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Abstract
Set-associative caches are traditionally managed using hardware-
based lookup and replacement schemes that have high energy over-
heads. Ideally, the caching strategy should be tailored to the appli-
cation’s memory needs, thus enabling optimal use of this on-chip
storage to maximize performance while minimizing power con-
sumption. However, doing this in hardware alone is difficult due
to hardware complexity, high power dissipation, overheads of dy-
namic discovery of application characteristics, and increased like-
lihood of making locally optimal decisions. The compiler can in-
stead determine the caching strategy by analyzing the application
code and providing hints to the hardware. We propose a hard-
ware/software co-managed partitioned cache architecture in which
enhanced load/store instructions are used to control fine-grain data
placement within a set of cache partitions. In comparison to tradi-
tional partitioning techniques, load and store instructions can indi-
vidually specify the set of partitions for lookup and replacement.
This fine grain control can avoid conflicts, thus providing the per-
formance benefits of highly associative caches, while saving en-
ergy by eliminating redundant tag and data array accesses. Using
four direct-mapped partitions, we eliminated 25% of the tag checks
and recorded an average 15% reduction in the energy-delay product
compared to a hardware-managed 4-way set-associative cache.

Categories and Subject Descriptors B.3.2 [Memory Structures]:
[Cache Memories]; C.3 [Special-purpose and Application-based
Systems]: [Real-time and Embedded Systems]; D.3.4 [Program-
ming Languages]: [Code generation, Optimization]

General Terms Algorithms, Design, Experimentation, Perfor-
mance

Keywords Partitioned cache, hardware/software co-managed cache,
instruction-driven cache management, low-power, embedded pro-
cessor

1. Introduction
Caches have been highly successful in bridging the processor-
memory performance gap by providing fast access to frequently
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used data. They also save power by limiting expensive off-chip
accesses. Data caches have proven to be effective as they help
to dynamically capture both temporal and spatial locality without
software intervention.

The use of caches in embedded domains, however, has been
limited due to energy inefficient tag checking and comparison
logic [4]. Set-associative caches can achieve a high hit-rate and
good performance, but come at the expense of energy overhead.
Direct-mapped caches remove much of the logic overhead and thus
consume much less power per access, but they incur more misses.
Studies show that the on-chip memory subsystem, specifically the
instruction and data caches, is the highest contributor to the overall
system power. For example, caches consume around 40% of the
total processor power in the StrongARM 110 [20] and around 16%
for the Alpha 21264 [6] processor. Thus, it is critical to use these
on-chip memories efficiently to maintain high performance while
operating at low power budgets.

Current techniques to attack this growing memory power prob-
lem can be broadly classified into hardware- or software-based so-
lutions. Common hardware solutions include memory banking [10,
24], dynamic voltage/frequency scaling [16], and dynamic cache
resizing [22]. Software-based solutions include the use of compiler-
managed scratch-pads [4]. Although these techniques have merit,
their use and effectiveness has been limited. Hardware-only tech-
niques suffer from the disadvantage of adding complex structures
that target a generalized class of applications, which can compli-
cate the design and verification process. In addition, hardware tech-
niques often resort to local program state information, such as the
program execution history. This localized view can result in sub-
optimal solutions. On the other hand, software-only techniques, in
spite of being tuned for each application, tend to make conserva-
tive decisions in order to ensure correctness. Moreover, they can
be limited to analyzing programs with highly constrained code and
memory access behavior, such as array-only code that is indexed
through affine functions [15].

Hardware/software co-management can potentially provide the
combined benefits of both hardware and software techniques. Soft-
ware management can help reduce hardware inefficiencies using
global knowledge of the program behavior. Hardware assistance
can capture dynamic program behavior, and thus aid in making
software techniques more aggressive and effective.

In this paper, a hardware/software co-managed partitioned
cache architecture is proposed that attempts to bridge the perfor-
mance and energy gap between direct and set-associative caches.
A partitioned cache consisting of multiple smaller direct-mapped
partitions with the same combined size as a unified direct or set-
associative cache is employed. Management of these partitions is
controlled by the compiler using load/store instruction set exten-
sions. Using a whole program knowledge of the data access pat-
terns, the compiler controls cache lookup and data placement by
assigning individual load/store instructions to these partitions.



This software-guided partitioned cache architecture has many
advantages. First, a smaller direct-mapped cache is more power
efficient than either a unified direct-mapped or a set-associative
cache, as the data and tag arrays are smaller. The software decides
what partitions are activated, thus eliminating redundant tag/data
array accesses to reduce power. Second, by managing the place-
ment of data using memory reference instructions, the compiler
can enforce a better replacement policy. For example, data items
that are accessed with a high degree of temporal locality can be
placed in different partitions to avoid conflicts. In addition, refer-
ences that are separated in time or whose live-ranges do not in-
tersect can share the same partition. Thus, this data orchestration
can help reduce conflict misses. Region-based caches [18] have
been proposed, where multiple caches are used to capture heap,
global, and stack accesses. But, unlike their approach, partitioned
caches provide much finer grain data management and control.
Instruction-level management generalizes to all types of data for
all classes of applications, including heap dominated ones, where
distinct heap objects can be placed in different partitions. Thus,
through compiler-controlled management, the partitioned cache ar-
chitecture can achieve the performance of a set-associative cache,
while having the energy signature of a direct-mapped cache.

2. Background
In this section, we motivate the need for hardware/software co-
managed caches and discuss how software can exploit partitioned
caches for finer grained cache management.

Hardware/Software Co-Managed Caches: In a traditional
cache design, the hardware is used to determine replacement and
allocation policies. A standard hardware cache controller has two
main responsibilities: 1) checking if the referenced data is present
in the cache, and 2) on a miss, deciding where in the cache to
allocate the requested data. Performing checks in hardware allows
for fast and efficient access of the referenced data. It provides the
appearance of a uniform address space by hiding the details of the
underlying cache architecture from the programmer. The tags help
in dynamically locating the cached memory references that can be
hard to analyze statically.

