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Abstract

Approximate computing is an approach where reduced ac-

curacy of results is traded off for increased speed, through-

put, or both. Loss of accuracy is not permissible in all com-

puting domains, but there are a growing number of data-

intensive domains where the output of programs need not

be perfectly correct to provide useful results or even notice-

able differences to the end user. These soft domains include

multimedia processing, machine learning, and data mining/-

analysis. An important challenge with approximate comput-

ing is transparency to insulate both software and hardware

developers from the time, cost, and difficulty of using ap-

proximation. This paper proposes a software-only system,

Paraprox, for realizing transparent approximation of data-

parallel programs that operates on commodity hardware

systems. Paraprox starts with a data-parallel kernel imple-

mented using OpenCL or CUDA and creates a parameter-

ized approximate kernel that is tuned at runtime to maximize

performance subject to a target output quality (TOQ) that is

supplied by the user. Approximate kernels are created by rec-

ognizing common computation idioms found in data-parallel

programs (e.g., Map, Scatter/Gather, Reduction, Scan, Sten-

cil, and Partition) and substituting approximate implementa-

tions in their place. Across a set of 13 soft data-parallel ap-

plications with at most 10% quality degradation, Paraprox

yields an average performance gain of 2.7x on a NVIDIA

GTX 560 GPU and 2.5x on an Intel Core i7 quad-core pro-

cessor compared to accurate execution on each platform.

Categories and Subject Descriptors D.3.4 [Programming

Languages]: Processors—Code generation, Compilers
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1. Introduction

Over the past few years, the information technology indus-

try has experienced a massive growth in the amount of data

that it collects from consumers. Analysts reported that in

2011 alone the industry gathered a staggering 1.8 zettabytes

of information, and they estimate that by 2020, consumers

will generate 50 times this figure [10]. Most major busi-

nesses that host such large-scale data-intensive applications,

including Google, Amazon, and Microsoft, frequently invest

in new, larger data centers containing thousands of multi-

core servers. However, it seems that such investments in new

hardware alone may not translate to the computation capa-

bility required to keep up with the deluge of data. Rather, it

may be necessary to consider using alternative programming

models that exploit the data parallel computing abilities of

existing servers in order to address this problem. This paper

focuses on applying one such model, approximate comput-

ing, where the accuracy of results is traded off for computa-

tion speed, to solve the problem of processing big data.

Approximation is applicable in domains where some de-

gree of variation or error can be tolerated in the result of

computation. For domains where some loss of accuracy dur-

ing computation may cause catastrophic failure, e.g. cryp-

tography, approximation should not be applied. However,

there are many important domains where approximation can

greatly improve application performance, including multi-

media processing, machine learning, data analysis, and gam-

ing. Video processing algorithms are prime candidates for

approximation as occasional variation in results do not cause

the failure of their overall operation. For example, a con-

sumer using a mobile device can tolerate occasional dropped

frames or a small loss in resolution during video playback,

especially when this allows video playback to occur seam-

lessly. Machine learning and data analysis applications also

provide opportunities to exploit approximation to improve

performance, particularly when such programs are operat-
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Figure 1: The data parallel patterns that Paraprox targets: (a) Map (b) Scatter/Gather (c) Reduction (d) Scan (e) Stencil (f) Partition.

ing on massive data sets. In this situation, processing the

entire dataset may be infeasible, but by sampling the input

data, programs in these domains can produce representative

results in a reasonable amount of time.

Improving performance by applying approximation has

been identified as an important goal by prior works [2, 4, 5,

11, 12, 23, 25, 28]. These works have studied this topic and

proposed new programming models, compiler systems, and

runtime systems to systematically manage approximation.

However, these approaches have three critical limitations.

We categorize the prior works based on these limitations:

• Programmer-based [4, 5]: In these systems, the pro-

grammer must write different approximate versions of a

program and a runtime system decides which version to

run. Although the programmer may best understand how

his code works, writing different versions of the same

program with varying levels of approximation is neither

easy nor practical to be applied generally.

• Hardware-based [11, 12, 28]: These approaches intro-

duce hardware modifications such as imprecise arith-

metic units, register files, or accelerators. Although these

systems work for general algorithms, they cannot be

readily utilized without manufacturing new hardware.

Furthermore, having both exact and approximate ver-

sions of the same hardware increases the hardware design

complexity and the difficulty of validating and verifying

such hardware.

• Software-based [2, 23, 25, 27]: Previous software-based

approximation techniques do not face the problems of

the other two categories as they (a) remove the burden

of writing several versions of the program from the pro-

grammer, and (b) can be used with existing, commod-

ity systems. However, with past approaches, one solu-

tion does not fit all applications. Each of these solu-

tions works only for a small set of applications. They

either cannot achieve a desired amount of performance

improvement or generate unacceptable computation er-

rors for applications that they were not explicitly built to

handle.

To address these issues, this paper proposes a software

framework called Paraprox. Paraprox identifies common

patterns found in data-parallel programs and uses a custom-

designed approximation technique for each detected pattern.

Paraprox enables the programmer to write software once and

run it on a variety of modern processors, without manually

tuning code for different hardware targets. It is applicable to

a wide range of applications as it determines the proper ap-

proximation optimizations that can be applied to each input

program. Because Paraprox does not apply a single solution

to all programs, it overcomes the aforementioned limitation

of prior software-based approaches.

In this work, we identify different patterns commonly

found in data parallel workloads and we propose a spe-

cialized approximation optimization for each pattern. We

closely study data parallel programs because they are well-

fitted for execution on prevalent multi-core architectures

such as CPUs and GPUs. Paraprox is capable of targeting

any data parallel architecture, provided that the underlying

runtime supports such hardware.

Overall, Paraprox enables the programmer to implement

a kernel once using the OpenCL or CUDA data parallel lan-

guages and, depending on the target output quality (TOQ)

specified for the kernel, tradeoff accuracy for performance.

To control the efficiency, accuracy, and performance of the

system, each optimization allows some variables to be dy-

namically varied. After Paraprox generates the approximate

kernels, a runtime system tunes the aforementioned variables

to get the best performance possible while meeting the con-

straints of the TOQ.

To automatically create approximate kernels, Paraprox

utilizes four optimization techniques which target six data

parallel patterns: Map, Scatter/Gather, Reduction, Scan,

Stencil, and Partition. Paraprox applies approximate mem-

oization to map and scatter/gather patterns where computa-

tions are replaced by memory accesses. For reduction pat-

terns, Paraprox uses sampling plus adjustment to compute

the output by only computing the reduction of a subset of

the data. The stencil & partition approximation algorithm is

based on the assumption that adjacent locations in an input

array are typically similar in value for such patterns. There-

fore, Paraprox accesses a subset of values in the input array

and replicates that subset to construct an approximate ver-

sion of the array. For scan patterns, Paraprox only performs

the scan operation on a subset of the input array and uses the

results to predict the results for the rest of the array.

