
A Dataflow-centric Approach to Design Low Power Control
Paths in CGRAs

Hyunchul Park, Yongjun Park, and Scott Mahlke
Advanced Computer Architecture Laboratory, University of Michigan

Ann Arbor, MI, USA
{parkhc, yjunpark, mahlke}@umich.edu

ABSTRACT
Coarse-grained reconfigurable architectures (CGRAs) present an
appealing hardware platform by providing high computation through-
put, scalability, low cost, and energy efficiency, but suffer from rel-
atively high control path power consumption. We take the concept
of a token network from dataflow machines and apply it to the con-
trol path of CGRAs to increase efficiency. As a result, instruction
memory power is reduced by 74% , the overall control path power
by 56%, and the total system power by 25%.

1. INTRODUCTION
Today’s mobile applications are multimedia rich, involving sig-

nificant amounts of audio and video coding, 3D graphics, signal
processing, and communications. These multimedia applications
usually have a large number of kernels in which most of the exe-
cution time is spent. Traditionally, these compute-intensive kernels
were accelerated by application specific hardware in the form of
ASICs to meet the competing demands of high performance and
energy efficiency. However, increasing convergence of different
functionalities combined with high non-recurring costs involved in
designing ASICs have pushed designers towards programmable so-
lutions.

Coarse-grained reconfigurable architectures (CGRAs) are becom-
ing attractive alternatives because they offer large raw computa-
tion capabilities with low cost/energy implementations. Example
CGRA systems that target wireless signal processing and multime-
dia are ADRES [9], MorphoSys [7], and Silicon Hive [12]. Tiled
architectures, such as Raw, are closely related to CGRAs [16].
CGRAs generally consist of an array of a large number of func-
tion units (FUs) interconnected by a mesh style network, as shown
in Figure 1. Register files are distributed throughout the CGRA
to hold temporary values and are accessible only by a small sub-
set of FUs. The FUs can execute common word-level operations,
including addition, subtraction, and multiplication.

A major bottleneck for deploying CGRAs into a wider domain of
embedded devices lies in the control path. The appealing features in
the datapath of CGRAs ironically come back as a major overhead in
the control path. The distributed interconnect and register files re-
quire a large number of configuration bits to route values across the
network. The abundance of computation resources simply adds up
the list for configurations to the control path. As a result, the total
number of control bits to configure the whole array can reach nearly
1000 bits each cycle, and the control path takes up to 43% of the to-
tal power consumption in existing CGRA designs [3, 2]. Moreover,
control bits are read from the on-chip memory every cycle regard-
less of the array’s utilization. Even when only a small portion of
the resources are active in the array, the configurations for all the
resources must be fetched, which makes CGRAs very inefficient
for the codes with limited parallelism. This inefficiency prevents

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
Copyright 200X ACM X-XXXXX-XX-X/XX/XX ...$5.00.

src0 const src1 route write

pred

FU
RF

opcode pred src0

8 3 4 4 4 3 3 3 941 Bits

PE PE PE PE

Central RF

PE PE PE PE

PE PE PE PE

PE PE PE PE

C
o
n
f
i
g

M

e
m

o
r
y

src1 route write waddr raddr const

Figure 1: CGRA overview: 4x4 array of PEs (left), a detailed view
of a PE (right), and a PE instruction (bottom)

CGRAs from wider uses including outer loop level pipelining [14]
or simply running acyclic code to reduce the communication over-
head with the host processors. Finding an efficient way to reduce
the control power reduction will not only relieve the power over-
head in the control path, but also opens the future application of
CGRAs to more variety of workloads.

While there are many studies on architecture exploration, code
mapping, and physical implementation [8, 1, 4], relatively little
work has examined efficient control in CGRAs and other tiled ac-
celerators. One exception is [3] wherein a hybrid configuration
cache is proposed that utilizes the temporal mapping for control
power reduction. Temporal mapping only utilizes a single column
of PEs in the array to map the entire loop and the The execution
of the loop is pipelined by running multiple iterations on different
columns in the array. The control power can be substantially re-
duced by transferring the configurations in one column to its right
each cycle, letting only the leftmost column read from the configu-
ration memory. However, temporal mapping can be applied to only
certain types of loops and it is not a general approach that can scale
to different types of applications. [2] reduced the control path
power of CGRAs as a by-product of an architecture exploration.
A Pareto optimal design of a CGRA was discovered that required
a lesser number of resources in the datapath thereby resulting in a
power reduction in the control path. To our knowledge, no previous
work has addressed a general solution for power-efficient control
path design in tiled accelerators like CGRAs. In this paper, we pro-
pose a new control path design that improves the code efficiency
of CGRAs by leveraging token networks originally proposed for
dataflow machines.

