
Appears in 2003 International Conference on Compilers, Architectures and Synthesis for Embedded Systems (CASES)

Architectural Optimizations for Low-Power, Real-Time
Speech Recognition

Rajeev Krishna, Scott Mahlke, and Todd Austin
Advanced Computer Architecture Lab

University of Michigan (Ann Arbor)
{rkrishna, mahlke, austin}@eecs.umich.edu

ABSTRACT
The proliferation of computing technology to low power
domains such as hand–held devices has lead to increased
interest in portable interface technologies, with particu-
lar interest in speech recognition. The computational de-
mands of robust, large vocabulary speech recognition sys-
tems, however, are currently prohibitive for such low power
devices. This work begins an exploration of domain spe-
cific characteristics of speech recognition that might be
exploited to achieve the requisite performance within the
power constraints of such devices. We focus primarily on
architectural techniques to exploit the massive amounts
of potential thread level parallelism apparent in this ap-
plication domain, and consider the performance / power
trade-offs of such architectures. Our results show that a
simple, multi-threaded, multi-pipelined processor architec-
ture can significantly improve the performance of the time-
consuming search phase of modern speech recognition al-
gorithms, and may reduce overall energy consumption by
drastically reducing dissipation of static power. We also
show that the primary hurdle to achieving these perfor-
mance benefits is the data request rate into the memory
system, and consider some initial solutions to this problem.

1. INTRODUCTION
Recent years have seen a dramatic proliferation of com-

puting technology. This trend is particularly evident in
the domain of low power, hand held computing systems,
where the growth of an increasingly computer savvy, inter-
connected society has created huge demands. This inter-
est in portable computing, in turn, has revitalized interest
in interface technologies that match the portability of the
computing platform itself. On-screen keyboards and spe-
cial script forms (such as Palm Computing’s “graffiti”),
while effective for simple jobs, leave a good deal to be de-
sired.

The obvious next step in such interface technologies is
speech recognition. Interest in such an interface is demon-
strated by the current use of basic utterance (one or two

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
CASES’03, Oct. 30–Nov. 2, 2003, San Jose, California, USA.
Copyright 2003 ACM 1-58113-676-5/03/0010 ...$5.00.

words) recognition systems on many hand-held devices.
True large vocabulary speech recognition under real-time
constraints, however, remains beyond the computational
capabilities of such systems for the foreseeable future.

The current state of the art technology in large vocab-
ulary speech recognition is built off of stochastic search
techniques over linguistic models of phonetic and syntac-
tic language constructs. The nature of these search al-
gorithms present a number of interesting characteristics
such as the availability of extensive thread level concur-
rency, high memory demand, and relatively poor memory
request locality. As such, these applications do not fit un-
der the assumptions made in the design of modern micro-
processor systems. This paper will explore domain specific
architectures that exploit these characteristics to improve
performance on speech recognition while minimizing po-
tential negative effects on device power consumption.

We begin this analysis in Section 2 with a brief introduc-
tion to the relevant speech recognition algorithms as well
as an introduction to the CMU-SPHINX speech recogni-
tion library used in this work. This introduction will serve
as motivation for our multi-pipeline architecture concept,
and present the source of the massive thread level con-
currency found in this application space. Section 3 will
introduce and describe the architecture and programming
model used to expose and manage available concurrency
at the hardware level. Section 4 presents a number of ex-
periments exploring the capabilities and constraints of this
architectural model, leading, after a review of related work
in Section 5, into conclusions and planned future directions
in Section 6.

2. SPEECH RECOGNITION
Speech recognition is the task of translating an acoustic

waveform representing human speech into a textual repre-
sentation of that speech. This is achieved through a series
of steps, as shown in Figure 1. First, DSP style opera-
tions such as A/D conversion and extraction of key fea-
ture vectors are performed. The resulting feature vectors
are then passed into a search phase, which involves two in-
ternal steps of Gaussian probabilistic scoring and linguistic
model search tree traversal.

The complexity of the speech recognition task derives
from natural variations in human speaking patterns (e.g.
accents) and the natural ambiguity of spoken words with-
out semantic contexts (e.g. “there” vs. “their”). The
probabilistic scoring and model evaluation are intended to
help account for these variations. The “recognition re-
sult” of such efforts is represented by the hypothesis that

Figure 1: Overview of steps in speech recogni-
tion. Acoustic input data undergoes a number
of DSP–style operations to produce discrete fea-
ture values. These values are then probabilistically
scored against training data, and used to explore
a stochastic model of language.

receives the highest probabilistic match to the input se-
quence upon conclusion of the search process. The stochas-
tic modeling framework utilized for such operations has
converged on the “hidden Markov model” (HMM), which
is essentially a technique for describing complex probabilis-
tic systems in a mathematically tractable way [20, 21].

Our speech recognition software is based on the SPHINX
speech recognition library developed at Carnegie Mellon
University [13, 18, 19]. SPHINX is widely regarded as a
state of the art research level speech recognition infras-
tructure, and thus provides a good framework from which
to develop our architectures. We utilize the SPHINX–2 li-
brary in this study 1. As with many modern speech recog-
nition systems, SPHINX operates on a knowledge base de-
veloped from models of human speaking patterns repre-
sented as a HMM. In order to provide speaker indepen-
dent speech recognition, SPHINX–2 utilizes standardized
models to represent each phoneme (a fundamental unit
of spoken sound, e.g. the /k/ sound in ‘car’) in the En-
glish language. Combinations of two sequential phonemes
(a “senone”) are trained on acoustic data from a large
sample of speakers. The “senone” unit is used to capture
co-articulations, or transitional sounds made by the vocal
tract between distinct phonemes. Words in the knowledge
base are thus constructed as interconnected networks of
trained senones, using probabilistic transitions to describe
the likelihood of two sound units being heard consecutively.

This same approach is used at a higher level to describe
probabilistic transitions between words. Thus, the system
might distinguish the phrase “Their car” from the phrase
“There car” because the first combination has a higher
overall probability of occurring in normal English. It is ap-
parent, however, that the “There car” hypothesis cannot
be discarded until recognition has proceeded sufficiently
far forward to determine that it is the less likely path. It
is this same uncertainty, applied at the senone level, or
at the level of individual sample frames, that leads to an
active, concurrent exploration of a potentially large num-
ber of paths through the knowledge base. The exploration

1The current version of this library is SPHINX–3. The
primary difference between versions is a more sophisticated
continuous Gaussian scoring model. Our analysis indicates
that the optimizations discussed in this paper are directly
applicable to comparable portions of SPHINX–3, and that
the new computation in SPHINX–3 is predominantly a
small, often repeated, and well understood mathematical
computation, making it an ideal candidate for ASIC style
optimization.