Making decisions in hardware usually forces a single, conser-
vative allocation and replacement algorithm. Implementing a more
flexible replacement policy entirely in hardware is usually expen-
sive. Hardware-based schemes typically place data using the set-
index field extracted from the address. This does not consider the
access behavior pattern of the referenced data. For example, two
data items referenced temporally adjacent to each other can be
placed in the same set, thus causing conflicts. To reduce the ef-
fect of conflicts, set-associativity is employed such that conflicting
data elements are placed in different ways. But here again, a sim-
plistic replacement policy, such as pseudo-LRU, is used that does
not guarantee the absence of conflicts. Moreover, for set-associative
caches, on each reference, every way within the set has to be probed
to check for the presence of the data. Different applications or sep-
arate phases within the same application can have widely varying
associativity requirements depending on their locality and working
set characteristics. Thus, many of these tag checks are redundant,
wasting power at no added performance advantage.

Making replacement and allocation decisions in the compiler
can offer several benefits, as it can employ more intelligent heuris-
tics to make replacement decisions at considerably lower costs.
Also, the compiler has the added advantage of analyzing the ap-
plication’s future behavior through profiling on a representative in-
put set. Software control can thus customize the cache accesses
based on the needs of the application. Software-only approaches
like code/data reorganization [8, 28] can help avoid conflicts. How-

ever, the hardware, being transparent, is unaware of these transfor-
mations and thus performs wasted tag checks.

We employ a hardware/software co-managed caching policy
where the hardware performs the critical cache lookup to reduce
access time, while providing directives through software for ef-
ficient management. Exposing the operation of the cache to the
software/compiler facilitates efficient use of this critical storage for
both power and performance.

Partitioned Caches: Cache partitioning allows for coarser
grained management by the software as compared to hardware-
based replacement, while delegating critical finer granularity op-
erations, such as tag checks, to the hardware. Traditionally, caches
are logically organized into ways, where the tag corresponding to
each of the ways are compared in parallel to reduce access cycle
time. The data is read from the matching way. Prior to matching,
the parallel access has to pre-charge and read all the tag and data ar-
rays, but select only one of the ways1, resulting in wasted dynamic
energy [22]. Ideally, in an n-way set-associative cache, using an or-
acle predictor, only one of the n-ways must be read and the rest can
be ignored.

In vertically partitioned [40] or way-partitioned caches [9], each
way is treated as a separate partition. Prior work uses vertical parti-
tions for either energy savings through hardware control [40], or as
coarser grained units that are managed as scratch-pads [9]. We gen-
eralize this idea by allowing the compiler finer grain control over
the individual ways. In particular, on a cache access, the compiler
decides the partitions or ways to be probed for the referenced data.
Similarly, cache replacement is restricted to certain ways so as to
reduce conflict misses. Although multiple ways can reduce con-
flicts, pseudo-LRU replacement algorithms are non-optimal, and
thus cannot guarantee correct decisions. By proactively placing
temporally co-located data references in different partitions, the
compiler can avoid conflicts. Similarly, references that have poor
temporal locality can be restricted to a single partition or even be
allowed to bypass the cache by not assigning them to any of the
partitions, thus preventing cache pollution. Smaller L1 caches with
low associativity, high degree of conflict misses, and requiring a
single cycle access are ideal candidates for way-based partitioning.
It should be noted that partitioning need not be restricted to indi-
vidual ways, but rather can include multiple ways per partition.

More importantly, in addition to reducing conflict misses, way-
partitioned software-managed caches can restrict cache lookups to
only selected ways that are guaranteed to contain the data. This pro-
vides a two-fold advantage. First, restricting memory references,
based on its individual memory needs, to only a subset of the avail-
able cache can help save energy as only the assigned set of tags and
their corresponding data arrays are activated. Second, per-access
cycle time can be improved since only a limited set of ways are
read on a single access. Ideally, the compiler can restrict each ac-
cess to just a single way, thus matching the energy savings of an
oracle predictor.

Way partitioning provides an ideal platform for the compiler to
exercise fine-grained management of data placement by reducing
conflicts while lowering the energy consumed. This work focuses
on L1 caches, although the technique can be generalized to other
levels of the cache hierarchy. Single level caches are common in
embedded domains, where energy is a primary design constraint.
We focus on software-based way-partitioning of L1 caches, as they
are typically small and capture majority of the memory references.

1 L1 caches generally employ parallel access to ensure the fastest access
time. Lower levels of the memory hierarchy, i.e., L2/L3 caches, often
serialize tag and data access to reduce unnecessary energy consumption as
access latency is less important.
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Figure 1. Software-managed vertically partitioned cache: (a) Cache design, (b)-(d) Load/Store instructions with partition bitvector annota-
tions.

3. Partitioned Cache Architecture
In this section, we look at the architecture and the ISA extensions
required for a software-managed partitioned cache. The cache con-
troller is altered to allow for a specified subset of the cache ways
to be activated on a lookup. In addition, on a cache miss, the cache
can be directed to only use a subset of the ways during replacement.
Modified load/store instructions are used by the compiler to control
the operations of the cache.

An important factor in determining the cache design is the gran-
ularity of partition assignment. Partition assignment should ideally
be made at the cache block level, thereby matching replacement
decisions. However, since memory blocks that a program accesses
can vary for every run of the program, we instead assign partitions
to the load or store instructions that access these blocks. By guid-
ing the memory instructions, data placement in the cache is indi-
rectly controlled. In order to guide load/store operations to their
designated cache ways, we extend the instruction set architecture
to include partition designations.

Figure 1 shows a 4-way set-associative cache. Each way is
treated as a software-controlled cache partition. As shown on top
of Figure 1, we conceptually extend the load/store instructions
with additional operand fields. For a k-partitioned cache, a k-
element bitvector immediate field is used to denote the partition(s)
(i.e., way(s)) to which the instruction is assigned. For example,
in Figure 1(b), LD 1 is assigned to partitions 2 and 3. Similarly,
LD 2 in Figure 1(c) is assigned to partitions 0 and 1, and LD 3 in
Figure 1(d) is assigned to partitions 1 and 2.

Cache Replacement: On a miss, a block within the cache must
be selected for replacement. Only those ways specified by the re-
placement bitvector are considered for eviction. This allows the
compiler control over the replacement decisions among the ways in
a set. If an instruction is assigned to multiple partitions, LRU or an-
other replacement policy can be used to choose among the specified
partitions. For regular load/store instructions that are unannotated
with bitvectors, all the partitions are considered for replacement.
Thus, the flexibility of the underlying hardware allows the com-
piler to treat individual loads as needing any number of ways of the
cache, based on its access characteristics.