2. MOTIVATION
Figure 1 shows our target CGRA, similar to [8]. There are 16

PEs connected in a mesh-style interconnect and a central register
file for transferring values from/to the host processor. Each PE has
one FU for computations and an 8-entry local register file that are
shared by other neighboring PEs. An FU has three source multi-
plexors (MUXes) for predicate and data inputs. Here, we assume
an additional MUX(route) in each PE to increase the routing band-
width of the array. So, the PE can do both computation and routing
in one cycle. There are several MUXes as a result of the distributed
interconnect and each of them requires selection bits encoded in
the instruction field. Also, each register read/write port requires an
RF address field. Along with PE instructions, there are instructions
for central register files, and other buses that also require config-

(a)

(b)

Token Network

decoded inst w/ dest

Config Memory

Decoder

encoded inst

IF

to datapath

decoded inst

format

Config Memory

Decoder

Config Memory

to datapath

decoded inst

(c)

decoded inst w/ src

to datapath

format

encoded inst

F R F R F R F R

F R F R F R F R

F R F R F R F R

F R F R F R F R

Figure 2: Different Control Path Designs: (a) No compression,
(b) Fine-grain code compression with static instruction format, (c)
Fine-grain code compression with a token network (F and R indi-
cate FU token module and RF token module, respectively)

uration. As a result, each PE instruction is 41 bits, and a total of
845 bits is required to configure the CGRA each cycle. Typically,
control signals in CGRAs are stored as a raw data (fully decoded in-
structions) and directly fed to the datapath as shown in Figure 2(a).
Fetching 845 bits every cycle is indeed a large overhead. Control
path power can obviously be reduced by increasing code efficiency
through some form of code compression technique.

Conventionally, code compression is performed at the instruc-
tion level with no-op compression or a variable length encoding.
No-op compression is widely used in VLIW processors and many
DSPs [17, 15, 10, 5, 6]. However, instruction-level compression
does not work well in CGRAs due to the highly distributed nature
of the resources. Even if an FU is sitting idle, the register file in
the same PE can still be accessed by neighboring PEs. Also, the
FU can be used for bypassing data from one PE to another. We
examined the schedules of several hundred compute-intensive ker-
nels taken from multimedia applications mapped onto our CGRA
design and discovered that only 17% of PE instructions are pure
no-ops (all the components in the same PE is not active), while the
average utilization of FUs is 55%. Thus, no-op compression would
have limited effectiveness.

However, there is a good opportunity for a fine-grain code com-
pression: compressing instruction fields (e.g., opcode, MUX se-
lection, register address) rather than the whole instruction. On av-
erage, only 35% of all instruction fields contain valid data, thus
efficiency can potentially be increased by removing unused fields.
Figure 2(b) shows a high-level organization that utilizes a static
fine-grain compression approach. In the simplest variant, presence
bits are added for each field to indicate whether the field exists or
not. Instruction encoding consists of the presence bits(instruction
format) followed by the subset of valid instruction fields concate-
nated together. With this approach, decoding can become complex
due to the variable length nature of the encoding, but all unused
fields can be removed in principle.

The biggest challenge for applying static fine-grain compression
lies in the instruction formats. Using a simple fine-grain static com-
pression scheme that we designed for a CGRA, the code efficiency
increases by 24% with the average number of instruction bits de-
creasing from 845 to 647. However, 172 of the 647 bits are used
for encoding the instruction formats. Since the instruction format
of 172 bits needs be read from the configuration memory every
cycle regardless of the number of fields present, the instruction for-
mat itself becomes a significant overhead in the control path. To
address this limitation, we propose to dynamically discover the in-
struction formats by applying a dataflow token network explained
in Section 3.

Another issue in employing the fine-grain code compression is
decoder complexity. Since compression is performed in a finer
granularity, the overhead of the decoder is more substantial than
instruction-level code compression. In Section 4, we analyze the
decoder features that affect the overall complexity and discuss an
efficient partitioning of configuration memory to reduce decoder
complexity.

Cycle 1Cycle 0

0 1

2

3

Mapping

Cycle 2

0 1

2

3

DFG

Cycle 3 Cycle 4

Figure 4: Dynamic configuration of PEs using tokens

3. DYNAMIC DISCOVERY OF INSTRUC-
TION FORMATS

In this section, we propose a dynamic discovery of instruction
formats by adopting the concept of a token network from dataflow
machines. The concept is explained first, and then we propose a
token network that can assist the fine-grain code compression to re-
duce the overall power consumption in the control path of CGRAs.
Lastly, we discuss how the token network is extended to support
modulo scheduled loops [13] to exploit loop-level parallelism in
kernel loops.

3.1 Concepts
The basic idea of dynamic instruction format discovery is that

resources need configurations only when there is useful data that
flows through them. By looking at the locations of data coming into
a PE, we can infer the instruction format of the current instruction.
For example, two data coming into src0 and src1 MUXes of the FU
in Figure 1 indicate that this FU will perform an ALU operation.
So, an opcode field and src0/src1 MUX selection fields are required
in that cycle. If there is no data coming into the predicate input
MUX, the ALU operation is not predicated and the selection bits
for pred MUX is not needed. When there is only one data coming
into either the src0 or src1 MUX, the FU is performing a move
operation and the opcode field is not required. In the same way, a
data coming out from the register file in Figure 1 indicates a read
address field is required.

We can utilize a token network in dataflow machines [11] to pro-
vide information on where data flows in the distributed network.
A token is sent from a producer to its consumers one cycle ahead
of the actual data execution. Originally, the consumer fired when
it accumulated sufficient tokens. However, this concept can be al-
tered as all tokens for a single instruction are guaranteed to arrive
at the same time. Hence, the set of tokens uniquely determine the
instruction format so that the necessary fields can be fetched from
the instruction memory. When the actual data arrives in the subse-
quent cycle, the required instruction fields are already decoded and
the PE is ready to execute the scheduled operation.