Figure 2: Performance and power considerations
for speech recognition on modern architectures.

of each of these paths during any given iteration of the
search phase, however, is conceptually independent from
the exploration of any other path.

This characteristic concurrency potential is previously
described [5, 17, 26, 9] and implies the availability of hun-
dreds to thousands of independent threads during a given
iteration of the search algorithm. Other commonly seen
characteristics of speech recognition include high mem-
ory demand and relatively poor memory performance, ow-
ing to the overall footprint of the knowledge base and
the highly input-dependent nature of the search process.
For example, for similar cache configurations, SPHINX
sees data cache miss rates on the order of one per 40 in-
structions as opposed to one per 200 on SPEC “Crafty”,
a benchmark known for poor cache behavior. Complete
analysis of SPHINX is available in our earlier study [17].

These characteristics make modern architectures rela-
tively unsuitable for running such applications, particu-
larly on low-end computing platforms. Figure 2 provides
a rough estimate of the speech recognition rate achievable
on various modern computing systems. Annotated above
each bar is the time each processor class would operate
on a single “AA” rechargeable battery (1600 mA·Hr). It
is clear that, while high end systems are within the per-
formance range necessary for real-time speech recognition,
they far exceed the power budget of portable devices. As
counterpoint, processors for low-power devices simply do
not have the computational power to meet the demands of
speech recognition. We thereby arrive at the goal of this
work: to produce architectural designs that achieve high-
end desktop processor performance on speech recognition
without exceeding the power budget of portable systems.

When considering these numbers, it is important to note
that the recognition accuracy in these results was approx-
imately 70–80 percent. While we do not address the accu-
racy problem in our work, a classic trade off in this domain
is that of performance for accuracy [17]. Thus, by design-
ing an architecture that provides for better performance,
we are indirectly shifting the tradeoff in a favorable direc-
tion. Furthermore, the search phase addressed throughout
this work comprises only the last steps in speech recog-
nition. The previously mentioned DSP-style “front end”

Figure 3: Overview of proposed architecture.

processing, however, represents a very small fraction of
runtime computation relative to the search phase, and a
number of DSP solutions exist to perform this task in a
power efficient manner.

3. SYSTEM ARCHITECTURE
The concurrency available in the search phase of speech

recognition immediately suggests the use of Simultane-
ous Multithreading (SMT) or Symmetric Multiprocessing
(SMP) architectures. While the principles behind these ar-
chitectures are very important, traditional SMP and SMT
systems are ill-suited to this specific application space be-
cause the key to achieving desired performance is not just
to exploit parallelism, but to exploit that parallelism in
an efficient manner. For example, one of the primary
characteristics of this domain is high memory demand, re-
sulting in relatively long latencies. While a standard ar-
rangement of SMP processors would improve performance
(when combined with data partitioning and other similar
techniques utilized in this work to expose parallelism ef-
ficiently), each individual processor would still suffer low
utilization due to the underlying workload, particularly
when coupled with the unsophisticated memory systems
generally found on portable devices. An SMT processor
could tolerate system delays by switching to other execu-
tion contexts, particularly with the availability of a large
number of threads. A single such processor, while ben-
efiting from better resource utilization, would require a
massive number of resources (and correspondingly sophis-
ticated scheduling logic) to truly exploit the amount of
concurrency in this domain. Thus, following the same in-
sight found in other works [23, 16], we arrive at the need
for a combined SMP/SMT system, employing simple, low-
power processing elements and distributing work through
an initial static partitioning to maximize load balancing,
minimize the complexity of scheduling logic, and maximize
processor utilization. On top of this basic infrastructure,
we incorporate architectural features to help expose paral-
lelism easily and manage the level of exposed parallelism
efficiently.

3.1 Architectural Model
Figure 3 presents an overview of our proposed SMP /

SMT architecture. At this level of detail, the major fea-
tures are the main system processor (modeled in our sim-
ulations as a Intel XScale 400MHz embedded processor [1]
with a FPA style floating point coprocessor [14] and a num-
ber of specific ISA extensions) and the attached speech
coprocessor. These divisions are logical only, and do not

Figure 4: Details of a single processing element.

necessarily represent chip boundaries. Two communica-
tion infrastructures connect these processors and system
peripherals. The first is a relatively small, low speed con-
trol bus connecting the XScale and the speech coprocessor.
This bus is primarily used to start speech processing, col-
lect results, and perform a small amount of inter-PE com-
munication within the coprocessor. The second is a larger,
more sophisticated memory bus, interfacing to a standard
DRAM memory system.

The speech coprocessor consists of a set of execution
pipelines (Processing Elements or PEs), and a few re-
sources to aid in parallelism management. These extra
resources consist of a dynamic load balancer and a small
number of global locks (discussed in more detail in the
evaluation section), neither of which requires sophisticated
logic. The dynamic load balancer requires extra intercon-
nects with the PEs in order to identify which pipelines are
overworked and which are idle. Job movement commands,
however, are send over the shared command bus. All com-
munication with the global lock manager occurs over the
command bus.

The execution resources of each PE (depicted in Figure
4) are very simplistic. Due to the availability of extensive
thread level concurrency, our model is able to eliminate
many of the power consuming resources utilized to improve
performance on modern microprocessors. For example,
the processing elements have no ability to expose ILP, the
scheduling and issue logic of which accounts for more than
15% of chip power on modern processors [7]. Furthermore,
the inherent complexity of stochastic search programs pro-
vides strong impetus to use integer representations of data
and avoid long latency computations. For example, the
search tree evaluation phase of CMU-SPHINX issues only
integer arithmetic and logical operations (along with loads
and stores) excluding even multiplication and division op-
erations. As a result, these pipelines consist of little more
than an ALU and sufficient logic to handle control, mem-
ory, and basic mathematical operations. The basic execu-
tion model is of a standard 5-stage, in-order pipeline with

branch-not-taken prediction and branch resolution in the
execute stage.

