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Abstract—Deep neural networks (DNNs) are now starting to
emerge in mission critical applications including autonomous
vehicles and precision medicine. An important question is the
dependability of DNNs and trustworthiness of their predictions.
Considering the irreparable damage that can be caused by
mispredictions, assessment of their potential misbehavior is
necessary for safe deployment. In this paper, we first show
the deficiency of current confidence-based methods as relia-
bility measurement, and assess the effectiveness of traditional
architecture reliability methods such as modular redundancy
(MR). Then, we propose PolygraphMR and show that the com-
bination of input preprocessing, smarter decision policies, and
inclusion of prediction confidences can substantially improve
the effectiveness of MR for DNNs. Next, we show how to
prohibit explosive growth in the cost of MR by the help of
reduced-precision designs and staged activations. Across six
benchmarks, PolygraphMR detects an average of 33.5% of the
baseline mispredictions with less than 2× overhead.

Keywords-Reliability, Machine vision, Computer perfor-
mance

I. INTRODUCTION

There is no doubt that Deep Neural Networks (DNN)
have revolutionized many domains of applications including
computer vision [1], [2], natural language processing [3],
speech recognition [4] and handwriting recognition [5].
More and more products and services such as smart speak-
ers, mobile photography, and social networks are integrating
these algorithms to facilitate and enhance their usability and
functionality. Many different types of DNNs are proposed
each targeting different kinds of tasks, for instance, recurrent
neural networks (RNNs) are available for tasks like speech
recognition, or convolutional neural networks (CNNs) are
well-established for image classification problems. Our tar-
get in this paper are CNNs for image classification tasks.

CNNs are now moving from non-critical tasks such as
gaming and labeling personal photos to mission critical
tasks such as pedestrian identification for autonomous ve-
hicles [6], steering commands generation for self-driving
cars [7], and patient diagnoses with precision medicine [8],
[9]. With mission critical tasks, incorrect answers can be
disastrous. While CNN accuracies will continue to rise,
robust and reliable CNNs must be realized with imprecise
networks. Furthermore, CNNs may never achieve acceptable

accuracies for mission critical tasks due to inherent limi-
tations of their mathematical models. Constraints on com-
putation, storage, and energy consumption may also place
practical limits on growing CNN sizes, thereby limiting
accuracy particularly for energy-constrained environments.

Despite the widespread use of deep learning, there are few
metrics to determine the reliability of predictions made by
CNNs. When a CNN assigns a label for an input image, there
is not any established solution to determine correctness of
the prediction and tell apart the correct ones from unreliable
wrong answers. This phenomenon leads to an uncertain and
unreliable environment when deploying CNN algorithms.

The most apparent solution to this problem is to design
networks with higher accuracy. Considering the recent trends
in the ImageNet image classification task [10], deeper mod-
els with more layers and parameters greatly improve the
accuracy of these CNNs [11]–[13]. But, unless we have
networks with 100% accuracy, which may not be possible to
achieve, this solution is not sufficient by itself. Considering
the vital demand for a practical solution, alternative ap-
proaches are necessary to assure reliable operation of CNNs.

In prior works [14]–[16], it is argued that the output of the
last layer (Softmax) in CNNs can be used as a confidence
meter for the network result. The output of the Softmax
layer is a vector with size equal to the number of classes
in the classification problem, which computes exponentially
normalized values of the final fully-connected layer outputs.
The final network prediction is the class number with the
maximum value in this vector. Therefore, it is possible to
interpret the vector values as the probability of assigning
the input to the corresponding class, and if the probability
value of predicted class is higher, we can make the statement
that network is more confident about the generated result.
We investigated the use of network confidence for reliability
and show that DNNs produce substantial numbers of high-
confident wrong answers, thus this metric does not solve the
reliability problem by itself (see Section II-B).

The machine learning community proposed network
calibration [17] to improve confidence metric credibility.
According to network calibration, the reason for high-
confidence wrong answers comes from two sources: miscal-
ibration of the CNNs; and, confidence values are not well-



correlated with the actual accuracy of predictions [16]. In
other words, if a CNN generates an output which has a
confidence of 90%, we cannot make the statement that the
probability of answer being correct is also 90%. Network
calibration tries to solve this problem by correlating the con-
fidence values with accuracy. Unfortunately, we demonstrate
that even with well-calibrated networks, using confidence as
a reliability metric still results in considerable mispredictions
with high confidence (see Section IV-E).

In this paper, our goal is to develop a practical method
to design and realize systems of CNNs that can increase
robustness and reliability of classification results with im-
precise and currently available CNNs as the building blocks.
The goal is not to increase accuracy but rather focus on the
dependability of results. PolygraphMR uses input prepro-
cessing techniques to develop different variations of a CNN
and combines them as a modular redundant (MR) system
of heterogeneous CNNs. It also employs a tunable decision
policy engine that uses outputs of the networks and user’s
reliability demands to make decisions on the trustworthiness
of each prediction. However, MR systems are notoriously
expensive in terms of area and energy consumption. Thus,
the footprint of each CNN variant in the MR system is
reduced by scaling down the data precision and intelligently
staging activations of individual CNNs so that most of the
time only a subset of the MR system is active.

PolygraphMR enhances reliability by leveraging varia-
tions in behavior of each CNN that is trained in different cir-
cumstances and environments. It takes advantage of behavior
diversity to detect symptoms of unreliability from the pre-
dictions of different CNN variants. A systematic approach
is used to develop an efficient PolygraphMR system for
any benchmark using the initial CNN as the basic building
block. The functionality of PolygraphMR is orthogonal to
the accuracy and topology of baseline CNN and can be
applied to the future networks with higher accuracy levels
for further reliability enhancement.