Figure 4 shows the big picture of how PEs are configured dy-
namically in the token network. A simple dataflow graph (DFG) is
shown on the far-left and its mapping onto the CGRA datapath is
shown next to it. PEs with a small dot indicate they are used for
routing. The PEs in the array are incrementally configured each
cycle using tokens as in the figure. In each cycle, dark grey PEs
are configured and send out tokens to their consumers. In the sub-
sequent cycle, PEs executing the given instructions are shown in
light grey. At cycle 0, PE[0,0] (row 0, column 0) and PE[0,2] are
configured first to execute operations 0 and 1, respectively, and they
send out the tokens to their consumers. At the next cycle, PE[1,0]
and PE[1,2] receive the tokens from their producers and are con-
figured to route the data to PE[1,1]. In a similar fashion, PEs are
configured as tokens flow over the array and all the necessary PEs
to execute the DFG are configured at cycle 4.

3.2 Token Network
To utilize tokens for instruction format discovery, a token net-

work is inserted between the decoder and the datapath as shown in
Figure 2(c). The token network consists of two components: to-
ken interconnect and token modules. Each datapath element, such
as an FU, RF and MUX, has a corresponding token module in the
token network. Example token modules are presented in Figure 3.
Token modules are connected by a 1-bit token interconnect that has

opcode

dest

pdest

p
r
e
d
_
s
e
l

s
r
c
0

_
s
e
l

(a) (b) (c) (d)

o
u
t
5

o
u
t
4

o
u
t
3

o
u
t
2

o
u
t
1

o
u
t
0

o
u
t
7

o
u
t
6

en dest

3:8 decoder

i
n
5

i
n
4

i
n
3

i
n
2

i
n
1

i
n
0

mux_sel has_token

s
r
c
1

_
s
e
l

opcode

processor

token

receiver

token

receiver

token

receiver

token

sender

token

sender

read_opcode

read_dest

read_pdest

pred src0 src1

pdest destto datapath

t
o

d
e
c
o
d
e
r

f
r
o
m

d
e
c
o
d
e
r

to datapath to datapath

token

receiver

token

sender

read_waddr0

token

sender

read_raddr0

read_raddr1

rf_dest0

rf_dest1

w
r
i
t
e
0

_
s
e
l

token_gen

to datapathread0 read1

write0

waddr0

w
e
0 raddr0

raddr1

t
o

d
e
c
o
d
e
r

f
r
o
m

d
e
c
o
d
e
r

Figure 3: Token Modules: (a) token receiver, (b) token sender, (c) FU token module, (d) RF token module

the same topology as the datapath interconnect. The token network
takes the decoded instructions from the decoder and sends tokens
across the token interconnect. The token network has two responsi-
bilities. First, the token network provides the instruction formats to
the decoder. Second, it generates control signals for the datapath.

3.2.1 Token Generation and Routing
Tokens are first generated at the start of data streams in the dataflow

graph: live-in values. A token generated at the top of the dataflow
graph flows across the array visiting different resources and finally
terminates when it either reaches a register file or merges into an-
other token in an FU. A token terminated in a register file can be
re-generated later, creating another token stream.

For tokens generated from live-in, the generation information
(time and resource) needs be encoded in the configuration mem-
ory since there is no producer that sends token to those nodes. The
tokens coming out from register files also require their generation
information stored in the configuration memory since the tokens
can be re-generated anytime once they are stored in the register
file. Therefore, the configuration memory will hold the token gen-
eration information for all the tokens coming out from register file
read ports. Each cycle, the token generation information stored
in the configuration memory fires tokens into the token network
and the configurations for the datapath are generated as tokens flow
across the array. (token gen signal in Figure 3(d)).

After tokens are generated, they are routed following the edges
in the dataflow graph. To send tokens from producers to consumers,
the destination information is stored in the configuration memory
instead of the source information. The MUX selection bits in a PE
instruction (Figure 1) are replaced by dest fields. As in dataflow
machines, only two destinations are allowed for each data generat-
ing component (FU output ports, RF read ports). An analysis on
the scheduling result of our benchmark loops shows that 86% of
the communication patterns are unicast (requiring only one desti-
nation), and 98% of communications can be covered by two des-
tinations. Therefore, the performance degradation with the limited
number of destinations is minimal. The impact of this limitation
is discussed in Section 5. For illustration purposes, only one dest
field is shown in Figure 3(c) and (d).

3.2.2 Token Processing
Tokens flowing on the token network are utilized for two tasks.

First, the instruction formats are discovered with tokens and they
are sent back to the decoder. With these instruction formats, the
decoder can decode the compressed instructions for the subsequent
cycle. Also, the dest fields in the decoded instructions are con-
verted into the source fields for MUX selection bits and sent to the
datapath.

Token Receiver: Since only destination fields are encoded in
the configuration memory, the source fields (MUX selection bits)
for the datapath need be discovered when tokens are coming into
the input ports of each resource. For each MUX in the datapath, a
token receiver (Figure 3(a)) is created. A token receiver generates
the MUX selection bits(MUX sel) by looking at the position of an
incoming token. Since only one input of a token receiver can have
incoming token, the MUX selection bits can be generated with sev-
eral OR gates as in the figure. Along with the MUX selection bits,
it also notifies the attached module (FU/RF token module) whether
there is a token coming into this input port or not (has token).