The hardware thread contexts consist of a set of inte-
ger and control registers (for the ARM instruction set em-
ployed by the XScale processor, approximately seventeen
32-bit registers), and the selection logic required to identify
a ready context from which to execute. Each pipeline also
contains a bank of “locally global” registers (accessed us-
ing ISA extensions) used to hold parameters and data that
are global to the PE and must be accessible by any con-
text, and a small “work queue” used to buffer a few work
elements for future assignment to a context. A small cache
(2k, 4way in the baseline case) is included to capture basic
spatial locality and improve integration with the memory
system. No cache coherence protocols are employed be-
tween PE caches as data consistency is maintained at the
software level through partitioning and locking. Finally,
the control logic of each PE maintains certain properties
between running contexts to simplify programming and
help expose more concurrency. These are discussed in the
next section as part of the programming model.

3.2 Programming Model
The basic premise of our programming model is to ex-

pose potential concurrency, leaving the job of deciding how
much concurrency to exploit to the architecture. As the
speech processing elements are drastically scaled down ver-
sions of the main processor, the coprocessor component
and the main processor component have slightly different
programming constructs.

The main processor utilizes a fork/join style of con-
structs to expose parallelism at the program level. The pri-
mary construct on the main processor is the “THREAD–
ISSUE” instruction. This instruction signals the beginning
of a parallel execution phase, and has the effect of issuing
an “start executing at this instruction” command to each
speech PE. The main processor may then perform other
work or execute a “EPOCH” instruction, forcing it to await
the completion of the previously issued parallel section. As
an added optimization, the main processor may schedule
work and switch to a second context while awaiting an
epoch. This secondary context returns control to the main
context when an epoch is reached, and resumes execution
when the next “wait” instruction is issued. This allows the
main processor to operate in parallel with the speech co-
processor without holding up future parallel sections while
it completes non-critical work. In our environment, this
secondary context is used to generate inputs for Gaussian
scoring for subsequent iterations of the search phase while
the speech coprocessor is evaluating the current iteration.
Beyond these modifications and the addition of a float-
ing point coprocessor, the main processor in our model is
identical to a standard XScale in both architecture and
programming model.

In order to tolerate the latency of exposing parallelism,
it is useful to allow individual speech PEs to generate new
threads of execution. This model distributes the work of
creating threads to the processors that are going to execute
them. Threads spawned in this way allow the program-
mer to quickly expose segments of potential concurrency
within a main processor epoch. The primary paralleliz-
ing construct on individual speech PEs is the “THREAD–
SPAWN” instruction. This instruction models a function
call, and may be dynamically converted to a function call if

the necessary execution resources for a new thread context
are unavailable.

While we are not at the point of making such consider-
ations in this work, the design of this programming model
is intended to allow for a substantial amount of dynamic
parallelism control at the hardware level. While our cur-
rent system only throttles thread spawning when hardware
contexts are unavailable, it is possible to introduce other
considerations (such as available memory bandwidth), dy-
namically matching the level of exposed parallelism to the
immediate overall resource availability of the system, or to
desired performance and power goals.

Data Partitioning and Data Locking
An important requirement to truly exploit concurrency on
stochastic search applications like speech recognition is the
ability to perform low overhead fine-grain data locking. As
search phase algorithms traverse and evaluate search tree
nodes, sequential access to node data must be maintained
to avoid race conditions. Clearly, a centralized locking
manager would quickly become a bottleneck in a massively
parallel system evaluating tens to hundreds of search nodes
simultaneously.

Our solution to this problem is the use of data partition-
ing and the inclusion of a UniqueID field in the THREAD–
SPAWN instruction. Partitioning of search tree nodes
gives each node a “home” PE which is responsible for en-
suring sequential access to the node. This has the added
benefit of providing an initial distribution of workload. A
number of simple techniques can be used to identify the
home partition of a particular data element (for example,
distributing node data in such a way that the partition
number may be easily acquired by a bit mask of the data
address). Partitioning may be performed statically offline,
and thus has no negative impact on runtime performance.

Within an individual speech PE, the UID field of the
SPAWN instruction is used to identify threads that may
not be executed concurrently. When a hardware context
begins execution of a work unit, it inherits the UID of
that work unit. Newly spawned threads may not execute
if their UID matches the UID of a currently executing
thread. The resulting architecture is very similar to the
destination tag broadcast bus in a CAM–based out–of–
order scheduler, though in this instance the broadcast is
well outside of any critical execution paths, operates over
a very small window, and need only be utilized on cycles
involving thread spawns. In practice, we find that con-
flict over unique IDs is very low relative to the number of
spawned jobs.

Beyond this internal locking mechanism, certain opera-
tions (e.g.: dynamic memory allocation) require the abil-
ity to maintain global lock state, necessitating the small
global lock store provided by the architecture. These locks
are accessed through explicit ISA extensions. A final set of
extensions allows a given context to enter a “critical sec-
tion”, preventing the given PE’s context scheduler from
switching to another context during that time. This al-
lows exclusive access to “locally global” data within the
scope of a single PE.

4. PERFORMANCE EVALUATION
This section explores the effectiveness of our architec-

tural model in improving the performance of speech recog-

nition on a embedded system level hardware platform.
Simulations were performed on a modified version of the
SimpleScalar/ARM toolset [4] running a hand parallelized
version of the CMU-SPHINX speech recognition engine
(v2.0.4) compiled with GNU-GCC for the ARM platform.
A search tree traversal profile was generated using a train-
ing input stream and partitioned using the hMetis graph
partitioning toolset [15]. Due to the nature of the search
tree, it was possible to generate efficient partitions with no
intra–word edge cuts. The architecture, however, inher-
ently supports (through the unique ID on thread spawn)
the communication necessary to accommodate less well be-
haved partitions. Our parallelization efforts have moved
approximately 92% of the search phase code over to par-
allel execution on the speech coprocessor. About half of
the eight percent remaining on the main processor is ex-
ecuted concurrently with coprocessor code through use of
the secondary “epoch” context. All experiments were per-
formed using a 11400 word vocabulary and correspond-
ing language model generated by use of the Cambridge
Statistical Modeling Toolkit [10] and based on transcripts
of famous speeches and selections of text available online
through the Gutenberg project [3].

Power Estimation
As an actual hardware implementation of our architecture
is not yet available, we construct power estimates by com-
bining data from a number of sources, and attempt to ac-
count for most of the power consumption in the system.

Power estimates for the XScale processor are taken from
the Intel PXA250 technical specification [1]. Power esti-
mates for the speech PE execution cores are based on a
conservative area scaling of the relevant die area of the
XScale processor. In each case, we compute active power
for the number of seconds of execution time each proces-
sor spent actively executing, and add idle power dissipa-
tion (again, based on the technical specification) for the
remaining time.

