
Edge-centric Modulo Scheduling for Coarse-Grained
Reconfigurable Architectures

Hyunchul Park, Kevin Fan, and
Scott Mahlke

Advanced Computer Architecture Laboratory,
University of Michigan
Ann Arbor, MI, USA

{parkhc, fank, mahlke}@umich.edu

Taewook Oh, Heeseok Kim, and
Hong-seok Kim

Samsung Advanced Institute of Technology
Kiheung, Republic of Korea

{taewook.oh, heeseok.kim,
hong-seok.kim}@samsung.com

ABSTRACT
Coarse-grained reconfigurable architectures (CGRAs) present an
appealing hardware platform by providing the potential forhigh
computation throughput, scalability, low cost, and energyefficiency.
CGRAs consist of an array of function units and register filesoften
organized as a two dimensional grid. The most difficult challenge
in deploying CGRAs is compiler scheduling technology that can ef-
ficiently map software implementations of compute intensive loops
onto the array. Traditional schedulers focus on the placement of
operations in time and space. With CGRAs, the challenge of place-
ment is compounded by the need to explicitly route operands from
producers to consumers. To systematically attack this problem, we
take an edge-centric approach to modulo scheduling that focuses
on the routing problem as its primary objective. With edge-centric
modulo scheduling (EMS), placement is a by-product of the routing
process, and the schedule is developed by routing each edge in the
dataflow graph. Routing cost metrics provide the scheduler with a
global perspective to guide selection. Experiments on a wide vari-
ety of compute-intensive loops from the multimedia domain show
that EMS improves throughput by 25% over traditional iterative
modulo scheduling, and achieves 98% of the throughput of simu-
lated annealing techniques at a fraction of the compilationtime.

Categories and Subject Descriptors
D.3.4 [Processors]: [Code Generation and Compilers]; C.3 [Special-
Purpose and Application-Based Systems]: [Real-time and Em-
bedded Systems]
General Terms
Algorithms, Experimentation, Performance

Keywords
Coarse-grained Reconfigurable Architecture, Operand Routing, Pro-
grammable Accelerator, Software Pipelining

1. INTRODUCTION
The embedded computing systems that power today’s portable

devices demand high performance and energy efficiency. Tradi-

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
PACT’08,October 25-29, 2008, Toronto, Ontario, Canada.
Copyright 2008 ACM 978-1-60558-282-5/08/10 ...$5.00.

tionally, application specific hardware in the form of ASICshas
been used on the compute-intensive kernels to meet these demands.
However, increasing convergence of different functionalities, such
as voice/data communication, high definition video, and digital pho-
tography on a single device, combined with high non-recurring
costs involved in designing ASICs, have pushed designers towards
programmable solutions. Coarse-grained reconfigurable architec-
tures (CGRAs) are becoming attractive alternatives because they
offer large raw computation capabilities with low cost/energy im-
plementations. Example CGRA systems that target wireless signal
processing and multimedia are ADRES [15], MorphoSys [13], and
Silicon Hive [19]. Tiled architectures, such as Raw, are closely
related to CGRAs [22].

CGRAs generally consist of an array of a large number of func-
tion units (FUs) interconnected by a mesh style network. Register
files are distributed throughout the CGRA to hold temporary values
and are accessible only by a small subset of FUs. The FUs can ex-
ecute common word-level operations, including addition, subtrac-
tion, and multiplication. In contrast to FPGAs, CGRAs sacrifice
gate-level reconfigurability to increase hardware efficiency. As a
result, they have short reconfiguration times, low delay character-
istics, and low power consumption.

An effective compiler is essential for exploiting the abundance of
computing resources available on a CGRA. However, sparse con-
nectivity and distributed register files present difficult challenges to
the scheduling phase of a compiler. Traditional schedulersthat just
assign an FU and time slot to each operation are insufficient be-
cause they do not take routing into consideration. Scalar operand
values must be explicitly routed between producing and consuming
operations. Further, dedicated routing resources are not provided.
Rather, an FU can serve either as a compute resource or as a rout-
ing resource at a given time. A compiler scheduler must manage
the computation and flow of operands across the array to effectively
map applications onto CGRAs.

