
Partitioning Variables across Register Windows
to Reduce Spill Code in a Low-Power Processor

Rajiv A. Ravindran, Student Member, IEEE, Robert M. Senger, Eric D. Marsman,

Ganesh S. Dasika, Student Member, IEEE, Matthew R. Guthaus,

Scott A. Mahlke, Member, IEEE, and Richard B. Brown, Senior Member, IEEE

Abstract—Low-power embedded processors utilize compact instruction encodings to achieve small code size. Such encodings place

tight restrictions on the number of bits available to encode operand specifiers and, thus, on the number of architected registers. As a

result, performance and power are often sacrificed as the burden of operand supply is shifted from the register file to the memory due

to the limited number of registers. In this paper, we investigate the use of a windowed register file to address this problem by providing

more registers than allowed in the encoding. The registers are organized as a set of identical register windows where, at each point in

the execution, there is a single active window. Special window management instructions are used to change the active window and to

transfer values between windows. This design gives the appearance of a large register file without compromising the instruction

encoding. To support the windowed register file, we designed and implemented a graph partitioning-based compiler algorithm that

partitions program variables and temporaries referenced within a procedure across multiple windows. On a 16-bit embedded

processor, an average of 11 percent improvement in application performance and 25 percent reduction in system power was achieved

as an 8-register design was scaled from one to two windows.

Index Terms—Code generation, embedded processor, graph partitioning, instruction encoding, low-power design, optimization,

retargetable compilers, register window, spill code.

�

1 INTRODUCTION

IN the embedded processing domain, power consumption
is one of the dominant design concerns. Designers are

being pushed to create processors that operate for long
periods of time on a single battery. To this end, a common
approach is to employ narrow bitwidth instruction and data
designs (e.g., 8 or 16 bits), such as the Motorola-68HC12 [25].
Tight instruction encodings offer the advantage of compact
code and, thus, smaller instruction memory requirements.
Further, embedded applications such as sensor signal
processing commonly operate on narrow precision data
and, hence, are perfectly suited for such processors. Thus,
these processors provide more efficient designs with data-
paths optimized for narrow precision data.

While the efficiency of narrow bitwidth processors is

high, the performance of these systems can be problematic.
Many embedded applications, such as signal processing,
encryption, and video/image processing, have significant
computational demands. Low-power designs are often
unable to meet the desired performance levels for these

types of applications. In this paper, we focus on one

particular aspect in the design of narrow bitwidth proces-
sors, the architected registers. An instruction-set with
limited encoding (8 or 16 bits) significantly reduces
instruction fetch power by reducing the code footprint.
But, reduced encoding limits the bits available to specify
source and destination operand specifiers, thus restricting
the number of architected registers to a small number (e.g.,
eight or less). For example, TMS320C54x [34] has eight
address registers and ADSP-219x [2] has 16 data registers.
Similarly, Thumb mode in ARM [28] uses a 16-bit
instruction encoding with eight addressable registers.
Restricting the number of addressable registers often limits
performance by forcing a large fraction of program
variables/temporaries to be stored in memory. Spilling to
memory is required when the number of simultaneously
live program variables and temporaries exceeds the register
file size. This has a negative effect on power consumption as
more burden is placed on the memory system to supply
operands each cycle.

Our approach is to provide a larger number of physical
registers than allowed by the instruction set encoding. This
approach has been designed and implemented within the
low-power, 16-bit WIMS (Wireless Integrated Microsys-
tems) microcontroller [29]. The registers are exposed as a set
of identical register windows in the instruction set. At any
point in the execution, only one of the windows is active,
thus operand specifiers refer to the registers in the active
window. Special instructions are utilized to activate and
move data between windows. The goal is to provide the
appearance of a large monolithic register file by judiciously
employing the register window.

Traditionally, register windows have been used to
reduce the register save and restore overhead at procedure
calls, such as in the SPARC architecture [31]. A similar but

998 IEEE TRANSACTIONS ON COMPUTERS, VOL. 54, NO. 8, AUGUST 2005

. R.A. Ravindran, R.M. Senger, E.D. Marsman, G.S. Dasika, M.R.
Guthaus, and S.A. Mahlke are with the Department of Electrical
Engineering and Computer Science, University of Michigan, 1301 Beal
Ave., Ann Arbor, MI 48109-2122.
E-mail: {rravindr, rsenger, emarsman, gdasika, mguthaus,
mahlke}@umich.edu.

. R.B. Brown is with the College of Engineering, University of Utah, 1495
East 100 South, 214 KENNB, Salt Lake City, UT 84112.
E-mail: brown@coe.utah.edu.

Manuscript received 19 Apr. 2004; revised 21 Feb. 2005; accepted 6 Apr.
2005; published online 15 June 2005.
For information on obtaining reprints of this article, please send e-mail to:
tc@computer.org, and reference IEEECS Log Number TCSI-0137-0404.

0018-9340/05/$20.00 � 2005 IEEE Published by the IEEE Computer Society

more configurable scheme, called the Register Stack Engine

(RSE), is implemented in the IA-64 architecture [15]. The

register stack supports a variable sized window for each

procedure wherein the size is determined by the compiler

and communicated to the hardware through special

instructions. Windowing techniques have also been em-

ployed in embedded microprocessors, including the

ADSP-219x [2] and Tensilica’s Xtensa [33]. These processors

typically use register windows to reduce context switch

overhead while handling real-time critical interrupts.
Our studies have shown that, for the more loop-

dominated applications found in the embedded domain,

the use of register windows to reduce procedure call

overhead has limited impact on performance. We did a

study where each procedure used a separate window with

8-registers per window. An infinite supply of windows was

assumed, thus eliminating all caller/callee save/restore

overhead. This resulted in less than 2 percent improvement

in performance. The central problem is that a majority of

embedded applications spend most of their time in loop

nests contained within a single procedure [11]. Thus, the

overhead due to register spills dominates the save and

restore code at procedure boundaries. Our approach is to

make use of multiple register windows within a single

procedure to reduce spill code. Eliminating spill loads and

stores reduces memory accesses and, thus, improves

performance and power consumption.
To support intraprocedural window assignment, the

compiler employs a graph partitioning technique. A graph

of virtual registers is created and partitioned into window

groups. In the graph, each virtual register is a node and

edges represent the affinity (the desire to be in the same

window) between registers. Spill code is reduced by

aggressively assigning virtual registers to different win-

dows, hence exploiting the larger number of physical

registers available. However, window maintenance over-

head in the form of activating windows (also known as

window swaps) and moving data between windows (also

referred to as interwindow moves) can become excessive.

Thus, the register partitioning technique attempts to select a

point of balance whereby spills are reduced by a large

margin at a modest overhead of window maintenance. This

paper is an extension of our earlier work [27].

2 WINDOWED ARCHITECTURE

2.1 WIMS Microcontroller Overview

The WIMS Microcontroller was designed to control a
variety of miniature, low-power embedded sensor systems
[29]. The microcontroller, fabricated in TSMC 0.18�m
CMOS, is shown in Fig. 1 and consists of three major
subblocks: the digital core, the analog front-end (AFE), and
the CMOS-MEMS clock reference. Power minimization was
a key design constraint for each subblock.

A 16-bit load/store architecture with dual-operand
register-to-register instructions was chosen to satisfy the
power and performance requirements of themicrocontroller.
The 16-bit datapath was selected to reduce the complexity
and power consumption of the core while providing
adequate precision in calculations, given that the sensors
controlled by this chip require 12 bits of resolution. The
datapath pipeline consists of three stages: fetch, decode, and
execute. Typically, in sensor applications, processing
throughput requirements areminimal andpowerdissipation
is a key design constraint; therefore, clock frequencies should
be kept as low as possible. A unified 24-bit address space for
data and instruction memory satisfies the potentially large
storage requirements of remote sensor systems. The 16MB of
supported memory is byte addressable and provides suffi-
cient storage for program, data, and memory-mapped
peripheral components. The current implementation has
four 16KB banks of on-chip SRAM with a memory manage-
ment unit that disables inactive banks of memory.

A 16-bit WIMS instruction set was custom designed and
includes 77 instructions and eight addressing modes. The
16-bit instruction encoding supports a diverse assortment of
instructions that would be unrealizable with just 8-bit
encodings. In contrast, 32-bit instructions require twice as
much power to fetch from memory and the additional
16-bits would not be efficiently utilized by the applications
that typically run on low-power embedded processors. The
16-bit encoding represents an intelligent compromise
between the power required to fetch an instruction from
memory and the versatility of the instruction set.