Token Sender: For each output port of a datapath element (FU
output ports, RF read ports), a token sender (Figure 3(b)) is created

in the token network to send out tokens to the consuming resources.
It simply decodes the dest field (dest) and sends out tokens to the
connected modules.

FU token module: Figure 3(c) shows an example of FU token
module that has both predicate and data parts. The input MUXes
of the FU have been translated into token receivers and the FU it-
self is replaced with an opcode processor. For the output ports of
the FU, token senders are created in the figure. The opcode proces-
sor first takes ’has token’ signals from the attached token receivers
and discovers the instruction format. The opcode processor sends
out a ’read opcode’ signal when both src0 and src1 have incoming
tokens. Also, it sends out read signals for dest fields of both data
(dest) and predicate (pdest) if there is any incoming token in the
input ports. The opcode processor also determines the latency of
computation by looking at the opcode field. The dest fields from
the decoder are fed into the token senders directly. When the op-
code processor signals the token senders with an enable signal, they
send out tokens to the designated consumers specified in the dest
fields.

RF token module: A token module for a RF with 2 read/1 write
ports is shown in Figure 3(d). Similar to FU token modules, a to-
ken receiver and token senders are created for the write port MUX
and two read ports, respectively. Any incoming token into the write
port sends a read signal to the configuration memory for the write
address field and it also sends a write enable signal. For the read
ports of register files, there are no incoming tokens from the token
network. Instead, the generation of tokens from the read ports are
encoded statically in the configuration memory. When a token gen-
eration signal comes in, the RF module sends a read signal for the
read address and the dest field.

3.3 Supporting Modulo Scheduled Loops
Loops are generally mapped onto CGRAs using modulo schedul-

ing, thus its critical the token network efficiency support efficiencly
support this paradigm. Modulo scheduling is a software pipelining
technique that exposes loop level parallelism by overlapping the
executions of different loop iterations. The basic concept of mod-
ulo scheduling is illustrated in Figure 5(a). In modulo scheduling,
each iteration starts execution before its previous iteration finishes
its execution. By overlapping the executions, modulo scheduling
can exploit loop-level parallelism when there are enough resources.
The time difference between beginnings of successive iterations is
called initiation interval (II). In the steady state, modulo scheduling
repeats the same pattern for II cycles and this is called kernel code.
Only the kernel code is encoded into the instruction memory, while
the pipeline fill/drain (prologue/epilogue) are controlled by staging
predicates [13].

3.3.1 Initialization for Kernel Code Execution
In our encoding scheme, the configuration memory contains only

the kernel code of target loops and this requires special support for
executing modulo scheduled loops with the token network. Fig-
ure 5(b)-(c) illustrate the problem that arises. Here, we assume
the loop kernel in Figure 5(a) is mapped onto an 1x4 CGRA. Fig-
ure 5(b) shows a possible mapping of operations X, Y, and Z on
FU 2. The edges with an arrow head indicate tokens flowing on
the token network. For operation X, a token arrives at cycle 3 and
the operation is activated at stage 0. Similarly, operation Y and op-
eration Z receive tokens at cycles 4 and 9, respectively, and they
are activated at stages 1 and 2, respectively. The kernel code of the
loop is presented in Figure 5(c). In the steady state, operations are
executed in the order of Y, Z, and X and the opcodes for them are

(a)

(c)

(b)

t
i
m

e

F
U

0

F
U

1

F
U

2

F
U

3

stage 2

0

1

2

0

1

2

0

1

2

0

1

2

0

1

2

0

1

2

t
i
m

e

II

iteration

stage 0stage 1stage 2

X

Y

Z

stage 0

stage 1

Z

Y

X

0

1

2

3

0

4

5

6

7

8

9

10

11

0

1

2

3

II

Figure 5: Modulo scheduling basics: (a) Concept, (b) An example
mapping for FU 2, (c) Kernel mapping.

stored in the configuration memory in the same order. Therefore,
opcodes in FU 2 should be consumed in the order of Y, Z, and X.
The problem occurs in the prologue when a token arrives at FU 2 in
cycle 3. Since Y and Z are activated in later stages (at cycles 4 and
9), the opcodes for Y and Z are not consumed yet from the config-
uration memory. As a result, FU 2 reads the opcode Y instead of
X’s opcode.

The solution for this problem is to maintain the kernel state from
the beginning of the loop execution. We can achieve this by ini-
tializing the token network with the state of cycle II - 1. Once the
state is initialized with the state of cycle II - 1, the tokens can flow
through the network and generate the kernel code from the begin-
ning. For initialization, the snapshot of the token network at cycle
II-1 is stored separately in the configuration memory. At cycle -1,
the initial state is loaded and the token network can maintain the
kernel state during the prologue.

3.3.2 Migrating Staging Predicates
As previously mentioned, staging predicates are used to fill and

drain the pipeline by selectively enabling operations to fill and drain
the pipeline. A staging predicate is assigned to each stage of the
schedule and it becomes true when current stage is activated in
the pipeline. Staging predicates are routed through the predicate
network in the datapath and separate configurations are required
to manage the routing. Nearly 15% of the configuration bits are
used for routing staging predicates in modulo scheduled loops. The
kind of information carried with staging predicate is actually con-
trol data, hence its inefficient to manage it in the datapath.

