
Compiler Managed Dynamic Instruction Placement in a
Low-Power Code Cache

Rajiv A. Ravindran1, Pracheeti D. Nagarkar1, Ganesh S. Dasika1,
Eric D. Marsman1, Robert M. Senger1, Scott A. Mahlke1, and Richard B. Brown2

1Dept. of EECS, University of Michigan, Ann Arbor
1{rravindr, pnagarka, gdasika, emarsman, rsenger, mahlke}@umich.edu

2College of Engineering, University of Utah, Salt Lake City
2brown@coe.utah.edu

ABSTRACT
Modern embedded microprocessors use low power on-chip mem-
ories called scratch-pad memories to store frequently executed
instructions and data. Unlike traditional caches, scratch-pad
memories lack the complex tag checking and comparison logic,
thereby proving to be efficient in area and power. In this work,
we focus on exploiting scratch-pad memories for storing hot
code segments within an application. Static placement tech-
niques focus on placing the most frequently executed portions of
programs into the scratch-pad. However, static schemes are in-
herently limited by not allowing the contents of the scratch-pad
memory to change at run time. In a large fraction of applica-
tions, the instruction memory footprints exceed the scratch-pad
memory size, thereby limiting the usefulness of the scratch-pad.
We propose a compiler managed dynamic placement algorithm,
wherein multiple hot code sequences, or traces, are overlapped
with each other in the scratch-pad memory at different points in
time during execution. Special copy instructions are provided
to copy the traces into the scratch-pad memory at run-time. Us-
ing a power estimate, the compiler initially selects the most fre-
quent traces in an application for relocation into the scratch-pad
memory. Through iterative code motion and redundancy elim-
ination, copy instructions are inserted in infrequently executed
regions of the code. For a 64-byte code cache, the compiler
managed dynamic placement achieves an average of 64% en-
ergy improvement over the static solution in a low-power em-
bedded microcontroller.

1. INTRODUCTION
With the proliferation of cellular handsets, digital cameras,

and other portable computing systems, power consumption in
microprocessors has become a dominant design concern. Power
consumption directly affects both battery lifetime and the am-
ount of heat that must be dissipated, thus it is critical to create
power-efficient designs. However, many of these devices per-
form computationally demanding processing of images, sound,
video, or packet streams. Thus, simply scaling voltage and fre-
quency to reduce power is insufficient as the desired perfor-
mance level cannot be achieved. Hardware and software so-
lutions that maintain performance while reducing power con-
sumption are required.

With embedded processors, the instruction fetching subsys-
tem can contribute to a large fraction of the total power dis-
sipated by the processor. For example, instruction fetch con-
tributes 27% in the StrongARM SA-110 [11], and almost 50%
for the Motorola MCORE [19] of the total processor power. In-
tuitively, this makes sense as instruction fetch is one of the most

active portions of a processor. Instructions are fetched nearly
every cycle, involving one or more memory accesses, some of
which may be off-chip accesses. For this paper, we focus on
reducing instruction fetch power.

A number of approaches have been taken by designers to re-
duce instruction fetch energy. First, more efficient instruction
cache designs can be employed to reduce dynamic or leakage
power [16]. Second, instruction compression techniques can be
employed to reduce the number of instruction bits that need to be
fetched [21]. Or third, bus encoding schemes can be employed
to reduce the number of bits that switch each cycle [6].

Another approach that is particularly effective for embedded
systems is to use loop caches (LCs) [17, 5, 20, 10, 30, 29]. LCs
are small instruction buffers that can be designed to have ex-
tremely low-power per access. They are most effective when
execution is dominated by small loops whose bodies can reside
entirely within the LC. LCs can be broadly classified into two
categories: hardware or software managed.

With a hardware managed approach, loops are dynamically
copied into the LC and fetch is re-directed from the L1 instruc-
tion cache to the LC using limited hardware support [10, 20].
Hardware managed caches, referred to as filter or L0 caches [17],
use cache-like tags but are often small and direct-mapped, hence
their power characteristics and access time are much better than
those of conventional caches. But, they suffer from high miss
rates and cache management overhead.

To eliminate the overhead of tag comparisons, a tag-less LC
has been proposed [20, 19]. Here, the LC is a small instruc-
tion buffer placed between the processor and the L1 instruction
cache. A LC controller is responsible for identifying recurring
code segments in the dynamic instruction stream, filling the LC,
and redirecting fetch to the LC. This design can be more power
efficient than the hardware tagged approach. However, there
are several negatives of this approach, including LC controller
complexity, the inability to relocate loops with control flow or
subroutine calls, and the controller may make poor choices as it
does not have a complete view of the program execution.

Conversely, software managed LCs (also called code caches
or scratch-pad memories [22, 28]) reduce hardware manage-
ment overhead by relying on the compiler to insert code seg-
ments into the LC. A recent study [4] showed that scratch-pad
memory has 40% lower power consumption than a cache of
equivalent size. The most common strategy is to statically map
hot blocks into the LC using profile information [5, 15, 24].
Software static schemes have the advantage of no run-time copy
overhead. Further, a global optimal placement can be performed
to maximize the LC effectiveness over the entire run of the ap-
plication. However, the major negative is that the LC contents



IF
 / ID

ID
 / E

X

Memory Management Unit

PC

S
H

IF
T

E
R

RF0

W
indo

w
 C

o
ntro

l

RF1

ARF0

ARF1

ALU

A
D

D

Peripherals
Boot 

ROM
RAM

2

Interrupt 

Controller

LOOP

 CACHE

Figure 1: The WIMS microcontroller in TSMC 0.18µm CMOS and the WIMS pipeline with the loop cache.

cannot change during execution.
Software static schemes break down when a program has mul-

tiple important loops that collectively cannot fit in the LC. As a
result, only a subset of the loops can be mapped into the LC.
To overcome this problem, compiler-directed dynamic place-
ment has been recently proposed [25, 31]. With this approach,
the compiler inserts copy instructions into the program to copy
blocks of instructions into the LC and redirect instruction fetch
to the LC. As a result, the compiler can change the contents of
the LC during program execution as it desires by inserting copy
instructions at the appropriate locations. Compiler-directed dy-
namic placement has the potential to combine the benefits of the
hardware-based schemes with the low-overhead of the software-
based schemes. Previous approaches to dynamic placement use
an integer linear programming (ILP) technique to find an op-
timal placement of instructions/data into the LC [25, 31]. But
ILP-based approaches may not be practical in terms of run-time
and often fail for moderate to large sized applications.

In this work, we propose a new approach for compiler-directed
dynamic placement. An inter-procedural heuristic for identify-
ing hot instruction traces to insert in the LC is proposed. Based
on a profile-driven power estimate, the selected traces are then
packed into the LC by the compiler, possibly sharing the same
space, such that the run-time cost due to copying the traces,
is minimized. Through iterative code motion and redundancy
elimination, copy instructions are inserted in infrequently exe-
cuted regions of the code to copy traces into the LC. The ap-
proach works with arbitrary control flow and is capable of in-
serting any code segment into the LC (i.e., not just a loop body).
A more detailed comparison of our work with the ILP-based so-
lution is provided in Section 4.3.

2. WIMS ARCHITECTURE

2.1 Overview
Our work in this paper is based on a real hardware platform

that was designed to control a variety of miniature, low-power
embedded sensor systems called the WIMS (Wireless Integrated
Microsystems) microcontroller [23]. The microcontroller fabri-
cated in TSMC 0.18µm CMOS is shown in Figure 1 and consists
of three major sub-blocks: the digital core, the analog front-end,
and the CMOS-MEMS clock reference. Power minimization
was a key design constraint for each of the sub-blocks.

A 16-bit load/store architecture with dual-operand register-to-
register instructions was chosen to satisfy the power and perfor-
mance requirements of the microcontroller. A 16-bit datapath
was selected to reduce the complexity and power consumption
of the core while providing adequate precision in calculations,

given that the sensors controlled by this chip require 12 bits of
resolution. A unified 24-bit address space for data and instruc-
tion memory satisfies the potentially large storage requirements
of remote sensor systems. The current implementation of the
core has four 16Kb banks of on-chip SRAM with a memory
management unit that disables inactive banks.

A 16-bit WIMS instruction set was custom designed and in-
cludes 77 instructions and eight addressing modes. The 16-bit
instruction encoding was chosen so as to reduce the instruction
memory footprint and thus the instruction fetch energy. The core
contains sixteen 16-bit data registers that are split into two regis-
ter windows with eight data registers each. Similarly, four 24-bit
address registers are evenly split into two register windows.

WIMS Loop Cache: The WIMS design is somewhat atyp-
ical of most processors used in previous research in that it con-
tains no caches. Caches were not needed because memory ac-
cesses to the on-chip SRAM banks complete in one cycle. More-
over, the area/power overhead associated with the tag memory
and logic for tag comparisons of conventional cache organiza-
tions did not make sense in the design. However, instruction
fetch contributes a large fraction of the overall power dissipa-
tion of the chip (around 30% for the WIMS processor), thus
a simple, software-managed code cache was added to the de-
sign. Note that we shall refer to the code cache as an LC for
consistency with previous papers though there is no limitation
of storing only loop bodies in it. The LC is a small SRAM
(512-bytes in the current design) that can be designed with sub-
stantially lower power dissipation characteristics than the 16KB
banks used for the rest of the memory (“main memory”). Fig-
ure 1 shows the architecture block diagram of the WIMS micro-
controller with the LC. The LC occupies a range of the physical
address space, thus copying instructions into the LC corresponds
to copying instructions into those specific physical addresses.