The core contains sixteen 16-bit data registers that are
split into two register windows, each containing eight data
registers (RF0, RF1). Similarly, four 24-bit address registers
are evenly split into two register windows (ARF0, ARF1).
This windowing scheme permits instructions to be encoded

RAVINDRAN ET AL.: PARTITIONING VARIABLES ACROSS REGISTER WINDOWS TO REDUCE SPILL CODE IN A LOW-POWER PROCESSOR 999

Fig. 1. The WIMS microcontroller in TSMC 0.18�m CMOS and the WIMS datapath.

in 16 bits by reducing the number of bits required to encode
the 16 register operands from 4 bits to 3 bits. In general,
instructions can access only one register window at a time.
The only exceptions are the nonwindowed instructions
which are used to copy data and addresses between the two
windows. A window bit stored in the Machine Status
Register (MSR) selects the active register window. Addi-
tional window bits can be added to the MSR to support
extra register windows. A special instruction (WSWAP)
switches register windows in a single cycle by changing the
MSR window bit setting. Three additional nonwindowed
address registers (a stack pointer, frame pointer, and link
register) are provided for subroutine support.

2.2 Windowed Register File Example

In order to demonstrate the benefits of register windowing
for reducing spill code while incurring the overhead of the
window management instructions, consider the example
shown in Fig. 2. The original C-source is shown in Fig. 2a.
The loop segment has been mapped to three different
register window configurations: Fig. 2b shows 1-window of
8-registers, Fig. 2c shows 1-window of 4-registers, and
Fig. 2d shows 2-windows of 4-registers. For clarity, we use a
generic RISC-like instruction set instead of the WIMS
instruction set and assume a unified register file instead
of disjoint address and data files throughout all examples in
this paper. In the assembly code in Fig. 2, the leftmost
operand is the destination. We use the notation Ri-j, where i
denotes the window number and j denotes the register
number. For the window swap operation (WSWAP), the
first operand specifies the register file, while the second
argument specifies the new active window.

The windowed register file architecture restricts all
operands within a single instruction to refer to the current
active window. All operations following a WSWAP access
their operands from the new active window. WMOV
denotes the interwindow move instruction which can move
values between any two register windows. If an operation
refers to registers in different windows, one or more
WMOV operations are required. Considering Fig. 2d, the
WMOV instruction (instruction marked 1) transfers the

value from register R2-3 to the register R1-1, which is then
used in the following ADD instruction. The STORE

instruction (instruction marked 2) accesses all of its
operands from window 1. The WSWAP (instruction marked
3) toggles the active window from 1 to 2 so that the
following ADD instruction can source all of its operands
from window 2.

In Fig. 2b, all program variables and temporaries can fit
in registers and, hence, no spill is generated with
8-registers. Conversely, with 4-registers, significant spill
code (the load and store instructions shaded in dark gray) is
generated as there are insufficient registers to hold the
necessary values, as shown in Fig. 2c. In Fig. 2d, by
partitioning the variables and temporaries into 2-windows
of 4-registers, no spill is generated, although there is an
overhead of 4-window-swaps and 3-interwindow moves
(all shown in light gray). This configuration has the same
number of total registers as that in Fig. 2b with the encoding
benefits of Fig. 2c. On the WIMS processor, where every
instruction executes in a single cycle, Fig. 2c has an 8-cycle
overhead as compared to Fig. 2b, while Fig. 2d has only
seven extra instructions. More importantly, Fig. 2d has
fewer loads and stores (zero spill operations) to memory as
compared to Fig. 2c (eight spill operations) and thus
consumes significantly less memory power.

The remainder of the paper explains the compiler
algorithm to automatically partition the variables and
temporaries referenced in a procedure into the available
register windows, as illustrated in Fig. 2d, such that the spill
cost is reduced while minimizing the extra overhead due to
the window swaps and interwindow moves.

3 REGISTER WINDOW PARTITIONING

3.1 Overview

The overall compilation system for register window parti-
tioning is based on the Trimaran infrastructure [37] and is
shown in Fig. 3. Ignoring the gray boxes, the base compiler
system consists of themachine independent front end,which
does profiling, classical code optimizations (such as common
subexpression elimination, constant folding, induction vari-
able elimination, etc.), loop unrolling, and procedure inlining
to produce a generic assembly code for a load-store
architecture. The assembly code uses an infinite supply of
virtual registers (VRs) to communicate values between
operations. A machine description file (MDES) is used to
describe the architecture of the target machine for generating
machine-specific assembly code. The MDES contains a
detailed description of the register files, including the
windows into which each file is partitioned, number of
registers, connectivity of register files to function units,
instruction format, and a detailed resource usage model
which is used by the instruction scheduler. The connectivity
model helps the compiler’s code generator conform to the
architectural specifications of the target machine. After
prepass scheduling, all VRs are partitioned into the available
register windows. For each register file, the register allocator
uses a graph coloring algorithm [19] to assign physical
registers to the VRs, generating spills if required. Finally, the

1000 IEEE TRANSACTIONS ON COMPUTERS, VOL. 54, NO. 8, AUGUST 2005

Fig. 2. Register window example. (a) C-source. Assembly code for

(b) 1-window of 8-registers, (c) 1-window of 4-registers, and

(d) 2-windows of 4-registers. Registers are denoted by window number

“-” the allocated register number.

resultant code is postpass scheduled to produce the fully
bound assembly code.

The new phases added to handle register window
partitioning are shown in gray boxes in Fig. 3. Register
partitioning treats each window/partition as a separate
register file and binds VRs allocated to a given partition to
the corresponding register file. The partitioning algorithm
could assign VRs referenced by an operation to different
windows. The code generator inserts appropriate inter-
window moves to honor the architectural constraints of all
registers accessed by a single operation coming from the
same window. The swap insertion phase inserts window
swaps in the code so that two operations that access
different register windows are separated by a window
swap. The swap optimizer then removes the redundant
swaps. Prior to postpass scheduling, an edge drawing
phase inserts additional dependence edges to ensure that
operations do not move across window swaps.

The register window partitioning algorithm is modeled
as a graph partitioning problem where the nodes in the
graph correspond to VRs used in the assembly code and the
edges represent the affinity between VRs. The goal is to
partition the VRs into different register windows/partitions
so as to minimize the overall spill, interwindow moves, and
window swaps, which indirectly leads to our overall goal of
performance/power improvement by reducing the number
of memory accesses for data operands.

Partitioning consists of two distinct phases—weight
calculation and node assignment. Each partition is assigned
aweight thatmeasures the cost of spilling theVRs assigned to
that partition. The affinity between VRs is captured using
edge weights, which represents the penalty incurred if two
nodes connected by the edge are assigned to different
partitions. Thepenalty canbean interwindowmove,window
swap, or both. If twoVRs referencedwithin a single operation
are assigned to different partitions, the code generator is
forced to insert an interwindowmove. Similarly, if twoVRs in
different operations are not assigned to the same window, a
window swap is required at some point between the two
operations. Unlike traditional graph partitioning, which uses
statically computed nodeweights, the partitioning algorithm
uses partition weights that change dynamically during the
partitioning process.

The node assignment phase uses the calculated weights
to consider moving nodes between partitions so as to

minimize the sum of all the partition weights and the
interpartition edge weights. The register partitioning algo-
rithm uses a modified version of the Fiduccia-Mattheyses
graph partitioning algorithm [10], which is an extension of
the Kernighan-Lin algorithm [18]. The partitioning algo-
rithm is region-based,1 i.e., all the VRs in the most
frequently executed region are partitioned, followed by
the VRs in the next most frequently executed region, and so
on. The node assignment phase must ensure that the
partitioning decisions are honored across all regions.

Fig. 4a is a code segment from the innermost loop of the
finite impulse response (FIR) filter. The dynamic execution
frequency, obtained from profiling the application on a
sample input, is 3,104. This example will be used through-
out this section to illustrate the weight calculation and node
assignment process. The goal here is to partition this region
into 2-windows of 4-registers each, although the WIMS
processor has 2-windows of 8-registers per window. In this
work, profile information is used in the edge and partition
weight calculations. Alternately, static weights based on the
nesting depth of loops can also be used.

3.2 Edge Weight Calculation

An edge is associated with every pair of VRs. The edge
weight is used by the partitioning algorithm to represent
the degree of affinity between two VRs. The algorithm tries
to place two nodes with high affinity in the same partition,
while trying to minimize the sum of the edge weights
between nodes placed in different partitions. An edge
weight is an estimate of the number of dynamic moves and
swaps required when two VRs are placed in different
windows. By placing two VRs with high affinity in a single
partition, the algorithm reduces the number of swaps and
moves. The edge weight between VRs is expressed as a
matrix (see Fig. 4b) computed prior to the node assignment
process. The edge weight is the sum of two components: the
estimated move cost and swap cost.