This paper makes the following contributions:
• We demonstrate that high confidence, but wrong an-

swers are a problem for most CNNs. We also show that
current solutions such as using a confidence threshold
or calibrating the network confidence do not satisfac-
torily solve the reliability problem.

• We introduce PolygraphMR, a heterogeneous MR sys-
tem of CNNs that detects unreliable predictions by
recognizing the symptoms of unreliability in the be-
havior variation among the constituent CNNs. Behavior
diversity is synthesized by using a set of simple image
preprocessing techniques for training/inference.

• We eliminate a large fraction of traditional MR over-
heads by scaling down the data precision of individual
CNNs and deploying a resource-aware decision engine
to activate only a subset of CNNs for each inference.
We show that more aggressive data precision scaling
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Figure 1: Histogram of normalized wrong
answers generated by AlexNet [11], VGG16 [19],
GoogleNet [20], ResNet 152 [12], Inception V3 [21], and
ResNeXt 101 [22].

without sacrificing prediction accuracy is possible with
a PolygraphMR system than for a standalone CNN.

• We evaluate PolygraphMR system across three well-
known image classification datasets and six CNNs and
show that it is capable of detecting an average of
40.8% of mispredictions in a non-constrained resource
environment, or 33.5% of mispredictions with less than
86.5% overhead on energy and latency.

II. MOTIVATION

A. High-Confidence Wrong Answers

In order to better understand the reliability problem of
current CNNs, we analyze errors of the six well-known
networks for ImageNet dataset [18]. Benchmarks and their
top-1 accuracies for the validation set are presented in
Figure 1. The output of Softmax layer is used as the prob-
ability/confidence values of labels as suggested by previous
works [14], [16]. Figure 1 presents the distribution of wrong
predictions made by CNNs across the entire validation
set. To ease the analysis, wrong answers are grouped into
four categories based on their prediction probabilities: low
(0− 30%), medium (30− 60%), high (60− 90%) and very
high (90 − 100%) confidence. All bars are normalized by
the total number of samples in the validation set, so the
distributions can be compared to each other.

It is clear that the low and medium confidence wrong an-
swers are the largest for most CNNs, which is intuitive. But,
nearly 10% of the answers are wrong with high or very high
confidence for each CNN. From a reliability perspective,
10% high confidence wrong answers is quite large. Figure 1
also exposes a more subtle, but concerning trend. As the
CNNs become more accurate, severity of problem increases
and there are a higher fraction of high confidence mispredic-
tions. This shows that the higher accuracy is mainly coming
from correctly predicting low confidence wrong answers
of less accurate CNNs, and overall, confidence values for
majority of predictions, whether correct or wrong, are shifted
higher which makes them less reliable.

B. Limitations of the Confidence Metric

To explore the use of confidence as a reliability metric
more deeply, one approach is to choose a minimum threshold
for the prediction probability in order to consider it reliable.
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(b) False Positives

Figure 2: Effect of the probability threshold on the network
predictions. (a) Distribution of true positives over threshold
value. (b) Distribution of false positives over threshold value.

When the prediction probability falls below the threshold,
the CNN output is unreliable. Figure 2 demonstrates the
rate of undetected mispredictions, or False positives (FP),
and correct predictions, or True positives (TP), as a function
of the confidence threshold. At a threshold of 0, none of the
predictions are affected and the rate of FP and TP matches
the original accuracy. As the threshold increases, the FP rate
is decreased but at the same time, TP rate goes down as
a portion of correct predictions are lost due to their low
confidence. As depicted in Figure 2a, the change in TP rates
for different CNNs tends to be similar, thereby maintaining
a relatively constant difference in TP values regardless of
threshold. Conversely, Figure 2b demonstrates the higher
vulnerability of more accurate CNNs to the high confident
wrong answers. Although the FP rate is initially lower in
more accurate CNNs, the curves cross and the less accurate
CNNs get lower FP rates at higher thresholds. This result
again reinforces a somewhat counter-intuitive result that as
accuracies go up, it is more difficult to eliminate the FPs
and overall we have more high-confident wrong answers.

C. Misclassification Analysis

To get a better understanding of CNN behavior, we ana-
lyzed the wrong predictions of AlexNet over the validation
set of ImageNet. The highest confidence wrong answers,
i.e, mispredictions with confidence of 90% or more, which
corresponds to about the top 5% of wrong answers, were
manually examined to determine if any trends were apparent.
Figure 3 summarizes the top 3 characteristics. The first
characteristic is having poor image detail which includes
obstruction, obfuscation, blur, etc. Figure 3a presents an
example where the crocodile is obstructed by leaves in the
foreground. The second characteristic is to have multiple
objects in the image as shown by Figure 3b. This picture
contains two objects, a seashore in the front and a mountain
in the back. In this example, network incorrectly predicted
the mountain whereas seashore was the correct label. Finally,
the third characteristic is the similarity between classes as
shown in Figure 3c. The right image is labeled as bald eagle
in the dataset, while it is mispredicted as a kite, and the left
image is a sample of kite class, which shows its similarity.

The critical problem is not that these images are mis-

(a) Image Details (b) Multiple Objects

(c) Class Similarity
Figure 3: Misclassification analysis on ImageNet dataset.

predicted, but rather the wrong prediction is made with
very high confidence (e.g., over confident predictions). Hu-
mans may also classify these images incorrectly, but in
contrast would likely have lower confidence due to the image
characteristics. This points out one of the limitations of
machine learning that the underlying mathematical models
do not differentiate hard versus easy to classify images nor
utilize confidence as an input to the training process. Rather,
training designates a ground truth class for each sample.
During training, weights of the network are continuously
updated until the probability outputs are converged toward
the ground truths. So, the network is forced to get the
probability of the output corresponding to the label class
number to 100%, making it more sensitive and reducing the
generality of the trained model [23]. And as a result, the
network ends up making over confident predictions.