For this reason, we propose to migrate the staging predicates
from the datapath into the control path. We can simply increase
the size of tokens by 1 bit and use the extra bit (valid bit) for the
staging predicates. If a resource receives a token with the valid bit
set, the incoming data is in the right stage and the operation mapped
on the resource can execute. When a token terminates in a regis-
ter file, it needs to store the valid bit in the register file so that the
valid bit information can be retrieved when a token is re-generated
later from the same register file. Therefore, RF token modules will
include a 1 bit register file that has the same configuration as the
original register file in the datapath.

There are several benefits to migrating the staging predicates.
First, the configurations for routing the staging predicates in the
datapath is not necessary anymore. The routing information of the
valid bit in the control path is same as the token routing informa-
tion, so no additional configuration is required. The second ben-
efit is a performance gain for loops. Removing the staging pred-
icates in the datapath also removes the staging predicate edges in
the dataflow graphs. With less scheduling restrictions, the com-
piler can find better schedules for the same target loops. Also, the
predicate network in the datapath is not used for routing staging
predicates anymore and can be dedicated to support predicates for
if-converted code. The overhead of this approach is mainly in the
hardware side. The interconnect in the token network is increased
by 1 bit and a 1 bit clone of each register file in the datapath is
added to the RF decoders. Also, there is an encoding overhead for
the activation stages for live-in values. The trade-off for migrating
staging predicate will be discussed in Section 5.

10 2 3 4

1 2 3

1 2 3

1 2

1 2

2

4

0 1

2 3

4

field0

field1

field2

field3

field4

align

offset

read0

read1

read2

read3

read4

config memory

input register

align unit

field reader

Figure 6: Decoder for fine-grained code compression

4. CONFIGURATION MEMORY PARTITION-
ING

The decoding logic for fine-grain code compression is shown in
Figure 6. It is composed of three components: input register, align
unit, and field reader. Encoded instructions are stored in the config-
uration memory as shown in the figure. Input register buffers each
word line of the configuration memory and align unit makes sure
that the instruction to be decoded is placed at the leftmost position
in the field reader. Based the instruction format given(read signals
in Figure 6), each instruction field is fetched in the field reader.

Obviously, having a giant 845-bit wide configuration memory is
not a feasible design and also increases the complexity of the de-
coder drastically. Therefore, the configuration memory needs be
partitioned and it needs be done in an efficient way that reduces the
complexity of the decoder. Configuration memories are generally
built with SRAMs and their power consumption is determined by
the width of the memories. Partitioning the configuration memory
into smaller SRAMs increases the total power consumption of all
the SRAMs. This is because each individual SRAM has its own
peripherals and they add up to the total power consumption. When
a single 128 bit-wide SRAM is partitioned into eight 16 bit-wide
SRAMs, the total power consumption for reading 128 bit data in-
creases 46% for the partitioned case than the original 128bit-wide
SRAM. On the other hand, a small configuration memory has the
benefit of decreased complexity for the decoder attached to it. For
example, a decoder with 4 fields can be built with 22 MUXes, but
doubling the number of fields require 71 MUXes. Therefore, hav-
ing two decoders with 4 fields is 40% more efficient than one de-
coder with 8 fields. Therefore, partitioning the configuration mem-
ory needs be done efficiently considering the trade-off between the
SRAM power consumption and the complexity of decoders.

Field Uniformity: When partitioning the configuration memory,
it is also important to determine which fields are bundled together
and stored in the same memory. Different widths in the same con-
figuration memory increase the complexity of the align unit and
introduce an encoding overhead with padding bits. Therefore, we
allow only same type of instruction fields to be bundled together.

Sharing of Field Entries: The width of each partitioned con-
figuration memory determines the maximum number of instruction
fields that can be fetched in each cycle. Since the width of the
memory is also related to the complexity of the attached decoder,
we can optimize the decoder complexity by limiting the maximum
instruction fields for a single cycle. For example, let’s assume that
4 constant fields from four FUs are bundled together and stored in
the same memory. The worst case scenario is that all 4 constant
fields are used in the same cycle, and the decoder has to have 4
field entries. If the worst case rarely happens, we can limit the
number of active constant fields in each cycle. For example, the
memory can have only 2 entries and 4 constant instruction fields
can share them. While only two constant fields can be active in the
same cycle, the complexity of the decoder decreases. The trade-off
here lies between the performance of the schedule and the decoder
complexity. We learned that the average utilization of instruction
fields varies from 10% to 80% depending on the type of instruction
fields. For under-utilized fields, it is definitely beneficial to allow
instruction fields to share field entries in the decoder.

Design Space Exploration: The design decisions in each com-
ponent have trade-offs with other components. Thus, we performed
a design space exploration to find a good partitioning of the con-
figuration memory. The configuration memory was partitioned dif-
fering the bundling of instruction fields, the number of partitioned
memomries, and the sharing of field entries in a memory. Due to

(a)

(b)

field type opcode dest const crf_read crf_write ldrf control
memory configurations 2x(8, 8) 4x(8, 5), 4x(8, 6) 2x(6, 10) 1x(11, 9) 1x(6, 7) 4x(6, 3) 1x(1,68)

power (mW) area (mm^2)
design m v # bits perf sram dec token total sram dec token total
baseline 1 0 845 100.0 104.0 5.4 0.0 109.4 0.539 0.015 0.000 0.554
static 0 0 647 98.5 56.4 18.2 0.0 74.6 0.412 0.120 0.000 0.532
token 0 0 0 485 98.5 31.9 16.5 3.5 51.9 0.309 0.109 0.030 0.448
token 1 1 0 606 99.6 37.2 22.2 3.5 62.9 0.386 0.139 0.029 0.555
token 2 0 1 456 103.8 27.2 17.1 4.8 49.1 0.291 0.113 0.048 0.452
token 3 1 1 567 105.4 30.6 23.1 4.7 58.4 0.361 0.145 0.046 0.553

Figure 7: (a) Configuration memory partitioning, (b) Performance,
power and area comparison of control path designs

the space limitations, only the final result is shown in Section 5.