Move Cost. An operation may only reference registers
from a single window. Thus, VRs referenced by a single
operation that are assigned to different partitions require an
interwindow move (WMOV) operation. For every pair of
VRs, the number of operations weighted by frequency that
reference both registers as operands is the estimated cost

RAVINDRAN ET AL.: PARTITIONING VARIABLES ACROSS REGISTER WINDOWS TO REDUCE SPILL CODE IN A LOW-POWER PROCESSOR 1001

1. A region is any block of code considered as a unit for scheduling like a
basic block or superblock [14].

Fig. 3. Overview of the compiler system.

move. In Fig. 4a, VRs 6 and 9 are referenced in operation 4.
If these VRs are in different windows, a WMOV is required
for this operation. Hence, the move cost for VRs 6 and 9 is
the frequency of operation 4 or 3; 104. Conversely, VRs 27
and 6 are not referenced together in any operation and,
hence, do not require a move. This process is carried out for
all pairs of VRs, producing the matrix of values in Fig. 4b
(right entry in each cell).

Swap Cost. If two VRs are assigned to different
windows/partitions, a window swap (WSWAP) is required
before the operation that refers to the second VR. Swap cost
estimates the number of swaps required between every pair
of VRs assuming that they are assigned to different
partitions. For every pair of VRs, the region is scanned in
linear order. On reaching the first VR, the current active
window is assumed to be 1. On encountering the second
VR, the current active window becomes 2 and, hence, a
swap is required right before the operation which refer-
ences the second VR. Continuing further, on seeing an
instance of the first VR again, the active window changes
and another swap is required. No swap is required for
consecutive references to the same VR. At the end of the
region, the total number of swaps gives an estimate of the
number of swaps required between this pair of VRs. The
swap cost is therefore the number of swaps times the profile
weight of the region under consideration.

In Fig. 4a, between VRs 27 and 34, the swaps are
computed as follows: We assume that VRs 27 and 34 are
assigned to windows 1 and 2, respectively. VR27 is
referenced in operations 1, 3, and 7 and, so, these operations
are assigned to window 1. VR 34 is referenced in operation 2
and, so, the operation is assigned to window 2. In the
sequential execution, swaps need to be inserted after
operations 1 (window 2 activated) and 2 (window 1
activated). Hence, the total swap cost is 2 � 3; 104 ¼ 6; 208.

Adding swap cost between every pair of VRs can over-
estimate the importance of swaps as the number of swaps is a
function of thepartition assignment of all theVRs andnot just
between twoVRs. For example, consider operations 3 and4 in
Fig. 4a. IfVRs9and27are assumed tobe inwindow1andVRs
10 and 6 in window 2, the above method would count the
swap four times, between 9-10, 9-6, 27-10, and 27-6, although
only a single swap is necessary.

To deal with overcounting, swap counts are used to
normalize the swap cost between every pair of VRs. The
swap count is the number of swaps between every pair of
operations due to every pair of VRs. For example, between
operations 6 and 7, five swaps are required. These swaps
are due to VR pairs 10-27, 20-27, 2-27, 27-9, and 27-6.
Generalizing this, let c1; c2 . . . ck be the swap count due to
swaps required by all pairs of VRs after operations
op1; op2 . . . opk. If two VRs, vri and vrj, require a swap after
these k operations, then the normalized swap cost estimate
between vri and vrj is

ð1=c1 þ 1=c2 þ . . .þ 1=ckÞ � cost of swap;

where cost of swap is the cost of a single swap operation.
Intuitively, a swap after an operation could be shared by
multiple VR pairs. Further, regardless of the number of
windows, at most one swap is required between every pair
of operations. Thus, if n VR pairs introduce a swap after an
operation, then the contribution to the swap cost by any one
of those VR pairs is 1=n. In Fig. 4a, VRs 10 and 27 require a
swap after operations 3 and 6. Since operation 3 has a swap
count of 5 (due to the five pair of VRs including 10 and 27
listed above) and operation 6 also has a swap count of 5
(including 10 and 27), the swap cost estimate between VRs
10 and 27 is ð1=5þ 1=5Þ � 3; 104 ¼ 1; 241 (Fig. 4b, left entry
in each cell).

3.3 Partition Weight Calculation

The partition weight estimates the spill cost for the VRs
assigned to each partition. The node assignment phase tries
to minimize the sum of the weights of all the partitions. The
partition weights are computed using a crude linear scan
register allocation algorithm [26] to compute the estimated
dynamic spill cost.

Given a set of VRs assigned to a partition, the live-ranges
(the range of operations from all defines to all uses of the
value) of the VRs are computed. For each VR, its dynamic
reference count is calculated using the profile information.
If the VR is spilled, then the dynamic reference count gives
an estimate of the load/store overhead for spilling that VR.
For every operation in the region spanned by the live-range
of the VRs under consideration, the interfering VRs are
considered as candidates for spill. If the number of
overlapping live-ranges for that operation is more than

1002 IEEE TRANSACTIONS ON COMPUTERS, VOL. 54, NO. 8, AUGUST 2005

Fig. 4. Example of partition and edge weight calculations. (a) Example loop. (b) Edge weight matrix: Each cell contains {swap cost, move cost}.

(c) Spill cost of VRs. (d) Partition weight computation assuming all VRs assigned to one partition.

the number of registers in that partition (size of the register
window),2 the interfering VRs are spilled until the over-
lapping live-range is less than the register window size.
Note we are only estimating the weight of the partition by
estimating spills. The actual spill code insertion is done
during register allocation within each window after the
window assignment process.

The VRs are chosen for spilling in increasing order of
dynamic reference count. If two VRs have the same
dynamic reference count value, the one with the larger
live-range is spilled. Once a VR is spilled, it no longer
interferes with the rest of the operations and, hence, is not
considered for subsequent operations if there is an overlap.
The cost of the partition is the sum of the dynamic reference
counts of the spilled VRs.

In Fig. 4c, the spill cost/dynamic reference count for each
VR is shown, while, in Fig. 4d, the live-ranges of the VRs are
shown on the right. Assume that all VRs are assigned to a
single partition and three physical registers are available
per partition. At operation 1, five VRs (20, 2, 34, 27, and 32)
are live simultaneously. Since there are only three registers
available in the partition, VRs 32 and 20 are spilled. VR 32
has a spill cost of 3,104 as there is only a single reference of
that VR in operation 1, while other VRs are referenced more
than once and have spill cost greater than 3,104. Hence,
VR 32 is picked first. VRs 20 and 34 both have a dynamic
reference count of 6,208, but VR 20 has a larger live-range
and is chosen next for spilling. At operation 2, VRs 20, 2, 34,
6, 27, and 32 are live. Since 32 and 20 are already spilled,
only VR 6 gets spilled as it has a smaller dynamic reference
count than VRs 2 and 27 and larger live-range than VR 34.
At operation 3, VRs 20, 2, 6, 9, 27, and 32 are live. Since 32,
20, and 6 are already spilled, no more VRs are spilled as the
number of remaining live VRs is equal to three. VR 10 is
spilled at operation 4. For the rest of the operations, no
additional VRs are spilled. So, for this partition, the
partition weight is the spill cost of the spilled VRs 32, 20,
6, 10, which is 3; 104þ 6; 208þ 6; 208þ 6; 208 ¼ 21; 728. In
actual implementation, instead of considering every opera-
tion, only operations which are at the start/end points of
any live-range are considered. So, in Fig. 4d, only opera-
tions 1, 2, 3, 4, 5, and 9 are considered. For the other
operations, the live-range information does not change and,
hence, is ignored.

Since region-based partitioning is performed, window
assignments of a higher priority region can affect the
decisions in a lower priority region. While computing the
partition weights, it is possible that there are live VRs that
are already assigned to partitions from processing higher
priority regions. If these VRs were not spilled, then they are
assumed to be prebound to a register. Thus, the window
has one fewer register available per such prebound register.

3.4 Node Partitioning

The goal of the node partitioning phase is to reduce the
overall spill cost while minimizing the impact due to
interwindow moves and swaps. Starting from an initial
partition, the node partitioning algorithm tries to iteratively

distribute the VRs into different partitions so as to reduce
the sum of the weights of all partitions, while trying to
minimize the edge weights between nodes assigned to
different partitions. The node partitioning technique that
we used is a modified version of Fiduccia-Mattheyses’s [10]
graph partitioning algorithm (FM). It consists of two phases
—initial partitioning and iterative refinement.