We hypothesize that this limitation can be alleviated by
creating a system of networks that provides both multiplic-
ity and diversity. Multiplicity enables multiple independent
predictions on the same input and can be used to adjust con-
fidence based on agreement of answers. And diversity further
enhances multiplicity by differentiating individual learners,
thus increasing overall comprehensiveness of prediction
space. We believe combination of these two characteristics
can help our system to perform better at approaching and
resolving more demanding inputs. The challenges are then
to systematically create heterogeneous systems of multiple
networks so the user is not burdened with this task and
mitigate the multiplicative factors of energy/cost that deploy-
ing multiple networks will seemingly require. Evaluating the
merits of this hypothesis while overcoming these challenges
is the focus of PolygraphMR and the rest of this paper.

III. POLYGRAPHMR

A. Overall Design

PolygraphMR (PGMR) uses available imprecise CNNs
as building blocks and leverages behavior diversity between
them as symptoms of unreliability and likelihood of unreli-
able predictions. Figure 4 shows an overview of the system
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Figure 4: General design of a PolygraphMR system: Layer 1 is responsible to preprocess input image and inject diversity to
system, layer 2 provides redundancy by making prediction on individual inputs, and layer 3 generates final prediction and
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for single discrete inputs, still images in the illustration. The
design consists of three layers: preprocessing units (Sec-
tion III-B), modular networks (Section III-C), and decision
making engine (Section III-E).

For inference, the system operates as a group of hetero-
geneous DNNs (Layer 2) that are driven by a diverse set of
real and synthetic inputs crafted from the original input by
the available preprocessors (Layer 1). The goal of creating
such a wide input diversity is to provide more information
in order to render more confident predictions. Outputs of
the heterogeneous group are analyzed to determine the final
prediction and also whether or not the answer is reliable
(Layer 3). The decision making portion is configurable and
users can specify the target reliability for the system. The
final output of this system could land in one of the following
three domains: True Positives (TP) which are correct and
reliable answers, False Positives (FP) which are undetected
mispredictions, and Unreliable answers which are composed
of detected wrong answers (false negatives) and correct
answers that are undesirably marked as unreliable (true
negatives). Our reliability goal in this paper is to reduce
FPs as much as possible by marking them as unreliable
predictions, while keeping the desired TPs unchanged.

B. Layer 1: Pool of Preprocessors

Traditionally, diversity in CNNs is created by random
initialization of weights in the training phase. However, as
expected, the amount of diversity is very limited as will be
shown in Section III-C. Instead, we turn to prior work that
has studied image preprocessors and shown they are helpful
in improving the overall accuracy of CNNs [24]–[26]. Our
goal of preprocessing is instead to create a group of CNNs
with diversity in behavior. We hypothesize that diversity will
help us identify inputs where the prediction should be treated
as unreliable due to behavior variation across the CNNs.

Each CNN in layer 2 will be fed by transformed images
generated by one of the preprocessors. We can use sim-
ple linear transformations like flipping, or more complex
nonlinear functions like histogram equalization or contrast
normalization as preprocessors. Each of these preprocessors
introduces a different level of diversity to the system de-

Table I: Image preprocessors and their functionality.

Preprocessor Functionality
AdHist Locally adjusts image intensities to enhance contrast

ConNorm Locally normalizes image contrast
FlipX Flips image in the horizontal axis
FlipY Flips image in the vertical axis

Gamma Gamma correction, controls the overall brightness
Hist Adjusts image intensities to enhance contrast

ImAdj Maps image intensity values to a new range

pending on the dataset or functionality of the preprocessor
itself. We examine the effectiveness of each preprocessor and
compare them together in Section III-G. Table I presents
the preprocessors that are used across our benchmarks in
Section 9. Among these preprocessors, FlipX and FlipY are
used more frequently. On the other hand, ImAdj is used
only by one of the benchmarks. Overall, we observed that
the preprocessors which preserve the vital features of the
inputs while providing sufficient diversity to the system, are
more frequently used across different datasets. Whereas a
preprocessor like ImAdj, which heavily modifies the input
features, like pixel colors, is less useful.

C. Layer 2: Heterogeneous Modular Redundancy

The base of layer 2 is Modular Redundancy (MR), which
is well recognized as a standard solution for building mission
critical computer systems [27]. With this approach, multiple
copies of the unreliable module are instantiated and activated
with a majority vote taken to decide the final answer. If the
modules operate correctly most of the time, then the majority
are likely correct for any single input. For probabilistic
models including CNNs, the goal of using MR is separating
reliable and unreliable answers rather than increasing the
accuracy. Therefore, when the CNNs agree, the output is
labeled as reliable and when they disagree then unreliable.
To assess the success of MR, FP rates are measured.

We extend the traditional MR design with two modifica-
tions to account for the probabilistic behavior of CNNs:

1) We change the decision policy from majority voting
to require a specific number of networks to agree on
the final prediction. We call this number the frequency
threshold (Thr Freq).
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2) We include a confidence threshold for accepting the
prediction result from each network. If the confidence
of a specific prediction is below the threshold, it will be
neglected. For the rest of the paper, we call this value
the confidence threshold (Thr Conf ).

