each tree level reduces the number of el-
ements by a fixed factor and the last level outputs one element as
the final result. The only condition for using this method is that the
reduction operation needs to be associative and commutative.
Paragon automatically detects reduction operations in its input.

After this detection phase, Paragon replaces the reduction actor
with a highly optimized kernel in its output CUDA code. In a single
reduction loop, Paragon generates two kernels. The first kernel,
called the initial reduction kernel, chunks up the input array and lets
each block reduce a different data chunk . Since there is no global
synchronization between threads of different blocks, the results
of these blocks are written back to global memory. Subsequently,
another kernel, called the merge kernel, is launched to merge the
outputs from different blocks of the initial reduction kernel down
to one element. The merge kernel has one block that is used to
compute the reduction output of the initial kernel’s output.
In both kernels, data is initially read from global memory, re-

duced and written to shared memory, and read again from shared
memory and reduced to the final result.
Figure 6 shows Paragon’s resulting CUDA code for the ini-

tial reduction kernel. In the first phase, the input array in global
memory is divided into chunks of data. Each thread computes
the output for each chunk, and copies it to shared memory.
The amount of shared memory usage in each block is equal to
Threads per Block.
In the next phase, the results stored in shared memory are re-

duced in multiple steps to form the input to the merge kernel. At
each step of this phase, the number of active threads performing
reduction are reduced by half. They continue until the number of
active threads equals the number of threads in a single warp(line 10
in Figure 6). At this point, reducing the number of threads any fur-



1 Initial_Kernel<<<reductionBlocks, threads>>>

2 /* Global memory reduction phase */

3
4 Result = 0;

5 numberOfThreads = BlockDim * gridDim;

6 for ( index=tid; index<size; index+=

numberOfThreads)

7 Result = Result Input[Index];

8 SharedData[tid] = Result;

9 activeThreads = blockDim;

10 while (activeThreads > WARP_SIZE){

11 if (tid <activethreads)

12 activeThreads /=2;

13 sync();

14 SharedData[tid] = SharedData[tid+

activeThreads];

15 }

16
17 /* Shared memory reduction phase */

18 Stride = WARP_SIZE;

19 if (tid < WARP_SIZE)

20 while (stride > 1){

21 sync();

22 SharedData[tid] = SharedData[tid + stride

];

23 stride /=2;

24 }

25 if (tid == 0)

26 Output[bid] = SharedData[0];

Figure 6: The initial reduction kernel’s CUDA code.

ther would cause control-flow divergence and inferior performance.
Therefore, Paragon keeps the number of active threads constant and
just has some threads doing unnecessary computation (line 20 in
Figure 6). It should be noted that after each step, synchronization is
necessary to make shared memory changes visible to other threads.
Finally, the thread with tid = 0 computes the final initial

reduction result and writes it back to global memory.
If there are multiple do all loops and the innermost loop is a

reduction loop, Paragon maps outer loops to the blocks and each
block computes the reduction. Since each block is independent of
other blocks, there is no need to launch the merge kernel.
If the outer loops have a high number of iterations, Paragon may

assign each reduction process to one thread. Therefore, iterations
of outer loops will be distributed between threads and each thread
executes one instance of the innermost loop.

4.1.2 Instrumenting for conflict detection

One of the main challenges for speculative execution on the GPU is
designing a conflict detection mechanism that works effectively for
thousands of threads. Paragon checks for the dependency between
different threads for possibly-parallel loops on the fly. All this con-
flict detection process is done on the GPU in parallel. This process
is done with two kernels: the execution kernel and the checking ker-
nel.The first kernel does the computations and also tags store and
load addresses, and the checking kernel checks marked addresses
to find a conflict. In this case, a conflict means writing to the same
address by multiple threads or writing to an address by one thread
and reading the same address by other threads.
Paragon detects the arrays that can cause conflicts, and for those

arrays, it allocates write-log and read-log arrays. Using a bloom fil-
ter for keeping track of thousands of threads at the same time re-
quires large signatures. Accessing these signatures on the GPU can
cause control flow divergence which leads to performance degra-
dation on the GPU. Instead of using a bloom filter, Paragon stores
all memory accesses in read-log and write-log arrays separately.
During execution, each store to a conflict array will be marked in