Power consumption estimates for speech PE thread con-
texts and caches are taken from Cacti 3 [24]. Idle power
dissipation from inactive thread contexts is accounted for
throughout execution. Cache active power is accumulated
on cache access cycles (for each cache in the system), and
idle power is accumulated on all other cycles. Cache idle
power consumption is assumed to be 25% of active power.
This matches the relative power dissipation levels of the
XScale processor model (a reasonable assumption for on-
chip caches) and also corresponds with relative idle power
dissipation levels seen in other works [11].

Power estimates for the memory system are based on the
SDRAM system power calculator available from Micron
Technologies [2]. This system power calculator account
for active, precharge, Read/Write, and background power
dissipation based on activity rate for a single DRAM chip.
The result of this power estimate was multiplied across the
number of DRAM chips required to hold our datasets.

While this attempts to account for most of the ma-
jor power consuming components of the system, there are
clearly certain components that do vary across our archi-
tectural models, but are not accounted for here. The most
obvious example is the power consumed by the intercon-
nect network, which will vary by use and by number of
processing elements. Unfortunately, a reasonable model
for power consumption of this component was unavailable.

As our later analysis will demonstrate, however, the in-
terconnect network sees very low utilization in our infras-
tructure, and the system is very tolerant of interconnect
latency. As such, the steps can be taken to trade off per-
formance for lower power on the interconnect, mitigating
it’s effect or our power estimates.

4.1 Idealized Performance
We begin our analysis with an idealized processor model

in order to explore the latency induced by various specific
components. Our baseline idealized system grants each
speech PE a ten element work queue, and a 2k, 4way cache
with a fixed 100 cycle latency on cache misses. At 400MHz,
this represents a very slow, high bandwidth DRAM. Our
idealized model also assumes a single cycle delay to spawn
a new thread or to transmit data along the communication
network, and further assumes a contention free communi-
cation network. We explore the effect of constraining many
of these resources in later sections.

The performance speedup of various speech PE / con-
text combinations relative to unparallelized speech recog-
nition code on the same workload is depicted in Figure 5a.
This figure depicts a number of interesting points. First,
it should be noted that the overhead of parallelization is
fairly substantial in our model. This is best represented by
the speedup for the single speech PE, single context exper-
iment (around 60% of unparallelized). This configuration
incurs nearly the entire parallelization overhead (main pro-
cessor “epoch” thread code still runs concurrently) with
no extra parallel resources. Much of this overhead comes
from the replacement of loops in the original code with
thread spawn instructions, and the need to repeatedly per-
form certain data gathering operations at the beginning of
each thread of execution. This data gathering is performed
once, outside of the loop, in the original code, and primar-
ily represents access to global variables or data that we do
not assume the speech PEs have direct access to.

The second important point depicted in the figure is the
dramatic performance improvements achievable through
the addition of parallel resources. The speedups seen along
the “Speech Processors” axis nearly matches the theoret-
ical maximum linear speedup given the percent of overall
code that is parallelized. This is a clear demonstration
of the massive potential for concurrency available in the
application space.

A final important point from this figure is the effect of
adding thread contexts to each PE. The data shows that,
for this configuration, the performance benefits of adding
contexts appears to peak out at around eight contexts.
This peak is due to a combination of factors ranging from
accommodation of all available delays to insufficiently ag-
gressive parallelization within a PE. We will consider this
effect in greater detail below.

Power Considerations
A representation of relative energy consumption for our
baseline model (assuming a sufficiently distributed high-
bandwidth memory system) is depicted in Figure 5b. The
most interesting result in this figure is that increased per-
formance through the addition of concurrent processing
resources has the effect of decreasing overall energy con-
sumption for the experimental workload. It is important to
note that power consumption increases monotonically with
increased computational resources. The observed reduc-

1 2 4
8

16

32

12
4

6
8

16
0

2

4

6

8

10

12

14

Unparallelized

Speech PEsContexts / PE

S
pe

ed
up

1 2 4 8 16
32

12
4

6
8

16

10

12

14

16

18

20

22

24

26

28

Speech PEs
Contexts / PE

Unparallelized

R
el

at
iv

e
E

ne
rg

y

(a) (b)

Figure 5: Speedup (a) and energy consumption (b) relative to unparallelized code on idealized model.

1 2 4 8 16
32

12
4

6
8

16
0.6

0.65

0.7

0.75

0.8

0.85

0.9

0.95

1

Speech PEs
Contexts / PE

Unparallelized

F
ra

ct
io

na
l P

er
fo

rm
an

ce

Figure 6: Fractional relative performance of 100
cycle memory latency relative to 50 cycle memory
latency.

tion in energy is the result of running at a slightly higher
power output for a dramatically shorter period of time.
A more detailed analysis of the underlying power num-
bers contributing to these results shows that active energy
consumption increases monotonically with increased com-
putational resources, but overall varies little. This is ex-
pected, as the amount of “work” performed, as measured
by computation required to process the input speech, is
the same for all configurations. The source of the overall
energy savings is a large reduction in static (idle) energy
consumption. In effect, the extra power consumption of
added computational resources is mitigated by the more
efficient use of those computational resources (less time
dissipating idle power due to latency in the system). In
later sections, we will consider actual energy consumption
under a more realistic set of constraints.

Tolerance of Memory Delays
In order to explore the effectiveness of our architecture at
tolerating delays in the system, we turn to the most ob-
vious source of latency, memory requests. Figure 6 shows
the fractional relative performance of moving from a fixed
50 cycle memory latency to our baseline of 100 cycles. The
relative reduction in performance loss for greater numbers
of thread contexts (as depicted by the higher fractional
performance) is a clear indication that multiple thread con-
texts serve to help tolerate latencies. Indeed, the added
thread contexts are able to reclaim much of the perfor-
mance loss from doubling memory latency.

The beneficial effects of multiple hardware contexts is
further seen in Figure 7, which shows average percent uti-
lization of speech PEs in various configurations. We see in
Figure 7b that for a 100 cycle latency, a greater number
of contexts are required before peaking out (relative to 50
cycles shown in (a)), as would be expected. While some
reduction is unavoidable, the addition of a couple of extra
thread contexts is often enough to reclaim much of the lost
utilization due to increased memory latency.

Cache Configuration
In order to handle spatial locality in data (related to ac-
cesses to multiple data sub-elements of a single search tree
node), each speech PE includes a small local cache. We
investigate the effect of cache size and configuration by
evaluating a number of size and associativity values. The
cache line size was fixed at 32 bytes to match the cache
line size of the main XScale processor.