Cache Lookup: On a cache access, all ways that could possibly
include the cache block must be probed. This is required to avoid
any coherency and duplication of cache blocks. If two memory ref-
erences sharing the same set of data objects are placed in different

partitions, then all such partitions have to be checked for the pres-
ence of the data. The lookup could be accomplished by adding a
second bitvector for lookup to each instruction, which corresponds
to all the partitions that could hold the referenced data object. Dur-
ing lookup, only the specified ways have to be probed. Separating
replacement from lookup provides the combined flexibility of im-
proving performance by controlling data placement, while saving
power by avoiding redundant tag checks.

While the lookup bitvector would accomplish the task, its task
can easily be folded into the original replacement bitvector and
a single extra bit-field. This bit-field, called the R/U-(Restricted/
Unrestricted) bit, is added to each load/store instruction and shown
in Figure 1. This field is used to restrict the tag checks to the
partitions specified in the bitvector. R means that only the speci-
fied partitions in the replacement bitvector need be probed, while
U forces all the partitions to be checked. Although a unified
lookup/replacement bitvector is less general than having a separate
lookup bitvector, it has been found to provide comparable benefits
at reduced costs.

This lookup optimization requires the compiler to guarantee that
two memory instructions assigned to different partitions with the
R-bit will never access the same data. More details on how this is
done is described in Section 4. In the example shown in Figure 1,
LD 1 and LD 2 are assigned to two different sets of partitions with
their R-bit set.

ISA Support: The ISA extensions as described above require
adding more encoding bits, which might not be practical for em-
bedded processors where code size is a primary design constraint.
This overhead can be reduced by using a special purpose regis-
ter, called the cache access register (CAR), to hold the partition
bitvector. This allows extending the design to an arbitrary number
of partitions. Further, we introduce two different types of load/store
instructions. One that is partition cognizant, while the other that is
not. The partition aware instruction implicitly sources the CAR.
New move instructions are required to initialize the CAR with the
appropriate partition bitvector and the R/U-bit values. Partition un-
aware instructions do not use the CAR and perform lookup and re-
placement on all the ways just as in traditional designs. As shown
in our experiments, the resulting code size overhead is only 0.4%.
Further, multiple such registers can be used to avoid scheduling
constraints. Alternately, if the ISA permits, explicit general purpose
register operands can be used to hold the bitvector.



Besides the modifications to the cache controller to honor the
partitions specified by the current instruction, no additional hard-
ware beyond a standard cache is necessary. The tag directory struc-
ture is retained. If partitioning is not supported, the assignment can
be ignored and the default set-associative scheme can be used. For
future generation processors that could be designed with higher or
lower associativity, the compiler specified partitions can be virtu-
alized by allowing multiple specified partitions to refer to a single
way or a single specified partition to refer to multiple ways.

The objective of this work is to balance two opposing goals. On
the one hand, cache access energy can be reduced by restricting
memory references to as few ways as possible. Energy is reduced
by limiting the number of tag and data arrays that are activated
during each access. Moreover, controlled placement can help avoid
conflict misses, thus eliminating off-chip accesses. However, this
can potentially lead to capacity misses for references that have a
moderate to large working sets. Large working sets are handled
by allocating ways to the corresponding accesses. Therefore, the
compiler must balance these trade-offs so as to reduce conflicts
while minimizing energy.

4. Compiler Partitioning of Memory Instructions
Software-managed cache partitioning gives the programmer or the
compiler explicit control to manage the different partitions based
on the memory needs of the application. In this section, we de-
scribe a compiler heuristic that automatically analyzes an appli-
cation and assigns the important load/store instructions within the
program to different cache partitions. The compiler assigns these
memory reference instructions to partitions (i.e., cache ways) with
two major goals: (1) reducing conflicts among data objects that are
simultaneously accessed and (2) restricting the instructions to the
appropriate number of partitions to satisfy the working set of that
reference. The first goal improves cache utilization by eliminating
conflict misses that arise due to interferences among temporally
co-located data reference streams. The second goal tries to reduce
the number of redundant tag/data array checks that would other-
wise have to be performed by the hardware. These goals provide
the combined benefit of achieving the performance advantage of
set-associative caches while reducing the energy consumed.

Compiler-managed partition assignment consists of two phases:
cache estimation and assignment. The cache estimation phase ana-
lyzes the memory access and usage characteristics of the applica-
tion to estimate the cache configuration requirement of individual
loads and stores. In addition, it also computes the degree of tempo-
ral interference among each of the loads/stores. In the assignment
phase, a greedy heuristic assigns memory instructions to partitions.
We employ a combined static and profile-driven compiler analysis.
Pointer-analysis is used to control cache lookups for correctness,
while profiling is used to guide partition assignment. Profile-based
analysis is more accurate in the presence of dynamically allocated
data structures. Alternately, affine array index analysis [35] can be
used to compute the memory reuse patterns and conflicts of data
objects.

Figure 2(a) shows a sample C code segment with nested loops.
This example is used throughout this section to illustrate the parti-
tioning process. The load and store instructions that correspond to
the accessed arrays are labeled in the source. Between the two in-
nermost loops (with indices j and k), the arrays y and x are reused,
while accesses to the w objects (w1 and w2) are distinct. During
execution of each innermost loop, the accesses to y, x, and the w
objects are temporally co-located. So to prevent cache misses, each
of these data objects have to be assigned such that they do not over-
lap with each other. Also, during the execution of the second loop,
w2 should not displace either y or x. But since w1 and w2 are dis-
tinct, they have no reuse and can overlap in the cache.

4.1 Phase 1: Cache Estimation

In order to assign partitions to the load/store instructions, the com-
piler first analyzes the application to identify three key attributes: (i)
the data sharing pattern among different load/store instructions, (ii)
the cache configuration required to satisfy the working set require-
ment of each load/store instruction, and (iii) the degree of conflict
between every pair of load/store instructions.

Multiple instructions could share access to the same set of data
structures. Grouping such references helps to restrict the number
of partitions to which they are assigned. In addition, it guarantees
that instructions that access the same set of data objects have the
same partition assignment. The working set size estimates how
much cache should be allotted to the instruction, while the degree
of conflict guides placement of instructions to different partitions.
These attributes are mined independent of the address and the
organization/replacement-policy of the target cache architecture.