1 Execution_Kernel{

2 for (i = blockIdx.x; i < n ; i += gridDim.x){

3 sum = 0;

4 for (j=jaL[i]+threadIdx.x;j<iaL[i+1]-1;j+=

blockDim.x){

5 sharedSum[j] -= aL[j] * x[jaL[j]];

6 rd_log[jaL[j]] = 1;

7 }

8 sum = reduction(sharedSum);

9 if (threadIdx.x == 0){

10 x[i] = sum;

11 AtomicInc(wr_log[i]);

12 }

13 }

(a)

1 Checking_Kernel{

2 tid = blockIdx.x * blockDim.x + threadIdx.x;

3 wr = wr_log[tid];

4 rd = rd_log[tid];

5 conflict = wr >> 1 | (rd & wr);

6 if (conflict)

7 conflictFlag = 1;

8 }

(b)

Figure 7: Generated CUDA code for example code in Figure 2b. (a) the
execution kernel code with instrumentation, (b) the checking kernel.

a write-log and each load from that array will be marked in a read-
log.
Since the order of execution of threads on the GPU is not

known, any two threads which write to the same address from
different threads can cause a conflict. This conflict may result in
a wrong output. In addition to the output dependency, writes to and
reads from the same address by two different threads may violate
the dependency constraints. Since the number of writes to each
address is important, Paragon uses CUDA atomic incrementation
instructions to increment the number of writes for each store as
shown in Figure 7. If the number of writes to one address is more
than one then there is a write dependency between iterations of the
loop, and that loop is not parallelizable. One write to and one read
from the same address will cause a conflict, and the GPU’s result
may not be correct anymore. Since the number of reads from each
address is not important, For decreasing the overhead of checking
Paragon does not increment read-log elements atomically. Per each
read, Paragon sets the corresponding bit in the read-log.
After completion of the execution kernel, the checking kernel

will be launched. This kernel checks the read-log and write-log
for conflicts. The easiest implementation of the checking kernel
is to launch one thread per address and check all addresses as
shown in Figure 7, but this method can decrease performance.
Instead of checking all addresses, it will be faster to just check
those addresses that at least one of the execution kernel’s threads
writes to. In order to check these addresses, the checking kernel first
regenerates addresses that threads wrote to them. Paragon starts
from the index of write accesses and goes up on the data flow graph
to find instructions that generate write addresses and puts all of
them in the checking kernel. Line 5 of Figure 7 checks the number
of writes and reads of the corresponding element. If the number of
writes is more than one (wr≫ 1) or there is at least one write and
one read (rd & wr), the checking kernel will set the conflict flag.
Some of the loops only write to the conflicted array so a write-

write dependency is the only source of conflicts in these loops. In
this case, there is no need to launch the checking kernel because the
atomicInc function returns the old value of the write-log element.



For each conflicted array write, execution kernel increments the
corresponding element in the write-log array and it also checks the
old value. If the old value is more than one, it shows that another
thread already wrote to the same element and this may result in
conflict.
Each thread that finds a conflict will set the conflict flag. This

flag will be sent to the CPU. Based on the conflict flag, the conflict
management unit makes further decisions. These decisions will be
discussed in section 4.2.3.

4.1.3 Transfer Management

After generating CUDA codes, Paragon inserts copying instruc-
tions between the kernels. All live-in and live-out variables for all
kernels are determined by Paragon. The transfer management com-
piler pass starts with sequential CPU codes. For calling the first
GPU kernel, all live-in variables of that kernel will be transferred
to the GPU. After each kernel, transfer management puts copying
instruction based on previous and next kernel’s types.
If both consecutive kernels are parallel or sequential there is

no need to transfer data. If one of them is parallel and the other
one is sequential, transferring data is needed. In cases where at
least one of the kernels is possibly parallel, Paragon puts copying
instructions in both directions. Runtime management will decide
how to move the data at runtime based on the place of correct data.