The specific contributions of this work are as follows:



• Pattern based compilation system for approximate execu-

tion.

• Automatic detection of data parallel patterns in OpenCL

and CUDA kernels.

• Four pattern-specific approximation optimizations which

are specifically designed for six common data parallel

computation patterns.

• The ability to control performance and accuracy tradeoffs

for each optimization at runtime using dynamic tuning

parameters.

The rest of the paper is organized as follows. Section 2 ex-

plains how the Paraprox framework operates. Approximate

optimizations used by Paraprox are discussed in Section 3.

The results of using Paraprox for various benchmarks and

architectures are presented in Section 4. Limitations of Para-

prox’s framework are discussed in Section 5. Section 6 dis-

cusses the related work in this area and how Paraprox is dif-

ferent from previous work. Section 7 concludes this paper

and summarizes its contributions and findings.

2. Paraprox Overview

In order to generate approximate programs, Paraprox must

detect data parallel patterns for optimization. As shown in

Figure 1, these patterns have distinct characteristics that re-

quire specialized optimizations in order to create fast, ap-

proximate versions. In the following list, we describe the

characteristics of the six patterns that Paraprox targets:

• Map: In the map pattern, a function operates on every

element of an input array and produces one result per el-

ement as shown in Figure 1(a). To process all the input el-

ements in parallel, a map function should be pure. A pure

function always generates the same result for the same in-

put, and its execution does not have any side-effects, e.g.,

it cannot read or write mutable state. Since there is no

need to synchronize between two threads and no sharing

of data is necessary, the map pattern is perfectly matched

to data parallel, many-core architectures. In parallel im-

plementations of map patterns, each thread executes one

instance of a map function and generates its correspond-

ing result. This pattern is used in many domains, includ-

ing image processing and financial simulations.

• Scatter/Gather: Scatter and gather patterns are similar

to map patterns but their memory accesses are random

as illustrated in Figure 1(b). Based on McCool’s defini-

tion [15], scatter is a map function that writes to random

locations, and gather is the combination of a map func-

tion with memory accesses that read from random input

elements. The parallel implementations of scatter/gather

patterns are similar to map implementations. This pattern

is commonly found in statistics applications.

• Reduction: When a function combines all the elements

of an input array to generate a single output, it is said
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Figure 2: Approximation system framework.

to be performing a reduction (Figure 1(c)). If the func-

tion used by the reduction pattern is both associative and

commutative, e.g., XOR, the order in which the reduction

operation is applied to its inputs is unimportant. In this

case, tree-based implementations can be used to paral-

lelize such a reduction. Reductions can be found in many

domains, such as machine learning, physics, and statis-

tics.

• Scan: The all-prefix-sums operation, more commonly

termed scan, applies an associative function to an input

array and generates another array. EveryN th element of

the output array is the result of applying the scan function

on the first N (inclusive scan) or N − 1 (exclusive scan)

input elements. An inclusive scan example is shown in

Figure 1(d). The scan pattern is common in the signal

processing, machine learning, and search domains.

• Stencil: In a stencil pattern, each output element is com-

puted by applying a function on its corresponding input

array element and its neighbors as shown in Figure 1(e).

This pattern is common in image processing and physics

applications.

• Partition: The partition (or tile) pattern is similar to the

stencil pattern. The input array is divided into partitions

and each partition is processed separately. Each partition

is wholly independent of the others as shown in Fig-

ure 1(f). Partitioning is commonly used in data parallel

applications to efficiently utilize the underlying architec-

ture’s memory hierarchy to improve performance. This

pattern is common in domains such as image processing,

signal processing, and physics modeling.

In order to manage the output quality during execution,

the Paraprox compilation framework should be used in tan-

dem with a runtime system like Green [5] or SAGE [27] as

shown in Figure 2. After Paraprox detects the patterns in the

program and generates approximate kernels with different

tuning parameters, the runtime profiles the kernels and tunes

the parameters so that it provides the best performance. If

the user-defined target output quality (TOQ) is violated, the

runtime system will adjust by retuning the parameters and/or

selecting a less aggressive approximate kernel for the next

execution.
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Figure 3: (a) illustrates the dataflow graph of the main function

of the BlackScholes benchmark. The function Cnd() is a pure

function. (b) shows the approximate kernel created using the map

and scatter/gather technique described in 3.1.

3. Approximation Optimizations

We will now discuss the approximation optimizations that

are applied to each data parallel pattern. For each pattern, we

describe the intuition behind the optimization, the algorithm

used to detect such a pattern, the implementation of the op-

timization, and tuning parameters that are used by a runtime

to control the performance and accuracy of an approximate

kernel during execution.

3.1 Map & Scatter/Gather

3.1.1 Idea:

Paraprox applies approximate memoization to optimize map

and scatter/gather patterns. This technique replaces a func-

tion call with a query into a lookup table which returns a pre-

computed result. Since the size of this lookup table is limited

by the size of memory and by performance considerations,

there are situations in which the exact result is not stored in

the table. In such cases, Paraprox finds the element nearest to

the input present in the lookup table and returns that element

instead. Consequently, the quality of the output is inversely

proportional to the size of the lookup table (a.k.a. the num-

ber of quantization levels). As this optimization replaces the

computations done by map and scatter/gather functions with

a memory access, the unoptimized code should have more

latency due to computation than that of one memory opera-

tion in order to achieve speedup.

To fill the lookup table with precomputed data, Paraprox

computes the output of the map or scatter/gather function for

a number of representative input sets (quantization levels)

offline. During runtime, the launched kernel’s threads use

this lookup table to find the output for all input values.

3.1.2 Detection:

To detect map or scatter/gather patterns, Paraprox checks all

functions in the input program to look for functions that can

be replaced by a lookup table. There are two requirements

for such functions. First, these functions should be pure.

Pure functions do not have side effects and their output is

only dependent on their inputs. To meet these constraints,

pure functions should not:

• read or write any global or static mutable state.

• call an impure function.

• perform I/O.

In addition to being pure, these functions should not

access global memory during execution, and their outputs

should not be dependent on the thread ID. Therefore, Para-

prox looks for functions which do not contain global/shared

memory accesses, atomic operations, computations involv-

ing thread or block IDs, or calls to impure functions. If a

function meets all these conditions, Paraprox marks it as a

candidate for approximate memoization.

It should be noted that although Paraproxworks at a func-

tion granularity, it is possible to find pure sections of code

within a function. Detection of such map or scatter/gather

sections within a function is left for future research.