The goal of the compiler support proposed in this paper is
to make effective use of the LC by dynamically copying in-
structions into it for programs with general control structures.
To this end, a single instruction was added to the WIMS archi-
tecture, LC COPY. The LC COPY takes three source operands:
the address of the first instruction of the region of code to be
copied (PC relative), the starting chunk in the LC to begin place-
ment, and the number of chunks to copy. The LC is logically
divided into chunks, each being a fixed size (16 bytes for our ex-
periments). A chunk represents minimum granularity at which
copies can occur. By subdividing the LC into chunks, fewer bits
to encode the operands were needed which was important to fit
into the 16-bit encoding. The LC COPY instruction copies num-
ber of chunks * size per chunk bytes into the LC beginning at the
starting chunk. The processor stalls while the copy takes place.
The copying can be implemented using a direct memory access



(a)

(c)

96 

bytes

T1 

(64 bytes)

T2

(32 bytes)

T1 

(64 bytes)

T2

(32 bytes)

(b)

profit  T1: 64 * 100   = 6400

profit  T2: 32 * 1000 = 32,000

profit  T3: 32 * 50     = 1600

bar()

BB1

BB2

BB3

BB4

BB6

BB7

BB5

BB14

BB8

BB9

BB10

BB11

BB12

BB13

T2

T3

freq = 1000

freq = 50

Copy2 for T2

Copy1 for T1

Copy4 for T3

BB1

BB2

foo()

T1
freq = 100

Copy3 for T2

size = 64b

size = 32b

size = 32b

lo
o
p

 c
ac
h

e 
sp

ac
e

Loop cache size (96 bytes)

T1

T2 T2T3 T3

time
copy1 copy4 copy3 copy4copy2

64b

32b

lo
o
p

 c
ac
h

e 
sp

ac
e

Loop cache size (96 bytes)

T1

T2 T2T3 T3

time
copy1 copy4 copy3 copy4copy2

64b

32b

10

10

copy 

T1

copy 

T2

copy 

T3

over

T2

lo
o
p

 c
ac
h

e 
sp

ac
e

Loop cache size (96 bytes)

T1

T2 T2T3 T3

time
copy1 copy4 copy3 copy4copy2

64b

32b

lo
o
p

 c
ac
h

e 
sp

ac
e

Loop cache size (96 bytes)

T1

T2 T2T3 T3

time
copy1 copy4 copy3 copy4copy2

64b

32b

copy 

T2

over

T3

copy 

T3

over

T2

static allocation dynamic allocation

Figure 2: Example (a) weighted control flow graph (b) static allocation (c) dynamic allocation as a function of time.

engine or as a software interrupt. In our experimental studies,
we assume that the LC COPY can copy 2-bytes per cycle.

Targets of branches into regions of the code that have been
selected by the compiler are modified to point to the addresses
in the LC where the region would be placed dynamically by the
WIMS assembler/linker. Instruction fetch is thus redirected to
the LC whenever control enters into a selected code region.

2.2 Dynamic Placement Motivation
To demonstrate the issues and benefits of dynamically copy-

ing instructions into the LC, consider the example shown in Fig-
ure 2. Figure 2(a) shows a control flow graph consisting of three
hot regions shaded in gray. The shaded regions represent fre-
quently executed sequence of basic blocks (BBs) in the code
called traces [13]. Trace T1 consists of BBs 4, 6, and 7, T2
of BBs 9 and 10, while T3 contains a single BB, 12. These
traces were identified by profiling the program on a sample in-
put. Traces can include either a whole loop (e.g., T3), a part of
a loop (e.g., T1), embedded procedure calls (e.g., T2), or any
other complex control flow. The traces are annotated with the
profile weights (frequency) and size in bytes.

For illustration, assume the LC size is 96-bytes. The trace
profit, which measures the desirability of placing a trace in the
LC, is given by its size in bytes times the profile weight (Fig-
ure 2(a)). Figure 2(b) shows the contents of the LC for a static
allocation scheme. As the LC can hold only 96-bytes, the static
scheme packs only the top two profitable traces, T1 and T2, of
sizes 64 and 32-bytes, respectively, into the LC. But, the dy-
namic scheme (Figure 2(c)), is able to allocate all traces by in-
serting copy instructions as shown on the edges in Figure 2(a).
Copy 1 (for T1) is executed once before entering the inner loop,
thus T1 remains in the LC throughout its lifetime. Copies 2 and
3 (both for T2), and copy 4 (for T3) alternately insert T2 and
T3 into the same location in the LC. Each copy ensures that the
trace is inserted into the LC before they are executed. It should
be noted that copy 3 and copy 4 have to be placed within the
outer loop to copy traces T2 and T3 prior to their execution.
By effectively overlapping multiple blocks of code and placing
copies appropriately, the dynamic scheme is able to capture all
the hot regions and thus achieve better LC utilization. This ap-
proach was first used in pre-virtual memory management oper-
ating systems for overlaying code for different processes.

3. DYNAMIC PLACEMENT

3.1 Overview
The dynamic instruction placement scheme has been imple-

mented within the Trimaran [27] compiler framework. The com-
piler frontend performs control flow profiling and annotates the
intermediate representation (IR) with traces [13]. Traces are
frequently executed linear sequences of basic blocks that are
contiguously laid out in memory [9]. Traces are formed with
a 60% probability of an in-trace transition and with size limited
to that of the LC. These traces are considered as candidates for
placement into the LC. The dynamic placement phase, based
on the execution profile information, then inserts the LC COPY
instructions into the IR. The WIMS assembler/linker assigns in-
structions to physical memory locations including adjusting of
the branch targets for the relocated code.

The dynamic placement algorithm has two objectives: (i) se-
lect traces from the program and place them into locations in
the LC such that the energy benefit is maximized, and (ii) place
copy instructions so that traces are copied prior to execution
while minimizing the overhead due to copying. To achieve these
objectives, the dynamic placement is divided into two distinct
phases - trace selection/placement and copy placement. The
trace selection/placement phase, using the execution profile in-
formation and the annotated traces from the IR, selects the most
beneficial traces and decides where they are to be placed in
the LC using an energy benefit heuristic. The placement phase
could possibly overlap the traces within the LC. The placement
decisions are driven by energy considerations and do not take
performance into account. Following this, the copy placement
phase naı̈vely inserts copy operations on every entry edge of
a selected trace in the IR. This ensures that whenever control
reaches a trace that has been placed in the LC, it is copied prior
to execution. Many of these copies may be redundant or present
on highly executed paths, thus causing high copy overhead. Ba-
sed on a liveness analysis scheme, the copies are then hoisted
in the control flow graph (CFG) across procedure boundaries to
less frequently executed blocks so as to reduce the copy over-
head while maintaining correctness of execution.

The example in Figure 2 is used throughout this section to
illustrate how the candidate traces, T1, T2, and T3 are placed
in the LC and how subsequent copy insertion and hoisting are



BB1

BB2

BB3

BB4

BB6

BB7

BB5

BB14

BB8

BB9

BB10

BB11

BB12

BB13

T1

T2

T3

(a)

(b)

Benefit:

ProfileWeight * (TraceSize * ChunkSize)/FetchSize * (MMFetchEnergy - LCFetchEnergy)

T1: 100*((4*16)/2 )*(2-1)  = 3200 nJ

T2: 1000*((2*16)/2)*(2-1) = 16,000 nJ

T3: 50*((2*16)/2)*(2-1)     = 800 nJ

CopyCost:

(TraceSize * ChunkSize)/FetchSize * (MMFetchEnergy + LCWriteEnergy)

T1: ((4*16)/2)*(2+1) = 96 nJ

T2: ((2*16)/2)*(2+1) = 48 nJ

T3: ((2*16)/2)*(2+1) = 48 nJ

100

size = 4

BB1

BB2

50

size = 2

size = 2

1000

bar()

foo()

10

10

NetGain = Benefit – CopyCost

T1: 3200 – 96   = 3104 nJ

T2: 16000 – 48 = 15952 nJ

T3: 800 – 48     = 752 nJ

(c)

Figure 3: Trace selection and placement example. (a) CFG (b) Benefit and CopyCost computation for traces T1, T2, and T3.

performed for these selected traces. The CFG is redrawn in Fig-
ure 3(a) for convenience. The trace selection/placement and the
copy placement phases are detailed in the sections below.

3.2 Trace Selection/Placement
The trace selection phase takes as input the IR annotated with

the traces. Traces are chosen as candidates for LC allocation for
two reasons. First, they help reduce the number of copies as a
single copy instruction can copy a large amount of frequently
executed code, like a loop body, into the LC. Second, a trace
is a high frequency path of execution consisting of basic blocks
connected by fall-through edges; thus, the number of control
flow transfers in and out of the LC is reduced. Conversely, traces
are fine grained enough to enable selection of small hot program
segments for general applications.

Trace selection/placement involves picking traces and plac-
ing them in the LC such that there is a savings in instruction
fetch energy. If a trace is placed in the LC, then whenever the
trace is executed, it has to be executed out of the LC. This is
required as all branches into the trace have their offsets changed
to the location in the LC where the trace will be placed. Thus,
the trace needs to be copied prior to execution which involves a
copy overhead. Also, the exact placement of the trace in the LC
is important because if traces overlap in the LC, repeated copies
may be required. The trace selection/placement algorithm se-
lects and places a trace at a particular location in the LC only if
there is an overall energy benefit for that trace. The trace selec-
tion/placement consists of two steps - (i) computing the energy
gain for every trace, and (ii) placing the trace into the LC.