5. EXPERIMENTS
In this section, we evaluate our control path design with the to-

ken network. we created four instances of the token network differ-
ing in multicasting capabilities and staging predicate and compared
them with design (a) and (b) in Figure 2.

5.1 Experimental Setup
Target Architecture: The target CGRA architecture is a 4×4

heterogeneous CGRA shown in Figure 1. 4 PEs have load/store
units to access the data memory and 6 PEs have multiply units.
There is a 64-entry central register file with 6 read and 3 write ports
wherein only FUs in the first row can directly read/write. All other
FUs can only read from the central RF via column buses. The cen-
tral register file is primarily used for storing live-in values from the
host processor. There is also a predicate register file that has 64
entries and 4 read/4 write ports. Each FU has its own 8-entry local
register file with one read and one write port. Local register files
can be also written by FUs in diagonal directions (upper right/upper
left/lower right/lower left). For example, local RF in PE 5 can be
written by FUs 0, 2, 5, 8 and 10 and only FU 5 can read from it.

Target Applications: For performance evaluation, we took 214
kernel loops from four media applications in embedded domains
(H.264 decoder, 3D graphics, AAC decoder, and MP3 decoder).
The loops, varying in size from 4 to 142 operations, were mapped
onto the CGRAs and configurations were generated by the com-
piler. The performance is measured by the average throughput of
all 214 loops for each control path design.

Compiler Support: We developed a modulo scheduler that can
supports our control path restrictions. First, the compiler makes
sure that a value generated in an FU or a register file read port can
be consumed up to two neighboring resources to meet the two des-
tinations limit. Also, the compiler actively limits the number of
active fields in each cycle as to the sharing degree of the configura-
tion memories.

Power/Area Measurements: Area and power consumption were
measured using the RTL Verilog model and synthesized with Syn-
opsys design compiler using typical operation conditions in IBM
65nm technology. Power consumption was calculated using Syn-
opsys PrimeTime PX. The SRAM memory power was extracted
from data generated by the Artisan Memory Compiler. The model
contained both the datapath and control path and was targeted at
200MHz. Our control path design with the fine-grain code com-
pression decoder and the token network fits in a single pipeline
stage between the configuration memory and the datapath, and it
does not affect the critical path of the datapath.

5.2 Configuration Memory Partitioning
We performed a design space exploration for partitioning the

configuration memory as explained in Section 4. The final result
of the optimal partitioning is shown in Figure 7(a). The first row
shows different types of instruction fields in our target CGRA and
the partitioning result is shown in the second row for each field
type. Three numbers in each entry of the table indicate the follow-
ings: the number of configuration memories, the number of field
entries in a memory, and the bitwidth of each field. For example,
there are two memories for opcode fields and each memory has
eight 8-bit field entries. Since the opcode fields are frequently uti-
lized, the total number of field entries in the opcode memories is
equal to the number of FUs. This means that all 16 FUs can be

Loop size (# operations)

SR
A

M
 a

cc
es

s
p

o
w

er
 /

 c
yc

le
 (

m
W

)

0

10

20

30

40

50

60

70

0 20 40 60 80 100 120 140 160

Figure 8: Cache effect on SRAM power consumption

activated at the same cycle. On the other hand, there are only 12
field entries for const fields(2 memories with 6 field entries). So,
only 12 FUs can utilize the const fields at the same cycle. In addi-
tion to the configuration memories for instruction fields, the control
memory in the last column is created to manage the behavior of the
token network. The control memory has the token generation in-
formation as explained in Section 3.2.1 and read signals for other
configuration memories.

In the original control path design shown in Figure 2(a), 845 bits
of configurations are distributed in 7 configuration memories(six
128-bit memories and one 77-bit memory) with 128 word lines. In
our partitioning scheme, there are 19 configuration memories and
the total width of them is 881 bits. Even though the total bits of all
the configuration memories has slightly increased, these memories
are less frequently accessed since the code size is decreased. There-
fore, we can achieve the power reduction in the control path. Also,
the increased code efficiency decreases the memory requirements
and the number of word lines in each memory can be reduced, re-
sulting in area reduction of the SRAMs. When compared to a naive
partitioning scheme where configuration memories are partitioned
for each PE, our optimal partitioning achieves 22% power reduc-
tion and 33% area reduction for the decoder, while the performance
degradation due to sharing of field entries is less than 1%.