The baseline 2K, 4way cache saw a 22-30% miss rate for
a 4x4 (PE/ctx) configuration. Increasing the cache size to
4K while maintaining the same associativity level achieved
a 9% performance improvement and reduced the average
miss rate to the 17-23% range. In contrast, reducing the
cache size to 1K decreases performance by 15-17% from
the baseline and increases the average miss rate to the
40% range. While this data matches expected results for
a varied cache size, it is important to recognize that the
actual ideal cache size for this domain will depend on the
specific architecture configuration, as added thread con-

1 2 4
8

16

32 1 2
4

6
8

16
20

30

40

50

60

70

80

90

100

Contexts / PE

Speech PEs

P
er

ce
nt

 U
til

iz
at

io
n

1 2 4
8

16

32 1 2
4

6
8

16
10

20

30

40

50

60

70

80

90

100

Contexts / PE

P
er

ce
nt

 U
til

iz
at

io
n

(a) (b)

Figure 7: Speech processor utilization at 50 cycle memory latency (a) and 100 cycle memory latency (b).

12 4
8

16

32

12
4

6
8

16
−25

−20

−15

−10

−5

0

Speech PEsContexts Per PE

P
er

ce
nt

 S
pe

ed
up

Figure 8: Relative performance loss of moving
from a 2k cache to a 1k cache. Both configurations
were 4-way set associative with 32byte blocks.

texts do much to tolerate the delays introduced by smaller
cache sizes (shown in Figure 8). With respect to cache as-
sociativity, moving from a 4way cache to a direct mapped
cache (again, for the 4x4 datapoint) had the effect of re-
ducing performance by around 30%, while increasing to
a fully associative cache had a trivial positive impact on
performance.

Register Pressure
In order to explore the potential for reducing the amount
of hardware resources required for each thread context, we
perform a simple register pressure test. Utilizing the -ffixed
flag in GCC, we performed a series of experiments succes-
sively eliminating registers from the compiler’s allocation
pool for our targeted search phase code. This experiment
produced two interesting results. First, register pressure
is relatively high on the speech PEs. It was not possi-
ble to successfully compile the program with more than
five registers eliminated. Experiments with five registers

eliminated (11 remaining) demonstrated a 5% slowdown as
compared to the unrestricted code. While this is a trivial
slowdown relative to the potential performance improve-
ments we have discussed thus far, it does suggest that one
cannot eliminate enough registers to significantly impact
the architectural design. It is important to note, however,
that GCC’s register allocator is rather poor, and a better
register allocator may relax the register pressure on the
speech PEs.

The far more interesting and useful result was revealed in
a register pressure experiment on the main XScale proces-
sor (again, during the search phase code). Restricting the
compiler to two general purpose registers and two floating
point registers (out of fifteen and seven respectively) re-
sulted in a slowdown of less that 0.5%. This suggests that
the extra “epoch” context used to perform background
processing during parallel code sections can be entirely vir-
tualized through a logical partitioning of the existing reg-
ister file. With compiler support, this extra context could
be added with a minimal change to the existing architec-
ture. In this instance, a better register allocator would
simply improve the already sufficient result.

Work Queue Size
The “work queue” constitutes a small bank of register
space on each speech PE which is used to buffer work el-
ements for future assignment to thread contexts. As our
parallelization algorithm converts a thread spawn into a
function call when resources are unavailable, it becomes
possible for a previously spawned thread context to com-
plete it’s work unit but remain empty because the context
running the section of code that issues spawn instructions
is busy operating on a work unit of it’s own. As only one
context may run at a time, a considerable number of cy-
cles may pass before the PE returns to the thread spawning
code. The presence of a small work queue allows the newly
free context to accept a work unit from this small buffer,
improving the opportunity for overall processor utilization.

We evaluate the usefulness of this work queue by vary-
ing its size. Eliminating the work queue entirely demon-
strated a 10% slowdown on average for smaller numbers

of contexts. As the number of contexts passed the utiliza-
tion point (approximately 8 contexts in the ideal model),
this slowdown disappeared as potential work queue usage
points were eliminated. A small work queue (less than five
entries), however, was sufficient to to reclaim any perfor-
mance loss.

It should be noted that our evaluation did not consider
true elimination of the work queue. Work queue entries
were still used to hold thread spawn requests that resulted
in a UID conflict, and to accept migrated jobs. True elim-
ination of the work queue would simply exacerbate the
slowdown as contexts were forced to stall on conflicting
UIDs during a thread spawn, and dynamic load balancing
was scaled down.

Thread Spawn Delay
Our idealized model assumes no delay incurred in the pro-
cess of spawning threads. We evaluate the effect of adding
a realistic constraint by considering situations in which
the act of spawning a thread stalls both the spawning and
receiving context to account for register copies and con-
text setup. We consider delays in number of cycles of (2 +
number of registers to copy) and (10 + number of registers
to copy) and find no appreciable affects on performance,
strongly suggesting that this is not a architectural con-
straint on performance.

Communication Infrastructure
Our idealized model assumes no delay or contention on the
inter-PE communication network. This network is primar-
ily used at the beginning and end of a parallelized section
of code (in communication between the main processor
and speech coprocessor), and during job migration and
global lock acquisition. As such, contention for this net-
work should be fairly low. We test this hypothesis by im-
plementing a basic 8-bit bus as a communication network
and assuming that a communication allocates the bus for
the number of bytes of transfer plus two extra cycles of
protocol overhead. We find no appreciable affect on perfor-
mance (less than 0.2% slowdown on a 32 PE x 32 context
configuration), suggesting that this too is not an architec-
tural constraint on performance. It should be noted that
the lack of contention is due to the lack of communication
between processors. As such, variations in partitioning
that lead to greater job migration (either due to dynamic
load balancing or cut edges) could lead this to become a
more significant contributor to performance degradation.

Global Locking
The global locking mechanism provides the ability to es-
tablish mutual exclusion across all running threads. This
is a very slow, easily congested means of performing lock-
ing, and as such every effort is made in the software to
utilize fine–grain locking mechanisms available on individ-
ual processing elements. The facility is provided, however,
because certain operations require global exclusion capa-
bilities.

As access to the global lock manager is inherently con-
strained by access to the communication infrastructure,
we would expect no greater impact on performance due to
the speed of this very simple hardware as due to the band-
width through the communication network. Our baseline
results show that both the delay due to cycles of lock man-

124
8

16

32

12468

16

−10

−8

−6

−4

−2

0

2

Contexts / PESpeech PEs

P
er

ce
nt

 S
pe

ed
up

 (
In

ve
rt

ed
 A

xi
s)

Figure 9: Percentage slowdown relative to baseline
by eliminating dynamic load balancing.

ager operation, and indeed delays due to contexts waiting
for currently held global locks is trivial relative to other
performance factors.