Computing Trace Energy Gain: For a trace to be consid-
ered as a candidate for placement in the LC, the energy savings
obtained in executing the trace out of the LC must be greater
than a one-time copy overhead. Thus, traces with a higher copy
overhead than the potential energy gain are non-beneficial and
can be filtered out. For every trace, Ti, the copy cost and bene-
fit of placing the trace in the LC is initially computed assuming
that the LC is of infinite size and the trace does not overlap with
any other trace. Since copying into the LC takes place at the
chunk granularity, the size of the trace is computed in number
of chunks. In Figure 3(a), T1, T2, and T3 are assumed to take 4,
2, and 2 chunks, respectively. The cost of copying a trace into

the LC is the sum of the energy needed to fetch the trace from
the main memory and write the trace into the LC. The copy cost
(measured in nJoules) is given by the equation:

CopyCost(Ti) =
TraceSize(Ti) ∗ ChunkSize

FetchSize
∗ (1)

(MMFetchEnergy + LCWriteEnergy)

where TraceSize(Ti) is the size of Ti in chunks, ChunkSize

is the size of a single chunk (assumed 16-bytes), and FetchSize

is the number of bytes accessed per fetch from main memory to
the LC (assumed 2-bytes per access). MMFetchEnergy and
LCWriteEnergy are the energy required for a single fetch
from main memory and a single write into the LC, respectively.

The benefit of placing a trace in the LC is the savings in en-
ergy obtained when the trace is executed out of the LC as op-
posed to executing from main memory. The benefit (measured
in nJoules) is given by the equation:

Benefit(Ti) = ProfileWeight(Ti) ∗
TraceSizeTi ∗ ChunkSize

FetchSize
∗ (2)

(MMFetchEnergy − LCFetchEnergy)

where LCFetchEnergy is the energy required for a single
fetch out of the LC and ProfileWeight(Ti) is the execution
frequency of Ti obtained through profiling. The calculation of
CopyCost and Benefit for traces T1, T2, and T3 for the run-
ning example are shown in Figure 3(b). Here, we assume that
the main memory fetch energy is 2 nJ, while LC fetch/write
energy is 1 nJ. The net energy gain of placing a trace is the
difference between the benefit and the copy cost defined as,
NetGain(Ti) = Benefit(Ti) − CopyCost(Ti), as shown
in Figure 3(c). Traces for which the net gain is less than zero are
not considered further for placement.

Placing Traces into the Loop Cache: The placement algo-
rithm decides where each trace is placed in the LC. A trace occu-
pies continuous locations in memory and hence is assigned to a
sequence of contiguous chunks. Thus, the placement algorithm
has to decide on the best starting chunk. If a given trace solely
occupies a sequence of chunks, then the benefit of placing the
trace is the same as NetGain. But, this is simply static place-
ment. Dynamic placement allows multiple traces to occupy the
same LC chunk. However, a trace must be recopied whenever it



T2

T2

Loop Cache

(d)

T3 & T2 overlap:

Edge weight:  48 +  48 = 96nJ

net_benefit (T3): 800 – 96 = 704nJ         (1)

T3 & T1 overlap:

Edge weight: 96 + 48 = 144nJ                                    

net_benefit (T3): 800 – 144 = 656nJ       (2)

(1) is better than (2). Hence T3 is placed over T2.

T2

T2

Loop Cache

T1

T1

T1

T1

T2, T3

T2, T3

Loop Cache

T1

T1

T1

T1

net_benefit(T2) : 16,000 nJ net_benefit(T1) : 3200 nJ

(b)

Edge weight calculation between T1 & T2 

(dynamic copy cost)

T1: 2 copies, T2: 2 copies;

2 * 96 + 2 * 48 = 432nJ

(c)

T1 T2

T3

2*CopyCost(T1) + 2*CopyCost(T2) = 432nJ

C
op

yC
os

t(T
2)

 +
 C

op
yC

os
t(T

3)
 =

 9
6n

J

C
opyC

ost(T
1) +

 C
opyC

ost(T
3) =

 144nJ

T1 T1 T2 T2 T2 T1 T1 T2 T2 T2 T3 T1 T1 T2 T2 T2 T3

(a)

0

1

2

3

4

5

0

1

2

3

4

5

0

1

2

3

4

5

Figure 4: Trace selection and placement example. (a) Dynamic execution trace (b) Temporal relationship graph. (c) Edge weight calculation
between nodes T1 and T2 (d) Placement of T1, T2, and T3 into the LC.

gets displaced by an overlapping trace. Dynamic placement is
successful when the combined benefit of placing multiple traces
is more than the overhead due to repeated copying.

In order to compute the overhead due to repeated copying, the
previous cost/benefit analysis is extended to account for the ad-
ditional copying cost (Dynamic Copy Cost). To this end, a tem-
poral relationship graph [14] (TRG) is constructed based on a
dynamic execution trace. The dynamic execution trace consists
of traces and is obtained during execution profiling. Figure 4(a)
shows the dynamic execution trace for a sample run of the pro-
gram in Figure 3(a). The TRG helps to estimate the number of
dynamic recopies required if two traces overlap in the LC.

The nodes in the TRG are the traces, while the edges are anno-
tated with the dynamic copy cost. Between every pair of nodes
Ti and Tj , the edge weight denotes the number of copies of Ti

(CopyCost(Ti)) for any Tj that occurs between every two con-
secutive occurrences of Ti in the dynamic execution trace. A Tj

occurring between two consecutive instances of Ti implies that
Ti needs to be recopied prior to its second occurrence, if Ti and
Tj overlap in the LC. The TRG is constructed by linearly scan-
ning the input dynamic execution trace and maintaining a queue
of currently seen traces. Each new trace Ti, seen in the input,
is added to the queue. The queue is then scanned, starting from
the tail, for a previous occurrence of Ti. For every unique trace
Tj seen prior to the previous occurrence of Ti, the edge weight
between Ti and Tj is incremented by the copy cost of Ti. The
previous occurrence of Ti is then deleted from the queue as the
new instance of Ti becomes the next previous occurrence.

The TRG for the dynamic execution trace in Figure 4(a) is
shown in Figure 4(b). Considering T1 and T2 alone, there is
an instance of T2 between every instance of T1 and vice-versa.
Thus, if T1 and T2 overlap in the LC, two recopies of both
T1 and T2 are required. The edge weight between nodes T1
and T2 is therefore 2 ∗ CopyCost(T1) + 2 ∗ CopyCost(T2)
(Figure 4(c)), where CopyCost is computed as shown earlier in
Equation 2. Intuitively, the edge weights measure the overhead
due to conflicts in the LC when the nodes (traces) that share the
edge are made to share LC chunks. The dynamic copies rep-
resent the minimum set of copies for a sample input. But in
reality, the compiler may not be able to achieve this as it has to

Sorted_Trace_List =
Traces sorted in decreasing order of NetGain;

for each trace T in (Sorted_Trace_List) {
benefit_found = false;
for (c = 0; c < NUM_LC_CHUNKS; c++) {
if (c+num_of_chunks(T) > NUM_LC_CHUNKS)
break;

Intersect_Traces =
set of intersecting traces
at LC chunks c to c + num_of_chunks(T);

Dynamic_Copy_Cost =
Compute_Copy_Cost(T, Intersect_Traces)

net_benefit = Benefit(T) - Dynamic_Copy_Cost;
if (net_benefit > curr_max_benefit) {
curr_max_benefit = net_benefit;
best_start_chunk = c;
benefit_found = true;

}
}
if (benefit_found)
Place_Trace(T, best_start_chunk);

}

Compute_Copy_Cost(T, Intersecting_Traces)
{
edge_wt = 0;
for every Ti in Intersecting_Traces
edge_wt += Edge_Weight(T, Ti, TRG);

return edge_wt;
}

Figure 5: Pseudo code to select and place traces in the LC.

conservatively insert copies to ensure the legality constraint (see
Section 3.3).

The placement algorithm uses the dynamic copy costs (edge
weights in the TRG) to place each trace in the LC. The pseudo
code for the trace selection/placement is shown in Figure 5.
Traces are considered for placement in the decreasing order of
gain (NetGain > 0). Each trace is considered at a particular
chunk using Compute Copy Cost and is greedily placed at the
LC index with the maximum net benefit.

Figure 4(d) shows how T1, T2, and T3 are placed in the LC.
Initially, since the LC is empty, T2, the highest benefit trace
with net benefit = Benefit, is placed at chunk 0. T1 is placed at
chunk 2 where there is maximum net benefit and zero interfer-
ence. Since the LC is now full, T3 has to overlap with either
T1 or T2. The dynamic copy costs when T3 overlaps with T2
and T1 (edge weights between T3-T1 and T3-T2) are shown on
the right in Figure 4(d). Since both the choices have positive
net benefits, there is an advantage in placing T3 in the LC. The
net benefit when T3 overlaps with T2 is higher than T1, hence
T3 is placed at chunk 0 overlapping with T2.