As Paraprox will replace computation with memory ac-

cesses, this optimization should only be applied to computa-

tionally intensive map and scatter/gather patterns in order

to achieve high performance improvements. To determine

which functions to optimize, Paraprox computes the sum of

the latencies of each instruction in the function as a metric

to estimate the function’s computation cycles as follows:

cycles needed =
∑

inst∈f

latency(inst) (1)

Instruction latency values are passed to Paraprox in a ta-

ble based on the target architecture. Paraprox uses this la-

tency table to compute the cycles needed for all map and

scatter/gather functions found in the program. For GPUs,

we used microbenchmarks fromWong et al. [35] to measure

the latency of all instructions. We found that if a function’s

cycles needed is at least one order of magnitude greater

than the L1 read latency, it can benefit from this approxi-

mation. Therefore, Paraprox only applies the approximation

on such functions.

3.1.3 Implementation:

Approximate memoization is accomplished in three steps:

quantizing the inputs, joining these bit representations of

inputs together to create an address, and accessing a lookup



table using that address to get the final result. Figure 3(a)

shows the dataflow in the BlackScholesBody function of

the BlackScholes benchmark. This function meets all the

candidacy conditions described in Section 3.1.2. Figure 3(b)

shows the approximate version of the same function.

Paraprox quantizes the function’s inputs to generate an

address into the lookup table. For a quantized input i, Para-

prox can control the output quality of the approximate func-

tion by altering the number of bits (qi) used to represent that

input. If a pattern has multiple input variables, e.g. i and i+1,
each input has its own quantization bits (qi and qi+1). When

concatenated together, these quantization bits form the ad-

dress into the lookup table. The table’s size is thus equal to

2Q, where Q =
∑n

i=0 qi for all n inputs.

Using fewer bits reduces the number of quantization lev-

els (2qi) that represent an input value, thus limiting the in-

put’s accuracy. Conversely, increasing the number of bits

will permit more quantization levels, which will increase the

accuracy of the input representation. If the pattern’s output is

very sensitive to small changes in the input and there are not

enough bits allocated to adequately represent this, Paraprox

detects that the output quality is deteriorating and increases

qi. On the other hand, if the output is not very sensitive to

changes in the input or the input’s dynamic range is very

small, Paraprox can reduce qi.

Bit tuning: The process of determining qi for inputs is

called bit tuning and is performed offline. For each input

argument to the function, Paraprox computes the range of the

function’s output by applying training data to the function

and storing the results in memory. If an input at runtime is

not within this precomputed range, it will map to the nearest

value present in the lookup table.

If a function has multiple inputs, naively dividing the

quantization bits equally amongst all inputs does not neces-

sarily yield ideal results, so Paraprox can unevenly divide the

bits of the quantized input to favor some inputs over others.

For example, in Figure 3, the BlackScholesBody function

has five inputs, two of which (R and V ) are always constant

during profiling. When Paraprox detects this, it chooses to

allot all quantized bits to represent the other three variable

inputs.

Our experiments show that the overall speedup of this

optimization is dependent on the size of the lookup table but

not the number of bits in qi assigned to each input. However,

the quantization bits still need to be distributed carefully

amongst inputs to guarantee satisfactory output quality.

To reduce output quality loss for a given lookup table

size, bit tuning uses a tree algorithm. Each node in the tree

corresponds to an approximate kernel with a specific qi bits

per input. The root node divides bits equally between the

inputs. Figure 4 shows the tree for the example shown in

Figure 3(b). In this example, the lookup table size is 32768,

which implies that the address into the table is 15 bits wide.

The root of the tree shows that this address initially is evenly

95.2%

91.3% 95.4% 96.5% 91.2%

95.1% 95.4% 95.8%

Figure 4: An example of how Paraprox’s bit tuning finds the

number of bits assigned to each input for the BlackScholesBody

function. The lookup table has 32768 entries and its address is

15 bits wide. The output quality is printed beside each node. Bit

tuning’s final selection is outlined with a dotted box.

split into five bits each for the three variable inputs. Each

child node is different from its parent such that one bit is

reassigned from one input to an adjacent input.

The bit tuning process starts from the root and uses a

steepest ascent hill climbing algorithm to reach a node with

the highest output quality. Paraprox checks all the children

of each node and selects the one with the best output quality.

This process will continue until it finds a node for which all

of its children have lower output quality than itself. In the ex-

ample shown in Figure 4, Paraprox starts from node (q1 = 5,
q2 = 5, q3 = 5) and checks all its children. Among them,

node (5,6,4) has the best output quality. Since all children

of node (5,6,4) have a lower output quality than itself, node

(5,6,4) is selected, and Paraprox assigns 5, 6, and 4 quanti-

zation bits to the first, second, and third inputs, respectively.

Paraprox uses this process to find a configuration that returns

the highest output quality for the specified lookup table size.

As bit tuning aims to control quality loss, it needs to de-

termine how much error is introduced for each bit config-

uration it considers. To do so, bit tuning first quantizes the

inputs using the division of bits specified by the current tree

node under inspection. It then calculates the results of the

exact and approximate functions and compares the two to

compute a percent difference. Figure 4 shows these qual-

ity metrics for the BlackScholesBody example. It should be

noted that bit tuning does not need to use an actual lookup

table as it computes the approximate result that it is currently

investigating.

To determine the size of the lookup table, Paraprox starts

with a default size of 2048. For each lookup table size,

Paraprox performs bit tuning to find the output quality. If the

quality is better than the TOQ, Paraprox decreases the size

of lookup table to see if it can further improve performance.

If the quality is worse than the TOQ, Paraprox doubles the

lookup table’s size, as larger tables improve accuracy. This

process stops when Paraprox finds the smallest table size that

has an output quality that satisfies the TOQ.

After computing the size of the lookup table and assign-

ing quantization bits for each input, Paraprox populates the

lookup table. For each quantization level of each input, Para-

prox computes the output and stores it in the lookup table.

After filling the lookup table, Paraprox passes the approxi-
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Figure 5: The average percent differences between adjacent pixels

in ten images. More than 75% of pixels are less than 10% different

from their neighbors.

mate kernel a pointer to the lookup table. The lookup table

can be allocated in the global memory, or if a target has fast

access memories, like the constant cache or shared memory

in GPUs, those can be utilized instead of the global memory.

Section 4.4.2 investigates these different options and com-

pares their impacts on performance. Should the output qual-

ity change during runtime, Paraprox can accelerate the pro-

cess of switching between different sized lookup tables by

storing multiple tables in memory and changing the pointer

passed to the kernel at runtime to reflect this decision. Para-

prox can generate as many tables as it can fit in memory.

However, in our experiments we found that no more than

three tables are needed for our benchmarks.