To efficiently make use of the CGRA resources, modulo schedul-
ing (or other software pipelining variations) of loops is generally
used [20]. This provides the opportunity to exploit both loop-
level and instruction-level parallelism to efficiently make use of the
CGRA resources. To deal with the complex topology and routing
challenges, the DRESC (Dynamically Reconfigurable Embedded
System Compiler) proposes a modulo scheduling algorithm based
on simulated annealing [14]. It begins with a random placement
of operations on the FUs, which may not be a valid modulo sched-
ule. Operations are then moved between FUs until a valid schedule
is achieved. The strength of simulated annealing is its ability to
deal with both sparse connectivity and complex resource usage that
are common in a CGRA. DRESC consistently achieves the leading

Central Register File

FU4 FU5 FU6 FU7

FU0 FU1 FU2 FU3

FU8 FU9 FU10 FU11

FU14 FU15FU12 FU13

Mem
Config Register

FileFU

Register

To Neighbors

Central Register File
From Neighbors or

Figure 1: Example CGRA design.

performance results over other methods on a variety of CGRAs.
However, the random movement of operations in the simulatedan-
nealing technique can result in a long convergence time for loops
with modest numbers of operations. Also, the algorithm is ad-hoc
in the sense that no information about the structure of the loop’s
dataflow graph is utilized in making scheduling decisions.

For this work, our goal is to develop a more systematic approach
where compilation time is a first-class constraint. We initially chose
to adapt iterative modulo scheduling to CGRAs because it both pro-
duces efficient results and offers short compilation times even for
large loops [20]. The central changes were adapting the scheduler
to understand the decentralized resources of a CGRA as well as
performing routing of operands between producing and consuming
operations. While this approach was successful at creatingcorrect
schedules, loop throughput was reduced by 10-50% in comparison
to the simulated annealing method. An analysis of the resultant
loops showed thatnode-centric modulo schedulingis a poor match
for CGRAs. Traditional schedulers are node-centric in thatthe fo-
cus is assigning operations (nodes) to FUs. The straightforward
adaptation of this approach is operation assignment followed by
operand routing to determine if the assignment is feasible.How-
ever, even with large numbers of free FUs, the scheduler inevitably
fails due to the inability to route an operand. Further, backtracking
is ineffective due to the complex interrelations between scheduler
decisions.

The key insight from this experience was that a CGRA scheduler
must consider routing efficiency as the primary objective. Select-
ing intelligent paths from producing to consuming FUs that do not
block other operand paths is essential to achieving higher through-
put schedules. Further, operation assignment can be viewedas a
by-product of a successful route, thus no successive placement step
is required. In essence, by getting an operand between two points,
the necessary operations can be performed along the way for free.
We refer to this technique asedge-centric modulo scheduling, or
EMS. This paper presents the design, implementation, and evalua-
tion of the EMS algorithm.

2. BACKGROUND AND MOTIVATION

2.1 Architecture Overview
A CGRA consists of an array of compute nodes, each of which

executes word-level operations, communicating through aninter-
connection network. In general, CGRA designs can be described
by four characteristics: size, node functionality, network configu-
ration, and register file sharing. Thesizerefers to the number of
nodes; commonly this can vary from 4 nodes arranged in a row up
to 64 nodes arranged in an 8×8 grid. Thefunctionalityof each node
can vary from a single FU (e.g. adder or subtracter), to an ALU, to

a full-blown processor. In addition, the functionality of nodes may
be homogeneous or heterogeneous. For example, only a subsetof
nodes may access data memory.

There are a large number of potentialnetwork configurations,
such as connections between each node and its four (or eight diag-
onal) nearest neighbors, buses connecting each node to (possibly
to a subset of) other nodes in the same row or column, hierarchical
connection schemes, and so on. Finally, the degree ofregister file
sharingranges from small, individual register files at each node, to
multiple register files each shared by a small number of nodes, to a
single central register file accessible by some or all nodes.