It should be noted that traces are obtained for the whole pro-



(a)

BB1

BB2

BB3

BB4

BB6

BB7

BB5

BB14

BB8

BB9

BB10

BB11

BB12

BB13

T1

T2

T3

100

1000

50

C12

C13

C11

C23

C21

C32

C31

BB1

BB2

bar()

foo()

(b)

bar()

BB1

BB2

BB3

BB4

BB6

BB7

BB5

BB14

BB8

BB9

BB10

BB11

BB12

BB13

T2

T3

1000

50

C11

C21

C31

BB1

BB2

foo()

T1
100

Live-range of T2 

before hoist of C21:

BBs: {2, 3, 4, 5, 6,

7, 8, 9, 10, 11,

14, 1(proc. bar), 2(proc. bar)}

Live-range of T2 

after hoist of C21:

BBs: {2, 3, 4, 5, 6,

7,8, 9, 10, 11, 14, 

1(proc. bar), 2(proc. bar), 13}

Live-ranges do not intersect

Hence hoist legal

Live-range of T3

before hoist of C31:

BBs: {12}

Live-range of T3 

after hoist of C31:

BBs: {11, 12}

After hoist of C31

live-ranges of

T2, T3 intersect (BB12). 

Hence hoist is illegal!

Live-range

T1: {BB4, BB6, BB7}

T2: {BB9, BB10}

T3: {BB12}

hoist?

hoist?

C22

10

10

10

10

bar()

BB1

BB2

BB3

BB4

BB6

BB7

BB5

BB14

BB8

BB9

BB10

BB11

BB12

BB13

T2

T3

1000

50

C11

C21

C31

BB1

BB2

foo()

T1
100

C22

Live-range T1: 

BBs: {1, 2, 3, 4,

5, 6, 7, 8, 9, 10,

11, 12, 13, 14,

1(proc. bar), 2(proc. bar)}

Live-range T2: 

BBs: {1, 2, 3, 4,

5, 6, 7, 8, 9, 10,

11, 14, 1(proc. bar), 2(proc. bar), 13}

Live-range: T3: BB 12

10

10

bar()

BB1

BB2

BB3

BB4

BB6

BB7

BB5

BB14

BB8

BB9

BB10

BB11

BB12

BB13

T2

T3

1000

50

C11

C21

C31

BB1

BB2

foo()

T1
100

C22

Live-range T1: 

BBs: {1, 2, 3, 4,

5, 6, 7, 8, 9, 10,

11, 12, 13, 14,

1(proc. bar), 2(proc. bar)}

Live-range T2: 

BBs: {1, 2, 3, 4,

5, 6, 7, 8, 9, 10,

11, 14, 1(proc. bar), 2(proc. bar), 13}

Live-range: T3: BB 12

10

10

(c)

Figure 6: Copy placement example. (a) Initial copies inserted (b) Hoisting of copies and live-range computation (c) Final copy placement.

gram. This allows selection and placement of traces across all
procedures such that the conflicts are minimized. The placement
heuristic is a greedy heuristic, giving preference to traces of
highest benefit first. The greedy heuristic, though not an optimal
solution, works well in practice. The selection and placement al-
gorithm is similar to code placement techniques for cache miss
rate reduction where the code is reorganized to minimize con-
flict misses and improve locality [26, 14].

3.3 Copy Placement
The goal of the copy placement phase is to insert LC COPY

instructions subject to the following issues:

• A selected trace should always be present in the LC when
control enters the trace. If two traces T1 and T2 overlap
in the LC, a copy of T2 could invalidate T1. Thus, after
control leaves T2 and before T1 gets executed, T1 needs
to be recopied.

• A copy of a trace should ideally occur only when it is
needed. If a trace is already in the LC and has not yet been
displaced, then it is pointless to recopy the trace. Thus, a
copy should be inserted only when required. Since copies
are stalling, redundant copies not only consume power,
but also affect performance.

The copy placement algorithm handles the two issues using
a phased approach. Initially, copies are inserted on all edges
of the CFG that enter a trace. This naı̈vely guarantees that the
trace is copied into the LC before execution regardless of which
other traces displace it. Thus, this ensures correct but ineffi-
cient execution. Following this, a phase of iterative copy hoist-
ing and redundant copy elimination is performed. Iterative copy
hoisting attempts to hoist copies from their initial locations up
the CFG, across procedure boundaries, to infrequently executed
blocks subject to legality constraints. The legality constraint is
that there should be sufficient copies to ensure that the trace is
copied prior to execution if displaced by another overlapping
trace. Figure 6(a) shows the initial location of copies in the
CFG. We use the convention Cij to denote the jth copy for trace

i. In the previous section, the trace selection/placement algo-
rithm overlapped traces T2 and T3. Naı̈vely, if all copies for
traces T2 and T3 are moved to BB1, then copies would over-
write each other. Thus without recopies, this would cause illegal
execution. Also, since no other traces overlap T1, copies for T1,
C12 and C13, are redundant. Hence, two of the three copies are
removed. T1 requires just a single copy in BB1.

Copy insertion and hoisting are performed on a global CFG
of the entire application, including all procedures, represented
within the underlying IR. The global CFG connects all proce-
dures with their call sites. For indirect calls, edges are drawn
conservatively from the call site to all possible targets. Initial
copies are placed on the edges of the CFG by creating extra
pseudo BBs at the edges. In Figure 6(a), for sake of clarity, we
show the initial copies on the edges.

Iterative copy hoisting and redundant copy elimination are
done in the following steps.

Live-Range Construction: Intuitively, a trace needs to re-
side in the LC from the copy point until the point when control
leaves the trace and never gets back to the trace. This is akin to
live-ranges used in register allocation [8]. The live-range of a
trace is defined as the set of blocks in the CFG starting from the
point where the copy of the trace is defined until the last use of
the trace.

To compute the live-range of a trace, we need to compute
the blocks that are live-in to each trace and the blocks the copy
reaches. Thus, traditional liveness and reaching-defs analysis [1]
can be carried out for each trace to compute its live-range. Each
trace identifier Ti is modeled as a variable. The copy for a trace
“defines” the trace and is assumed to be the first instruction in
the BB where the copy is placed. The “use” of a trace includes
all BBs that comprise the trace. For a given trace, there can
only be one copy of that trace in a block. While for a given
block, there can be multiple copies corresponding to different
traces. The copy for a trace can “kill” another copy for the same
trace. The initial live-ranges consists of just the blocks in the
traces and are shown in Figure 6(a) for traces T1, T2, and T3.
Although not shown in figure, the live-ranges also include the
pseudo blocks on edges where the copies are present.



Eliminate_Redundant_Copies();
CopyQ = List of copies for all traces sorted in

decreasing frequency order;
while (!CopyQ.is_empty()) {
C = CopyQ.pop();
bb = BB containing the C;
PredSet = Predecessor BBs of bb
while (!PredSet.is_empty()) {
Remove C from bb
Hoist copies to BBs in Pred_Set
Compute_Live_Ranges()
if (LiveRangesIntersect()) {
undo hoist;
CopyQ.remove(C) and finalize copy in bb;
break;
} else {
Eliminate_Redundant_Copies();
Old_Freq = freq of C;
New_Freq = sum of frequencies of copies

after C is hoisted;
benefit = New_Freq - Old_Freq;
if (benefit >= 0) {
hoist is successful;
insert the new copies in BBs contained in

PredSet into the CopyQ;
break;

} else {
PredSet = new set of predecessors of PredSet;

}
}

}
CopQ.remove(C) and finalize copy in bb;

}

Figure 7: Pseudo code to hoist and eliminate redundant copies.

Once the live-ranges are constructed, the legality constraint
can be defined as follows. If the live-range of two overlapping
traces Ti and Tj intersect, then there is some path in the program
flow where a copy of Ti would displace Tj before Tj is recopied.

Copy Hoisting: The iterative hoisting algorithm tries to
move copies that are in BBs that are frequently executed, up
the CFG to BBs of lower frequencies while maintaining the le-
gality constraint. The algorithm has two goals while hoisting
copies : (a) reduce the overhead of executing the copies, and (b)
ensure that the copies are present at the appropriate points in the
program such that the traces are copied prior to their execution.
The initial copy placement guarantees (b), but at the expense of
executing copies even if the trace is not displaced by another
overlapping trace.

These two goals conflict with each other. On the one hand,
hoisting copies up the CFG to blocks of lower frequency is ben-
eficial as it reduces the dynamic copy cost. But, on the other
hand, the live-range of the trace corresponding to the copies
grow longer as the copies are hoisted higher. This can inter-
fere with the live-ranges of other traces that overlap with this
trace, thus violating the legality condition. Alternately, it could
prevent other copies from getting hoisted to ensure the legality
condition. The copy hoisting algorithm addresses this problem
by hoisting the most frequently executed copy only while it is
the highest execution frequency. When its frequency decreases,
hoisting is iteratively performed on the new highest frequency
copy and so on.