3.1.4 Tuning Parameter:

To tune the output quality and performance, Paraprox allows

the runtime to select amongst lookup tables of different

sizes.

3.2 Stencil & Partition

3.2.1 Idea:

The stencil and partition approximation algorithm is based

on the assumption that adjacent elements in the input array

usually are similar in value. This is often the case for do-

mains such as image and video processing, where neighbor-

ing pixels tend to be similar if not the same. To evaluate this

assumption, Figure 5 shows the average percent difference

of each pixel with its eight neighbors, which constitute a tile,

for all pixels in 10 different images. As the figure shows, on

average, more than 70% of the each image’s pixels have less

than 10% difference from their neighbors. Therefore, most

of the neighbors of each pixel have similar values.

Under this assumption, rather than access all neighbors

within a tile, Paraprox accesses only a subset of them and

assumes the rest of the neighbors have the same value.

3.2.2 Detection:

To detect stencil/partition patterns, Paraprox checks the load

accesses to the arrays and looks for a constant number of

(a) (b) (c)

Figure 6: The three different schemes Paraprox uses to approxi-

mate the stencil pattern. (a) illustrates how the value at the center

of the tile approximates all neighboring values. (b) and (c) depict

how one row/column’s values approximate the other rows/columns

in the tile.

affine accesses to the same array, indicating a tile size. These

accesses can be found in loops with a constant loop trip or in

manually unrolled loops. After finding these accesses, Para-

prox computes the tile’s size and dimensionality. Paraprox

detects stencil/partition patterns based on the array access

indices ((f + i) ∗ w + g + j). Parameters f , g, and w are

the same (loop invariant) for all accesses that are examined.

Parameters i and j can be hand-coded constants or loop in-

duction variables. The size of a tile can be determined by

looking at the dynamic range of i and j.

3.2.3 Implementation:

To approximate stencil/partition patterns, Paraprox uses

three different approximation schemes: center, row, and col-

umn based. For each approximation, a reaching distance

parameter controls the number of memory elements that

Paraprox accesses. In the center based approach, the ele-

ment at the center of a tile is accessed and Paraprox assumes

that all its neighbors have the same value. When Paraprox

accesses an element, its neighbors, whose distances from the

accessed element are less than the reaching distance, will not

be accessed as shown in Figure 6(a).

Figures 6(b) and 6(c) illustrate the row and column based

approximation schemes. In these schemes, one row/column

within a tile is accessed, and all other rows/columns within

a reaching distance from it are assumed to be the same and

are left unaccessed.

3.2.4 Tuning Parameter:

To control performance and output quality, Paraprox allows

a runtime to select from various approximate kernels and

tune each kernel’s reaching distance.

3.3 Reduction

3.3.1 Idea:

To approximate reduction patterns, Paraprox aims to predict

the final result by computing the reduction of a subset of the

input data in a way similar to loop perforation [2]. Figure 7

illustrates how this concept is applied. The assumption here

is that the data is distributed uniformly, so a subset of the
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Figure 7: An illustration of how Paraprox approximates the re-

duction pattern. Instead of accessing all input elements, Paraprox

accesses a subset of the input array and adds adjustment code to

improve the accuracy.

data can provide a good representation of the entire array.

For example, instead of finding the minimum of the origi-

nal array, Paraprox finds the minimum within one half of the

array and returns it as the approximate result. If the data in

both subarrays have similar distributions, the minimum of

these subarrays will be close to each other and approxima-

tion error will be negligible.

Some reduction operations like addition need some ad-

justment to produce more accurate results. For example, af-

ter computing the sum of half of an array, if the result is

doubled it more closely resembles the results of summing

the entire array, thus the output quality is improved. In this

case of addition, Paraprox assumes that the other half of the

array has the exact same sum as the first half, so it doubles

the approximated reduction result.

3.3.2 Detection:

Reduction recognition has been studied extensively by pre-

vious works [26, 36]. To detect reduction patterns, Paraprox

searches for accumulative instructions that perform an op-

eration like a = a + b, where a is called the reduction

variable and addition is the reduction operation. Reduction

loops have the following two characteristics: a) they contain

an accumulative instruction; and b) the reduction variable is

neither read nor modified by any other instruction inside the

loop.

In order to parallelize a reduction loop for a data parallel

architecture, tree-based reduction implementations are often

used. These reductions have three phases. In the first phase

(Phase I), each thread performs a reduction on a chunk of

input data. In the next phase (Phase II), each block accumu-

lates the data generated by its threads and writes this result

to the global memory. The final phase (Phase III) then ac-

cumulates the results of all the blocks to produce the final

results. All of the phases contain a reduction loop that Para-

prox optimizes, creating approximate kernels for each loop.

The runtime determines which approximate version to exe-

cute.

Atomic operations can also be used to write data paral-

lel reductions. An atomic function performs a read-modify-

write atomic operation on one element residing in global

or shared memory. For example, CUDA’s atomicInc() and

Scan Output Elements
0 N

Exact 

Version

Approximate 

Version

Figure 8: An example of how Paraprox uses the first elements of

the scan results to approximate the end of the output array.

OpenCL’s atomic inc() both read a 32-bit word at some ad-

dress in the global or shared memory, increment it, and

write the result back to the same address [13, 19]. Among

atomic operations, the atomic add, min, max, inc, and, or,

and xor operations can be used in a reduction loop. Paraprox

searches for and marks loops containing these operations as

reduction loops.

3.3.3 Implementation:

After detecting a reduction loop, Paraprox modifies the loop

step size to skip iterations of the loop. In order to execute

every N th iteration and skip the other N − 1 iterations,

Paraprox multiplies the loop step by N . We call N the

skipping rate. For example, if Paraprox multiplies the loop

step size by four, only a quarter of the original iterations are

executed and the rest are skipped.

If the reduction operation is addition, Paraprox inserts ad-

justment code after the loop. This code multiplies the result

by the skipping rate. To make the adjustment more accurate,

the reduction variable’s initial value should be equal to zero

before the reduction loop. Otherwise, by multiplying the re-

sult, the initial value is multiplied as well which produces an

unacceptable output quality. In order to address this, Para-

prox replaces the loop’s reduction variable with a temporary

variable set to zero just before the loop’s entrance. After ad-

justment, Paraprox then adds the scaled temporary variable

back to the original reduction variable to produce the final

result.

3.3.4 Tuning Parameter:

Paraprox allows a runtime to change the skipping rate in

order to tune the speedup and accuracy of the kernels.