4.2 Dynamic Runtime Management

4.2.1 Profiling

This section describes profiling loops to find the dependency be-
tween iterations and how Paragon uses this information to improve
the performance of the generated code. Profiling helps us to find
possibly-parallel loops for which a compile-time dependency anal-
ysis cannot guarantee safe parallel execution of a given loop. The
first time that Paragon runs a possibly-parallel loop, it will run it on
the CPUwith a thread called working thread. Another thread called
profiling thread will profile the loop in parallel to decrease the over-
head of profiling. The profiling thread keeps track of all memory
accesses. Since Paragon only profiles possibly-parallel loops and
does it in parallel with real execution, profiling has a negligible
overhead.
The profiling thread executes all instructions except stores and

keeps track of the number of conflicts. If there was no conflict, the
profiling thread marks the kernel as a parallel kernel for the conflict
management unit. If there were many conflicts, the profiling thread
marks the loop as sequential.
After all kernels are categorized based on the profiling results,

Paragon enters the execution phase and runs the kernels without
profiling. In this phase, Paragon keeps track of the number of
iterations that each loop has. Based on these numbers, it will tune
the number of blocks for the next execution of each kernel on the
GPU to get the best performance.

4.2.2 Loop Fission

In some loops conflicts are really rare. for these loops, if there are
enough iterations, Paragon uses loop fission optimization to divide
the iteration space of the loops into multiple groups. Paragon runs
each group separately in parallel. Since conflicts are rare in these
cases, most of the generated loops will be parallel.
This optimization will be more beneficial for future heteroge-

neous systems that have a high CPU-GPU transfer rate. For desktop
systems, since transferring data between CPU and GPU is expen-
sive, checkpointing between all consecutive subloops produced by
loop fission may result in poor performance.

4.2.3 Conflict Management Unit

Conflict management unit is a thread running on the CPU and its
responsibility is to manage GPU-CPU transfers and run kernels

speculatively on the GPU. The CMU decides which kernel should
be executed on the CPU or GPU. In case of conflicts, it uses the
correct data on the CPU to run the next kernel. If there was a
dependency violation, the CMU does not launch the next kernel
on the GPU and waits for the working thread on the CPU to finish.
Based on the next kernel type, the conflict management unit makes
different decisions. If the next kernel should be run on the GPU, the
CMU transfers all live-out variables to the GPU and launches the
next kernel. If the next kernel is possibly-parallel, in addition to the
GPU version, one version will also be run on the CPU. The last case
is that the next kernel is sequential, so the conflict management unit
runs the sequential code on the CPU.
If there was no conflict in the GPU execution and the next kernel

is parallel then the CMU will launch the next kernel. Otherwise it
transfers live-out variables and runs the next kernel on the CPU.

5. Experiments

A set of benchmarks from the sparse matrix library are used for
evaluation to show Paragon’s performance for loops with indi-
rect array accesses. We re-implemented another set of bench-
marks from the Polybench benchmark suite in C with pointers to
show Paragon’s performance for loops with pointers. We compiled
these benchmarks with Paragon, and compared their performance
with the original and hand-optimized unsafe parallelized C code.
Paragon compilation phases are implemented in the backend of
the Cetus compiler [17] and its C code generator is modified to
generate CUDA code. Paragon’s output codes are compiled for ex-
ecution on the GPU using NVIDIA nvcc 3.2. GCC 4.1 is used to
generate the x86 binary for execution on the host processor. The
target system has an Intel i7 CPU and an NVIDIA GTX 560 GPU
with 2GB GDDR5 global memory.