Initial Partitioning. Placing all VRs in the first partition
can create an unbalanced initial configuration, which can
affect the quality of the partitioning algorithm. The initial
partitioning algorithm tries to distribute the VRs into
partitions so as to start with an initial configuration of
relatively less register pressure while being incognizant of
the swap and move overhead. If a given window/partition
has sufficient registers to accommodate the VRs, then all of
the VRs are allocated to that partition. If not, the VRs are
assigned based on a priority order to a particular window/
partition until no more VRs can be assigned to it without
the need for spilling. The remaining VRs are then placed in
the next partition until it gets saturated and so on.

The algorithm for the initial distribution of VRs to
windows/partitions is given in Fig. 5. Initially, all VRs are
sorted based on the dynamic reference count (Step 1) so that
the most important VRs are assigned first. For a given
partition, allocation is attempted for every VR in the sorted
list. The allocation is done using a simple linear scan
register allocation algorithm similar to the technique
described in Section 3.3. It should again be noted that this
heuristic generates an initial partition of VRs to register
windows without actually register allocating them. For
every VR, its live-range (LR) is computed (Step 4) as a list of
operations. For every operation op in LR (Step 6),
num_avail_regs, which is the difference between the total
number of registers in the current partition and number of
allocated registers that are live at op, is computed (Steps 7
and 8). If there are free registers (Step 9), then this VR is
assigned to the current partition (Steps 14, 15, and 16), else it

RAVINDRAN ET AL.: PARTITIONING VARIABLES ACROSS REGISTER WINDOWS TO REDUCE SPILL CODE IN A LOW-POWER PROCESSOR 1003

2. In our implementation, we assume the number of available register is
one less than the window size. This is done to factor in the interferences due
to interwindow moves that are inserted later.

Fig. 5. Algorithm for initial node partitioning.

is assumed to be spilled. This process continues for all VRs
in the sorted list such that they are either assigned to the
current partition or spilled. The spilled VRs are then
attempted for assignment to the next partition (Step 2)
using the same algorithm. Once all of the partitions are
processed, any remaining spilled VRs that could not be
assigned to any partition are simply assigned to the first
partition (Step 21).

Iterative Refinement: After the initial assignment, the
iterative refinement phase tries to move VRs across
partitions to reduce the overall spill cost (partition weights)
while minimizing the overhead due to swaps and moves
(edge weights between partitions). The algorithm for the
node partitioning is given in Fig. 6. Initially, a set of
n-partitions (where n is the number of register windows) is
created (pset, Step 1) and initialized using the initial
partitioning algorithm described in Fig. 5 (Step 2). This
partition configuration is used as the seed configuration for
the first pass. In Step 3, the overall weight of the set of
partitions is computed. The overall weight is the sum of the
partition weights and the weights of the cut edges across all
partitions. The initial partition configuration is then saved
in save_partition_info in Step 4, assuming that it is the best
seen yet. During a single iteration of the loop in Step 6, the
partition (src_part) with the maximum weight is selected
(find_unbalanced_partition, Step 7). If such a partition exists
(Step 16), the node with the largest gain (find_best_vr) is
selected.

Fig. 7 gives the algorithm for find_best_vr. For every node
in the source partition, find_best_vr computes the gain in
moving the node to all other destination partitions. Gain is
defined as the sum of the partition_wt_gain and edge_
wt_gain, where partition_wt_gain is the reduction in total
partition weights when the node is moved from the source

to the destination partition. Similarly, edge_wt_gain is the
reduction in edge weights between nodes in the source and
destination partitions. In Fig. 7, srcp_wt_old/destp_wt_old is
the weight of the source/destination partition before the
node is moved, while srcp_wt_new/destp_wt_new is the
weight of the source/destination partition after the node is
moved. The node (bestnode) with the highest gain and the
destination partition (dest_part) to which it is to be moved
are returned.

The partitioning algorithm then picks the node with the
highest gain (vr) and performs the move to the destination
partition (dest_part, Step 21). It should be noted that the
highest gain could be a negative value. Allowing negative
gains helps avoid local minima. Once a node is moved over
to the new partition, it is locked in the new partition and not
considered in the current pass (Step 22). The overall
partition weight is then recomputed in Step 23. If the
overall weight is less than the minimum overall weight, it
implies that the resultant partition configuration is the best
configuration seen so far and, hence, the configuration is
saved. If find_best_vr has no more VRs to move (either
because all VRs have been locked or there are no destination
partitions to move to), the src_part is removed from the set
of partitions (Steps 17 and 18). In Step 8, if there are no more
partitions left, the current pass is ended. If, during the
previous pass, a better configuration was seen and saved
(saved_info flag is set to true), then the best configuration
seen so far is restored and used as the seed for the next pass
(Step 10). Before commencing the next pass, all VRs are
unlocked (Step 14). If saved_info is set to false, it implies that,
during the previous pass, a better configuration was not
seen and the partitioning is terminated. The partitioning is
also terminated if the min_overall_wt reaches 0 (Step 6). On
exit, the best partition seen over all passes is restored as the
final partition (Step 30).

Example. The initial partition configuration is shown in
Fig. 8a. To compute the initial partitions, the live-ranges
and the dynamic reference counts of the VRs are shown
in Fig. 4c and Fig. 4d, respectively. The VRs are
considered in the decreasing order of dynamic reference

1004 IEEE TRANSACTIONS ON COMPUTERS, VOL. 54, NO. 8, AUGUST 2005

Fig. 6. Algorithm for node partitioning.

Fig. 7. Algorithm to find best VR.

count. We assume 3-registers per window. Initially, the
top two VRs, 27 and 2, are allocated to partition 1. Next,
VRs 34 and 9 are allocated as they do not interfere with
each other and the number of maximum interfering live-
ranges is three. Since partition 1 is now saturated, the
rest of the VRs (except VR 32) are assigned to partition 2.
VR 32, which has the lowest reference count, cannot be
assigned to either partition withour spilling, therefore,
by convention, it is assigned to partition 1. The initial
partitioning algorithm thus distributes the VRs such that
the total partition weight is minimized (3; 104).

The iterative refinement phase then tries to move each
VR from P1, which is the highest weight partition, to P2
and computes the resultant partition and edge gains.
Fig. 8b shows the partition, edge, and total gain for
moving each VR. The VR with the maximum total gain is
chosen. Here, all gains are negative, so VR 34 with the
smallest negative gain is moved to partition 2. This VR is
then locked in partition 2. Subsequently, VR 6 is moved
to partition 1 and VR 2 is moved to partition 2 to obtain
the final partition in Fig. 9b.

Edge weights are computed statically before partition-
ing. So, find_best_vr need only do a lookup of the edge
weight matrix (Fig. 4b) to get the edge weights between a
pair of VRs. But, this is not the case with the partition
weights. As nodes migrate from partition to partition, the
interferences among VRs can change and, so, the
partition weight (spill cost) has to be recomputed
(Section 3.3) on the fly. Each move of a node would
thus require an OðnÞ scan of the operations in the region
and, hence, the complexity of the partitioning algorithm
is Oðn2Þ per round of refinement. Fig. 9 shows the final
partition configuration. The total partition weight is
3; 104, which is the same as the initial partition weight.
The initial partitioning algorithm minimized the number
of spills, but did not consider the impact of swaps and
moves. The iterative refinement converged at a config-
uration such that both spill cost (partition weights) and
swap and move cost (edge weights) are minimized. The
final code after register allocation and swap insertion is
also shown in Fig. 9. The code has one spill (operation 2),
four swaps (operations 1, 8, 11, and 13), and one
interwindow move (operation 7).

3.5 Partitioning Algorithm Optimizations

In order to speed up the partitioning process, two
optimizations were implemented over the core algorithm
described above.

Fast Spill Pressure Estimation. A cycle-by-cycle linear
scan of the operations in a region to determine what VRs are
spilled is inherently slow as this has to be done every time a
VR is moved from a source to a destination partition. This
dynamic computation of partition weight was required
because the set of VRs that are spilled is a function of the
interfering live-ranges of the current assignment of VRs to
that partition. Although accurate, since this is done within
the core of the FM partitioning algorithm, it slowed down
the partitioning process. To optimize this process, instead of
scanning every operation, one could only scan the operation
with the maximum number of interfering live-ranges to
approximate what VRs are spilled. The process is still
dynamic, but less accurate than the linear scan approach.