The compiler initially profiles the code by running the appli-
cation on a train input set. The profile run generates a trace of
the load/store instructions executed during the run along with the
addresses referenced in units of cache blocks. The traces are pro-
cessed on-line by analyzing a window of references that slides over
the generated trace. The window size is bound to two times the size
of the cache in units of cache blocks.

4.1.1 Computing Data Sharing Among Load/Stores

Capturing commonality between instructions that access the same
data can help limit cache accesses to just the required set of par-
titions. This involves using points-to analysis to guarantee that in-
structions that could potentially access the same data set are as-
signed to same partitions, and proactively merging such instruc-
tions to prevent them from being assigned to different partitions.
This, in turn, reduces the number of partitions that are to be acti-
vated at run-time.

Points-to Analysis: To restrict the load/store instructions to
access a subset of cache partitions, the compiler has to guaran-
tee that no two references assigned to two different partitions can
access the same data item. Pointer analysis is used to avoid this
problem. The pointer analysis phase within our compiler anno-
tates every load/store instruction with a set of object identifiers
that it potentially accesses [23]. The objects can be global/stack
arrays/variables/structures or heap allocated objects.

Initially, each distinct object identifier and its associated load/store
instructions are placed into a separate object set. If an instruction
accesses multiple data objects, they could reside in different object
sets and hence the corresponding sets are merged. This process
continues until a set of completely disjoint object sets are obtained.
All instructions within the same object set have to be assigned to
the same set of partitions. More conservatively, if they are assigned
different partitions, their U-bit is set so that they check all available
partitions on each reference for correctness. Instructions within
each object set are guaranteed not to access data objects of another
set and hence can be assigned the R-bit. Each such fused set are
now treated as a single new instruction for the remainder of the
analysis.

Heuristic Fusing: The pointer analysis phase is usually con-
servative and can potentially fuse more instructions than necessary.
To avoid this, we also perform heuristic fusing. Based on the pro-
file information, all instructions that share more than a threshold
(60% is used in our experiments) of the commonly accessed cache
blocks are fused. This is a less aggressive, but more accurate form
of fusing, which helps to group instructions that truly alias.

Heuristic fusing is only used for the subsequent assignment
phase. But, the setting of the R/U-bit is done based on the con-
servative pointer analysis information to guarantee correctness (see
Section 4.2). To ensure correctness, pointer analysis may poten-
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Figure 2. Compiler partitioning example: (a) Annotated code segment, (b) Trace consisting of array references, cache blocks, and load/stores
from the example in Figure 2, (c) Fused load/store instructions, (d) Reuse distance (D) for each fused instruction, (e) Hit rate estimate for
different cache configuration using Equation 1.

tially tag two references as ’may alias’, although at run-time they
have a low probability of aliasing. Conservatively grouping such
references forces them to be assigned to the same set of partitions
leading to conflicts. Heuristic fusing avoids this by separating these
references such that they can be assigned to different partitions.
But, based on pointer analysis, the U-bit for both these references
have to be set because, in the unlikely event of an alias, all other par-
titions have to be probed for any previously cached data. Although
this fails to reduce redundant tag checks, it can help in improving
performance by proactively reducing conflicts. Thus, the hardware-
supported decoupling of replacement from lookup allows the com-
piler to perform aggressive optimizations without being overly con-
servative.

An important point to note is that pointer analysis cannot detect
the case when two loads access different objects that fall within
the same cache block. Data padding is used to prevent such false
sharing. Since most objects occupy multiples of cache lines, the
overhead due to padding is minimal. Alternately, for objects that
exhibit high locality, the corresponding load/store instructions can
be grouped (based on static analysis [17]) to ensure that the same
placement decisions are made for the group.

We use the trace shown in Figure 2(b) to illustrate the partition-
ing process. This is derived from the code in Figure 2(a). The Bis
represent the cache blocks that are accessed by the load/store in-
structions labeled in Figure 2(a). Along with the instructions, the
corresponding data objects referenced are also shown. Note, while
executing each innermost loop, the accesses to individual arrays
can span multiple blocks. For example, accesses to array x in the j-
loop spans blocks B1 and B2. Instructions LD3 and LD4 reference
the same array x and are grouped into a fused instruction. In this
example, both points-to analysis and heuristic fusing leads to the
same result, and hence for ease of explanation we assume conserva-
tive fusing based on pointer analysis. The grouping of instructions
is shown in Figure 2(c). Each fused instruction is shown as Mi and
is also listed at the bottom of the trace in Figure 2(b).

4.1.2 Estimating Cache Requirement For Load/Stores

The goal of the compiler is to allocate sufficient cache partitions
to each load/store instruction to hold its expected working set.
By assigning the right number of partitions, we eliminate capac-
ity/conflict misses for all data accessed by that reference, while
avoiding any redundant tag/data array accesses.

Working Set Size Estimation: To estimate the number of
partitions, first the working set size of each load/store instruction,
based on the concept of stack-reuse distance [19] (denoted as D), is
computed. For a specific instruction Lk, its cache block reference
in temporal order are used. The size is estimated by looking at the
past references to unique cache blocks by that instruction. The trace
is scanned in reverse order starting from the current reference Bk .
All unique references to Bi (6= Bk) until the last occurrence of Bk

is the number of cache blocks required (reuse distance) such that
the current occurrence of Bk hits in a fully associative cache. The
last Bk seen is then removed from the trace, and the current Bk

becomes the last occurrence for subsequent passes. The working
set size of Lk is one more than the weighted average of such reuse
distances.

Consider the example trace shown in Figure 2(b). The current
reference is shown by the arrow pointing to the fused instruction
M4 that references the block B1. Prior to this, M4 references B2
after referencing B1 at the beginning of the trace. Thus, for the
current reference of B1 to hit, M4 requires at least two cache
blocks. The reuse distance (D) for each reference Mi is shown in
Figure 2(d).

Number of Partitions: The number of partitions assigned
to a load/store should be large enough to hold its working set.
This requires an accurate estimation of the hit rate of a given
load/store instruction for various cache configurations based on its
reuse distance.

Given a reuse distance D, cache size in terms of number of
blocks B, and associativity A, the hit rate can be approximately
computed using the formula [5]:
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The reuse distance D can be interpreted as: for a given reference
B, there is, on average, D unique references to other blocks Bi be-
tween two unique references to B. The above formula assumes that
the intervening references have an equal chance of being placed in
any of the cache blocks within a set.