The pseudo code for iterative copy hoisting is shown in Fig-
ure 7. The Eliminate Redundant Copies function (using domi-
nator analysis), eliminates unnecessary copies of a given trace.
A copy is redundant if the BB in which the copy is placed is
dominated by another block which contains another copy for
the same trace. The elimination includes a check for intersect-
ing live-ranges for legality. In Figure 6(a), copy C11 dominates
copies C12 and C13, hence C12 and C13 are eliminated. The
rest of the copies for all traces are sorted in decreasing order
of frequency. The hoisting algorithm picks the copy with the
highest frequency and iteratively tries to hoist it to its predeces-
sor blocks. If the live-range intersects with another overlapping
trace, the copy is required at the current block and is not hoisted
further. If the hoist is legal and the sum total of frequencies for
the set of copies after the hoist is lower than the sum of the fre-
quencies for the set of copies before the hoist, the algorithm can

claim benefit and confirm the hoist.
Figure 6(b) illustrates the hoisting algorithm. Assume that the

copies have been hoisted to the currently shown positions from
those shown in Figure 6(a). C21 was moved from its home loca-
tion on the edge from BB 8 to BB 9 (Figure 6(a)) to its current
position in BB 2 (Figure 6(b)) which is outside the inner loop
and hence of lesser frequency. It should be noted that in the ex-
ample, copies can be hoisted to edges. Subsequently, BBs are
instantiated at the edges (not shown in example) to house these
copies. Assume that C11 has moved all the way up to the en-
try block BB1. Since T1 does not overlap with any other trace,
this move is legal. C21 is the next copy for which hoisting is
attempted to all incoming edges of its home block, BB2. The
predecessors are the edges from BB1 to BB2 and the backedge
from BB13 to BB2 (dotted lines). The live-ranges of T2 be-
fore and after the hoist of C21 are shown in Figure 6(b). The
live-ranges do not intersect with other traces, thus the hoist is
legal. Moreover, since the sum of the frequencies of the in-
coming edges is the same as the frequency of BB2, the hoist is
considered beneficial. Next, C31, which is of the next highest
priority, is hoisted from its home (edge from BB11 to BB12) to
its predecessor block BB11. This causes the live-ranges of T2
and T3 to intersect. Since T2 and T3 overlap in the LC, this
hoist is illegal.

The final copy placement and live-ranges are shown in Fig-
ure 6(c). The initial copies of traces T1 and T2 are performed
in BB1. Before control enters T3, copy C31 is performed. After
control leaves T3, T2 is copied back via copy C22. For a copy
on an edge, a new basic block is created and inserted into the
CFG. If a copy materializes on the return edge of the CFG (BB2
of bar to BB10 of foo), then the copy is inserted after the proce-
dure call within the caller. While if a copy materializes on the
call edge (BB9 of foo to BB1 of bar), it gets inserted before the
procedure call in the caller.

Discussion: It should be noted that by using a global CFG,
we are able to hoist copies across procedure boundaries. Con-
sidering each procedure independently restricts copy hoisting to
the entry block of the procedure resulting in substantial copy
overhead. Our original design was not inter-procedural and suf-
fered large energy and performance penalties due to this prob-
lem. The global CFG also allows a copy to cross procedure
calls, thus reducing the copy overhead significantly.

There are two alternatives that could be considered to han-
dle the hoisting problem. The problem could be formulated as
a form of code motion and use techniques like lazy code mo-
tion [18]. However, lazy code motion is not ideal because each
instruction is positioned in sequence at the point of highest prof-
itability, thereby giving one copy complete priority over others.
More importantly, if the live-range intersections are not taken
into account while hoisting, the legality condition can be vio-
lated. Conversely, by hoisting the most profitable copy all the
way up, its live-range is increased. This can prevent the hoist-
ing of other copies as it would intersect with the live-range of
the trace corresponding to the hoisted copy. Thus, interactions
between multiple copies must be considered.

Alternately, one could place the copies in the prologue block
of the ‘main’ procedure. This would cause the live-ranges of
all traces to intersect. These live-ranges could then be ‘split’
by inserting copies at less costly points. But, live-range split-
ting heuristics employed in register allocation focus on reducing
the register pressure so that a later coloring phase can allocate
the live-ranges with reduced spill [7]. In our case, the traces
have already been selected and placed if necessary in overlap-
ping chunks in the LC. The copy placement and hoisting must



size (bytes) read (nJ) write (nJ)
32 0.0506 0.0388
64 0.0527 0.0413

128 0.0568 0.0463
256 0.0651 0.0563
512 0.0698 0.0701

1024 0.0990 0.1174
2048 0.1020 0.1228
4096 0.1197 0.1416

size (bytes) fetch (LC) (nJ) fetch (Icache) (nJ)
64 0.1803 0.2961
128 0.1888 0.3059
256 0.1980 0.4732
512 0.2188 0.4966

1024 0.2404 0.5233
2048 0.2748 0.5655
4096 0.3277 0.6351

Table 1: Per access LC energy for the WIMS processor (top) and
per access LC and icache energy using CACTI (bottom, .18µm) for
different sizes.

guarantee the legality of the placement by introducing appropri-
ate ‘spills’ (recopies) at reduced copy overhead.

4. EXPERIMENTAL EVALUATION

4.1 Methodology
Our experimental framework consists of a port of the Tri-

maran compiler system [27] to the WIMS processor and a modi-
fied version of the WIMS processor simulator to model a param-
eterized LC. Note that since the WIMS processor is single-issue,
many of the VLIW transformations, except function inlining, in
Trimaran were disabled for these experiments. The simulator
uses a simple energy model attributing a fixed energy to each LC
or memory access for instruction fetch and totaling it up across
the run of an application. On the WIMS processor, instruction
fetch energy accounts for approximately 30% of the overall sys-
tem energy including the processor and memory. For this study,
a set of embedded benchmarks selected from the MediaBench
and MiBench suites were chosen. For all experiments, compiler-
directed dynamic placement (dynamic for short) is compared
with compiler-directed static placement (static for short) that
uses profile information to maximally pack the most frequently
executed regions into the LC. In addition, a comparison against
varying sizes of traditional instruction caches (icache for short)
was also performed. For each of the experiments, two measures
are presented. First, the instruction fetch energy consumption
of each technique with respect to the baseline where all instruc-
tions are fetched from main memory. Second, the hit rate is the
ratio of accesses (LC or icache) to total instruction references.

Two memory configurations were used - WIMS and CACTI.
For the WIMS processor, LC size was varied from 32 to 4k bytes
for the study. With each LC size, the energy presented in Table 1
(top) was assumed for each access. The energy consumption
estimates were obtained from configuration specific data sheets
from a popular memory compiler for a 0.18µm process. These
values compare to 0.1384 nJ per read of a 16Kb bank from the
regular on-chip memory. The access times for the on-chip main
memory and LC are both one cycle.

To compare against an icache of equal size, CACTI [32] was
used to obtain the energy numbers for different sizes of icache
and LCs. Here, the icache and LC are assumed to be on-chip,
while the main memory is off-chip. For LC, the energy for the
tag and comparator circuits were subtracted from a correspond-
ingly sized direct-mapped icache [4]. The LC and icache sizes
were varied from 64 to 4k 1. For the icache, we assumed 16-byte
line size with 2-way associativity to get the power numbers as
shown in Table 1 (bottom). The Am41PDS3228D SRAM [2]

1CACTI did not support a 32-byte cache

was assumed to be the off-chip memory with 3.024nJ per access
(16-bits). The icache hit rates were obtained using the Dinero-
IV cache simulator [12]. While comparing static and dynamic
with icache, all measurements were obtained using the CACTI
power numbers. For comparing static versus dynamic for the
WIMS processor, all measurements were obtained relative to the
WIMS power model. For all studies, a single read/write from the
cache to the main memory is assumed to be 2-bytes. In Table 1,
although there is a difference in absolute energy values between
the WIMS and the CACTI models, this is less important as we
do relative comparisons within each class. The difference in en-
ergy numbers between WIMS and CACTI is due to an abstract
energy model used by CACTI as opposed to real datasheet num-
bers used for WIMS.

4.2 Results
Comparison with static: The energy savings and LC hit

rates for static and dynamic placement are compared across all
the benchmarks for LC sizes of 64 and 256 bytes in Figure 8 for
the WIMS processor. Considering first the 64 byte LC, dynamic
is generally more effective at utilizing the LC. The largest en-
ergy benefits occur for cjpeg, unepic, and sha where the static
placement savings are more than doubled with dynamic place-
ment. These benchmarks achieve such large gains by increasing
the hit rates in the LC by similar amounts due to more effective
utilization of the LC. The epic application achieves the largest
total energy savings of 58% with dynamic placement. How-
ever, static placement is also very successful with this bench-
mark, achieving 42%. Epic has a relatively small innermost
loop where a large fraction of the execution time is spent, and
the entire loop body can be placed in the 64-byte LC. Dynamic
achieves a modest gain above that by relocating another loop
body into the LC. Overall, dynamic placement achieves an av-
erage energy savings of 28% across the benchmarks compared
with 17% for static placement.

Examining the 256-byte LC graphs, the energy savings and
hit rates achieved with static and dynamic placement are much
closer. Clearly, as the LC size is increased, the importance of
dynamic placement goes down as a larger fraction of the hot
regions statically fit into the LC. Cjpeg, djpeg, unepic, gsmen-
code, mpeg2enc, and pgpencode are examples where dynamic
is still very effective as these benchmarks have a large memory
footprint. A small fraction of benchmarks, where the energy
savings with dynamic placement exceeded static for the 64-byte
LC, now achieve worse results with the 256-byte LC. Examples
of this behavior are g721encode, g721decode, rawcaudio, and
rawdaudio. These benchmarks are characterized by a modest
number of conflicts between LC entries. The copies could not
be hoisted out of frequently executed code regions due to in-
terference, thus a large number of run-time copies must be per-
formed. Rawcaudio and rawdaudio have small code size; thus,
static is able to pack all the hot regions in the application into the
LC without any run-time penalty. Dynamic, on the other hand,
achieves the same hit-rate but at the expense of the one-time
copy overhead. Overall, for both 64 and 256 byte LC configu-
rations, by packing multiple hot regions, dynamic is effective at
increasing LC hit rates.