Restricting the Number of VRs. Although the partition-
ing was performed a region at a time, some of the larger
benchmarks had regions with a large number of VRs that
slowed down the partitioning algorithm. This large number
ofVRswas generatedmainly because the original application
source had loop kernels that were written in an unrolled
manner. In order to restrict the number of VRs, a compile-
time fixed subset of VRs is partitioned at a time. The VRs
in a region are sorted in decreasing order of dynamic
reference count. By sorting the VRs, the algorithm can
consider the most important subset of VRs for partition-
ing, followed by the next most important subset, and so
on. This is done until all VRs in that region are exhausted.
Partitioning decisions for a given subset are honored
while partitioning the next subset (similar to the pre-
bounds described at the end of Section 3.3).

3.6 Window Swap Insertion and Optimization

Window swap operations are inserted after window
assignment and register allocation (see Fig. 3). Initially, a
naive window assignment is performed by walking the
region in sequential program order. A window swap
operation is inserted at the beginning of the region to set
the active window appropriately for the first operation in
the block. Scanning each operation, if the assigned window
is different from the current register window, a swap to the
new window is inserted. Following every procedure call, a
window swap operation is used to set the current active
window to the window of the operation following the

RAVINDRAN ET AL.: PARTITIONING VARIABLES ACROSS REGISTER WINDOWS TO REDUCE SPILL CODE IN A LOW-POWER PROCESSOR 1005

Fig. 8. Partitioning applied to example. (a) Initial partition. (b) Gains for

each VR moving from P1 to P2 after the initial partition.

Fig. 9. Example after window assignment. The notation VR : Ri � j is

used, where VR is the original virtual register number from Fig. 4a, i is

the window number, and j is the allocated register number.

procedure call. This is necessary as we assume separate
compilation and the state of the active window is unknown
after a procedure return.

Swap optimizations. This naive method inserts many
unnecessary swap operations. Three swap optimizations
were implemented to reduce the swap overhead.

. A swap at the beginning of a region is unnecessary if
all control paths leading to that block have trailing
operations which are in the same window as the first
operation in the region.

. It is also possible to hoist a window swap upward
from the beginning of a more frequently occurring
region to the end of less frequently occurring
predecessors and thus reduce the total number of
dynamic swaps. This is legal provided that the new
window swap instruction inserted at the end of the
predecessor is the last instruction of that predecessor
(this might not be the case for superblocks which
have multiple exits).

. To prevent redundant swaps after procedure calls,
the return from subroutine operation forces the
window to be set to 1. So, if an operation following
the procedure call is assigned to window 1, a swap is
not needed.

4 EXPERIMENTAL RESULTS

4.1 Methodology

We implemented the register partitioning algorithm using
the Trimaran infrastructure, a retargetable compiler for
VLIW processors [37]. For our study, only the integer
register file was assumed to be windowed and, so, a set of
integer-dominated benchmarks from a mix of the Media-
bench [22] and MiBench [11] suites was evaluated. All of the
benchmarks were compiled with control-flow profiling,
superblock formation, function inlining, and loop unrolling.
For the experiments, the number of windows and the
number of registers per window were varied to evaluate the
power and performance impact. Two machine configura-
tions were used—the WIMS processor and a 5-wide VLIW
machine with the following function units: two integer, one

floating-point, one memory, and one branch. The VLIW-
machine uses the HPL-PD [17] ISA with latencies similar to
an Itanium machine with perfect caches and support for
compile-time speculation and predication. The VLIW-style
architecture was chosen due to its increasing popularity in
the embedded domain [35]. For the VLIW machine, the
swap instruction is assumed to be compatible with any slot
in the VLIW word and, thus, can be assigned to any free
slot. In our experiments, the floating-point unit is often free,
thus the swap occupies that instruction slot. Interwindow
moves execute on the integer unit.

We considered the power/performance improvement of
a range of register file configurations consisting of one, two,
four, and eight identical windows containing four and eight
registers per window. The following specific configurations
were evaluated: 2-window, 4-window, and 8-window with
4-registers per window (w2.r4, w4.r4, w8.r4) were com-
pared against a base 1-window of 4-registers (w1.r4); and 2-
window and 4-window with 8-registers per window (w2.r8,
w4.r8) were compared against a base 1-window of
8-registers (w1.r8). This helped illuminate the power/
performance benefits of increasing the effective number of
registers without changing the instruction set architecture.
We also fixed the total number of registers while partition-
ing them into two and four equally sized register windows.
In particular, the performance of window configurations
w2.r8 and w4.r4 was compared against the base w1.r16.
This helped clarify the performance degradation suffered
by a windowed architecture compared to a nonwindowed
architecture having the same number of physical registers.
The performance numbers were obtained by multiplying
the schedule length of each region by its execution
frequency to get the total dynamic execution cycles for the
whole program. Since we use a single cycle memory system
for the WIMS and the VLIW processors, this approach is
quite accurate.

4.2 Results

Increasing the number of available registers with a fixed
window size. The graph in Fig. 10a compares the percent
performance improvement in total execution cycles of the
w2.r8 and w4.r8 configuration against the base w1.r8

1006 IEEE TRANSACTIONS ON COMPUTERS, VOL. 54, NO. 8, AUGUST 2005

Fig. 10. Performance improvement shown as percent reduction in cycles for the 8-register (a) WIMS processor and (b) VLIW processor for two and

four window designs. For each benchmark, the results for w2.r8 and w4.r8 are plotted relative to w1.r8.

configuration for the WIMS processor. Averages of 11 per-
cent and 12 percent improvement in performance are
observed for the 2-window and 4-window designs, respec-
tively. It should be noted that the performance improve-
ment is the result of increasing the effective number of
registers while retaining a 3-bit operand encoding. The
performance ranges from a maximum of 28 percent for
djpeg to a loss of 6 percent for g721enc. We observe only a
marginal improvement in performance for a 4-window
design. The additional two windows enable significant
reduction in spill code, but the resulting advantage is offset
by an almost equal increase in interwindow swaps and
moves. The partitioning algorithm is able to identify this
overhead using the edge weights and, hence, prevents
excessive partitioning. But, in benchmarks such as rawd,
the heuristic breaks and a net loss in performance is
suffered in scaling from two to four windows.

Fig. 10b compares the performance improvement for the
w2.r8 and w4.r8 configurations over the base w1.r8 config-
uration for the VLIW-machine. We observe an average of
25 percent and 28 percent improvement in performance for
2-window and 4-window designs, respectively. This gain is
more than double the gain observed for theWIMS processor.
The larger gains are due to several reasons related to the
multi-issue capabilities. First, the spill code often sequentia-
lizes program execution by increasing the lengths of critical
dependence chains through the code. For the VLIWmachine,
these critical dependence chainsoftendetermine theprogram
execution time. Thus, the elimination of spills translates into
more compact schedules and larger performance gains than
for a single-issue WIMS processor. Second, there is a larger
demand for registers to maintain the necessary intermediate
values to support the inherent instruction level parallelism.
Thus, the affects of eliminating spill code are more pro-
nounced. Third, the overhead of swaps andmoves is lower as
they can execute in parallel with other instructions. In
particular, the swap often executes in the floating-point slot,
making it almost “free” for the integer dominated applica-
tions that are evaluated.

An analysis of the performance for the w2.r8 configura-
tion is presented in Fig. 11a for the WIMS processor. The
percent performance improvement in total execution cycles,
which is identical to the plot shown in Fig. 10, is shown in
the leftmost bar of each set. The rightmost bar shows the

percent savings in dynamic spill code. The middle pair of
bars show two components—1) spill benefit, which is the
percent savings in total execution cycle count due to savings
in spill (second bar) and 2) percent swap and move
overhead, which is the percent of overall execution cycles
due to the extra interwindow moves and window swaps,
thereby reducing performance (third bar).

In 11 of the 15 benchmarks, we observe more than
80 percent reduction in spill code. Performance improve-
ment is obtained when the spill benefit exceeds the swap
and move overhead. This occurs in 13 of the 15 benchmarks
(except g721enc and g721dec). The graph illustrates the
competing effects of spill code reduction and swap/move
overhead. For example, in gsmdec, a 92 percent reduction in
spill code is seen, which accounts for 12 percent savings in
total cycles, while, for g721dec, there is a 90 percent
reduction in spill code, but this contributes to only 4 percent
savings in total cycles. This implies that the impact of spill is
small for g721enc in the w1.r8 case. Since all instructions
take a single cycle, any gain in performance due to savings
in spill is offset by a corresponding reduction in perfor-
mance due to swaps and moves. The greedy nature of the
partitioning algorithm causes VRs to be aggressively
separated into different partitions, thus increasing the
swap/move cost.