5.1 Loops with Pointers

In this section, we want to show Paragon’s performance for loops
with pointers. We rewrote 6 benchmarks from the Polybench
benchmark suite [28] with pointers. We also implemented unsafe
parallel versions of these benchmarks for a CPU with 1, 2, and 4
threads. Figure 8 compares the performance of these benchmarks
compared to sequential runs on the CPU. The GPU dataset shows
the results for when we compile the loops with Paragon but with-
out any instrumentation. In this case, we assume that the compiler
can detect that these loops are parallel. Paragon dataset shows the
performance of Paragon’s generated code with instrumentation. In
this case, we check all possibly-parallel loops on the fly. CPU 4,
2, and 1 are unsafe parallel CPU versions without any checks for
conflicts. All these different versions are compared with sequen-
tial runs on the CPU without any threading. The thread creation
overhead makes the performance of the CPU code with one thread
worse than the sequential code.
Figure 9 shows the overhead of Paragon execution compared

to the GPU execution without any instrumentation. This Figure
also breaks down the overhead into three groups: write-log mainte-
nance, read-log maintenance, and checking kernel execution.
FDTD, Finite Difference Time Domain method, is a powerful

computational technique for modeling electromagnetic space. This
benchmark has three different stencil loops and all these loops are
highly memory intensive. In memory intensive loops, adding more
memory accesses to check the conflicts can degrade the perfor-
mance. Therefore, the performance gap between GPU and Paragon
is high for FDTD.
The Siedel benchmark uses the Gauss-Siedel method which is

an iterative method used to solve a linear systems of equations.
Siedel is another stencil benchmark with more computation than
FDTD. Jacobi is another stencil method to solve linear systems;
We have one dimensional and two dimensional versions of this
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Figure 8: Performance comparison of Paragon with unsafe parallel ver-
sions on the GPU and CPU with 4, 2, and 1 threads for loops with pointers.

benchmark. As shown in Figure 9, the read-log, write-log, and
checking kernel have similar effects on these benchmarks.
gemm is a general matrix multiplication benchmark that has

three nested loops. The innermost loop is reduction and two outer
loops are parallel. As mentioned before, Paragon decides which
loops should be parallelized based on the number of iterations.
Since both outer loops have high trip counts, Paragon parallelizes
these loops and executes reduction sequentially inside each thread.
It should be noted that this code is automatically generated for
matrix multiply with pointers, so most compilers cannot detect
that these loops are parallel. For the CPU version, we parallelized
the outermost loop. Since the matrix multiplication benchmark has
an order of magnitude more reads than writes, maintaining the
read-log is the main source of the overhead compared to the GPU
without checking.
mvt is a matrix transpose vector product benchmark that has two

nested loops. The outer one is a do-all loop and the inner one is a
reduction loop. The outer loop will be mapped to thread blocks and
each thread block performs the reduction in parallel. Maintaining
the read-log is the main source of the overhead in this benchmark
because of the high number of reads.
On average, the unsafe parallel GPU version is 2x faster than

Paragon. The reason is that in loops with pointers, all arrays can
cause conflicts, and Paragon takes care of all reads and writes
which leads to 2x more memory accesses. These extra memory
accesses can degrade the performance of memory-intensive loops.
Compared to the unsafe parallelized version on the CPU, Paragon
is 12x faster than CPU execution with 4 threads. Paragon is 24x
and 37x faster than 2 and 1 thread execution, respectively.

5.2 Indirect or nonlinear array accesses

Figures 10 and 11 show the results for eight benchmarks with in-
direct array accesses. These benchmarks have loops that cannot be
analyzed by traditional compilers. For each sparse matrix bench-
mark, we generated matrices randomly with one percent nonzero
elements. Since memory accesses in these benchmarks are irreg-
ular, the GPU’s performance is lower than regular access bench-
marks. In these loops, contrary to the pointer loops, Paragon marks
arrays that can cause conflicts. Since Paragon only checks memory
accesses for these arrays, the overhead of Paragon is lower in these
benchmarks compared to the pointer loops.
Saxpy adds one sparse array with one dense array and the result

array will be dense as well. Since this benchmark only updates a
small percentage of the output array, there is no need to check all
elements of the output for a conflict. The checking kernel which
checks for conflicts will check only written addresses. We need to
add address generation instructions to the checking kernel.
The householder reflection benchmark, House, computes the re-

flection of a plane or hyperplane containing the origin. This method
is widely used in linear algebra to compute QR decompositions.
This benchmark consists of two parts. The first part is a reduction
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Figure 9: Breakdown of Paragon’s overhead compared to unsafe parallel
version on the GPU for loops with pointers.