To evaluate traditional MR, we run an experiment using
ConvNet on the CIFAR-10 dataset [28]. This dataset con-
tains 10k images which are classified into ten categories (1k
images per category) with a baseline accuracy of 74.7%.
The degree of MR varies from 2 to 30. MR networks
are created by instantiating n copies of the baseline CNN,
randomizing the starting weights, and training each on the
original dataset. Each CNN ends with different weights
and thus behaves differently. Figure 5 shows the impact
of redundancy degree on the number of wrong answers
predicted by the MR system with different decision policies:
1) Traditional MR with majority voting (Majority Vote), 2)
MR with a Thr Freq equal to the number of CNNs, which
will require all networks to predict the same label and is
the most restrictive threshold (All identical), 3) the previous
MR design plus a Thr Conf of 75% (All identical with
Threshold). The Thr Conf is chosen somewhat arbitrar-
ily, but which corresponds to a relatively high confidence
threshold. Note that for the design with majority voting if
two classes share the same highest frequency, the result is
considered unreliable.

From Figure 5, majority voting does not provide a signif-
icant decrease in FPs regardless of the redundancy degree.
The FP rate flattens at about 20%, after starting at 25.2%
with a single CNN. MR with the Thr Freq is much more
successful, reducing the FP rate down to 1%. MR with
both Thr Freq and Thr Conf decreases the FP rate even
further to 0.18%. However, the latter two solutions have
an undesirable side effect of substantially decreasing the
number of TPs. For example with the All Identical method,
to achieve a 1% FP rate, TPs reduce from 74.7% with a
single network to 40.4% because a large number of correct
predictions are considered unreliable.

We make three conclusions based on these results:
First, traditional MR is incapable of effectively reducing

the FP rate regardless of the redundancy degree, whereas

they are shown to be practical while applied to other
computer reliability problems such as transient faults [29],
[30]. The reason is that with traditional computer systems,
execution of applications is flawless in a fault-free setting
and faults are relatively rare. However, CNNs are inherently
faulty regardless of the hardware, and errors are much more
common due to the inherent inaccuracy of the mathematical
models. This results in a significant disagreement between
individual CNNs and poor results.

Second, from the majority voting results, the effect of
behavior diversity reduces the FP rate by 5% without any
loss of TPs. Conversely, the all identical voting has much
larger drops in FPs, but loses too many TPs. Thus, it is
important to have less restrictive voting mechanisms like
majority while at the same time injecting larger amounts of
diversity than simply random initial weights, which led to
our decision to use input preprocessing.

And finally, single CNNs are expensive in terms of
computation, storage, and energy consumption. Thus, the
multiplicative cost increase of CNNs in an MR system
could easily become infeasible. Thus, we need to deploy
an resource-aware implementation of our MR system.

D. Resource-aware MR (RAMR)

Due to inherent redundancy in Layer 2, computation of
PolygraphMR introduces new energy and latency overheads
per inference. To mitigate a portion of these overheads,
we explore narrow-precision floating-point representation for
each CNN in the system.

We follow a similar implementation introduced in [31],
[32] and reduce the overhead of data transfer by precision
reduction. We assume all weights and intermediate values
are using a lower precision. Hence, it is possible to pack
them together during both on-chip and off-chip data transfer.
As a result, the reduced traffic on memory hierarchy leads to
higher utilization of compute units and higher performance.

Although there is an opportunity to reduce the cost of
PolygraphMR by using narrow-precision computation, we
should acknowledge that this solution is not unique to our
system and can be applied to any CNN for energy saving
purposes. To analyze the effect of lower precision, we run an
experiment using AlexNet [28] on the ImageNet [18] dataset.
The goal is to compare the degree of precision reduction
on a PolygraphMR system with a baseline of an individual
AlexNet. We hope that the combination of diverse CNNs
in our system would be more resilient against the negative
effects of lower precision on accuracy. Therefore, we would
be able to further reduce the precision of each individual
CNN in comparison to the baseline.

Figure 6 presents the accuracy of both PolygraphMR and
the baseline CNN with respect to the precision they are
using. We focus on maintaining the accuracy level of the
baseline CNN, which is 57.4% for AlexNet, and investigate
the possibility of achieving this accuracy at each precision
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level. At the first glance, both designs seem to be responding
equally to the reduction of precision. But in a closer look,
we can see that the baseline AlexNet starts to lose its
accuracy passing 17 bits precision level. On the other hand,
PolygraphMR can still tolerate lower precision levels of up
to 14 bits. In fact, the accuracy of each individual CNN in
PolygraphMR also follows a similar trend to the baseline
AlexNet, but combining their predictions and then making
decision performs similar to ensembles and compensates for
the individual accuracy drop. As a result, we can further
reduce the precision on PolygraphMR system and mitigate
a portion of the multiplicative energy and latency overhead.

E. Layer 3: Decision Engine

The last layer of PolygraphMR is responsible for collect-
ing the outputs from layer 2, generating the final prediction
of the system, and determining whether or not the prediction
is reliable. This happens in two steps during the system
inference phase. First, the decision engine compares the
probability vectors generated by the softmax layer of each
network, with the designated Thr Conf value and forms
a histogram of acceptable votes for each class. As a result,
all labels in individual output vectors, which meet threshold
restrictions, are recorded in the histogram. Next, the decision
engine reports the class label with the highest frequency as
the final prediction of the system and reports the reliability
of the label by comparing the respective frequency with the
preselected Thr Freq.

The appropriate values for Thr Freq and Thr Conf
are determined after training the MR networks and during
an offline profiling stage. First, the value space for the set of
thresholds is swept, and the respective TP and FP rates of
the design points over the validation dataset is recorded. This
process is not time consuming and has a negligible overhead
compared to the actual training of the MR networks. Next,
a Pareto frontier for the threshold values, which maximizes
the TPs and minimizes the respective FPs, is formed. And
finally, a set of Thr Conf and Thr Freq values is selected
from the Pareto frontier based on the user demands, which
might be a specific TP or FP limit.