3.4 Scan

3.4.1 Idea:

To approximate scan patterns, Paraprox assumes that dif-

ferences between elements in the input array are similar to

those in other partitions of the same input array. Parallel im-

plementations of scan patterns break the input array into sub-

arrays and computes the scan result for each of them. In or-

der to approximate, Paraprox only applies the scan to a sub-
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three phases. Phase I scans each subarray. Phase II scans the sum

of all subarrays. Phase III then adds the result of Phase II to each

corresponding subarray in the partial scan to generate the final

result. This figure depicts how the scan is computed for an input

array of all ones.

set of these subarrays and uses its results for the rest of the

subarrays.

As the N th element of the scan result is the sum of the

first N elements of its input array, any change to the N th

element modifies the N th output element and all elements

afterwards. Therefore, if Paraprox applies approximation to

one of the early input elements, any approximation error

will propagate to the results for all the following elements,

resulting in an unacceptable output quality. This effect is

studied in Section 4.4.3.

In order to avoid this cascading error, rather than uni-

formly skipping loop iterations, Paraprox predicts the last

elements of the scan results by examining the first output ele-

ments. Figure 8 presents an example of how Paraprox copies

the first elements of the result to the end of the array to ap-

proximate the last elements.

3.4.2 Detection:

The data parallel implementation of the scan pattern is tradi-

tionally composed of three phases as illustrated in Figure 9.

As an example, this figure shows how these phases com-

pute the scan results for an input array containing all ones.

In the first phase, the input is divided into many subarrays

and each block of threads performs a scan on one subarray

and stores results in a partial scan array. The sum of each

subarray is also written to another array called sumSub. The

second phase then runs a scan on the sumSub array. The ith

element of sumSub’s scan result is equal to the sum of el-

ements in subarrays 0 to i. In the third phase, every ith el-

ement of sumSub’s scan result is added to the scan results

of the i + 1 partial scan subarray to produce the final scan

results.

Because of its complicated implementation, detecting a

scan pattern is generally difficult. A programmer can mark

scan patterns for the compiler using pragmas, or the com-

piler can use template matching to find scan kernels used

in benchmarks [20]. Paraprox uses the second approach by

performing a recursive post order traversal of the abstract

syntax tree of the kernel and comparing it with the template.

If they match, Paraprox assumes that the kernel contains a

scan pattern.

3.4.3 Implementation:

The first phase of the scan pattern takes the longest time

to execute, so approximation techniques should target this

phase. As mentioned before, Paraprox approximates the re-

sults for the last subarrays to prevent the propagation of error

through all of the results. In this approximation, Paraprox as-

sumes that last subarrays have similar scan results to the first

subarrays. Therefore, instead of computing scan results for

all subarrays, Paraprox skips some and uses the first multi-

ple subarrays’ scan results in place of the scan results for the

skipped subarrays.

In order to skip the lastN subarrays, Paraprox skips some

of the computations in Phases I and II. In Phase I, Paraprox

launches fewer blocks to skip the lastN subarrays. In Phase

II, Paraprox changes the argument containing the number of

subarrays that is passed to the kernel.

In Phase III, threads that are responsible for adding to

generate the first N subarrays add their scan results to the

last element of Phase II’s results (the sumSub scan array) and

write these results as the scan’s output for the last skipped

subarrays. Figure 8 shows how these threads copy an early

portion of the results to generate the result’s last elements.

3.4.4 Tuning Parameter:

A runtime can control the number of subarrays Paraprox

skips in order to tune output quality and performance.

4. Experimental Evaluation

4.1 Methodology

The Paraprox compilation phases are implemented in the

Clang compiler version 3.3. Paraprox’s output codes are

then compiled into GPU binaries using the NVIDIA nvcc

compiler release 5.0. GCC 4.6.3 is used to generate the x86

and OpenCL binaries for execution on the host processor. To

run OpenCL code on the CPU, we used the Intel OpenCL

driver. We evaluated Paraprox using a system with an Intel

Core i7 965 CPU and a NVIDIA GTX 560 GPU with 2GB

GDDR5 global memory. We selected 13 applications from

various domains and different patterns as benchmarks. We

ran each application 110 times with different input sets.

We ran the first 10 executions to train and detect the best

kernel, and then we measured and averaged the runtimes of

the next 100 executions. A summary of each application’s

characteristics is shown in Table 1.

Compilation flow in Paraprox: This section describes

Paraprox’s compilation flow as illustrated in Figure 10. First,



Applications Domain Input Size Patterns Error Metric

BlackScholes [20] Financial 4M elements Map L1-norm

Quasirandom Generator [20] Statistics 1M elements Map L1-norm

Gamma Correction Image Processing 2048x2048 image Map Mean relative error

BoxMuller [20] Statistics 24M elements Scatter/Gather L1-norm

HotSpot [9] Physics 1024x1024 matrix Stencil-Partition Mean relative error

Convolution Separable [20] Image Processing 2048x2048 image Stencil-Reduction L2-norm

Gaussian Filter Image Processing 512x512 image Stencil Mean relative error

Mean Filter Image Processing 512x512 image Stencil Mean relative error

Matrix Multiply [20] Signal Processing 2560x2560 matrix Reduction-Partition Mean relative error

Image Denoising [20] Image Processing 2048x2048 image Reduction Mean relative error

Naive Bayes [32] Machine Learning 256K elements with 32 features Reduction Mean relative error

Kernel Density Estimation [16] Machine Learning 256K elements with 32 features Reduction Mean relative error

Cumulative Frequency Histograms Signal Processing 1M elements Scan Mean relative error

Table 1: Details of applications used in this study.
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Figure 10: Paraprox’s compilation flow.

Clang’s driver generates the abstract syntax tree (AST) of

the input code and sends it to the AST visitor. The AST visi-

tor traverses the AST and runs the pattern detector on each

kernel. The pattern detector identifies the parallel patterns

within each kernel, and informs the action generator which

kernels contain what patterns. The action generator then

creates a list of actions for each approximate kernel, where

an action represents a modification to the output CUDA code

for each optimization applied. These actions include: adding,

deleting, and substituting an expression in the final code. For

each list of actions, the rewriter copies the input kernel and

applies all actions on the copied version and generates the

approximate kernel. To evaluate the impact of Paraprox’s

optimizations on the CPU, we created a CUDA-to-OpenCL

script that converts Paraprox’s generated CUDA code to an

equivalent OpenCL version.

4.2 Results

In this section, we analyze how Paraprox’s optimizations af-

fect the execution time and accuracy of different applica-

tions. Figure 11 presents the results for the benchmarks run

separately on a CPU and a GPU. The speedup is relative the

exact execution of each program on the same architectures.

As seen in the figure, Paraprox achieves an average speedup

of ~2.5x for approximated code run on either the CPU or

GPU with a target output quality of 90%.

Output Quality: To assess the quality of each application’s

output, we used application-specific evaluation metrics as

listed in Table 1. For benchmarks that already contained

a specific evaluation metric, the included metric was used.