Using Equation 1, the hit probability for different cache con-
figurations is shown in Figure 2(e). Each entry in the matrix rep-
resents the hit rate for a given value of D. The rows of the matrix
are the number of blocks in the cache, while the columns repre-
sent the associativity (or the number of partitions) in the cache.
Here, we are only concerned with the entries in the diagonal of
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Figure 3. Continuation of compiler partitioning example from Fig-
ure 2: (a) Interference graph with cliques shaded, (b) The new reuse
distance for each of the cliques, (c) Assignment of loads/stores to
partitions/ways, (d) Annotating with partition bitvectors.

the matrix. The top left entry represents a single partition (or way)
with the total number of blocks same as that within a single way.
As we proceed along the diagonal, the cache size is increased by
adding more ways. The off-diagonal entries correspond to cases
where partitions/ways can be combined to produce larger direct-
mapped caches.

The number of partitions required for each load/store instruction
with a given reuse distance D, is computed from the above matrices
by picking the entry along the diagonal with the highest hit rate.
Although, we have shown a performance driven matrix, in reality,
we use an energy matrix, where each entry corresponds to the
energy consumed for that reference. The energy is computed using
the formula NumReferences ∗ EnergyPerAccess(B,A) +
(1 − HitRate) ∗ NumReferences ∗ EnergyPerMiss, where
EnergyPerAccess is a computed from CACTI [27] for a cache
configuration with B blocks and A ways, while EnergyPerMiss
is the energy required to fetch a cache line from L2 or off-chip
memory on a miss. The HitRate is obtained from the performance
matrix. Using this new energy matrix, the least energy consuming
configuration is selected for each load/store instruction.

4.1.3 Computing Interferences between Loads/Stores

Section 4.1.2 computed the number of partitions required for indi-
vidual load/store instructions. Since the cache is shared, it is impor-
tant to assign memory instructions to the cache so that they do not
conflict with each other. References that overlap temporally are to
be placed in different cache partitions, while references that are not
simultaneously live can share the same set of partitions.

This temporal interference between load/store instructions is
captured using a graph-based representation, aptly named the inter-
ference graph (IG). IG nodes are the fused load/store instructions.

An edge exists between the nodes if the degree of overlap exceeds
a threshold. To compute the interference, a single pass is made over
the trace. Every load/store reference that occurs between two con-
secutive occurrences of another load/store is recorded. Using the
trace in Figure 2(b), the IG for the continuing example is presented
in Figure 3(a). It can be observed from the trace that during the
execution of the inner j-loop, references M1, M2, and M4 occur
together temporally, while in the k-loop, M1, M3, and M4 overlap
temporally. But references M3 and M2 occur at two different points
in time and do not interfere with each other and hence do not have
an edge.

4.1.4 Spatial Locality-Based Optimizations

Up to this point in the discussion, the temporal locality properties
of the application have been captured through trace-based analysis.
The target architecture’s default block size was used to capture the
spatial locality for each reference. But, different applications have
differing spatial locality characteristics. Thus, the ideal block size
specific to each application has to be computed.

We saw earlier how the working set is computed in units of
cache blocks for each memory instruction. The cache configura-
tion, derived from Equation 1, assumes that each block in the work-
ing set has an equal probability of conflicting with every other
block. This turns out to be overly pessimistic for references with
high spatial locality and can force the reference to be assigned to
multiple caches. Data references that exhibit a high degree of spa-
tial locality can be assigned to a direct-mapped cache, as such a
cache maps spatially adjacent references to adjacent cache blocks
and avoids conflicts. Thus, accurate estimation of block sizes can
help restrict memory references to fewer partitions.

To compute the ideal block size of the application, we vary the
block size starting from the smallest granularity (the block size
of the target cache architecture) to a maximum size (the size of
a single partition) using a single pass of the trace. For each block
size, the fraction of references that can be captured by a block of the
new size is determined. The block size that maximizes this fraction
is selected as the new block size. This new block size is computed
prior to the earlier described phases and is used to estimate the
reuse distance, the working set size, and the cache configuration as
described above.

In Figure 2, using the default block size, M4 has a working set
of two cache blocks. But the two blocks that M4 accesses, B1 and
B2, are spatially adjacent as they are part of the array x. Hence,
they will not conflict in a direct-mapped cache. By using twice the
default block size, the new working set is just a single block.

4.2 Phase 2: Cache Assignment

The goal of the assignment phase is to bind load/store instructions
to partitions/ways in the cache. Instructions that exhibit a high
degree of temporal overlap are placed in different partitions so as
to prevent their data sets from conflicting.

In Section 4.1.2, the least energy consuming cache configura-
tion was selected for each load/store instruction based on reuse
characteristics. If there were an infinite number of partitions, each
load/store instruction could be assigned such that its individual
working set requirements are satisfied. But, since the number of
partitions are limited, some instructions must be assigned to the
same set of partitions. Again, if these overlapped instructions do
not interfere temporally, there would not be any conflicts. Ideally,
when faced with a choice of placing a set of instructions in the
same set of partitions, the trace can be used to compute the com-
bined working set as described in Section 4.1.2. The least number
of partitions that can retain the combined working set can then be
estimated for this overlapped set of instructions. But, this would in-
volve multiple passes of the trace and is clearly impractical. So, we



need a quick approximation of the combined working set from the
individual working set estimates.

To compute the combined working set size for a set of load/store
instructions, we use the IG computed in Section 4.1.3. If an edge
exists between two nodes, they are assumed to interfere. Hence,
the total number of cache blocks required to hold the working set
of both these references combined is the sum of the working set
size of each reference. But, if they do not interfere, the combined
working set size is the maximum of the working set size of both the
references.

Computing Combined Working Sets: We use the graph-
theoretic notion of a clique to compute a combined working set.
Given a set of potentially overlapping instructions, M1, M2, ..., Mn,
we first consider a subgraph within the interference graph consist-
ing of just these nodes. All maximum cliques within this subgraph
are then enumerated. Each clique represents a set of instructions
that occur together in time and hence may conflict. All such in-
structions must be assigned sufficient partitions to prevent conflicts.
For each clique, the sum of the working set size of each node in
the clique is computed. The working set size of the combined set
M1, M2, ..., Mn is therefore the maximum of the computed sums
over all cliques. From this combined reuse distance, Equation 1
can be used to find the most energy efficient cache configuration
for this set of overlapped instructions.