The threshold values selected in the profiling stage, will
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Figure 7: Histogram of prediction agreements in a system
with 4 CNNs, profiled on LeNet-5, ConvNet, and AlexNet.

be fixed during the inference phase of the system. But, if
the user demands are updated at any point, a new set of
threshold values can be selected from the Pareto frontier to
meet the new requirements.

F. Resource-aware Decision Engine (RADE)

To further reduce the performance overhead of Layer
2, we deploy a resource-aware decision policy. Unlike the
traditional MR with majority voting which requires all
prediction outputs from every network to be present in order
to make the final decision, PolygraphMR can decide on
the reliability of the prediction if a subset of the networks
provide the same label with a minimal confidence.

To analyze the number of networks that need to be
activated, we run an experiment using a PolygraphMR with
four networks on three benchmarks: LeNet5 [33] on MNIST
[34], ConvNet [35] on CIFAR-10 [28], and AlexNet [28] on
ImageNet [18] dataset. Our goal from this experiment is to
gain a general idea about how often we need to activate
all networks to get a reliable prediction. We collect the
prediction results of each network to see how often they are
in agreement with each other. To simplify the experiment, we
do not use any Thr Conf and just gather the top prediction
from each network regardless of its confidence. Figure 7
presents histogram of network agreements for our bench-
mark. The x-axis shows the number of agreements among
the four CNNs, and the y-axis represents the corresponding
normalized frequency over test samples. We can see that in
more than 50% of times, we don’t need to activate all the
CNNs since their prediction results are in harmony with each
other. This gives us the opportunity to activate just a portion
of CNNs and reduce the performance overhead. But, the key
point is to decide on which network(s) to activate, since there
is a possibility that we would face an input where predictions
from the selected networks might conflict with each other.
An oracle decision engine would be the one which activates
the single reliable CNN per input sample. But even if it is
possible to design such an engine, it is likely complex and
would consume considerable energy.

In order to design a resource efficient decision engine, we
use a priority scheme on CNN activations. In this case, we
can stage activation by activating a batch of high priority
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Figure 8: Comparing effects of AdHist and Scale 80% on
confidence changes with respect to original CNN.

CNNs first to check their predictions, and only continue to
execute other CNNs if we are not able to determine the final
answer after the first round of invocations. This approach
can give us the opportunity to have early detection of TP or
unreliable answers, and result in lower energy consumption.

To come up with a priority scheme, we statistically
analyze the contribution of each CNN in the system. In
other words, we record the frequency of instances that each
network provides a correct label to the decision engine over a
specific number of test cases during training. Next, we use
the measured frequency numbers to give priority to each
network. In the inference phase, we first execute the top
Thr Freq networks to see if we can determine the final
answer. Next, we move to other networks based on their
contribution until we’re ready to generate the output. Energy
saving results and latency improvement of this decision
engine are discussed in Section IV-C.

G. PolygraphMR System Design

We use a two-step procedure to select the best preproces-
sors and form a PolygraphMR system for each individual
application and dataset. First, we compare the relative per-
formance of preprocessors regarding the potential behavior
diversity each can introduce. Next, a set of candidate pre-
processors is used in a greedy approach to select the final
preprocessed networks. As discussed in Section III-B, a wide
range of linear and non-linear preprocessors are available to
use. But, not all of them provide sufficient behavior diversity
to justify their energy overhead. Hence, the first step is to
compare preprocessors and select the best ones.

For each input instance, we profile the difference be-
tween prediction confidence of the baseline CNN and each
preprocessed CNN, called delta. The delta values are then
used to compare pairs of preprocessors. Figure 8 presents a
comparison between AdHist (in which image intensities are
locally adjusted to enhance contrast) and Scale 80% (where
input image is scaled down and up by 20% to soften noise
levels) on ConvNet. The x-axis presents delta values, and
y-axis projects the corresponding cumulative distribution.
Figure 8a displays the distribution of delta values for inputs
that are initially mispredicted by the baseline CNN. As
shown, AdHist has a higher probability in negative deltas.
Even though the difference is relatively small, the likelihood

Dataset CNN Accuracy # of Layers # of Classes
MNIST LeNet-5 [33] 99.01% 5 10

CIFAR10
ConvNet [35] 74.70% 4 10
ResNet20 [12] 91.50% 20 10

DenseNet40 [36] 93.07% 40 10

ImageNet AlexNet [28] 57.40% 8 1000
ResNet34 [12] 71.46% 34 1000

Table II: Benchmark set used to evaluate PolygraphMR.

of having lower confidence for mispredicted results with the
AdHist is higher. Thus, the probability of getting the same
misprediction with AdHist is lower than Scale 80%, and
AdHist would be a better preprocessor to introduce behavior
diversity for this network. In addition to Figure 8b, Scale
80% has higher probability in negative deltas, which means
there is a higher chance of getting a lower confidence for
samples that are correctly predicted by the baseline. Hence,
the probability of predicting the same correct answer is lower
compared to AdHist. This comparison shows that the AdHist
has a higher potential for introducing behavior diversity
to our system. In our experiments, preprocessors listed in
Table I are the most frequently selected ones.

The second step is to run an iterative greedy approach
on candidate preprocessors to select the final networks for
PolygraphMR. First, it starts by selecting a baseline CNN
as the first network in layer 2. It also gathers the respective
TP and FP rates to be used as baseline. Next, each of the
preprocessed CNNs is separately selected and added to the
current configuration and reduction in FP rate is recorded.
Then, the best preprocessor for the current iteration is added
to the final design. We keep iterating through this algorithm
until a predefined maximum number of CNNs is reached.