Otherwise, we used the mean relative error as an evaluation

metric. For all benchmarks, we compare the output of the un-

modified, exact application to the output of the approximate

kernel created by Paraprox.

A case study by Misailovic et al. [18] shows that users

will tolerate quality loss in applications such as video de-

coding provided it does not exceed ~10%. Similar works

[5, 12, 27, 28] cap quality losses for their benchmarks at

around 10%. SAGE [27] verified this threshold using the ex-

periments in the LIVE image quality assessment study [31].

Images in LIVE’s database have different levels of distor-

tion and were evaluated by 24 human subjects, who clas-

sified the quality of the images using a scale equally di-

vided amongst the following ratings: ”Bad,” ”Poor,” ”Fair,”

”Good,” and ”Excellent.” SAGE [27] showed that more than

86% of images with quality loss less than 10% were eval-

uated as ”Good” or ”Excellent” by human subjects in the

LIVE study. Therefore, we used 90% as the minimum target

output quality (TOQ) in our experiments.

4.3 Performance Improvement

Paraprox applied map approximation to the BlackScholes,

Quasirandom Generator, Gamma Correction, and Box-

Muller benchmarks. For BlackScholes, Paraprox detects two

map functions: Cnd() and BlackScholesBody(). Since the es-

timated cycle count for Cnd() is low, Paraprox only applies

the optimization on BlackScholesBody() which has a high

estimated cycle count. As a result, BlackScholes achieves

~60% improvement in performance with <10% loss in out-

put quality. BoxMuller has a scatter/gather functionwith two

inputs and two outputs. Gamma Correction is very resilient

to quality losses caused by approximation, as its output qual-

ity remains at 99% while it achieves >3x speedup on the

GPU. When reducing the lookup table size, however, its

output quality drops suddenly to <90%. BlackScholes and

Quasirandom Generator get better results on the CPU but

Gamma Correction and BoxMuller perform better on the

GPU. The reason is that for benchmarks that can retain good

output quality with smaller lookup tables, the GPU achieves

better performance. However, as the size of lookup table in-

creases, the number of cache misses increases. In such cases,
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Figure 11: The performance of all applications approximated by Paraprox for both CPU and GPU code. The baseline is the exact execution

of each application on the same architecture. In these experiments, the target output quality (TOQ) is 90%.

execution on a CPU is preferable to that on a GPU as cache

misses have a lower impact on the performance for CPUs.

The reduction approximation is applied to the Matrix

Multiplication, Naive Bayes trainer, Image Denoising, and

Kernel Density Estimation applications. Matrix Multiplica-

tion and Image Denoising show similar performance on both

the CPU and GPU. On the other hand, Naive Bayes achieves

better speedup on the GPU. The approximated Naive Bayes

performs very well on a GPU (>3.5x vs ~1.5x on a CPU)

since this benchmark uses atomic operations, which are

more expensive for GPU architectures with many threads

running concurrently. By skipping a subset of atomic op-

erations, great speedups in execution time are achieved on

a GPU. Since the main component of Kernel Density Esti-

mation is an exponential instruction and there is hardware

support for such transcendental operations on a GPU (i.e.

the special function unit on a CUDA device), skipping these

operations provides better performance improvements for

CPUs than it does for GPUs.

TheHotSpot,Convolution Separable,Gaussian filter, and

Mean Filter applications contain stencil patterns. HotSpot,

Gaussian filter, and Mean filter use 3x3 tiles and Convolu-

tion Separable has two stencil loops with 1x17 tiles. Since

the loop in Mean Filter is unrolled manually by the pro-

grammer and memory accesses are kept outside the func-

tion while computations are inside, there is no reduction loop

and the reduction optimization is not applied. Paraprox just

applies the stencil optimization on this application. On the

other hand, Convolution Separable has both stencil and re-

duction patterns. Paraprox applies both optimizations on this

application. The stencil optimization returns a 1.7x perfor-

mance speedup while maintaining 90% output quality while

the reduction optimization results in a 1.6x speedup. On the

other hand, the reduction optimization’s performance is bet-
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Figure 12: Controlling the speedup and output quality by varying

an optimization’s tuning parameters for six benchmarks.

ter than stencil optimization for CPU. Therefore, when tar-

geting a GPU Paraprox only used the results of the stencil

optimization in its final kernel, and when targeting a CPU

it used the reduction optimization. Because the partition and

stencil optimizations primarily optimize memory accesses,

speedups are greater for GPU approximated code as mem-

ory accesses are more costly on this platform.

The Cumulative Histogram benchmark contains a scan

pattern. This application is another resilient application —

even when skipping half of the subarrays, the output quality

stays at ~99%. For this pattern, the speedup is similar for

both CPU and GPU approximated kernels.

Performance-Quality Tradeoffs: Figure 12 illustrates how

Paraprox manages the performance-accuracy tradeoff for

six benchmarks. The map approximated BlackScholes starts

with 95% output quality and performance similar to the ex-

act version, but as the size of the lookup table decreases, the

speedup increases to 1.6x speedup with only ~4% more loss
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Figure 13: The CDF of final error for each element of an appli-

cation’s output with the TOQ = 90%. The majority of output ele-

ments (>70%) have <10% error.

in quality. Similar behavior is observed for the Quasiran-

dom Generator. When the table size is small enough to fit in

the cache, the speedup gains begin to saturate for these map

optimized kernels. Both Matrix Multiplication and Kernel

Density Estimation contain reduction patterns. As Paraprox

doubles the skipping rate for these kernels, the difference

between two consecutive nodes grows, thus causing both the

speedup and quality loss to grow. The performance of Gaus-

sian Filter andConvolution Separable rises as output quality

degrades. For Convolution Separable, Paraprox changes the

reaching distances of both loops in the kernel to control the

output quality. Since Gaussian Filter applies a 2D filter to

an image, Paraprox uses row, column, and center stencil

patterns to control the output quality. For this benchmark,

Paraprox gets >2x speedup with <4% quality loss.

Error Distribution: To study each application’s quality

losses in more detail, Figure 13 shows the cumulative dis-

tribution function (CDF) of the error for each element of the

application’s output with the TOQ = 90%. The CDF illus-

trates the distribution of output errors amongst an applica-

tion’s output elements. The figure shows that only a modest

number of output elements see large output error. The major-

ity (70%-100%) of each approximated application’s output

elements have an error of <10%.