The effect of varying LC size on four representative bench-
marks on the WIMS processor is shown in Figure 9. Each graph
contains 4 lines: LC hit rate for dynamic, LC hit rate for static,
energy savings for dynamic, and energy savings for static. Note
that hit rates (shaded light) use the left hand y-axis and energy
(shaded dark) use the right hand y-axis. A number of interest-
ing trends can be observed from these graphs. First, at smaller



WIMS Energy Savings, 64-Byte Loop Cache

0

10

20

30

40

50

60

c
jp
e
g

d
jp
e
g

e
p
ic

u
n
e
p
ic

g
7
2
1
e
n
c
o
d
e

g
7
2
1
d
e
c
o
d
e

g
s
m
e
n
c
o
d
e

g
s
m
d
e
c
o
d
e

m
p
e
g
2
e
n
c

m
p
e
g
2
d
e
c

p
e
g
w
ite
n
c

p
e
g
w
itd
e
c

p
g
p
e
n
c
o
d
e

p
g
p
d
e
c
o
d
e

ra
w
c
a
u
d
io

ra
w
d
a
u
d
io

b
lo
w
fis
h fir

s
h
a

a
v
e
ra
g
e

%
 I
m

p
ro

v
e
m

e
n

t

Dynamic Static

WIMS Energy Savings, 256-Byte Loop Cache

0

10

20

30

40

50

60

c
jp
e
g

d
jp
e
g

e
p
ic

u
n
e
p
ic

g
7
2
1
e
n
c
o
d
e

g
7
2
1
d
e
c
o
d
e

g
s
m
e
n
c
o
d
e

g
s
m
d
e
c
o
d
e

m
p
e
g
2
e
n
c

m
p
e
g
2
d
e
c

p
e
g
w
ite
n
c

p
e
g
w
itd
e
c

p
g
p
e
n
c
o
d
e

p
g
p
d
e
c
o
d
e

ra
w
c
a
u
d
io

ra
w
d
a
u
d
io

b
lo
w
fis
h fir

s
h
a

a
v
e
ra
g
e

%
 I
m

p
ro

v
e
m

e
n

t

Dynamic Static

WIMS Hit Rate, 64-Byte Loop Cache

0

10

20

30

40

50

60

70

80

90

100

c
jp
e
g

d
jp
e
g

e
p
ic

u
n
e
p
ic

g
7
2
1
e
n
c
o
d
e

g
7
2
1
d
e
c
o
d
e

g
s
m
e
n
c
o
d
e

g
s
m
d
e
c
o
d
e

m
p
e
g
2
e
n
c

m
p
e
g
2
d
e
c

p
e
g
w
ite
n
c

p
e
g
w
itd
e
c

p
g
p
e
n
c
o
d
e

p
g
p
d
e
c
o
d
e

ra
w
c
a
u
d
io

ra
w
d
a
u
d
io

b
lo
w
fis
h fir

s
h
a

a
v
e
ra
g
e

H
it

 R
a
te

Dynamic Static

WIMS Hit Rate, 256-Byte Loop Cache

0

10

20

30

40

50

60

70

80

90

100

c
jp
e
g

d
jp
e
g

e
p
ic

u
n
e
p
ic

g
7
2
1
e
n
c
o
d
e

g
7
2
1
d
e
c
o
d
e

g
s
m
e
n
c
o
d
e

g
s
m
d
e
c
o
d
e

m
p
e
g
2
e
n
c

m
p
e
g
2
d
e
c

p
e
g
w
ite
n
c

p
e
g
w
itd
e
c

p
g
p
e
n
c
o
d
e

p
g
p
d
e
c
o
d
e

ra
w
c
a
u
d
io

ra
w
d
a
u
d
io

b
lo
w
fis
h fir

s
h
a

a
v
e
ra
g
e

H
it

 R
a
te

Dynamic Static

Figure 8: Comparing energy savings and hit rate of static and dynamic over on-chip main memory for the WIMS processor.

LC sizes, dynamic placement outperforms static placement by
a large margin. For mpeg2dec, dynamic placement increases
energy savings from 35% to 75% for a 32-byte LC and from
60% to 80% for a 64-byte LC. Similarly for pgpdecode, energy
savings increases from 38% to 92% for a 128-byte LC. For the
other benchmarks, the differences are not as large, but the same
trend occurs. The reason for the increased energy savings is the
ability of dynamic placement to increase LC utilization. Most
of these applications contain a number of hot code regions that
collectively cannot fit in the LC using static placement. It is thus
critical to relocate different regions of code into the LC at dif-
ferent points during program execution to take full advantage of
the LC. The increased utilization is evident by the large increase
in hit rate of dynamic over static for the smaller LC sizes.

A second trend seen in all the graphs is that energy savings
goes down for larger LC sizes, particularly the 1k, 2k, and 4k
configurations. The peak energy savings comes at around 128-
512 byte LCs. The reason for this behavior is two fold. First, it
becomes less beneficial to relocate instructions with larger LCs.
For larger LCs, the energy characteristics are close to that of the
on-chip memory, thus the potential savings becomes less. Sec-
ond, the overhead of dynamic copying becomes larger, thereby
taking away from the percentage savings. For the larger LC
sizes, static performs a good job of packing a significant frac-
tion of the hot code without any overhead. For dynamic, copy
overhead causes the energy savings to depreciate.

Comparison with icache: Figure 10 shows the energy and
hit rates for static, dynamic, and icache for 64 and 256-byte
on-chip cache configurations using CACTI energy models. The
average energy savings for both static and dynamic are much
higher than the WIMS processor. For the 256 byte LC, static
achieves 59%, while dynamic achieves 79% average energy sav-
ings. This is largely due to the costlier off-chip memory access.
The off-chip main memory is over 20x more power hungry than

the on-chip memory.
For all the benchmarks, icache is able to get higher hit-rates

compared to static and dynamic schemes. On average, we ob-
serve 98%, 82%, and 62% hit-rate for icache, dynamic, and
static respectively in the 256-byte cache configuration. In the
64-byte case, icache records a 70% improvement in hit-rate over
dynamic. But this improvement comes at the expense of en-
ergy. Each access to the icache requires tag checks and hence
is costlier than the tag-less LC. In addition, a miss for icache
is much more expensive, as it has to fetch a cache-line of in-
structions (16-bytes) into the icache every time, which involves
multiple accesses to both the main memory and the icache.

The dynamic scheme is geared towards reducing the overall
energy as opposed to raw hit-rate. The dynamic scheme copies a
flexible number of chunks using a LC-COPY only when deemed
beneficial by the compiler, thus leading to a more power effi-
cient LC utilization. A miss requires only a single access from
the main memory. Dynamic is able to achieve 66% and 33%
improvement in energy savings over icache for the 64-byte and
256-byte LC configurations respectively. In the 64-byte case, for
rawcaudio, rawdaudio, pgpdecode, and gsmdecode, although
icache registers over 70% hit rate, there is a decrease in energy
savings over main memory. Overall, icache performs better than
static, while dynamic performs better than the two.

Detailed comparisons: Table 2 (left) compares the code size
and the size of the cache required for static, dynamic, and icache
to cover 95% of the dynamically executed code for each bench-
mark. On average, all cache configurations require less than 10x
the code size, which verifies the 90-10 rule. More interestingly,
dynamic requires 2.5x less cache size than static, while icache,
with a higher hit rate, requires 7.6x less cache than static. Ta-
ble 2 (middle) shows the LC size for maximum energy savings
on the WIMS processor for each benchmark. On average, the
LC size of dynamic is 1.68x less than the static scheme. Dy-



gsmencode

0

10

20

30

40

50

60

70

80

90

100

32 64 128 256 512 1024 2048 4096

LC Size (Bytes)

%
 L

C
 H

it
 R

a
te

0

5

10

15

20

25

30

35

40

45

50

%
 E

n
e
rg

y
 S

a
v
in

g
s
  

Static Hit Rate Dynamic Hit Rate Static Energy Dynamic Energy

mpeg2dec

0

10

20

30

40

50

60

70

80

90

100

32 64 128 256 512 1024 2048 4096

LC Size (Bytes)

%
 L

C
 H

it
 R

a
te

0

10

20

30

40

50

60

%
 E

n
e
rg

y
 S

a
v
in

g
s
  

pegwitenc

0

10

20

30

40

50

60

70

80

90

100

32 64 128 256 512 1024 2048 4096

LC Size (Bytes)

%
 L

C
 H

it
 R

a
te

0

5

10

15

20

25

30

35

%
 E

n
e
rg

y
 S

a
v
in

g
s

 

pgpdecode

0

10

20

30

40

50

60

70

80

90

100

32 64 128 256 512 1024 2048 4096

LC Size (Bytes)

%
 L

C
 H

it
 R

a
te

0

5

10

15

20

25

30

35

40

45

50

%
 E

n
e
rg

y
 S

a
v
in

g
s
  

Figure 9: Effect of varying LC size on energy savings and hit rate over on-chip main memory for the WIMS processor.