For the interference graph composed of the memory reference
instructions M1-M4 shown in Figure 3(a), all maximum cliques
are enumerated in Figure 3(b). In this example, we assume that the
block size is same as that of the target architecture and hence use
the same reuse distance for each instruction as listed in Figure 2(d).
The reuse distance of the combined graph is two and is shown in
Figure 3(b). From equation 1, for the reuse distance (D) value of
two, three partitions are required (see Figure 2(e)) to achieve a high
hit-rate.

Partitioning Algorithm: We use a simple greedy heuristic to
place the instructions in different partitions. Each memory instruc-
tion in decreasing frequency order is placed starting from the first
partition to the total number of partitions. At each candidate place-
ment point, the most energy efficient cache configuration for that
instruction is selected (Section 4.1.2). If there are previously placed
instructions, the new working set and the corresponding cache con-
figuration is selected by enumerating all possible cliques for the set
of overlapped instructions. Because of the overlaps, the number of
partitions for the current instruction can be more than what would
have been if only that instruction were to be considered in isola-
tion. Among all such potential placement points, the position that
results in the most energy efficient configuration is finally selected
for placement for that instruction. This process is then repeated for
all instructions.

In our example in Figure 2(a), M1 and M4 have a working set
size of one, based on the new block-size computed in Section 4.1.4.
For D equal to zero, the number of partitions selected is one (from
the matrix in Figure 2(e)). Since M1 and M4 interfere (from the IG
in Figure 3(a)), to minimize conflicts, the greedy heuristic places
them in different partitions. Alternately, if they were to be over-
lapped, to fit the combined working set, both the references will
have to be assigned to more than one partition, resulting in more tag
checks than necessary. Similarly, M2 and M3 require a single par-
tition and do not interfere. Their combined working set fits within
a single partition. Hence, M2 and M3 are placed in the same par-
tition but disjointedly from M1 and M4. The final placement of all
Mis and their corresponding load/store instructions are shown in
Figure 3(c).

R/U assignment: The final step of the assignment process
is setting the R/U-bit of load/store instructions. This bit specifies
whether the placed instruction needs to check only the assigned

partitions during cache lookup for the referenced data. If the R-
bit is set, only the assigned ways are probed. If the U-bit is set,
all the ways are probed. This is orthogonal to the assignment to
partitions. The assignment uses the aliased information computed
in Section 4.1.1, where a set of potentially aliasing loads or stores
are grouped into a single set. Two instructions from different sets
are guaranteed not to interfere. If all instructions within the same
points-to set have the same partition assignment, then it is safe
to assign the R-bit to each of these instructions. If not, they are
assigned the U-bit to avoid coherency and duplication issues. In
Figure 3(d), since each of the Mis access distinct data objects, they
are all assigned the R-bit. Thus, in this example, the compiler was
able to restrict each reference to just a single way, thus providing
the energy savings of an oracle way-predictor, while maintaining
the hit rate of a 3-way hardware cache by proactively avoiding
conflicts through careful placement.

5. Experimental Evaluation
5.1 Methodology

We use the Trimaran [36] compiler and simulator infrastructure
for our experiments. The simulator was modified to support the
trace analysis described in Section 4. A parametrized cache sim-
ulator was built to model way-partitioning based on the annotated
load/store instructions generated by the compiler. We assume a
RISC, single-issue processor, similar to ARM926EJ, to study the
effects of partitioning. The compiler includes aggressive classical
optimizations, function inlining, and pointer analysis for load/store
optimizations.

Benchmarks from the MediaBench benchmark suite are evalu-
ated on varying L1 data cache sizes and configurations. The par-
titioning is performed using the train input set run to completion,
while results are reported on a reference input set. The cache sizes
are varied from 1 Kbyte to 32 Kbytes, all with a 32 byte block size.

We evaluate three different way-partition configurations - 2-
part, 4-part, and 8-part, where n-part denotes a partitioning of the
original cache of n-ways into n-partitions such that each partition
is a single way that is direct-mapped and software managed. We
compare against traditional hardware-based 1-, 2-, 4-, 8-, and 16-
way set-associative cache configurations of different sizes. Since
partitioning can default to all ways, the appropriate comparison has
to be made between 2-, 4-, and 8-part to the respective 2-, 4-, and 8-
way set-associative cache. We assume LRU replacement policy for
the hardware-based cache configurations. For the partitioned cache,
when an instruction is assigned to multiple partitions, LRU is used
to select among the assigned partitions.

The basic motivation behind these configurations was to ideally
restrict instructions to just one partition, while assigning conflicting
instructions to different partitions. This allows only a single smaller
direct-mapped way to be activated during each access while achiev-
ing the miss-rate equivalent to a n-way cache. The goal is to level or
even out-perform a set-associative cache while being below the ac-
cess energy envelope of a direct-mapped cache as individual ways
are smaller than a unified direct-mapped cache.

5.2 Results

Tag-checks & Way Assignment: Figure 4(a) shows how effective
the placement is in restricting the number of ways assigned. It
plots two metrics: (i) the average number of dynamic data/tag-
array accesses, and (ii) the average number of partitions that are
assigned per instruction. The first metric is larger than the second
as more ways must be probed to check for the presence of the
referenced data. The lines shown in bold are the same metric for
a hardware managed direct, 2-way, 4-way, and 8-way caches where
both the number of tag-checks and replacements are same as the
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Figure 5. For a 16 Kb cache, (a) Percentage reduction in energy-delay and (b) Percentage annotated ld/st instructions and code size overhead.

associativity of the cache. The partitioned cache can independently
control both the metrics and hence their values are different.

On average, for the 8-part configuration, we observe a 36%
reduction in cache accesses and a 63% reduction in assigned ways
(Figure 4(a)). For the 8-part configuration, the average number
of assigned ways (second bar under Average) is around 2.9. This
means that although there are 8-ways, on an average, it behaves
like a 2.9-way associative cache. Other configurations show smaller
reductions as they have lesser partitions.

As we scale the number of partitions and their sizes, the number
of assigned ways decreases proportionally. This is due to the nature
of our heuristics that adapt depending on the available cache par-
titions. Larger partitions satisfy the working set needs of each in-
struction and hence there is less need to “spread” them across more
ways (Section 4.1.2). Despite assigning to less ways, we are able
to achieve miss rates comparable to hardware-based set-associative
caches that must activate all the available ways.