4.4 Case Studies

4.4.1 Specialized Optimizations Achieve Better

Results:

To show that one optimization does not work well when gen-

erally applied, we apply only the reduction optimization to

benchmarks that do not contain such a pattern. We chose this

optimization as it is most similar to a well-known approxi-

mation technique, loop perforation [2], where loop iterations

are skipped to accelerate execution. Figure 14 compares the

reduction optimization’s performance with Paraprox’s re-

sults on a GPU with the TOQ = 90%. For benchmarks
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Figure 14: A performance comparison of the reduction optimiza-

tion vs. specific pattern-based optimizations on benchmarks that do

not contain a reduction pattern. In these experiments, the code tar-

gets a GPU, and the TOQ = 90%.

containing map and stencil patterns, skipping iterations re-

sults in unmodified output elements. Therefore, the output

quality rapidly decreases, severely limiting the speedup. For

benchmarks with scan patterns, the cascading error will re-

duce the output quality and speedup is similarly limited.

On average, the reduction optimization alone achieves only

~25% speedup, compared to the 2.3x speedup that Paraprox

achieves by matching patterns to specialized optimizations.

4.4.2 Design Considerations for the Map

Optimization:

To fully investigate the impact of map approximation on

both accuracy and performance, we used four common com-

putationally intensive map functions from different domains:

• Credit card balance equation [1]: This equation finds

the number of months it will take to pay off credit card

debt.

N(i) =
−1

30

ln(1 + b0
p
(1− (1 + i)30))

ln(1 + i)
(2)

• Shifted Gompertz distribution [21]: This equation

gives the distribution of the largest of two random vari-

ables.

F (x) = (1− e−bx)e−ηe−bx

(3)

• Log gamma [6]: This equation calculates the logarithm

of the gamma function. To implement this equation, we

used the CUDA lgammaf [19] function.

LG(z) = log(Γ(z)) (4)

• Bass diffusion model [7]: This equation describes how

new products get adopted as an interaction between users
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Figure 15: The impact of approximate memoization on four func-

tions on a GPU. Two schemes are used to handle inputs that do not

map to precomputed outputs: nearest and linear. Nearest chooses

the nearest value in the lookup table to approximate the output. Lin-

ear uses linear approximation between the two nearest values in the

table. For all four functions, nearest provides better speedups than

linear at the cost of greater quality loss.

and potential users.

S(t) = m
(p+ q)2

p

e−(p+q)t

(1 + p
q
e−(p+q)t)2

(5)

For all of these equations, all parameters other than the

input variable are constant.

Selecting an Output for an Unrepresented Input: As dis-

cussed in Section 3.1.3, there are a limited number of quan-

tization levels based on the size of the lookup table. It is

possible that there are inputs that do not directly map to a

precomputed output. In such cases, Paraprox can either se-

lect the nearest precomputed output, or it can apply linear

approximation to the two nearest values in the table to gen-

erate a result in between these values. Figure 15 shows the

performance-quality curve for all four equations using the

nearest and linear methods on the GPU. For all four equa-

tions, nearest gives better performance compared to linear

but with lower output quality. Even though the same lookup

table size is used, linear generates more accurate output, but

the overhead of adding another memory access and more

computation is overwhelming. On the other hand, linear is

better at achieving higher output quality (~99%). In this ex-

periment, the lookup table is allocated in the GPU’s global

memory.

As seen in Figure 15, the shifted Gompertz distribution

achieves a lower speedup than the other functions. This is

due to it havingmany low latency instructions. Both the Bass

and Credit equations execute floating point divisions, which

translate to subroutine calls to code with high latency and

low throughput for GPUs [35]. On the other hand, the Gom-

pertz equation uses several exponential instructions, which

are not high latency as they are handled by a special func-

tional unit on a GPU [19].
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Figure 16: A comparison of the performance of approximate

memoization when the lookup table is allocated in the constant,

shared, and global memories on a GPU.

Location of the Lookup Table: To find which memory lo-

cation is best for storing lookup tables, we created approx-

imate versions of the Bass function that used the constant,

shared, and global memories of the GPU to store the lookup

table. Figure 16 shows the performance versus the table size

for these three versions of Bass on the GPU. For lookup ta-

bles stored in global and constant memory, we set the L1

cache size to 32KB and size of the shared memory to 16KB.

When the lookup table is stored in shared memory, we set

the size of the shared memory to 32KB and the L1 cache to

16KB.

Using constant memory never gives optimal results re-

gardless of the cache size. The reason is that for larger table

sizes, using shared memory or the global L1 cache will have

a lower read latency [35].

To compare global and shared memory, we divided the

figure into three regions. When the cache size is small, both

global and shared memory show similar speedups. Since it

takes time to warm up the L1 cache for global memory,

shared memory outperforms the global memory in the sec-

ond region. In the third region, however, by increasing the

size of the lookup table, the overhead of transferring data

from global to shared memory is increased and the global

memory outperforms the shared memory.

Based on these results, Paraprox generates both shared

and global approximate kernels, and the runtime system will

choose one based on the performance, output quality, and

the lookup table size. If the lookup table is larger than the

size of the shared memory, the lookup table must be stored

in global memory.

Lookup Table Size vs. Performance: Figure 16 shows that

speedup drops when increasing the size of the lookup table.

Using the CUDA profiler, we found that the number of

uncoalesced memory accesses is primarily responsible for

this. As the lookup table’s size increases, the number of

uncoalesced accesses also increases, thus resulting in lower

speedups as shown in Figure 17. This figure shows that the

number of instructions that get serialized increases as the
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Figure 17: The impact of the lookup table size on the percentage

of uncoalesced accesses on the GPU.
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Figure 18: The impact of the starting point of the data corruption

on an approximated scan pattern’s final output.

size of the lookup table grows. This serialization is caused

by more uncoalesced accesses.

4.4.3 Cascading Error in Scan Patterns:

Paraprox approximates the last subarrays of the results for

scan patterns. To illustrate why this is done, we use the Cu-

mulative frequency histogram benchmark with one million

random input data points. For our first run, we “corrupt” the

first input subarray (10% of the input elements) by setting

its elements to zero. We then move this section of all zeroed

data to the next subarray of elements, and rerun the scan.

For each test modifying the first to the last input subarray,

we record the output quality. Figure 18 shows the impact of

the starting point of the data corruption on the final output re-

sult. When the first subarray of the input is zeroed, the over-

all output quality will be ~67%. This is caused by the error

propagating through the rest of the results. However, if the

error happens at the end of the input array, the output qual-

ity will be ~99%. Therefore, Paraprox only approximates the

last elements of the final scan results to ensure a high output

quality.

5. Limitations

Paraprox is a research prototype and it has some limitations.

Below, we discuss some of these limitations which will be

addressed in future work.