loop that cannot cause conflict. This loop will be mapped to CUDA
without any instrumentation. The second part has a loop which is
similar to Saxpy and it may have cross-iteration dependencies.
Ipvec is a dense matrix benchmark that shuffles all elements of

the input array based on the another array and puts the results in
the output array. Since this benchmark is not sparse, the checking
overhead is high. As can be seen in Figure 10, the GPU version is
5x faster than Paragon.
Sparse BLAS functions ger and gemver also have loops that can

cause conflicts. Dependencies between different iterations of these
loops cannot be analyzed statically so we need to use Paragon to
run these loops on the GPU speculatively.
Saxpy, House, Ipvec, ger and gemver only update the conflicted

arrays. Since the atomicInc function returns the old value, there is
no need to launch the checking kernel. For each write in the exe-
cution kernel, each thread atomically increments the corresponding
element in the write-log and it checks the old value. If the old value
is more than zero, the execution kernel sets the conflict flag. In
these benchmarks, the Paragon overhead is the result of maintain-
ing write-log as shown in Figure 11.
The next benchmark is SOR, a Multicolor SOR sweep in the

EllPack format, and its code is shown in Figure 12. This benchmark
has three loops: the outer loop is do-across and the two inner loops
are parallel, but traditional static compilers cannot easily detect
that. By looking at line 4 of the code, it seems that there can be
a read-write dependency between y[i] and y[ja[i,j]], but the main
diagonal of matrix A is stored separately in another matrix. Since
A does not have a main diagonal, there will be no dependency
between iterations of loops in lines 2 and 3 of Figure 12.
Forward Elimination with Level Scheduling (FWD) is another

method which is used in solving linear systems. FWD’s code is
similar to SOR and it has both reads and writes to the conflicted
array. Since this benchmark updates the sparse matrix, the number
of memory addresses that have been updated is low. Consequently,
the overhead of launching the checking kernel is low but adding
memory accesses to the execution kernel to maintain the read-log
and write-log is expensive in this benchmark.
As can be seen in Figure 10, the performance of Paragon-

generated code is 2.4x better than the parallel version of the code
running on the CPU with 4 threads. Paragon is 3x and 5.2x faster
than 2 and 1 thread execution, respectively. It should be noted
that in the CPU version, we assumed that there is no conflict
between different iterations. Figure 10 shows that running safely
on the GPU is better than running unsafely on the CPU for these
data parallel loops. The unsafe GPU version is 1.6x faster than
Paragon’s generated code on average.

6. Related Work

As many-core architectures have become mainstream, there has
been a large body of work on static compiler techniques to automat-
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Figure 10: Performance comparison of Paragon with unsafe parallel
versions on the GPU and CPU with 4, 2, and 1 threads for loops with
indirect accesses.

ically parallelize applications to utilize thread-level-parallelism [1,
5, 9, 24, 27, 31]. One of the most challenging issues in automatic
parallelization is to discover loop-carried dependencies. Although
various research projects on loop-dependence analysis [2, 15] and
pointer analysis [8, 26] have tried to disambiguate dependencies
between iterations, parallelism in most real applications cannot be
uncovered at compile time due to irregular access patterns, complex
use of pointers, and input-dependent variables.
For those applications that are hard to parallelize at compile

time, thread-level speculation (TLS) is used to resolve loop-carried
dependencies at runtime. In order to implement TLS, several ex-
tra compiler and runtime steps such as buffering memory access
addresses for each thread, checking violations, and recovery pro-
cedures in case of conflicts between threads, are necessary. Many
previous works [4, 7, 11, 14, 16, 21–23, 29, 30, 32, 34, 35, 37, 38]
have focused on designing and refining these steps for the decades.
One of the main approaches is hardware-based TLS [16] which
checks and recovers memory violations in hardware to minimize
the overhead. Unfortunately, hardware TLS requires complicated
logic and area to keep track of memory accesses for each thread. so
the capability is only available to fine-grained parallelism, which
is not desirable for thread-level-parallelism. Another approach for
implementing TLS is software-based TLS [4, 7, 11, 14, 21, 29, 30].
There are previous works that have focused on generating