The graph in Fig. 11b illustrates the same performance
analysis for the w2.r8 VLIWmachine. The spills, swaps, and
moves shown in this figure are measured in percent
dynamic operations and not dynamic cycles. Observe that,
for reasons described earlier, the impact due to savings in
spill is greater than in the WIMS processor. Also, the
overhead of swaps and moves is lower as they can execute
in parallel with other instructions. Hence, performance
improvement is often larger than the difference between
spill benefit and swap/move overhead.

Fig. 12 compares the performance improvement of
4-register per window configurations on the WIMS
(Fig. 12a) and VLIW (Fig. 12b) machines. As compared to
the 8-register configurations, the w4.r4 per window case
shows much improved performance as compared to the
w1.r4 case as four registers are insufficient for both the
WIMS and the VLIW machines. Djpeg, due to loop
unrolling, had a high register pressure and, hence, benefited
significantly when the number of windows was increased

RAVINDRAN ET AL.: PARTITIONING VARIABLES ACROSS REGISTER WINDOWS TO REDUCE SPILL CODE IN A LOW-POWER PROCESSOR 1007

Fig. 11. Performance analysis for the 8-register (a) WIMS processor and (b) VLIW processor. For each benchmark, w2.r8 is plotted relative to w1.r8.

for all window file sizes. As with the 8-register case, the
swap and move overhead outweighs the spill savings and,
hence, a decrease in performance is observed in g721enc
and g721dec for the WIMS processor.

Increasing the number of windows with a fixed
number of total registers. Fig. 13a shows the percent
slowdown in dynamic execution cycles due to partitioning
a 16-entry register file into two and four windows on the
WIMS processor. The base w1.r16 has no swap and move
overhead. This provides an unachievable upper bound of
the partitioning heuristic and helps to gauge how well our
heuristics perform against an idealistic case. It should be
noted that, as we partition the register file, the instruction
encoding size decreases as fewer bits are required in the
register field specifier within the instruction format, but we
have not accounted for this in the data. For the 16-register
case, w2.r8 achieves an average of only 16 percent
degradation in performance, while the w4.r4 suffers an
average of 40 percent degradation in performance. As we
partition the register file, swaps and moves are required to
distribute the VRs into all of the windows to reduce the spill
pressure. Also, VRs referenced within the same instruction
have to be assigned to the same partition as a single

instruction must source all of its operands from the current
active window. This prevents a perfect partitioning and
increases the spill pressure on a given register window.
Although having a large number of registers is preferred,
encoding restrictions limit the actual size. A windowed
design can give the appearance of a larger register file with
moderate overhead.

Fig. 13b illustrates a similar experiment on the VLIW
processor. We observe slightly worse results compared to
the WIMS processor as partitioning can increase the register
pressure on a single window, thus increasing spill code,
which in turn has a larger impact on the VLIW machine.

Power Benefits. The impact of register windows on the
total system power is now examined. By reducing spill
code, the burden on the memory system to provide the
operands is reduced, thereby increasing energy efficiency.
Fig. 14 illustrates the energy breakdown and execution
times for different instruction types for the WIMS proces-
sor. The energy measurements were obtained from
Synopsys Nanosim using post-APR (Automatic Place-and-
Route) back-annotated parasitics. Input vectors were
created at 1.8V and 100MHz operation by running
assembled test cases through the pipeline and capturing

1008 IEEE TRANSACTIONS ON COMPUTERS, VOL. 54, NO. 8, AUGUST 2005

Fig. 12. Performance improvement shown as percent reduction in cycles in increasing the number of register windows in a 4-register (a) WIMS
processor and (b) VLIW processor. For each benchmark, three sets of data are shown: w2.r4 (left), w4.r4 (middle), and w8.r4 (right), plotted relative
to w1.r4.

Fig. 13. Performance degradation while partitioning a 16-entry register file into 2 and 4 windows for (a) WIMS and (b) VLIW. For each benchmark,
w2.r8 and w4.r4 are plotted relative to w1.r16.

the switching activity [36]. The power due to different
register file sizes was negligible (< 5 percent) when
compared to the pipeline and memory power as the
number of registers considered was no more than 32.

The graph in Fig. 15 shows the improvement in total
dynamic power as the number of 8-register windows is
increased on the WIMS processor. The total power includes
the pipeline andmemorypower (instruction fetch, loads, and
stores). Unlike performance, since spills dissipate more
power to access memory in comparison to swaps/moves,
spill reduction can result in a significant improvement in
power consumed. For example, rijndael achieves a 52 percent
reduction in power in the w4.r8 configuration. Here, power
reduction is obtained by exchanging spill for a swap/move.
Unlike performance, where a significant reduction in spill is
required to offset the overhead due to moves and swaps,
equal exchange is good for power as the number of memory
accesses is reduced. It should be noted that, like performance,
the power reduction is observed as we increase the effective
number of available registers while restricting the ability to
address only eight registers within an instruction. Although
ourheuristicsweregeared toward improvingperformance as
opposed to power, it can be easily retargeted to optimize for
power by weighting the savings in spill code more than the
savings in swaps and moves.

4.3 Comparison among Different Partitioning
Heuristics of Varying Estimation Accuracy

Optimal partitioning of VRs into partitions to minimize
spills, swaps, and moves is an NP-hard problem. If there are
n VRs and m partitions, an exponential number (OðmnÞ) of
possible assignments needs to be evaluated, which is clearly
impractical. Compiler heuristics for register partitioning
provides a trade-off between quality of solution and
runtime. In this section, we explore this trade-off by
comparing against two other heuristics—global and fast.

A region-based heuristic (called region and described in
Section 3), where edge weights were computed statically
prior to the partitioning process and partition weights were
computed on the fly, was used in all previous experiments.
This process, although fast, is inaccurate as the actual swap
and move cost is a function of the current assignment of
VRs to partitions. Accurate estimates of the swap and move
penalties are possible if the number of swaps and moves are
recomputed dynamically during partitioning by scanning
the operations in the procedure. This method, though

accurate, is inherently slow. In addition, region-based
partitioning can result in suboptimal decisions if there are
multiple regions with comparable profile weights.

To evaluate a more accurate heuristic, a semibrute force
method was implemented wherein the basic FM-based
partitioning methodology was retained, but two changes
were made: The edge weights were computed during
partitioning and the scope was extended to the whole
procedure rather than a region. In order to reduce the
computational complexity of considering too many VRs, a
fixed number (set at compile time) of the most frequently
occurring VRs is considered at a time. We implemented this
slower semibrute force-like method (called global) to
compare against our preferred region method to quantify
the loss in partition quality. The partition weights for global
were computed just as in region.

To evaluate another faster (compared to the region
method), but less accurate heuristic, an FM-based fast
heuristic was implemented with static estimation of edge
weights while operating within a region scope. The spill
estimation was performed by considering only the opera-
tion with the maximum intersecting live-ranges (see
Section 3.5). Both the fast and global methods considered
only 64 VRs at a time during partitioning. The fast, region,
and global methods represent heuristics that are progres-
sively more complex, while attempting to more accurately
estimate the swap, move, and spill costs.

The graph in Fig. 16a compares the percent performance
improvement in total execution cycles of the three heuristics
for the w2.r8 configuration against the base w1.r8 for the
WIMS processor. Overall, an average performance im-
provement of 8 percent, 11 percent, and 13 percent was
obtained for the fast, region, and global methods, respec-
tively. The region heuristic did considerably better than the
fast method because it considered a larger set of VRs (whole
region) and estimated spills more accurately. The global
method had a procedure scope that used a more accurate
dynamic estimation of swaps and moves, thereby perform-
ing better than the region method.

However, some of the results are not monotonically
increasing as one would expect for more accurate methods.
In some cases (gsmdec, rijndael), the region method
performed better than the global method. These benchmarks

RAVINDRAN ET AL.: PARTITIONING VARIABLES ACROSS REGISTER WINDOWS TO REDUCE SPILL CODE IN A LOW-POWER PROCESSOR 1009

Fig. 14. Per instruction class energy and execution time for the WIMS

processor at 100MHz.

Fig. 15. Percent dynamic power improvement of w2.r8 and w4.r8 over

the base case of w1.r8.

had a single region that dominated execution time. The
region method was more effective because it considered all
VRs in the dominant region, whereas the global method
could only examine 64 at a time. Also, since the underlying
partitioning algorithm was greedy, an inaccurate estimation
of swap, move, or spill cost sometimes results in the fast or
the region heuristics doing better than the global method or
the fast method doing better than the region method. While
running our experiments, we observed that the compile
time for the global method was 75 percent more than the fast
method, while the region method was 40 percent less then
the global method.