Runtime System: In this work, our main focus is automat-

ically generating approximate kernels and providing tuning

knobs for a runtime system. Paraprox generates approximate

kernels, and a separate runtime system will decide which one

to use and how tune the selected kernel’s parameters. In our

results, we did not consider runtime overhead. However, as

shown in SAGE [27] and Green [5], it is not necessary to

constantly monitor the quality, so checks are performed ev-

ery N th invocation. Based on the experiments done in [27],

checking the output quality every 40-50 invocations during

runtime has less than 5% overhead. This would reduce our

reported performance but only by a modest level.

Pattern Recognition: Since we used the AST to detect

patterns, variations in code can make the pattern recogni-

tion process difficult, especially when detecting scan pat-

terns. However, pattern recognition for other patterns like

reduction or detecting pure functions for map and scatter-

gather patterns are stable techniques which can detect pat-

terns across a wide variety of implementations. It is also pos-

sible to enhance pattern detection by getting hints from the

programmer or using higher level languages.

Compiler Optimizations: It is possible that approximation

eliminates some other compiler optimization opportunities

such as auto-vectorization. In these cases, an approximate

kernel might not perform as well as expected. Fortunately,

the runtime system chooses which approximate kernel to run

based on their speedup and quality. Therefore, if the approx-

imate kernel does show great performance improvement,

the runtime system will choose the original kernel which is

highly optimized.

Safety of Optimizations: It is possible that execution of ap-

proximate code causes raising exceptions or segmentation

faults. There are compiler analyses that detect the possibil-

ity of crashing to prevent the compiler from applying the

optimizations. For example, for a division that uses an ap-

proximated output and may raise a divide by zero exception,

it is possible to instrument the code to skip this calculation

where the approximated divisor is zero. However, improving

the safety of approximation techniques is beyond the scope

of this work and it is left for future study.

6. Related Work

Pattern-based programming is well-explained byMcCool [15].

This book introduces various parallel patterns. Our focus is

on the detection and approximation of data parallel patterns.

The concept of trading accuracy for improved perfor-

mance or energy consumption is well-studied [2–5, 11, 12,

14, 17, 23, 25, 27, 28]. Previous approximation techniques

can be categorized in three categories:

Software-based: Using software approximation, SAGE’s [27]

framework accelerates programs on GPUs. SAGE’s goal is

to exploit the specific microarchitectural characteristics of

the GPU to achieve higher performance. Although these

optimization performs better than general methods, their ap-



plicability is limited compared to Paraprox’s approximation

methods. SAGE also has a runtime system which Paraprox

can use to tune and calibrate the output quality during run-

time.

Rinard et al. [23, 25] present a technique for automati-

cally deriving probabilistic distortion and timing models that

can be used to manage the performance-accuracy tradeoff

space of a given application. Given a program that executes a

set of tasks, these models characterize the effect of skipping

task executions on the performance and accuracy. Agarwal

et al. [2] use code perforation to improve performance and

reduce energy consumption. They perform code perforation

by discarding loop iterations. Paraprox uses a similar method

for reduction patterns, but while loop perforation is applied

only to sequential loops, Paraprox applies it to all loops in

such patterns. Skipping iterations, however is not suitable for

all data parallel patterns, so Paraprox only applies it to loops

with reduction patterns. For example, by skipping iterations

of a map loop, a subset of the output array will be left un-

modified which results in an unacceptable output quality. A

variation of approximate memoization is utilized in a work

by Chadhuri [8] for sequential loops. Our approach is differ-

ent in that it is designed for data parallel applications and it

detects when to apply memoization to achieve performance

improvement. Previous work by Sartori et. al. [30] targets

control divergence on the GPU. Rinard et. al. [23] also pro-

poses an optimization for parallel benchmarks that do not

have balanced workloads. Misailovic et. al. [17] propose

probabilistic guarantees for approximate applications using

loop perforation. Relaxed synchronization is also used as an

approximationmethod to improve performance [22, 24]. Al-

though these approaches perform well for their target appli-

cations, their applicability is far more limited than tools that

can identify and finely optimize kernels based on the var-

ied data parallel patterns they may contain, which is one of

Paraprox’s key contributions.

Programmer-based: Green [5] is a flexible framework

that developers can use to take advantage of approximation

opportunities to improve performance or energy efficiency.

This framework requires the programmer to provide approx-

imate kernels or annotate their code using C/C++ extensions.

In contrast to these techniques, Paraprox automatically gen-

erates different approximate kernels for each application.

Ansel et. al. [4] also propose language extensions to allow

the programmer to mark parts of code as approximate. They

use a genetic algorithm to select the best approximate ver-

sion to run. Unlike these approaches, Paraprox chooses the

approximation optimization based on the patterns detected

in the input code and generates approximate versions auto-

matically for each pattern without programmer annotation.

Paraprox, however, can be utilized by the runtime systems

introduced in these works to optimize performance.

Hardware-based: EnerJ [28] uses type qualifiers to mark

approximate variables. Using this type system, EnerJ auto-

matically maps approximate variables to low power storage

and uses low power operations to save energy. EnerJ also

guarantees that the approximate part of a program cannot

affect the precise portion of the program. Esmaeilzadeh et

al. [11] demonstrated dual-voltage operation, with a high

voltage for precise operations and a low voltage for approx-

imate operations. Another work by Esmaeilzadeh [12] de-

signs a neural processing unit (NPU) accelerator to accel-

erate approximate programs. Alvarez et al. [3, 14] intro-

duced hardware-based fuzzy memoization and tolerant re-

gion reuse techniques for multimedia applications. Other

works [33, 34] also designed different approximate accel-

erators. Sampson et. al. [29] show how to improve memory

array lifetime using approximation. These approximate data-

type optimizations and special accelerators require hardware

support. Our approach, however, can be used by current ar-

chitectures without hardware modification.

7. Conclusion

Approximate computing, where computation accuracy is

traded for better performance or higher data throughput,

provides an efficient mechanism for computation to keep

up with the exponential growth of information. However,

approximation can often be time consuming and tedious for

programmers to implement, debug, and tune to achieve the

desired results. This paper proposes a software-only frame-

work called Paraprox that identifies common computation

patterns found in data-parallel programs and uses a custom-

designed approximation template to replace each pattern.

Paraprox enables the programmer to write software once

and run it on a variety of commodity processors, without

manual tuning for different hardware targets, input sets, or

desired levels of accuracy.

For 13 data-parallel applications, Paraprox yields an av-

erage of 2.7x and 2.5x speedup with less than 10% qual-

ity degradation compared to an accurate execution on a

NVIDIA GTX 560 GPU and Intel Core i7 965 CPU, re-

spectively. We also show that Paraprox is able to control the

accuracy and performance by varying template configura-

tion parameters at run-time. Our results show that pattern-

specific optimizations yield nearly twice the performance

improvement compared to naively applying a single, well-

known approximation technique to all benchmarks.
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