CUDA code from sequential input [3, 13, 19, 33, 36]. hiCUDA [13]
is a high level directive based compiler framework for CUDA pro-
gramming where programmers need to insert directives into se-
quential C code to define the boundaries of kernel functions. The
work proposed by Baskaran et al. [3] is an automatic code trans-
formation system that generates CUDA code from input sequential
C code without annotations for affine programs. In the system de-
veloped by Wolfe [36], by using C pragma preprocessor directives,
programmers help the compiler to generate efficient CUDA code.
Tarditi et al. [33] proposed accelerator, in which programmers use
the C# language and a library to write their programs and let the
compiler generate efficient GPU code.The work by Leung et al [19]
proposes an extension to a Java JIT compiler that executes program
on the GPU.
While none of the previous works on automatic compilation for

GPUs considered speculation, there are other works [10, 20] which
studied the possibility of speculative execution on the GPGPUGre-
gory et al. [10] described speculative execution on multi-GPU sys-
tems exploiting multiple GPUs, but they explored the use of tra-
ditional techniques to extract parallelism from a sequential loop in
which each iteration launches GPU kernels. This approach lever-
aged the possibility of speculatively partitioning several kernels on
multiple GPUs. Liu et al. [20] showed the possibility of using GPUs
for speculative execution using a GPU-like architecture on FPGAs.
They implemented software value prediction techniques to accel-
erate programs with limited parallelism, and software speculation
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Figure 11: Breakdown of Paragon’s overhead compared to unsafe parallel
version on the GPU for loops with indirect accesses.

1 for(col=1; col<=ncol; col++)

2 for(j=1; j<=ndiag; j++)

3 for(i=iaL[col]; i<iaL[col+1]-1; i++)

4 y[i] = y[i] - A[i,j] * y[ja[i,j]];

Figure 12:Main part of multicolor SOR sweep’s code in the EllPack format

techniques which re-executes the whole loop in case of a depen-
dency violation.
Recent works [6, 12] proposed software and hardware transac-

tional memory systems for graphic engines. In these works each
thread is a transaction and if a transaction aborts, it needs to re-
execute. This re-execution of several threads among thousands of
threads may lead to control divergence on the GPU, and will de-
grade the performance. For Paragon, each kernel is a transaction
and if it aborts, Paragon uses the CPU’s results instead of re-
executing the kernels.

7. Conclusion

GPUs provide an attractive platform for accelerating parallel work-
loads. Due to their non-traditional execution model, developing ap-
plications for GPUs is usually very challenging, and as a result,
these devices are left under-utilized in many commodity systems.
Several languages, such as CUDA, have emerged to solve this chal-
lenge, but past research has shown that developing applications in
these languages is a challenging task because of the tedious perfor-
mance optimization cycle or inherent algorithmic characteristics of
an application, which could make it unsuitable for GPUs. Also,
previous approaches of automatically generating optimized paral-
lel code in CUDA for GPUs using complex compiler infrastructures
have failed to utilize GPUs that are present in everyday computing
devices such as laptops and mobile systems.
In this work, we proposed Paragon: a collaborative static/dy-

namic compiler platform to speculatively run possibly-data-parallel
pieces of sequential applications on GPUs. Paragon utilizes the
GPU in an opportunistic way for loops that are categorized as
possibly-data-parallel by its loop classification phase. While run-
ning the loop speculatively on the GPU, Paragon monitors the de-
pendencies using a light-weight kernel management unit, and trans-
fers the execution to the CPU in case a conflict is detected. Paragon
resumes the execution on the GPU after the dependency is executed
sequentially on the CPU. Our experiments showed that Paragon
achieves up to a 12x speedup compared to unsafe CPU execution
with 4 threads and the unsafe GPU version performs less than 2x
better than safe execution with Paragon.
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