IV. EVALUATION

We evaluate PolygraphMR in two stages. First, we focus
solely on reliability improvements without considering any
performance optimizations in Section IV-B. Next, we apply
RAMR and RADE to reduce the overheads in Section IV-C.

A. Methodology

Benchmarks: Three datasets are selected for evaluation:
MNIST [34], CIFAR-10 [28], and ImageNet [18] dataset.
As for the CNNs, we choose six networks with different
ranges of accuracies and topologies to show that our solu-
tion is independent from the original network correctness
level and architecture. Table II presents the accuracies and
specifications of each benchmark.

Comparisons: To evaluate reliability of optimal config-
urations proposed for each benchmark, two comparisons
are made. We compare PolygraphMR with N networks
(N PGMR) with the original baseline network (ORG), and
with an MR system composed of N networks (N MR).

Evaluation Metrics: For the reliability comparison met-
ric, we use FP rate of design points where no desirable
correct predictions are lost. Therefore, the FP rates included
in the rest of the results section correspond to design points
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Dataset CNN Configuration
MNIST LeNet-5 ORG, ConNorm, FlipX, Gamma (γ = 2)

CIFAR10
ConvNet ORG, AdHist, FlipX, FlipY (γ = 2)
ResNet20 ORG, FlipX, FlipY, Gamma (γ = 1.5)

DenseNet40 ORG, ImAdj, Gamma (γ = 1.5), Gamma (γ = 2)

ImageNet AlexNet ORG, FlipX, FlipY, Gamma (γ = 2)
ResNet34 ORG, FlipX, FlipY, Gamma (γ = 2)

Table III: 4 PGMR configuration selected for each bench-
mark (ORG stands for original baseline network).

with normalized TP of 100% of the baseline network. FP
rates are also normalized with respect to the ORG FP rate.

We also use latency and energy of original CNNs for each
benchmark as our performance measurement baseline.

Preprosseing: We use OpenCV library and MATLAB
for preprocessing of the datasets during training and testing.

Reliability Modeling: We use Caffe [37] framework
to implement, train and test our CNNs. To evaluate the
accuracy of low-precision networks used in RAMR, we
modify the Caffe library by replacing default cuDNN frame-
work with our custom CUDA kernels that support variable
precision. This enables changing inference precision by
truncating values of load and store instructions to the desired
settings. We use a unified precision throughout the network
and for all layers.

Performance Modeling: Energy and latency of Poly-
graphMR are measured on a machine with Intel Core i7-
5930K CPU and an NVIDIA TITAN X (Pascal) GPU. In-
ference of each CNN in PolygraphMR is done sequentially,
and at the end, decision policy is deployed to get the final
result. In this pipeline, preprocessing and CNN inference are
executed on GPU, whereas decision policy is based on CPU.

To measure the performance of low-precision CNNs, we
model data packing and unpacking in software which is then
integrated in our kernels. Next, GPGPUsim v4.0 [38] and
GPUWattch v1.0 [39] are used with TITAN X configura-
tion [40] to run the simulation on individual benchmarks.

B. Reliability Results

In this section, we assess the reliability results of Poly-
graphMR without including any side effects of perfor-
mance optimization. We evaluate two configurations of Poly-

graphMR, one with four networks (4 PGMR) and another
with six networks(6 PGMR) to show the scalability.

Figure 9 shows the evaluation results for all six bench-
marks. We compare the normalized FP rate of the Poly-
graphMR system with other designs. The y-axis displays FP
rate which is normalized to the FP rate of the corresponding
baseline CNN. All design points also have a normalized TP
of 100%. One can see that on average, 4 PGMR can reduce
the FP rate of the baseline CNN by 40.8%. This value is also
16.6% lower compared to MR configuration with the same
number of CNNs. Table III summarizes the preprocessors
selected for each benchmark in 4 PGMR configuration.

Figure 9 also shows that PolygraphMR designs are orthog-
onal from the baseline accuracy. For example in CIFAR10,
three benchmarks with different accuracy and complexity
levels are evaluated. We can see that 4 PGMR is success-
fully reducing FPs in all three benchmarks. The same obser-
vation can be made on the ImageNet based benchmarks. In
conclusion, PolygraphMR can work in harmony with future
more accurate networks to enhance their reliability.

Another interesting point is the selection of FlipX prepro-
cessor in the benchmarks that are evaluated on ImageNet.
During the training of AlexNet and ResNet34, samples
are randomly flipped and fed to the network to introduce
robustness towards the rotation of objects in the image.
Hence, there was not any gain expectation by addition of this
preprocessor, since we believed that the intended diversity
was already introduced to the system during the training.
But as the result of final configuration depicts, we still get
benefits by deploying FlipX. This shows the sensitivity of the
network to minor changes in the input and the explanation
for this phenomenon is discussed in Section 3.

Figure 9 also presents FP rates for 6 PGMR configura-
tions. On average, 6 PGMR designs can detect 48.2% of
baseline FPs, which is 12.5% improvement over 4 PGMR.
Among all benchmarks, ConvNet on CIFAR10 and AlexNet
on ImageNet benefit the most from increased diversity
by, respectively, detecting 27.3% and 14% more FPs over
their 4 PGMR counterparts. But, we observe that for
the majority of benchmarks, 4 PGMR provides the sweet
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Figure 10: Energy, latency, and FP rate trend during cost-
oriented optimization.

spot in reliability and cost trade-off. For the rest of paper,
4 PGMR designs are used for further analysis.

C. Energy/Latency Optimizations

To alleviate performance overhead of PolygraphMR, we
deploy a two-step optimization procedure. First, we reduce
the precision of each individual CNN in the 4 PGMR as
discussed in Section III-D. Next, we replace the decision
engine of the new system with a resource-aware version.