benchmark size(Kb) static (b) dynamic (b) icache (b)
cjpeg 63 4096 1024 256
djpeg 68 2048 512 256
epic 11 1024 128 64

unepic 13 1024 128 128
g721encode 4 2048 2048 256
g721decode 4 2048 2048 512
gsmencode 21 2048 512 512
gsmdecode 19 1024 256 128
mpeg2enc 35 4096 1024 512
mpeg2dec 24 1024 256 64
pegwitenc 21 8192 4096 256
pegwitdec 21 4096 2048 512
pgpencode 102 4096 512 256
pgpdecode 102 4096 512 256
rawcaudio .8 256 256 256
rawdaudio .8 256 256 256
blowfish 5 1024 1024 1024

fir .5 256 64 64
sha 1 512 64 64

average 27.16 2277.05 882.53 296.42

benchmark static dynamic
cjpeg 512 256
djpeg 512 512
epic 512 128

unepic 512 128
g721encode 512 512
g721decode 512 512
gsmencode 2048 512
gsmdecode 512 128
mpeg2enc 512 512
mpeg2dec 256 128
pegwitenc 512 512
pegwitdec 512 512
pgpencode 512 128
pgpdecode 512 128
rawcaudio 256 256
rawdaudio 256 256
blowfish 1024 1024

fir 64 64
sha 512 64

average 502.86 298.87

benchmark size % gain
cjpeg 64 25.13
djpeg 64 16.02
epic 128 14.26

unepic 64 38.17
g721encode 32 12.46
g721decode 32 10.83
gsmencode 512 24.06
gsmdecode 128 9.35
mpeg2enc 128 12.19
mpeg2dec 32 25.79
pegwitenc 128 15.68
pegwitdec 128 15.35
pgpencode 128 30.89
pgpdecode 128 26.79
rawcaudio 128 0.10
rawdaudio 64 0.06
blowfish 64 13.03

fir 32 19.18
sha 64 34.26

average 110.22 17.69

Table 2: The left table shows the code cache size (in bytes) for at least 95% hit rate for static, dynamic, and icache schemes for
the CACTI energy models. The middle table shows the LC size required for highest energy gains in the WIMS processor. The
right table shows the LC size at maximum energy gain of dynamic over static.

namic consumes more cache space than icache as it tries to re-
duce the overlaps of traces in the LC so as to decrease the recopy
overhead. Table 2 (right) give the size of the LC for maximum
energy gains of dynamic over static. On average, at 110 bytes,
dynamic shows over 17% improvement over static.

Finally, Table 3 quantifies the LC access behavior of the dy-
namic allocation scheme for a 256-byte LC. For each bench-
mark, column 2 gives the total number of traces in the code
that were allocated to the LC. Column 3 shows the same met-
ric expressed as a percentage of all the traces in the code. For
example, for pgpencode, 155 traces were packed into the LC,
which accounted for only 2.2% of all the traces in the code. Al-
though not shown in the table, the 155 traces had a combined
size of 5186 bytes, which is 20x the size of the 256-byte LC, but
5% of the total code size. Column 4 gives the dynamic execu-
tion frequency for these selected static traces. For pgpencode,
2.2% of the hot traces accounted for 87% of the dynamic ex-
ecution frequency. Column 5 gives the mean number of trace
overlaps per LC chunk. Note that a trace can overlap multi-
ple chunks. For a 256-byte LC, there are 16 chunks assuming
16-bytes per chunk. Again for pgpencode, an average of 24.5
traces were overlapped per chunk. The dynamic scheme was

able to successfully pack the most frequent hot traces and over-
lap them with the least number of conflicts. Finally, column 6
gives the percent overhead in cycles due to dynamic copying.
Although the dynamic placement algorithm was driven by en-
ergy constraints, the performance degradation is only marginal,
with an average of 2.57% loss due to copy stalls.

The dynamic placement algorithm was based on profiling the
applications on a sample input. Although our final statistics
were compiled using the same input, we did validate, by run-
ning on different input sets, that the control flow behavior of the
benchmarks did not change significantly. The resulting perfor-
mance/energy changed by less than 1%.

4.3 Comparison to ILP-based solutions
While [25, 31] address compiler-directed dynamic placement,

we believe the proposed ILP-formulation for optimal placement
is impractical for moderate to large sized applications. The ILP-
solution attempts to model the problem by having variables for
all possible traces at every edge on the CFG. Each such vari-
able denotes whether the trace is placed in the LC or memory,
and whether it needs to be recopied or not. The problem is for-
mulated based on an earlier work on ILP-based optimal register



CACTI Energy Savings, 64-Byte Cache

-50

-25

0

25

50

75

100

c
jp
e
g

d
jp
e
g

e
p
ic

u
n
e
p
ic

g
7
2
1
e
n
c
o
d
e

g
7
2
1
d
e
c
o
d
e

g
s
m
e
n
c
o
d
e

g
s
m
d
e
c
o
d
e

m
p
e
g
2
e
n
c

m
p
e
g
2
d
e
c

p
e
g
w
ite
n
c

p
e
g
w
itd
e
c

p
g
p
e
n
c
o
d
e

p
g
p
d
e
c
o
d
e

ra
w
c
a
u
d
io

ra
w
d
a
u
d
io

b
lo
w
fis
h fir

s
h
a

a
v
e
ra
g
e

%
 I
m

p
ro

v
e
m

e
n

t

Dynamic Static Icache

CACTI Energy Savings, 256-Byte Cache

0

10

20

30

40

50

60

70

80

90

100

c
jp
e
g

d
jp
e
g

e
p
ic

u
n
e
p
ic

g
7
2
1
e
n
c
o
d
e

g
7
2
1
d
e
c
o
d
e

g
s
m
e
n
c
o
d
e

g
s
m
d
e
c
o
d
e

m
p
e
g
2
e
n
c

m
p
e
g
2
d
e
c

p
e
g
w
it
e
n
c

p
e
g
w
it
d
e
c

p
g
p
e
n
c
o
d
e

p
g
p
d
e
c
o
d
e

ra
w
c
a
u
d
io

ra
w
d
a
u
d
io

b
lo
w
fi
s
h fi
r

s
h
a

a
v
e
ra
g
e

%
 I
m

p
ro

v
e
m

e
n

t

Dynamic Static Icache

CACTI Hit Rate, 64-Byte Cache

0

10

20

30

40

50

60

70

80

90

100

c
jp
e
g

d
jp
e
g

e
p
ic

u
n
e
p
ic

g
7
2
1
e
n
c
o
d
e

g
7
2
1
d
e
c
o
d
e

g
s
m
e
n
c
o
d
e

g
s
m
d
e
c
o
d
e

m
p
e
g
2
e
n
c

m
p
e
g
2
d
e
c

p
e
g
w
ite
n
c

p
e
g
w
itd
e
c

p
g
p
e
n
c
o
d
e

p
g
p
d
e
c
o
d
e

ra
w
c
a
u
d
io

ra
w
d
a
u
d
io

b
lo
w
fis
h fir

s
h
a

a
v
e
ra
g
e

H
it

 R
a
te

Dynamic Static Icache

CACTI Hit Rate, 256-Byte Cache

0

10

20

30

40

50

60

70

80

90

100

c
jp
e
g

d
jp
e
g

e
p
ic

u
n
e
p
ic

g
7
2
1
e
n
c
o
d
e

g
7
2
1
d
e
c
o
d
e

g
s
m
e
n
c
o
d
e

g
s
m
d
e
c
o
d
e

m
p
e
g
2
e
n
c

m
p
e
g
2
d
e
c

p
e
g
w
ite
n
c

p
e
g
w
itd
e
c

p
g
p
e
n
c
o
d
e

p
g
p
d
e
c
o
d
e

ra
w
c
a
u
d
io

ra
w
d
a
u
d
io

b
lo
w
fis
h fir

s
h
a

a
v
e
ra
g
e

H
it

 R
a
te

Dynamic Static Icache

Figure 10: Comparing energy savings and hit rate of static, dynamic, and icache over off-chip main memory using CACTI.

allocation [3]. This works well as long as the number of con-
straints and variables are limited, but explodes when attempted
for full inter-procedural analysis of large programs. Table 4 re-
flects our implementation of [31] and shows the number of vari-
ables and constraints, the time taken to solve for inter-procedural
placement using a commercial ILP-solver, CPLEX, and the per-
centage energy improvement over the dynamic scheme. Such
long run-times for a large number of variables have been ac-
knowledged by the authors in their paper [31]. [25] and [31]
try to reduce this complexity by limiting their analysis to within
a procedure or loop boundaries. But this causes the LC con-
tents to be flushed after procedure calls/returns. We observed
excessive redundant copies to restore the LC contents without
inter-procedural analysis.

Our heuristic based solution offers an alternative approach to
ILP that does not achieve optimal results, but is practical and
can handle full inter-procedural analysis of large programs with
arbitrary control flow. For smaller loop-dominated benchmarks
with multiple loop-nests and simple control-flow, the dynamic
scheme was able to select and overlap an optimal set of traces.
The iterative copy hoisting algorithm was successful in position-
ing the copies at optimal points in the code. As seen in Table 4,
for all benchmarks the dynamic scheme performed close to op-
timal. The degradation for dynamic was observed due to the
greedy nature of the trace placement and copy hoisting heuris-
tics.