5.3 Token Network Evaluation
Six control path designs were evaluated for performance, area,

and power consumption and the results are shown in Figure 7(b).
baseline design is the conventional control path of CGRAs that has
no code compression(Figure 2(a)). static design employs a fine-
grain code compression, but the instruction format is statically en-
coded in the configuration memory as shown in Figure 2(b). For
control path designs with the token network, we created four in-
stances that differ in multicasting capability and staging predicate
support. The second column in Figure 7(b) indicates whether the
design allows only two destination fields for each datapath com-
ponent or allows multicasting as baseline design. The third col-
umn shows if the control path design contains valid bit network
to support staging predicates(Section 3.3.2). For each control path
design, the average number of configuration bits per cycle for all
the target loops are shown in the fourth column. The performance
of each design is normalized to the performance of baseline and
shown in the fifth column. The rest of the table contains power
consumption and area of the designs. The control path is broken
down into three categories(SRAM, decoder, and token network)
and each category’s power and area are shown separately in the
table. baseline and static don’t have a token network and the de-
coder in baseline is composed of only a pipeline register between
the configuration memory and the datapath. For other designs, the
pipeline register is included in the decoder(static) or in the token
network(token designs).

For the performance and the number of configuration bits, all
214 loops were evaluated and the average is shown in the table.
The SRAM power in the table is the average power per cycle for
all 214 loops. For power consumption of the decoder and the token
network, an average activity equivalent to the average utilization
of FUs(55%) was assumed. The area of SRAMs for each design
was calculated based on the amount of configurations required for
the loops in MP3 decoder which require 128 word lines in baseline
design.

Fine-grain Code Compression: Comparison between baseline
and static designs reveals that the fine-grain code compression can

improve both power consumption and area of the control path with
increased code efficiency. Overall, the power consumption was re-
duced by 32% and the area decreased by 4%. There is a small
performance degradation of 1.5% due to the sharing of field entries
and lack of multicasting capability.

We can notice that the SRAM read power reduction ratio(46%)
is greater than the reduction ratio in the number of configuration
bits(24%). This is due to the cache effect of the input register in the
decoder(Figure 6). If all the configurations of a single loop can fit
in the input register(two word lines in the configuration memory),
the SRAM access happens only at the beginning and the content
in the input register does not change throughout the execution of
the loop. This occurs quite often when fine-grain compression is
applied especially for less frequently used fields such as const fields
or predicate fields. In baseline design, this cache effect is only
achieved when loops are scheduled at II=1 (only 5% in our target
loops).

Figure 8 shows the overall cache effect for the 214 target loops.
X-axis shows the number of operations in each loop and Y-axis
shows the average SRAM read power per cycle for each loop. In
this figure, SRAM access power for instruction formats is not in-
cluded. For small loops, the SRAM power is greatly reduced since
most of the configurations can fit in the input register. As the size
of a loop increase, the cache effect is minimized and the SRAM
access power increases.

Among the average configuration bits of 647 in static design,
the instruction format takes 172 bits and it needs be read from the
memory every cycle. The power consumption of reading instruc-
tion format alone is 24.6 mW, which is almost one-third of the total
power consumption in the control path. So, there is potential for
further enhancing the control path design in the instruction format.

Token Network: We can evaluate the token network by com-
paring token 0 to static. The only difference between two designs
is how the instruction format is discovered. In token 0 design, the
token network is added for dynamic discovery of the instruction
format. The overhead of the token network is relatively small, in-
troducing only 3% and 5% of baseline design’s power consumption
and area, respectively. However, introducing the token network im-
proves all three features of the control path: code efficiency, power
consumption, and area. token 0 design further reduces the power
consumption by 31% over static design and by 53% over baseline
design. The area of the control path also decreases even with the
overhead of the token network since the instruction format is no
longer stored in the configuration memory.

To evaluate the limitation of two destinations, we created token 1
design by adding multicasting capability in token 0 design. To en-
able multicasting, each destination field is extended to a bit vector
whose width equals to the number of destinations. While there is a
small performance gain of 1.1%, the lengthened destination fields
lead to poor code efficiency and the power consumption increases
by 21%.

An interesting result can be found with migrating the staging
predicates into the control path. A valid bit was added to the token
networks of token 0 and token 1 designs to create token 2 and token
3 designs, respectively. Although there is some overhead for hav-
ing valid bits in the token network, this overhead is mitigated by
the improvements in the SRAM, and the overall power consump-
tion and area decrease. This is because the configuration bits for
routing staging predicates are not necessary anymore and the code
efficiency improves. Moreover, there is a performance improve-
ment of 6% in both cases of token 2 and token 3. By removing
staging predicate edges in the dataflow graph, scheduling restric-
tions are lessened and the chance of the compiler’s finding a better
schedule increases.

System Power Consumption: From the results in Figure 7(b),
we concluded that token 2 design is the most efficient control path
design for our target CGRA. When compared to baseline design,
the power consumption was improved by 56% and the area was de-
creased by 19%. Even with the limitation of two destinations, mi-
grating staging predicates into the control path provides the overall
performance improvement of 3.8% over the baseline design. Fig-
ure 9 shows the comparison of the power consumption of the sys-
tem including the control path and the datapath, with two control
path designs of baseline and token 2. Power was measured by run-
ning a kernel loop in H.264 that was scheduled at II=5. The overall
utilization of the FUs for this loop is 61%. The numbers at the
bottom indicate the overall power consumptions of two designs.
When the token network is introduced, the portion of the control
path power decreases from 48% to 35%, and the overall system

226.4 mW 170.0 mW

SRAM
46%

decoder
2%

FU
23%

CRF
10%

local RF
9%

interconnect
5%

data mem
5%

baseline

SRAM
18%

decoder
11%

token network
3%

FU
30%

CRF
13%

local RF
12%

interconnect
6%

data mem
7%

token 2

Figure 9: Power breakdown of baseline and token 2 designs for a
kernel loop in H.264

power is decreased by 25%.