Improvement in Energy: We focus our energy results on
the data cache sub-system as our optimizations target only the
data cache. Figure 4(b) compares the percentage improvements in
cache energy saved when compared to the corresponding hardware
managed cache with the same number of ways on a 16 Kb cache.

The energy measurements are obtained using CACTI-3.2 [27],
assuming the same physical configuration as shown in Figure 1.
For all caches, we obtain the energy per access for a single way
and scale it by the number of ways activated to compute the total
energy [22]. The Am41PDS3228D SRAM [2] was assumed to be
the off-chip memory with 3.024nJ per access (16-bits).

Since 8-part eliminates all of the misses with a few number
of ways, it achieves the highest relative energy-savings of around
20%. The 2-part is not able to eliminate as many tag/data-array
checks when compared to 4- or 8-part caches and hence we ob-
serve a comparatively smaller relative energy improvement. For
g721encode, we observe almost 50% savings in relative energy
for a 8-part configuration. On average, when all configurations
are compared relative to a direct-mapped cache (not shown), 2-
part partition is the most energy efficient. This is because, the 2-
partitions are able to remove most of the misses with an average of
1.6 tag-checks.

Improvement in Energy-Delay: MediaBench applications
have a small data memory footprint and hence do not require large
caches. On a 16 Kb cache, the conflict misses were almost negli-
gible. Thus, there was no performance advantage in using a par-
titioned data cache compared to a traditional hardware-managed
set-associative cache. But, the partitioned cache has the advantage
of achieving the same performance advantage of a corresponding
set-associative cache without incurring the tag/data-array access
overhead.

Figure 5(a) compares the percentage improvements in the
energy-delay product when compared to the corresponding hard-
ware managed cache with the same number of ways on a 16 Kb
cache. Since we model a single-issue machine, we use the simple
performance equation: Hits + Misses ∗ MissPenalty, where
miss-penalty is assumed to be the off-chip latency of 25 cycles [33].
Energy-delay shows similar trends as energy, where relatively, 8-
part shows maximum savings.



Benchmark 2-part 4-part 8-part 1-way 2-way 4-way 8-way 16-way
rawcaudio 1.3 1.2 1.3 3.8 1.4 1.4 1.4 1.4
rawdaudio 1.4 1.5 1.5 4.2 1.6 1.5 1.5 1.5
g721encode 0.0 0.0 0.0 1.9 0.0 0.0 0.0 0.0
g721decode 0.0 0.0 0.0 2.0 0.0 0.0 0.0 0.0
mpeg2dec 19.0 20.3 19.2 43.1 21.4 26.1 35.7 42.2
mpeg2enc 6.7 4.8 4.6 13.8 7.1 5.2 5.7 8.6
pegwitenc 71.0 70.6 70.2 77.0 71.1 70.6 70.3 70.5
pegwitdec 94.9 94.3 93.8 99.9 95.1 94.5 94.1 94.3
pgpencode 21.1 20.1 20.1 23.1 21.1 20.5 20.1 20.1
pgpdecode 2.0 1.6 1.8 5.4 1.8 1.6 1.6 1.5
gsmencode 1.2 1.0 1.2 1.9 1.1 1.0 1.0 1.0
gsmdecode 1.2 1.1 1.0 1.8 1.2 1.1 0.9 0.9
epic 28.2 27.7 28.2 31.3 28.0 27.6 28.3 28.5
unepic 19.4 13.7 13.8 24.8 20.5 13.8 13.6 13.7
cjpeg 39.3 25.8 21.3 43.0 38.4 26.3 22.5 22.1
djpeg 48.5 30.4 24.7 75.0 48.5 30.9 25.9 25.7
Average 22.2 19.6 18.9 28.2 22.4 20.1 20.2 20.8

Table 1. Misses/1000 instructions with various 1 Kb software and hardware partitioned cache configurations.

Impact on Cache Misses: Table 1 shows the misses/1000 in-
structions for different cache partitions on a 1 Kb cache. A smaller
cache was used to highlight the ability of the partitioned cache ar-
chitecture to reduce conflict misses.

On an average, both 4- and 8-part partitions perform better than
even a 16-way hardware managed cache, while the 2-part partition
performs slightly better than the corresponding 2-way cache. For
mpeg2dec, 4- and 8-part outperforms the 4-way and 8-way cache,
where we observe an increase in misses for higher associativity.
This is due to the non-optimality of LRU. Overall, partitioning is
able to perform as good as the corresponding set-associative cache.

For the 4- and 8-part caches, partitioning is able to remove
around 80% of the conflict misses compared to a direct-mapped
cache, which is close to a 8-way hardware-managed cache (85%).
We observed that capacity misses for the partitioned cache were
lower than in the corresponding set-associative cache. An 8-part
cache achieved a 16% reduction in capacity misses compared to
an 8-way cache. This is because capacity misses are defined based
on a fully-associative cache with LRU, which is not optimal. The
compiler-directed data placement is able to eliminate the misses
such that it equals or even betters the hardware-based strategy by
pro-actively placing the conflicting data elements in different ways.

In our study, we also varied the cache sizes to study the impact
of partitioning on different sized caches with different numbers
of partitions. In general, we found that for smaller caches the
miss-rate improvement is more for partitioned caches because of
higher conflict misses. Higher conflict misses for the base case
provides opportunities for the compiler to reduce them by pro-
actively avoiding conflicts among co-accessed data items using a
whole program knowledge. Secondly, two and four partitions often
perform as good as a 8-way set-associative cache. Since fewer
partitions consume less energy while maintaining low miss-rates,
they are recommended partition configurations.

Code Size: Figure 5(b) shows the percentage of static load/store
instructions that are annotated by the compiler on a 4-part 16 Kb
cache. The compiler annotates only the most frequently executed
and profitable instructions, while the rest are assigned to all parti-
tions. On average, only 6% load/stores are annotated. As described
in Section 3, these annotated instructions require an extra move
instruction to initialize the CAR with the bit-vector corresponding
to the assigned partitions. Since many instructions are assigned
to the same set of partitions, common sub-expression elimination
and loop-invariant code-motion is applied to remove such redun-
dant moves. The graph also shows that the static move instructions
(right bar of Figure 5(b)) inserted average around 0.4%. The dy-
namic cycle count increase observed is less than 1%. Thus, the

code size increase and performance overhead of these moves is
negligible.