Load Balancing
Our baseline architecture includes a global job scheduler
to perform dynamic load balancing between speech PEs.
While the profile based partitioning scheme used to per-
form initial work distributions proves very effective in bal-
ancing speech PE usage over the duration of the program,
it is unable to account for imbalances occurring during
individual “SPAWN to EPOCH” segments. The result is
that each PE spends approximately the same time actively
computing, but the accumulation of small workload imbal-
ances leads to a correspondingly large number of idle cycles
waiting for other processors to finish and reach the next
epoch. In order to mitigate this effect, the global job sched-
uler identifies jobs awaiting assignment to a context (wait-
ing on the work queue) of a PE with no free context, and
issues commands to migrate such job to the work queue of
a PE with free contexts. Migratable jobs are identified by
the program, and may not spawn new jobs themselves, or
require access to data local to the home processor. This
set of constraints minimizes the impact of job migration
on the communication network, and allows the job to exe-
cute with highest possible throughput on the receiving PE.
As these constraints basically match threads representing
the inner-most loops of nested search algorithm traversals,
they are quite plentiful.

The relative slowdown caused by removal of the load
balancing engine is depicted in Figure 9. This chart clearly
shows that, for a small number of contexts, the effect of
load balancing can be quite substantial, particularly for a
larger number of partitions. As an increased number of
partitions increases the potential for imbalance, this result
is quite reasonable. An interesting characteristic, however,
is how quickly this effect is dissipated by the addition of
thread contexts. As the load balancing engine will only
migrate a job from the work queue of a busy processor to
a free context on another processor, the addition of thread
contexts directly reduces the availability of jobs eligible for
migration. In the extreme case, free contexts are always

available, and no useful job migration occurs.
To extend this analysis, we consider the aggressiveness

of load balancing by placing a constraint on the number of
free contexts that must be available on the receiving PE
before a job may be migrated to it. Our results show that,
such reduced aggression (requiring a larger number of free
contexts) only serves to degrade performance.

Partition Quality
As discussed previously, knowledge base data partitioning
serves the dual purposes of aiding in fine grain locking
support and providing an initial distribution of workload.
Early simulations during the development of this research
showed that parallelization without partitioning seriously
constrains the achievable throughput (approximately 3x
for 16 processors in an idealized framework). The previous
subsection demonstrated that, despite profiling, this initial
distribution can only balance overall workload, allowing for
substantial imbalance in smaller computational segments.
We therefore explore whether profile based partitioning is
in fact necessary or helpful, particularly given the need for
dynamic load balancing regardless.

We consider the effect of two partitioning options. The
naive approach distributes partitions based purely on num-
ber of search tree nodes, with no consideration of use. The
more sophisticated partitioning scheme is the baseline used
throughout this paper, weighing each search tree node by
access frequency during a profiling run, and partitioning to
equalize weight. The results of this evaluation are shown in
Figure 10 and depict a fairly substantial slowdown for the
naive partition scheme for smaller numbers of speech PEs
(i.e. smaller numbers of partitions). This slowdown is sub-
stantially greater than the effect of eliminating load bal-
ancing, and demonstrates simply that the relatively slow
job migration implemented by the load balancing infras-
tructure is not as effective a method of exploiting par-
allelism and tolerating delays as the fast job assignment
within a single speech PE. A secondary effect of the naive
partition is increased pressure on the communication net-
work as a substantially (often over 3x) greater number of
jobs are migrated in an attempt to balance workload. The
graph also appears to show a peak in slowdown at 8 pro-
cessors, and a relative improvement in performance for a
greater number of partitions. Our analysis indicates that
this relative improvement derives from the fact that, given
enough partitions, frequently traversed nodes will inher-
ently end up in different partitions simply through an ef-
fort to equalize the number of nodes. As profile based
partitioning can be performed offline in a “do once, use
forever” fashion, we see no benefit to avoiding a detailed,
profile based partitioning step.

4.2 Detailed Memory System Analysis
The discussion thus far has demonstrated the potential

performance improvements achievable through efficient use
of available parallelism. The second primary characteris-
tic of speech recognition applications is high memory de-
mand. Thus, in order to fully consider true system per-
formance, we incorporate a highly detailed full memory
system SDRAM simulator from the University of Mary-
land [25] to our modeling infrastructure. For this and all
subsequent evaluation, we move to a less idealized model,
not only incorporating the detailed memory system, but
also incorporating a realistic thread spawn delay (1 cycle

1 2 4 8
16

32

12
4

6
8

16

−25

−20

−15

−10

−5

0

Speech PEs
Contexts / PE

P
er

ce
nt

 S
pe

ed
up

 (
In

ve
rt

ed
 A

xi
s)

Figure 10: Percentage slowdown of naive partition
relative to baseline.

for every two registers copied plus two control cycles) and
communication interconnect (16-bit bus). As discussed
previously, these factors do not have a substantial impact
on performance, but are included for completeness. All
subsequent experiments also incorporate the load balanc-
ing job scheduler (the activity of which is constrained by
thread spawn delay, it’s own internal delay model, and the
communication delay) and utilize the profiled initial par-
tition. Each speech PE is given a 2k, 4-way cache, and
a 5 entry work queue. The main processor is constrained
to half of it’s total registers during parallelized sections to
account for the logical “background“ context.

Figure 11 shows the effects on speedup and energy of de-
tailed memory system modeling using a 100MHz SDRAM
system with one channel and a 64–bit bus. Clearly, mem-
ory access constitutes a key bottleneck in our system. It is
important to note, however, that even the relatively small
performance improvements seen here can mitigate some of
the energy consumption of added computational resources.
Based on full system power estimates, the unparallelized
version of this code running on our 400MHz XScale model
would achieve around 60 words per minute and run for
around 4.5 hours. By comparison, a single PE with 4 con-
texts would be able to achieve nearly 70 words per minute
for around four hours. Due to the clear memory bottle-
neck, added processors were able to do little to improve
performance, and thus did not produce the static power
dissipation seen in the idealized results..

In order to explore memory system effects more thor-
oughly, we categorize memory characteristics as those re-
lated to DRAM request rate, or the ability to issue requests
into the memory system at a high rate, and those related
to data transfer, or the constraints due to bus, channel,
chip, and bank contention within the memory system.