In our evaluation, we assume that the proposed design
is executed on an average hardware setup including only
one GPU. This is the worst case scenario which requires
PolygraphMR to execute individual networks sequentially.
Therefore, the latency and energy overhead will grow lin-
early with the number of networks. If a more advanced
hardware setup with multiple GPUs is available, such as
the NVIDIA DRIVE AGX self-driving compute platform
equipped with two TensorCore GPUs [41], latency overhead
can be scaled correspondingly down. The latencies of the
preprocessing and decision engine are also measured, but
their overhead is negligible compared to CNN computation,
e.g., 2.5% for AlexNet and 0.6% for ResNet34.

4 PGMR + RAMR: For each benchmark, we reduce
the precision of both the baseline CNN as well as all
CNNs in the 4 PGMR. As shown in Section III-D, the
PolygraphMR system is more resilient to precision reduction
than a single CNN. Therefore, we can reduce the precision
of individual CNNs in the 4 PGMR more aggressively.
Figure 11 presents the precision reduction results on AlexNet
benchmark. We compare the Pareto frontier of baseline and
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Figure 11: Pareto frontier comparison of precision reduced
AlexNet on ImageNet dataset.
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Figure 12: Distribution of number of networks activated in
4 PGMR system over test set of individual benchmarks.

4 PGMR in full precision and reduced precision settings.
To get the Pareto frontier of ORG, it is coupled with a
confidence threshold. In this figure, the x-axis represents
the TP rate and y-axis stands for FP rate, both normalized
to corresponding baseline rates. In this experiment, the
precision of ORG is reduced to 17bits without any accuracy
loss. As for 4 PGMR, precision is further decreased to
14bits again with no accuracy loss. But, as shown in Figure
11, the FP rate of 4 PGMR system is little changed with
RAMR, and still offers 28.1% FP detection rate. We observe
a similar behavior for other benchmarks and precision of
each CNN is further-decreased by two to four bits.

The second bars in Figure 10 summarize the effect of
RAMR on energy, latency, and normalized FP rate. On
average, we can reduce the energy consumption and latency
overhead by 76.5% and 75.0%, respectively. Whereas, FP
rate is modestly increased by 5.4%.

4 PGMR + RAMR + RADE: Next, we deploy the
resource-aware decision engine described in Section III-F.
Figure 12 presents distribution of the number of networks ac-
tivated by RADE for individual benchmarks over test set. We
observe that the majority of samples only require two CNNs
to get the prediction. We only need to activate more networks
for more demanding and complicated inputs. Figure 12 also
shows that benchmarks with a higher accuracy baseline, less
frequently require the activation of extra networks.

The third bars in Figure 10 present the energy and latency
reductions as well as FP rate changes. By applying both per-
formance optimization, we reduce average energy overhead
to 185.5% and normalized average latency to 186.3%. On
the other hand, normalized FP rate is increased by 7.2%.

Although RADE is effective on reducing the average
latency, the tail latency is left unaffected. This might be
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Figure 13: System configuration optimality analysis.

problematic on real-time applications that have a latency
budget per input. As an important example, self-driving
car systems are required to have a tail latency threshold
of 100ms [42]. But, considering the overall low latency
of baseline networks, it is still possible to satisfy the
latency requirements while providing predictions with higher
reliability. For example, ResNet34 as the most demanding
network in our benchmark suite, requires less than 17ms on
TITAN X (Pascal) to do a forward pass on single input.

Optimized 4 PGMR is also evaluated on a hardware
with two GPUs similar to NVIDIA DRIVE AGX platform.
In this scenario, CNNs are activated in a batch of two
over available GPUs. As shown in Figure 12, the majority
of inputs only require two networks to get the expected
reliability. Therefore as shown in Figure 10b, the average
latency can be reduced to baseline levels.

Discussion: To give perspective on the significance of
these results, we consider an example of reliability improve-
ment achieved by using networks with higher accuracy and
complexity. We compare accuracy and cost of ResNet20
and DenseNet40 on the CIFAR10. Based on Table II,
DenseNet40 reduces FP rate of ResNet20 by 18%. Whereas,
MAC operations are increased from 41 MFLOPs to 267
MFLOPs, more than 6× extra computation. This shows the
inevitable trade-off between reliability and cost. In compar-
ison, 4 PGMR on ResNet20 reduces FPs by 49.0% with
4× cost, or by 46.3% with 1.6× cost after optimizations. We
observe that in this case, 4 PGMR is more cost effective
to get higher reliability. It is good to mention that we are
not suggesting to use PolygraphMR as a replacement for
more accurate networks. Instead, our preference is to deploy
PolygraphMR on top of them to achieve even a higher
reliability as discussed in Section IV-B.

D. Preprocessing and Decision Engine

To show the impact of preprocessors and decision engine
used in PolygraphMR, two separate experiments are run
on CIFAR10 dataset with ConvNet. First, 6 PGMR is
compared to a modified version of traditional MR, which
deploys the smart decision policy proposed in Section III-E.
We call this new system 6 MR DE. By analyzing the
changes in FP rates by moving from 6 MR to 6 MR DE

and from 6 MR DE to 6 PGMR, we can observe the
effect of decision engine and preprocessing, individually.
Next, the 6 PGMR system is challenged by an extension
of the modified MR used in the first experiment, which is
assembled by training 100 copies of the baseline ConvNet.