The graph in Fig. 16b repeats the previous experiment
for the VLIW machine. On average, a performance im-
provement of 19 percent, 25 percent, and 23 percent is
observed for the fast, region, and global methods, respec-
tively. Again, as described previously, the heuristic un-
certainties combined with the larger set of analyzed VRs
caused the comparatively faster region method to perform
better than the slower global method.

In summary, we prefer the regionmethod as it performed
close to the global method by employing a more intelligent
heuristic with substantially faster compilation times.

5 RELATED WORK

As an alternative to register windows, hardware and
software schemes have been proposed in prior work to
increase the effective number of registers. On the hardware
side, register connection [20] and register queues [9], [30]
have been proposed to increase the effective number of
physical registers without changing the number of architec-
tural registers using hardware/compiler support. Register
connection uses special instructions to dynamically connect
the core architectural registers to a larger set of physical
registers.With register queues, each register is connected to a
queue of registers that are effective at maintaining values
acrossmultiple loop iterations in softwarepipelined loops [9],
[30]. Both techniques introduce a layer of indirection to access
every register operand. Further, additional hardware struc-
tures are used in their implementation to maintain the

mapping between architected registers and physical regis-
ters. These techniques are generally targeted at high-
performance platforms as their cost/power overhead is too
large for embedded processors.

The register file can also be reorganized to deal with the
problems of large register file sizes. Register caches [5]
allow low latency register access while supporting a large
architectural register file by caching a subset of the values of
the register file in a smaller but faster register cache. The
function units source their operands from the register cache.
Clustering breaks up a centralized register file into several
smaller register files, thereby creating a decentralized
architecture [7], [8]. Each of the smaller register files
supplies operands to a subset of the function units and
can be designed more efficiently. However, these techni-
ques are used to reduce register file access time, porting,
and interconnect complexity. They do not deal with the
problem of limited encoding space and thus focus on
orthogonal problems.

A combination of 16-bit and 32-bit instructions have been
used in mixed-mode architectures like the Thumb instruc-
tion set extensions in ARM [28] and MIPS-16 [32] to provide
a balance between reducing code size and retaining
performance [21]. The register windows have the advantage
over this approach of allowing scalability. The number of
effective registers can be increased to any large number
using a fixed encoding.

On the software side, code generation for DSP processors
has proven to be a challenge for compilers [24]. The
irregularities of such architectures have motivated the use
of new compiler techniques which were initially considered
to be complex and time consuming. Graph partitioning has
been used in compilers for multiclustered VLIW processors
[6], [1], [4]. Several graph partitioning-based tools like
Chaco [12] and Metis [16] have been widely used to
implement mutlilevel Fiduccia-Mattheyses and other more
sophisticated algorithms. A global register partitioning and
interference graph-based approach has been used in the
context of multicluster and multiregister file processors [13],
[3]. Graph partitioning has also been explored in the context
of partitioning program variables into multiple memory

1010 IEEE TRANSACTIONS ON COMPUTERS, VOL. 54, NO. 8, AUGUST 2005

Fig. 16. Comparing performance between fast, region, and global heuristics for the 8-register (a) WIMS processor and the (b) VLIW processor. For

each heuristic, w2.r8 is plotted relative to w1.r8.

banks [23]. Our approach, on the other hand, tries to
partition virtual registers into multiple register windows
within a given procedure scope while trying to minimize
spill code, interwindow moves, and window swaps.

6 CONCLUSION

In this paper, we developed and implemented a graph
partitioning-based compiler algorithm to evaluate the
benefits of a windowed register file design. Such a design
increases the effective number of available registers while
maintaining a fixed instruction encoding. The compiler
partitions the virtual registers in a procedure into multiple
register windows, thus reducing the overall spill code while
minimizing the overhead due to interwindow moves and
window swaps. We evaluated our design over a wide range
of processor and window configurations. Increasing the
number of windows from one to two yielded an average
performance improvement of 10 percent for the 4-register
case and 11 percent for the 8-register case on the WIMS
processor. The corresponding experiment on a 5-wide
VLIW machine achieved an average performance improve-
ment of 21 percent and 25 percent for the four and eight
register configurations, respectively. An average power
reduction of 25 percent for the 2-window 8-register over the
1-window case was observed on the WIMS processor. In the
future, we plan to explore the use of register windows in
software pipelined loops.

ACKNOWLEDGMENTS

The authors thank Michael Chu, Nathan Clark, and K.V.
Manjunath for their comments and suggestions. Fabrication
of this work at TSMC was supported by the MOSIS
Educational Program. Digital cell libraries and SRAMs
were supplied by Artisan Components, Inc. This work was
supported by the Engineering Research Centers Program of
the US National Science Foundation (NSF) under award
number EEC-9986866, NSF grant CCF-0347411, and equip-
ment donated by Hewlett-Packard and Intel Corp.

REFERENCES

[1] A. Aletà, J. Codina, J. Sánchez, A. González, and D. Kaeli,
“Exploiting Pseudo-Schedules to Guide Data Dependence Graph
Partitioning,” Proc. 11th Int’l Conf. Parallel Architectures and
Compilation Techniques, pp. 281-290, Sept. 2002.

[2] Analog Devices, ADSP-219x/2191 DSP Hardware Reference Manual,
July 2001, http://www.analog.com/Analog_Root/static/library/
dspManuals/ADSP-2191_hardware_reference.html.

[3] J. Cho, Y. Paek, and D. Whalley, “Register and Memory Assign-
ment for Non-Orthogonal Architectures via Graph Coloring and
mst Algorithms,” Proc. ACM SIGPLAN Conf. Languages, Compilers,
and Tools for Embedded Systems & Software and Compilers for
Embedded Systems, pp. 130-138, June 2002.

[4] M. Chu, K. Fan, and S. Mahlke, “Region-Based Hierarchical
Operation Partitioning for Multicluster Processors,” Proc. SIG-
PLAN ’03 Conf. Programming Language Design and Implementation,
pp. 300-311, June 2003.

[5] J.-L. Cruz, A. Gonzalez, M. Valero, and N. Topham, “Multiple-
Banked Register File Architecture,” Proc. 27th Ann. Int’l Symp.
Computer Architecture, pp. 316-325, June 2000.

[6] G. Desoli, “Instruction Assignment for Clustered VLIW DSP
Compilers: A New Approach,” Technical Report HPL-98-13,
Hewlett-Packard Laboratories, Feb. 1998.

[7] P. Faraboschi, G. Desoli, and J. Fisher, “Clustered Instruction-
Level Parallel Processors,” Technical Report HPL-98-204, Hewlett-
Packard Laboratories, Dec. 1998.

[8] K. Farkas, P. Chow, N. Jouppi, and Z. Vranesic, “The Multicluster
Architecture: Reducing Cycle Time through Partitioning,” Proc.
30th Ann. Intl Symp. Microarchitecture, pp. 149-159, Dec. 1997.

[9] M.M. Fernandes, J. Llosa, and N. Topham, “Allocating Lifetimes
to Queues in Software Pipelined Architectures,” Proc. Third Int’l
Euro-Par Conf., pp. 1066-1073, Aug. 1997.

[10] C. Fiduccia and R. Mattheyses, “A Linear Time Heuristic for
Improving Network Partitions,” Proc. 19th Design Automation
Conf., pp. 175-181, 1982.

[11] M. Guthaus, J. Ringenberg, D. Ernst, T. Austin, T. Mudge, and R.
Brown, “MiBench: A Free, Commercially Representative Em-
bedded Benchmark Suite,” Proc. Fourth IEEE Workshop Workload
Characterization, pp. 10-22, Dec. 2001.

[12] B. Hendrickson and R. Leland, The Chaco User’s Guide. Sandia
Nat’l Laboratories, July 1995.

[13] J. Hiser, S. Carr, and P. Sweany, “Global Register Partitioning,”
Proc. Ninth Int’l Conf. Parallel Architectures and Compilation
Techniques, pp. 13-23, Oct. 2000.

[14] W.M. Hwu et al., “The Superblock: An Effective Technique for
VLIW and Superscalar Compilation,” J. Supercomputing, vol. 7,
no. 1, pp. 229-248, May 1993.

[15] Intel Corp., Intel IA-64 Software Developer’s Manual, 2002.
[16] G. Karypis and V. Kumar, Metis: A Software Package for Paritioning

Unstructured Graphs, Partitioning Meshes and Computing Fill-
Reducing Orderings of Sparse Matrices, Univ. of Minnesota, Sept.
1998.

[17] V. Kathail, M. Schlansker, and B. Rau, “HPL PlayDoh Architecture
Specification: Version 1.0,” Technical Report HPL-93-80, Hewlett-
Packard Laboratories, Feb. 1993.