DRAM Request Rate
We consider the impact of DRAM request rate by manipu-
lating the frequency of the DRAM system and the number
of memory channels (thereby the number of simultaneous
outstanding requests). Figure 12 considers the relative
performance between a 100MHz memory and a 200MHz
memory. As shown in the figure, the extra bandwidth to

1 2
4

8

16

124
8

16
0.7

0.8

0.9

1

1.1

1.2

1.3

1.4

1.5

1.6

Speech PEs

Unparallelized

Contexts / PE

S
pe

ed
up

1 2 4 8
16

12
4

8

16

8

10

12

14

16

18

20

22

24

26

Contexts / PE

Unparallelized

Speech PEs

E
ne

rg
y

(J
)

(a) (b)

Figure 11: Speedup (a) and relative energy (b) charts for full memory system simulation (100 MHz DRAM,
1 channel, 64 bit interconnect).

1 2
4

8

16

12
4

8

16
20

25

30

35

40

45

50

Unparallelized

Speech PEs
Contexts / PE

P
er

ce
nt

 S
pe

ed
up

Figure 12: Percentage speedup of 200MHz DRAM
system over 100MHz DRAM.

the DRAM system is best exploited by an increasing the
number of speech PEs. As an individual PE can only issue
one memory request per processor cycle, and the DRAM
is only relevant on cache misses, increasing the number of
contexts does not utilize the DRAM as aggressively. Fig-
ure 13 considers the relative performance improvement by
doubling the number of simultaneous outstanding requests.
This too has a fairly substantial impact on performance,
and shows benefits for both an increased number contexts
and processors.

DRAM Data Transfer Rate
We consider the impact of DRAM data transfer contention
and internal contention by manipulating the width of the
DRAM data channel and by attempting to distribute data
across banks by partition to reduce bank contention. These
evaluations are shown in Figures 14 and 15 respectively,
and show little relative performance gain as compared to
the DRAM request issue modifications performed in the

1 2 4
8

16

12
4

8

16
0

5

10

15

20

25

30

35

40

45

50

Unparallelized

Speech PEsContexts / PE

P
er

ce
nt

 S
pe

ed
up

Figure 13: Percentage speedup of two independent
memory channels over single channel.

previous section. This strongly suggests that the key bot-
tleneck in the memory system is the frequency and number
of requests that can be handled within the requisite time-
frame, not contention for internal DRAM resources.

Memory Partitioning
Given the previous analysis regarding bottlenecks in the
memory system, we consider one possible optimization:
moving immutable knowledge base data to a high band-
width ROM, and eliminating those requests from the mem-
ory system entirely. This optimization is possible because
large portions of the knowledge base data (for example, the
Gaussian probability tables, logarithmic computation ta-
bles, and language model information) are read only. The
dynamic search tree, containing current scoring and active
node information, must be writable, but constitutes a rel-
atively small portion of the overall memory footprint of
the program. In order to gain insight into the potential of
such an optimization, we isolate memory requests to im-

1 2 4
8

16

12
4

8

16
0

5

10

15

20

25

30

35

40

45

50

Unparallelized

Speech PEsContexts / PE

P
er

ce
nt

 S
pe

ed
up

Figure 14: Percentage speedup of 16 Byte DRAM
channel width over 8 Byte.

1 2
4

8

16

124
8

16

0

2

4

6

8

10

12

14

16

18

20

Speech PEsContexts / PE

P
er

ce
nt

 S
pe

ed
up

Figure 15: Percentage speedup of 100MHz, 1 chan-
nel, 8 Byte wide memory with data placement op-
timizations over baseline.

mutable knowledge base data and assign a fixed memory
access latency of 60 cycles to such requests (again, repre-
senting a slow flash memory or ROM system). The result
of this experiment is shown in Figure 16. As 60 cycles is
far greater than the average latency to the DRAM sys-
tem when request rate is low (around 40 processor cycles),
we see a marked slowdown in configurations with few pro-
cessors and contexts. As counterpoint, however, we see a
notable increase in relative performance as demand for the
memory system increases. This demonstrates how impor-
tant access to the immutable knowledge base data is to
overall program performance, and suggests that a mem-
ory stream partitioning technique may be quite effective
in reducing the memory bottleneck.

5. RELATED WORK
The idea of exploiting available parallelism in the speech

recognition domain to improve performance is not new,
and a number of parallel architectures and algorithms have

1 2 4 8 16
124

8

16
−80

−60

−40

−20

0

20

40

Speech PEsContexts / PE

P
er

ce
nt

 S
pe

ed
up

Figure 16: Percentage speedup of 100MHz, 1 chan-
nel, 8 Byte wide memory with data placement opti-
mizations and static data set to fixed 60 cycle mem-
ory latency over identical memory system without
static data partitioning.

been investigated in other works. The primary difference
between these works and this paper is that our focus is
not only on performance, but also on constraining power
to allow speech recognition in a very confined domain, dra-
matically changing the characteristics of the problem. Hon
explored several approaches to hardware speech recogni-
tion, including AT&T’s Graph Search and ASPEN Tree
Machines and CMU’s PLUS architecture [12]. These ma-
chines all consider the same basic problem we are looking
at here, with a focus on pure recognition performance on
large, multiprocessor systems. These are also on older ar-
chitectures and thus consider far smaller vocabularies.

Anantharaman and Bisiani develop a custom hardware
accelerator for speech recognition [6]. Their work is pri-
marily focused on transformations from the algorithm lead-
ing to a custom hardware implementation and thus ac-
quires a number of algorithm specific characteristics. Our
work, in contrast, exploits only the most general aspects
of the speech recognition domain, achieving substantial
performance improvements through a general architectural
model that is applicable to a number of problems within
the stochastic search domain. Chatterjee and Agrawal con-
sider connected speech recognition on the MARS pipelined
processor [8]. Their primary focus in this work is imple-
mentation and performance on their existing architecture
and do not consider architectural arrangements to maxi-
mize recognition performance or power considerations.

Ravishankar [22] presents a parallel implementation of
the SPHINX beam search heuristic. Many of the tech-
niques described in his work are utilized in our parallel
implementation, with modification for our programming
model. He is able to demonstrate 3x performance im-
provements on a 4-processor SMP system, tracking well
with our experimental results in low power, embedded en-
vironment. Our work also demonstrates the effectiveness
of added SMT support it improving performance and mit-
igating delays.

With regards to SMT and SMP, recent work has also
shown potential benefits of hybrid system similar to ours.