Figure 13 compares the Pareto frontier of different de-
signs. To get the Pareto frontier of baseline CNN and 6 MR,
they are coupled with a confidence threshold(Thr Conf ).
It can be seen that both modified MRs are outperformed
by PolygraphMR system. By comparing 6 PGMR with
6 MR DE, we can see the extra gain of 18.5% in ro-
bustness introduced by preprocessing. We can also observe
the gains from decision engine by comparing 6 MR DE
and 6 MR. The former provides 4.1% more normalized FP
detection which is the result of using a smarter decision
engine instead of just taking majority vote.

As for comparison of 6 PGMR and 100 MR DE, even
though the number of networks used in modified MR is 16
times more compared to 6 PGMR, the diversity introduced
by using only 5 preprocessors is still higher. As a result, the
reduction that 6 PGMR offers in the normalized FP rate
is still 15.3% more than what 100 MR DE can do.

E. Comparison with Network Calibration

Finally, we analyze network calibration as a solution to
unreliability of confidence metric [17], [43]–[45]. As an
experiment and to see the effects of calibration on the high
confidence wrong answers, we implement the temperature
scaling method proposed in the recent works [16]. Temper-
ature scaling uses a scalar parameter to scale the output of
softmax layer. The desired value of scaling for each bench-
mark is derived by solving an optimization problem [16].

The temperature scaling method is implemented and
tested on 4 benchmarks over ImageNet dataset. Figure 14
shows the result prior to and after the temperature scaling.
The dashed lines are for the original CNN and the solid lines
report the results for scaled CNNs. The effect of confidence
as a reliability metric is studied through Figure 14. Both
Figure 14a and 14b show the effect of temperature scaling
on FP or TP rate, with respect to the selected confidence
threshold. If we compare FP and TP rate of the scaled
and original network for each threshold value, we can see
a reduction in both parameters. This gives the intuition
that confidence of the undesired overconfident predictions
is decreased which would make the confidence metric an
appropriate reliability metric. But based on Figure 14c, we
can see that Pareto frontier of TPs and FPs is unchanged
after scaling. In other words, since the scaling is done by
using the same parameter for all confidence values regardless
of the correctness of answers, the final Pareto chart of the
TPs and FPs is kept untouched. The only change is that for
accessing a specific set of TP and FP, a lower confidence
threshold is required for the scaled network. Hence, the
initial reliability problem of confidence is still in place.
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Figure 14: Temperature scaling results

V. RELATED WORK

We focus on different areas which target the reliability or
security aspects of CNNs, or target to better understand the
irrational behavior of CNNs.

Model uncertainty and Bayesian NNs are a closely re-
lated area of research [27], [46]–[48]. The idea is to add
uncertainty to the predictions of NN models, and to be able
to understand when the network is not confident with the
generated results. Although the concept of model uncertainty
is highly promising for reliable CNN inferences, but current
solutions mainly target regression tasks [46], [47], or add a
very high execution overhead, e.g., 10× to 100× in solutions
based on the ensembles [27] or dropout sampling [46], [48].
However in PolygraphMR, we target improving classifica-
tion reliability in CNNs, while considering the performance
overhead implications of the proposed solution.

Researchers are also focusing on corner-case behaviors of
the CNNs. They try to come up with systematic approaches
and testing tools to detect erroneous behaviors [49], [50]. A
number of works are also attempting to detect the anomalies
in CNN applications. Their goal is to make CNNs more
resilient against out-of-distribution examples that have not
been seen before [15], [26], [51]–[53].

Security researchers are also focusing on the robustness
of CNNs. They seek to find new techniques of generating
adversarial inputs, to fool the network and induce their
desired results. They add perturbations to the inputs, which
in some cases is not even visible to the naked eye, leading
to mispredictions [54]–[56]]. In contrast, they try to make
the network robust against the state of the art adversarial
generation methods [23], [57], [58].

A number of works are also focusing on the understand-
ability and interpretability of CNNs in order to add more
transparency to these algorithms. Samek et al. [59] try to
explain the predictions of CNNs by measuring the sensitivity
of the outputs to the individual input variables. Turner [60]
proposes a general model for explaining the output of the
classifiers. Zeiler et al. [61] propose a visualization technique
to get an insight into the functionality of the intermediate
features and operations of the classifier.

There are also numerous works on the reliability of
CNNs against the transient faults and soft errors [62]–[64].

These works study fault injection in the CNN executions
and analyze the response of the network to the faults.
The solutions proposed for these reliability issues include
modular redundancy in the level of application, instruction,
and transistors. Our work however, focuses on the internal
reliability problems of the DNNs which are also very vital
considering that unlike transient faults, DNN prediction
faults are quite common and happen frequently regardless
of the hardware system that they are executed upon.

To the best of our knowledge, reliability problem of deep
learning algorithms is a new topic for research in this area.
Considering the increasing utilization of these algorithms
in real world and vital applications such as autonomous
vehicles, assuring their reliability needs to be well studied.

VI. CONCLUSION

CNNs are extensively utilized in mission critical appli-
cations such as autonomous vehicles. These applications
require high levels of robustness since any error can cause
irreparable damages. In this work, we demonstrated that
current CNNs are failing to meet the reliability requirements
of such applications by exposing a significant number of
high confident mispredictions. We find that recent solutions
that utilize confidence values as a metric of reliability are
faulty and can lead to a significant number of false positives.
We propose a new system called PolygraphMR composed
of a number of CNNs as building blocks. Each network is
accompanied by a specific preprocessor to provide behavior
diversity among the CNNs and detect the unreliable wrong
answers based on the contradictions observed due to the
behavior variations. An energy efficient version of the sys-
tem is also proposed that deploys precision reduction and
staged activation to reduce the multiplicative costs of MR.
As a result, our solution is capable to provide an average
of 33.5% reduction in false positives of the original CNN,
while requiring less than 2× performance overhead.
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