6. Related Work
Multiple/Split Partitioned Caches: A variety of hardware cache
organizations [11, 26, 29] consisting of multiple/split caches aimed
at storing data based on spatial, temporal, or a combination of
access pattern behavior have been explored in the past. All of
these schemes employ hardware techniques to dynamically clas-
sify memory blocks into each of the special caches (partitions). The
cache controller is modified to detect the access pattern and route
the data to the appropriate cache partition. Recently, hardware-
based programmable decoders have been suggested in [41] to
reduce conflict misses in direct-mapped caches. Hardware-based
dynamic partitioning of shared caches for multiple processes or
threads [34] have also been proposed.

The use of compile time classification of memory reference
instructions into spatial, temporal, and spatial-temporal has been
explored in [30]. The classified data references are then cached
into three separate organizations. At run-time, the cache controller
places data in a given cache depending on the instruction. Spatial
and temporal caches are very small and fully associative, while
spatial-temporal caches are larger. Different block sizes are also
used for each of the caches.

Although our partitioned cache approach is similar in spirit
to earlier work on split caches, our scheme is more flexible in
that we allow more generalized form of partitions. In addition,
instead of a dedicated hardware controller deciding on what data
needs to reside in which partition, the compiler, is used to make
partitioning decisions. Most other partitioning schemes physically
partition the caches with customized configurations which might
not be applicable for all workloads. In comparison, our scheme can
easily be defaulted to a traditional unified cache by using regular
load/store instructions.

The partitioned cache techniques presented in [14, 25] differ
from the scheme we propose in several aspects. Their hardware
scheme does not handle coherency issues, whereas we selectively
probe all cache partitions to detect and resolve coherency and
data duplication. Our scheme also has the ability to specify mul-
tiple non-contiguous partitions with possibly a global replacement
among the different partitions. In addition, we only need to parti-
tion a select set of load/store instructions and can easily default to
a traditional cache based on the needs of the application. [14, 25]
use hardware-based partition descriptor tables to record the size
and offset of the partitions in the original cache. The PC of the



load/store instruction is used to index into another table to iden-
tify the assigned partition. This can affect hit time. They limit their
analysis to loops with affine accesses and do not handle multiple
partitions for a single load/store.

Coarser-Grained Partitioning: While our method uses a fine-
grained approach to partitioning, more coarser-grained techniques
have been studied in the past. A hardware/compiler scheme is used
in [37] to classify an instruction as cacheable or non-cacheable
based on the miss rate. In region-based caching [18], caches are
partitioned depending on whether an access is to the heap, stack,
or the global address space. Minimax caches [38] partition scalars
and non-scalars to different caches to reduce conflicts. Page-based
partitioning has been proposed in [33], where a smaller direct-
mapped cache is placed next to a larger main cache. To avoid con-
flict misses, page coloring schemes have been proposed in the past
[32]. But, these require additional OS support and are dependent
on whether the cache is virtually or physically indexed. Moreover,
they are targeted towards reducing just the conflicts within a cache
and not towards reducing the number of tag lookups. Our scheme
can control data placement irrespective of the underlying address-
ing schemes. It allows more fine-grained partitioning and control
and can emulate the above strategies by annotating the instructions
based on their broader classification. Instruction-driven control can
generalize to all kinds of data access patterns.

Hardware/Software Cache Management: FlexCache [21]
uses software-based cache management by grouping references to
hot pages to avoid redundant tag-checks. This can affect hit-case
latency, which is reduced using ISA extensions and special registers
to store the address translations. They do not target partitioned
caches, which combine the benefit of both traditional caches and
software management.

Way-partitioning [9] partitions the ways (columns) of a cache
such that the replacement decisions are restricted to certain ways. A
bit-vector is used to restrict the allowable ways and use the reserved
partitions as scratch-pad memories. They do not make fine-grained
replacement decisions on a per instruction basis, which allows us
to tackle both energy and conflict misses. Their technique performs
partitioning at the page-level by modifying the TLB. Moreover,
they do not allow restricting lookups to the assigned partitions.
Thus, our technique generalizes on their method.

Cache management through compiler specified hints has been
proposed in [31] to decide what data is to be retained/evicted. But,
their focus is on reducing conflicts and are not always applicable in
general, especially in the presence of dynamically allocated data.
The hardware still performs energy inefficient tag checks. Our work
instead tries to efficiently use the available ways in a set-associative
cache for energy improvements while maintaining performance
through a mix of static and profile-driven analysis. The proposed
solution can be applied over the existing code/data re-organization
techniques [28, 8] to further improve performance.

Hardware/Software Techniques Towards Cache Energy
Savings: To reduce the energy consumed in set-associative caches,
recently, pseudo set-associative caches have been proposed [7, 12,
13, 42]. The basic idea is to probe each of the ways sequentially
or use some form of hardware way prediction. For the common
case, where the first access results in a hit, there can be substantial
savings in energy and access time. Unlike our method, the prob-
ing is done in hardware with no compiler control. Our technique is
more general, as it can selectively activate different sets of tag/data-
arrays for different references in the application without incurring
any cycle time overheads. In fact, for instructions that need to ac-
cess multiple ways, we can allow techniques similar to theirs to
further reduce power at the expense of increased cycle time. Dy-
namically reconfigurable caches have been proposed in [1, 3, 40]
where selected portions of the cache can be disabled for energy

savings and for dynamically tuning the memory configuration de-
pending on the application’s needs. Compiler-based techniques to
reduce tag energy have been proposed in [39]. These techniques do
not try to reduce conflict misses. Alternately, banking [10] can be
deployed to reduce cache access energy, but this is orthogonal to
partitioning and can be applied to individual partitions if desired.

7. Conclusion
In this paper, we presented a novel compiler-managed partitioned
cache architecture, where individual ways within the cache are ex-
plicitly controlled by load/store instructions. These load/store in-
structions provide directives to the hardware to control placement
within individual ways, as well as regulating the ways that need be
probed during cache access. This primary benefit is avoiding re-
dundant tag/data array checks, thus reducing energy. Performance
improvement can also be achieved by reducing conflict misses
through intelligent placement of data. In addition, a compiler algo-
rithm that uses whole program knowledge and profile information
is presented that assigns instructions to the partitions with negligi-
ble increase in code size. An average of 15% energy savings was
achieved with four 4 Kb direct-mapped caches when compared to
a traditional 4-way set-associative 16 Kb cache.
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