[18] B. Kernighan and S. Lin, “An Efficient Heuristic Procedure for
Partitioning Graphs,” The Bell System Technical J., vol. 49, no. 2,
pp. 291-207, Feb. 1970.

[19] H. Kim, “Region-Based Register Allocation for EPIC Architec-
tures,” PhD thesis, Dept. of Computer Science, New York Univ.,
2001, www.crest.gatech.edu/publications/hansooth.pdf.

[20] K. Kiyohara, S.A. Mahlke, W.Y. Chen, R.A. Bringmann, R.E. Hank,
S. Anik, and W.W. Hwu, “Register Connection: A New Approach
to Adding Registers into Instruction Set Architectures,” Proc. 20th
Ann. Int’l Symp. Computer Architecture, pp. 247-256, May 1993.

[21] A. Krishnaswamy and R. Gupta, “Profile Guided Selection of
ARM and Thumb Instructions,” Proc. ACM SIGPLAN Conf.
Languages, Compilers, and Tools for Embedded Systems & Software
and Compilers for Embedded Systems, pp. 55-63, June 2002.

[22] C. Lee, M. Potkonjak, and W. Mangione-Smith, “Mediabench: A
Tool for Evaluating and Synthesizing Multimedia and Commu-
nications Systems,” Proc. 30th Ann. Int’l Symp. Microarchitecture,
pp. 330-335, 1997.

[23] R. Leupers and D. Kotte, “Variable Partitioning for Dual Memory
Bank dsps,” Proc. IEEE Int’l Conf. Acoustics Speech and Signal
Processing, pp. 1121-1124, May 2001.

[24] P. Marwedel and G. Goossens, Code Generation for Embedded
Processors. Boston: Kluwer Academic, 1995.

[25] Motorola, CPU12 Reference Manual, June 2003, http://e-www.
motorola.com/brdata/PDFDB/docs/CPU12RM.pdf.

[26] M. Poletto and V. Sarkar, “Linear Scan Register Allocation,” ACM
Trans. Programming Languages and Systems, vol. 21, no. 5, pp. 895-
913, Sept. 1999.

[27] R. Ravindran, R. Senger, E. Marsman, G. Dasika, M. Guthaus, S.
Mahlke, and R. Brown, “Increasing the Number of Effective
Registers in a Low-Power Processor Using a Windowed Register
File,” Proc. 2003 Int’l Conf. Compilers, Architecture, and Synthesis for
Embedded Systems, pp. 125-136, 2003.

[28] D. Seal, ARM Architecture Reference Manual. London: Addison-
Wesley, 2000.

[29] R. Senger, E. Marsman, M. McCorquodale, F. Gebara, K. Kraver,
M. Guthaus, and R. Brown, “A 16-Bit Mixed-Signal Microsystem
with Integrated CMOS-MEMS Clock Reference,” Proc. 40th Design
Automation Conf., pp. 520-525, 2003.

[30] M. Smelyanskiy, G. Tyson, and E. Davidson, “Register Queues: A
New Hardware/Software Approach to Efficient Software Pipelin-
ing,” Proc. Ninth Int’l Conf. Parallel Architectures and Compilation
Techniques, pp. 3-12, Oct. 2000.

[31] SPARC International Inc., The SPARC Architecture Manual,
Version 8, 1992, www.sparc.com/standards/V8.pdf.

[32] MIPS32 Architecture for Programmers Volume IV-a: The MIPS16
Application Specific Extension to the MIPS32 Architecture, MIPS
Technologies, Mar. 2001.

RAVINDRAN ET AL.: PARTITIONING VARIABLES ACROSS REGISTER WINDOWS TO REDUCE SPILL CODE IN A LOW-POWER PROCESSOR 1011

[33] Tensilica Inc., Xtensa Architecture and Performance, Sept. 2002,
http://www.tensilica.com/xtensa_arch_white_paper.pdf.

[34] Texas Instruments, TMS320C54X DSP Reference Set, Mar. 2001,
http://www-s.ti.com/sc/psheets/spru131g/spru131g.pdf.

[35] Texas Instruments, TMS320C6000 CPU and Instruction Set Reference
Guide, June 2004, http://focus.ti.com/lit/ug/spru189f/spru189f.
pdf.

[36] V. Tiwari, S. Malik, and A. Wolfe, “Power Analysis of Embedded
Software: A First Step towards Software Power Minimization,”
IEEE Trans. Very Large Scale Integration (VLSI) Systems, vol. 2, no. 4,
pp. 437-445, 1994.

[37] Trimaran, “An Infrastructure for Research in ILP,” 2000, http://
www.trimaran.org.

Rajiv A. Ravindran received the MTech degree
in computer science from the Indian Institute of
Technology, Kanpur. He is a PhD student in the
Department of Electrical Engineering and Com-
puter Science at the University of Michigan, Ann
Arbor. His research interests include compilation
for low-power embedded DSPs, automatic com-
piler and architecture synthesis, and compilation
for high-performance processors. He is a stu-
dent member of the IEEE and the ACM.

Robert M. Senger received the ScB degree
from Brown University in May 2000 in computer
engineering and subsequently began his gradu-
ate studies in VLSI design at the University of
Michigan, Ann Arbor. His research interests
include low-power, mixed-signal chip design
which is being explored within the context of
low power microcontrollers for remote sensor
systems. Currently, he is interning at the IBM
Austin Research Lab, where he is investigating

low-power design in advanced processing technologies. He hopes to
receive the PhD degree by the end of 2005.

Eric D. Marsman received the BSE degree in
electrical engineering magna cum laude in April
2000 from the University of Michigan. He
received the MSE degree in VLSI in January
2002 from the University of Michigan. He is
currently pursuing the PhD degree in VLSI, also
at the University of Michigan. During his under-
graduate career, he had internships with Motor-
ola working in the Test Engineering Department.
He also worked on the CAD team for the

Hammer family of products with Advanced Micro Devices. Agilent
Technologies also gave him experience working in an ASIC design lab
on high-speed communication chips. During his graduate experience, he
was a graduate student instructor for the Introduction to VLSI class. For
his outstanding work over the course of three semesters, he received
the EECS Outstanding GSI for 2001, the ASEE Outstanding GSI for
2001, and the Rackham Outstanding GSI for 2002.

Ganesh S. Dasika received the BSE degree in
computer engineering from the University of
Michigan. He is a PhD student in the Department
of Electrical Engineering and Computer Science
at the University of Michigan, Ann Arbor. His
research interests mainly include designing and
compiling for embedded architectures. He is a
student member of the IEEE.

Matthew R. Guthaus received the BSE degree
in computer engineering and the MSE degree in
electrical engineering from the University of
Michigan in 1998 and 2000, respectively. He is
currently a PhD candidate in electrical engineer-
ing at the University of Michigan. While working
on his master’s degree, he designed and tested
the digital parts of a mixed-signal, 8-bit micro-
controller for sensor and actuator applications.
His dissertation research is on design automa-

tion for the optimization of parametric yield. Other research interests
include physical design automation, low-power architecture for em-
bedded systems, and algorithm specific microprocessors.

Scott A. Mahlke received the PhD degree in
electrical and computer engineering from the
University of Illinois at Urbana-Champaign. He is
the Morris Wellman Assistant Professor of
Electrical Engineering and Computer Science
at the University of Michigan, Ann Arbor. He
directs the Compilers Creating Custom Proces-
sors research group, which focuses on the
design of application specific processors and
hardware accelerators. His research interests

include compilers, computer architecture, and high-level synthesis. He is
a member of the IEEE and the ACM.

Richard B. Brown received the BS and MS
degrees in electrical engineering from Brigham
Young University, Provo, Utah, in 1976 and the
PhD degree in electrical engineering (solid-state
sensors) from the University of Utah, Salt Lake
City, in 1985. From 1976 to 1981, he was vice-
president of engineering at Holman Industries,
Oakdale, California, and then manager of
computer development at Cardinal Industries,
Webb City, Missouri. In 1985, he joined the

faculty of the Department of Electrical Engineering and Computer
Science, University of Michigan, Ann Arbor. He became dean of
engineering at the University of Utah, Salt Lake City, in July 2004. He
has conducted major research projects in the areas of solid-state
sensors, mixed-signal circuits, GaAs and silicon-on-insulator circuits,
and high-performance and low-power microprocessors. He is a member
of the ACM and a senior member of the IEEE. He is chairman of the
MOSIS Advisory Council for Education.

. For more information on this or any other computing topic,
please visit our Digital Library at www.computer.org/publications/dlib.

1012 IEEE TRANSACTIONS ON COMPUTERS, VOL. 54, NO. 8, AUGUST 2005