6. CONCLUSION
This paper proposes a new control path design for CGRAs that

utilizes the concept of a token network in dataflow machines for
fine-grain code compression. The datapath is cloned to create a
token network where tokens are flowing to discover the instruction
formats. A design methodology for the control path with a token
network is provided and an optimized solution was found through
design space exploration. The resulting control path reduces the
control power consumption by 56% while enabling a performance
gain of 4%. Also, the area of the control path decreases by 19%
since the configuration memory requirement is lowered with better
code efficiency. Overall, our new control path design achieves a
25% saving in the system power consumption.

7. REFERENCES
[1] M. Ahn, J. W. Yoon, Y. Paek, Y. Kim, M. Kiemb, and K. Choi. A spatial

mapping algorithm for heterogeneous coarse-grained reconfigurable
architectures. In Proc. of the 2006 Design, Automation and Test in Europe,
pages 363–368, Mar. 2006.

[2] F. Bouwens, M. Berekovic, B. D. Sutter, and G. Gaydadjiev. Architecture
enhancements for the adres coarse-grained reconfigurable array. In Proc. of the
2008 International Conference on High Performance Embedded Architectures
and Compilers, pages 66–81, Jan. 2008.

[3] Y. Kim, I. Park, K. Choi, and Y. Paek. Power-conscious configuration cache
structure and code mapping for coarse-grained reconfigurable architecture. In
Proc. of the 2006 International Symposium on Low Power Electronics and
Design, Oct. 2006.

[4] A. Lambrechts, P. Raghavan, M. Jayapala, F. Catthoor, and D. Verkest.
Energy-aware interconnect optimization for a coarse grained reconfigurable
processor. In Proc. of the 2008 International Conference on VLSI Design, pages
201–207, Jan. 2008.

[5] C. Lefurgy, P. Bird, I. Chen, and T. Mudge. Improving code density using
compression techniques. In Proc. of the 30th Annual International Symposium
on Microarchitecture, pages 194–203, Dec. 1997.

[6] S. Liao et al. Code optimization techniques for embedded DSP microprocessors.
In Proc. of the 32nd Design Automation Conference, pages 599–604, 1995.

[7] G. Lu et al. The MorphoSys parallel reconfigurable system. In Proc. of the 5th
International Euro-Par Conference, pages 727–734, 1999.

[8] B. Mei et al. Exploiting loop-level parallelism on coarse-grained reconfigurable
architectures using modulo scheduling. In Proc. of the 2003 Design,
Automation and Test in Europe, pages 296–301, Mar. 2003.

[9] B. Mei, F. Veredas, and B. Masschelein. Mapping an H.264/AVC decoder onto
the ADRES reconfigurable architecture. In Proc. of the 2005 International
Conference on Field Programmable Logic and Applications, pages 622–625,
Aug. 2005.

[10] H. Pan and K. Asanovic. Heads and tails: a variable-length instruction format
supporting parallel fetch and decode. In Proc. of the 2001 International
Conference on Compilers, Architecture, and Synthesis for Embedded Systems,
pages 168–175, Nov. 2001.

[11] G. M. Papadopoulos and D. E. Culler. Monsoon: an explicit token-store
architecture. In Proc. of the 17th Annual International Symposium on Computer
Architecture, pages 82–91, May 1990.

[12] M. Quax, J. Huisken, and J. Meerbergen. A scalable implementation of a
reconfigurable WCDMA RAKE receiver. In Proc. of the 2004 Design,
Automation and Test in Europe, pages 230–235, Mar. 2004.

[13] B. R. Rau. Iterative modulo scheduling: An algorithm for software pipelining
loops. In Proc. of the 27th Annual International Symposium on
Microarchitecture, pages 63–74, Nov. 1994.

[14] H. Rong, Z. Tang, R. Govindarajan, A. Douillet, and G. R. Gao.
Single-dimension software pipelining for multidimensional loops. ACM
Transactions on Architecture and Code Optimization, 4(1):7, 2007.

[15] S. Segars, K. Clarke, and L. Goudge. Embedded control problems, thumb and
the armt7tdmi. IEEE Micro, 15(2):22–30, 1995.

[16] M. B. Taylor et al. The Raw microprocessor: A computational fabric for
software circuits and general purpose programs. IEEE Micro, 22(2):25–35,
2002.

[17] Texas Instruments. TMS320C55x DSP CPU Programmer’s Guide, Aug. 2001.
http://focus.ti.com/lit/ug/spru376a/spru376a.pdf.

	Introduction
	Motivation
	Dynamic Discovery of Instruction Formats
	Concepts
	Token Network
	Token Generation and Routing
	Token Processing

	Supporting Modulo Scheduled Loops
	Initialization for Kernel Code Execution
	Migrating Staging Predicates

	Configuration Memory Partitioning
	Experiments
	Experimental Setup
	Configuration Memory Partitioning
	Token Network Evaluation

	Conclusion
	References