5. CONCLUSION
In this paper, we have proposed an approach for compiler-

directed dynamic placement of instructions into a low-power
code cache. Dynamic placement enables the compiler to use en-
tries in the code cache to hold multiple hot code regions (traces)
over the execution of an application, thereby increasing the code

benchmark # variables # equations time % gain
fir 2034 2446 1 min 0

rawcaudio 1980 2516 1 min 2
rawdaudio 1404 1778 1 min 0

g721encode 2927 2584 1 min 11
g721decode 3238 2950 1 min 4

blowfish 8528 10169 1 min 4
sha 13598 14773 3 min 2

gsmencode 148538 142259 20 min 6
gsmdecode 150772 143394 20 min 2

epic 420170 515835 1 hr 1
unepic 227852 298993 1 hr 1
cjpeg 1210512 1496334 40 hr 3
djpeg 933002 1149342 40 hr 3

pegwitenc 1732012 2093478 60 hr 4
pegwitdec 1565644 1904755 60 hr 4
mpeg2enc 7666254 9850505 * *
mpeg2dec 3534664 4382525 * *
pgpencode 12673300 16033319 * *
pgpdecode 10404038 13488579 * *

Table 4: Size, time taken, and percent energy gain over the
dynamic scheme for a full program ILP-formulation using
CPLEX on a 1-GHz UltraSPARC-IIIi processor. ‘*’ denotes
failure to complete within 72 hours of run-time.

cache utilization by a substantial amount. These traces can have
any complex control flow or embedded procedure calls. Dy-
namic placement is accomplished in two major steps. First, the
code cache entries are allocated among all the candidate traces.
A heuristic cost/benefit analysis compares the expected copy
cost with the anticipated energy benefit. Second, copies are in-
serted followed by an iterative process of hoisting and redun-
dancy elimination using liveness analysis on a inter-procedural
control flow graph to derive a cost-effective placement. Our
investigation was carried out in the context of the WIMS mi-
crocontroller, a processor designed for embedded sensor sys-
tems where power consumption is the dominant design concern.
Results show an average energy savings of 28% with dynamic
placement compared with 17% with static for a 64-byte code
cache. This is accomplished by increasing the code cache hit



benchmark # traces % traces % dynamic. freq. overlaps % perf loss
cjpeg 79 1.65 89.72 13 -2.11
djpeg 58 1.11 80.36 8.81 -2.17
epic 60 7.25 99.74 8.12 -1.11

unepic 68 6.58 99.89 11.31 -1.06
g721encode 9 3.11 63.11 1.69 -8.55
g721decode 7 2.35 61.85 1.44 -7.56
gsmencode 45 3.66 58.88 9.38 -2.31
gsmdecode 14 1.04 97.58 3.31 -2.19
mpeg2enc 244 13.62 41.81 31.25 -2.39
mpeg2dec 51 3.16 96.32 7.19 -1.56
pegwitenc 42 4.65 72.15 7.31 -4.68
pegwitdec 45 4.89 69.42 8.31 -4.37
pgpencode 155 2.20 87.13 24.5 -2.21
pgpdecode 122 1.75 89.02 20.19 -2.58
rawcaudio 8 10.13 97.77 1.06 -0.01
rawdaudio 8 10.39 99.96 1.00 -0.01
blowfish 10 10.31 50.14 1.62 -1.05

fir 11 33.33 99.84 1.31 -1.17
sha 9 15.25 98.24 1.44 -4.21

average 55.00 7.18 81.73 8.54 -2.57

Table 3: Benchmark characteristics on a 256-byte LC for dynamic allocation showing number of hot traces selected, fraction
of the total number of traces, dynamic execution frequency, average number of trace overlaps per chunk in LC, and percent
performance degradation due to copy overhead.

rate from an average of 26% to 49%. For a 256-byte code cache,
a more modest increase in energy savings occurs; 41% with dy-
namic verses 32% with static. In comparison to a traditional in-
struction cache, dynamic placement achieves an average of 25%
energy savings.

6. ACKNOWLEDGMENTS
We thank Manish Verma, University of Dortmund for his help

with the ILP formulation. Fabrication of this work at TSMC was
supported by the MOSIS Educational Program. Digital cell li-
braries and SRAMs were supplied by Artisan Components, Inc.
This work was supported by the Engineering Research Centers
Program of the National Science Foundation under award num-
ber EEC-9986866, NSF grant CCF-0347411, and equipment
donated by Hewlett-Packard and Intel Corp.

7. REFERENCES

[1] A. V. Aho, R. Sethi, and J. D. Ullman. Compilers: Principles,
Techniques, and Tools. Addison Wesley, 1985.

[2] AMD. Am41PDS3228D SRAM, 2004.
http://www.amd.com/us-en/FlashMemory/ProductInformation/.

[3] A. Appel and L. George. Optimal spilling for cisc machines with
few registers. In Proc. of Programming Language Design and
Implementation, Jun. 2001.

[4] R. Banakar et al. Scratchpad memory: A design alternative for
cache on-chip memory in embedded systems. In Proc. of 10th
Intl. Symposium on Hardware/Software Codesign, May 2002.

[5] N. Bellas et al. Energy and Performance Improvements in
Microprocessor Design Using a Loop Cache. In Proc. of
International Conference on Computer Design, Oct. 1999.

[6] L. Benini et al. Asymptotic Zero-Transition Activing Encoding
for Address Busses in Low-Power Microprocessor-Based
Systems. In IEEE Great Lakes Symposium on VLSI, Mar. 1997.

[7] P. Briggs. Register allocation via graph coloring. Technical
Report TR92-183, 24, 1992.

[8] G. Chaitin. Register allocation and spilling via graph coloring. In
Proc. of SIGPLAN Symp. on Compiler Construction, Jun. 1982.

[9] P. Chang and W. Hwu. Trace selection for compiling large C
application programs to microcode. In Proc. of 21st Intl.
Symposium on Microarchitecture, Nov. 1988.

[10] S. Cotterell and F. Vahid. Tuning Loop Cache Architectures to
Programs in Embedded System Design. In Proc. of Internationl
Symposium on System Synthesis, Oct. 2002.

[11] D. Dobberpuhl. The design of a high-performance low-power
microprocessor. In Proc. of Intl. Symposium on Low Power
Electronics and Design, Aug. 1996.

[12] J. Elder and M. D. Hill. Dinero IV Trace-Driven Uniprocessor
Cache Simulator.

[13] J. A. Fisher. Trace scheduling: A technique for global microcode
compaction. IEEE Transactions on Computers, July 1981.

[14] N. Gloy et al. Procedure Placement Using Temporal Ordering
Information. In Proc. of 30th Intl. Symposium on
Microarchitecture, Dec. 1997.

[15] A. Gordon-Ross et al. Exploiting fixed programs in embedded
systems : A loop cache example. Comp. Arch. Letters, 1(1), 2002.

[16] N. Kim et al. Circuit and Microarchitectural Techniques for
Reducing Cache Leakage Power. IEEE Trans. on VLSI, 12(2),
Feb. 2004.

[17] J. Kin et al. The Filter Cache: An Energy Efficient Memory
Structure. In Proc. of 30th Intl. Symposium on Microarchitecture,
Dec. 1997.

[18] J. Knoop et al. Lazy code motion. In Proc. of Programming
Language Design and Implementation, June 1992.

[19] L. Lee et al. Low-Cost Embedded Program Loop Caching -
Revisited. Technical Report CSE-TR-411-99, Univ. of Michigan.

[20] L. Lee et al. Instruction Fetch Energy Reduction Using Loop
Caches for embedded applications with Small Tight Loops. In
Intl. Symp. on Low Power Electronics and Design, Aug. 1999.

[21] H. Lekatsas et al. Code Compression for Embedded Systems. In
Proc. 35th Design Automation Conference, Jun. 1998.

[22] P. R. Panda et al. Memory Issues in Embedded Systems-On-Chip.
Kluwer Academic Publishers, Norwell, MA, 1999.

[23] R. M. Senger et al. A 16-Bit Mixed-Signal Microsystem with
Integrated CMOS-MEMS Clock Reference. In Procedings of the
Design Automation Conference, Jun. 2003.

[24] S. Steinke et al. Assigning Program and Data Objects to
Scratchpad for Energy Reduction. In Proc. of Intl. Conference on
Design, Automation and Test in Europe, Mar. 2002.

[25] S. Steinke et al. Reducing energy consumption by dynamic
copying of instructions onto onchip memory. In Proc. of Intl.
Symposium on System Synthesis, Oct. 2002.

[26] H. Tomiyama and H. Yasuura. Code Placement Techniques for
Cache Miss Rate Reduction. ACM Transactions on Design
Automation of Electronic Systems, 2(4), Oct. 1997.

[27] Trimaran. An Infrastructure for Research in ILP.
http://www.trimaran.org.

[28] S. Udayakumaran and R. Barua. Compiler-decided dynamic
memory allocation for scratch-pad based embedded systems. In
Proc. of Intl. Conf. on Compilers Architectures and Synthesis of
Embedded Systems.

[29] Uh et al. Techniques for Effectively Exploiting a Zero Overhead
Loop Buffer. In Proc. of Compiler Construction, 2000.

[30] T. VanderAa et al. Instruction buffering exploration for low
energy VLIWs with instruction clusters. In Proc. of Asia and
South Pacific Design Automation Conference, Jan. 2004.

[31] M. Verma et al. Dynamic overlay of scratchpad memory for
energy minimization. In Proc. of Intl. Symposium on System
Synthesis, Sept. 2004.

[32] S. Wilton et al. CACTI: An enhanced cache access and cycle time
model. IEE Journal of Soild State Circuits, 31(5), May. 1996.