Sasanka et al consider chip multiprocessors and SMT facil-
ities on out of order processors for multimedia benchmarks
and find that CMP processors provide the best energy ef-
ficiency, and hybrid systems show the ability to accommo-
date both high performance and high energy efficiency [23].
Kaxiras et al observe similar trends on mobile phone DSP
workloads [16]. While the search phase of speech recogni-
tion that we address is not DSP-like in nature, the basic
principles of power saving through exploitation of concur-
rency remains the same.

6. CONCLUSIONS AND FUTURE WORK
This work considers the potential use of thread level

parallelism inherent in the domain of continuous speech
recognition applications to make such capabilities avail-
able within the computational and power constraints of
hand-held and portable systems. We demonstrate that a
high-concurrency execution environment with SMT-like fa-
cilities for tolerating latency can dramatically improve per-
formance of speech recognition, and that a reduction in the
effect of static power dissipation can actually reduce over-
all energy consumption for a given workload. We demon-
strate that the primary bottleneck to implementation of
such an infrastructure is access to the memory system,
and further identify the bottleneck as request rate into
the memory system as opposed to contention for internal
memory system resources. Overall, we find that from an
original system performance of 60–70 words–per–minute
for around 4 hours of continuous speech totaling around
16000 words (on a single “AA” battery), we are realisti-
cally able to achieve around 95–100 words–per–minute for
3 hours, totally around 18000 words.

Our analysis clearly places the focus of future work on
memory system optimizations. One promising avenue is
partitioning of the data request stream by type, reduc-
ing the demand on individual memory resources. Future
work will also need to consider power consumption related
factors such as heat dissipation, as our architecture must
operate at a higher power level (for a shorter duration)
than the original. As counterpoint, given a memory model
capable of handing the demand of this application, it may
be possible to employ voltage and frequency scaling tech-
niques, trading off excess performance for lower energy and
instantaneous power consumption.

7. ACKNOWLEDGMENTS
We would like to thank the anonymous reviewers for

their valuable comments. This work is supported under the
DARPA/MARCO Gigascale Silicon Research Center and
C2S2 Research Center. Additional support was provided
by the National Science Foundation, grant number CSA-
0310511. Equipment support was provided by Intel.

8. REFERENCES
[1] Intel PXA250 processor. http://developer.intel.com/.
[2] Micron Technologies. http://www.micron.com/.
[3] Project Gutenberg. http://promo.net/pg/.

[4] Simplescalar toolset. http://www.simplescalar.com.

[5] K. Agaram, S. Keckler, and D. Burger. A characterization
of speech recognition on modern computer systems. In
Proceedings of 4th Annual Workshop on Workload
Characterization, December 2001.

[6] T. Anantharaman and B. Bisiani. A hardware accelerator
for speech recognition algorithms. In Proceedings of the

13th Annual Intl. Symposium on Computer Architecture,
pages 216–223, 1986.

[7] D. Brooks, V. Tiwari, and M. Martonosi. Wattch: a
framework for architectural-level power analysis and
optimizations. In ISCA, pages 83–94, 2000.

[8] S. Chatterjee and P. Agrawal. Connected speech
recognition on a multiple processor pipeline. volume 2,
pages 774–777, May 1989.

[9] C.Lai, S.Su, and Q.Zhao. Performance analysis of speech
recognition software. In Proceedings of 5th Workshop on
Computer Architecture Evaluation using Commercial
Workloads, February 2002.

[10] P. Clarkson and R. Rosenfeld. Statistical language
modeling using the CMU-Cambridge toolkit. In
Proceedings of EUROSPEECH’97, pages 2707–2710,
1997.

[11] C.Zhang, F. Vahid, and W. Najjar. A
Highly–Configurable Cache Architecture for Embedded
Systems. In 30th Annual International Symposium on
Computer Architecture, June 2003.

[12] H. Hon. A survey of hardware architectures designed for
speech recognition. Technical Report CMU-CS-91-169,
August 1991.

[13] X. Huang, F. Alleva, H.-W. Hon, M.-Y. Hwang, K.-F.
Lee, and R. Rosenfeld. The SPHINX-II speech
recognition system: an overview. Computer Speech and
Language, 7(2):137–148, 1993.

[14] D. Jagger and D. Seal. ARM Architecture Reference
Manual (2nd edition). Addison–Wesley, 2000.

[15] G. Karypis. Metis family of multilevel partitioning
algorithms. http://www-
users.cs.umn.edu/ karypis/metis/metis/index.html.

[16] S. Kaxiras, G. Narlikar, A. Berenbaum, and Z. Hu.
Comparing Power Consumption of an SMT and a CMP
DSP for Mobile Phone Workloads. In International
Conference on Compilers, Architectures, and Synthesis
for Embedded Systems (CASES), November 2001.

[17] R. Krishna, S. Mahlke, and T. Austin. Insights into the
memory demands of speech recognition algorithms. In
Proceedings of the 2nd Annual Workshop on Memory
Performance Issues, May 2002.

[18] K. Lee, H. Hon, and R. Reddy. An overview of the
SPHINX speech recognition system. IEEE Transactions
on Acoustics, Speech and Signal Processing, 34:35–44,
1990.

[19] K.-F. Lee. Automatic Speech Recognition: The
Development of the SPHINX System. Klewer Academic
Publishers, 1989.

[20] L. Rabiner. A tutorial on hidden markov models and
selected applications in speech recognition. Proceedings of
IEEE, 77(2):257–286, February 1989.

[21] L. Rabiner and B.-H. Juang. Fundamentals of Speech
Recognition. Prentice Hall, 1993.

[22] M. Ravishankar. Parallel implementation of fast beam
search for speaker-independent continuous speech
recognition. Computer Science & Automation, 1993.

[23] R. Sasanka, S. Adve, Y. Chen, and E.Debes. Comparing
the Energy Efficiency of CMP and SMT Architectures for
Multimedia Workloads. Technical Report
UIUCDCS-R-2003-2325, 2003.

[24] P. Shivakumar and N. Jouppi. CACTI 3.0: An integrated
cache timing, power, and area model. Technical report,
August 2000.

[25] D. Wang and B. Jacobs. MASE DRAM memory
simulator manual.
http://www.ece.umd.edu/courses/enee759h.S2003
/references/mase dram.pdf.

[26] S. Young. Large vocabulary continuous speech
recognition: A review. Proceedings of IEEE Workshop on
Automatic Speech Recognition and Understanding,
Snowbird, Utah, pages 3–28, December 1995.