Figure 1 shows an example CGRA design that contains 16 nodes
arranged in a 4×4 mesh; each node can communicate with its four
nearest neighbors. In addition, column buses connect each node to
a central register file. Each node consists of an FU that can read in-
puts from neighbors or the central register file and write to asingle
output register; a small, dedicated register file; and a configuration
memory to supply control signals to the MUXes, FU, and register
file. Certain operations, such as loads and stores, can only be ex-
ecuted on a subset of FUs (shaded). Note that a node can either
perform a computation or route data each cycle, but not both,as
routing is accomplished by passing data through the FU (a MOVE
operation).

2.2 Modulo Scheduling Challenges
Modulo scheduling is a software pipelining technique that ex-

poses parallelism by overlapping successive iterations ofa loop [20].
The goal is to find a valid schedule such that the interval between
successive iterations (initiation interval, or II) is minimized. The
II-cycle code region that achieves this maximal overlap is called
the kernel. When the number of iterations is large, the perfor-
mance of the loop is determined by the II to a first order; thus,
it is more important to minimize the II than to minimize schedule
length. Initially, the scheduler chooses the target II to bethe max-
imum of the resource-constrained lower bound (ResMII) and the
recurrence-constrained lower bound (RecMII). If a valid modulo
schedule cannot be found, the target II is incremented and schedul-
ing is attempted again.

Scheduling for CGRAs is quite different from scheduling for
general VLIW architectures due to the different hardware charac-
teristics. Factors that complicate CGRA scheduling include:

Explicit routing. In a VLIW architecture, routing from pro-
ducer to consumer is implicitly guaranteed by storing intermediate
values in a multi-ported, centralized register file. However, in a
CGRA, interconnect is much more sparse and values must be ex-
plicitly routed using FUs, local register files, and mesh connections.

Intelligent routing. FUs are used for both computation and
routing; thus, scheduling can easily fail if poor routing choices are
made. Furthermore, the scheduler must not only generate a valid
schedule, but also minimize the routing resources used so that more
FUs are available for computation.

Heterogeneous nodes.All nodes can perform addition and logi-
cal operations, but “expensive” operations such as multiplies, loads,
and stores may only be supported by a subset of nodes. In such an
architecture, it is important to avoid scheduling inexpensive opera-
tions on expensive nodes, because this limits the scheduling flexi-
bility of the expensive operations.

Modulo constraint. Resources are used in a periodic fashion,
since the loop kernel repeats every II cycles. Thus, unlike in acyclic
scheduling, it is not possible to guarantee routability by extending
the schedule, and scheduling can easily fail due to the previously
scheduled operations.

ti
m

e

reg

2726

reg

29

reg

 0 1

reg

 2 3 reg

 7 8

11

 6 5

10 12

 4

 9 13

17 181614

19

15

20

22

23

21

2524

current operation

to schedule

28

FU 0 FU 1

FU 8

FU 12 FU 13

FU 2 FU 3

FU 6 FU 7

FU 14

23

21

22

r

r r

(a) (b)
(c)

FU 0 FU 1 FU 2 FU 3 FU 4 FU 5 FU 6 FU 7 FU 8 FU 9 FU10 FU11 FU12 FU13 FU14 FU15

MEM MEM MEM MEM

0 2 X X X X X X

1 6 26 8 X X X 11 X X

2 X 7 X X X X X X

3 29 3 0 X X X X X X X

4 X X X X X X X

5 X X X X X X X X X

6 1 X X 5 2r X X X

7 X X X 18 X 8r 13 X 10 X

8 X X 12 18r 17 X 15

9 X X X 12r 4 0r X X 20

10 X X 16 X X X 9 22

11 X X X X X X X 15r X 14

12 X X X X X 19 X

13 X X X X X X X X X

14 X X X X X 19r X X

15 X X X X 21 X X X X X

16 X 21r X X X X X

17 X X X X X X X 23 X

18 X X X X X X X X

19 X X X X X X X X X

Figure 2: Example to illustrate the challenges of CGRA scheduling: (a) the dataflow graph for the fsed application, (b) the reservation
table for a partial schedule on a 4x4 array, (c) possible routings from 23’s producers. In (a) and (b), dark grey shading indicates
memory operations and light grey shading is used to highlight the current operation being scheduled (node 23) and its immediate
predecessors. Bold numbers indicate computation operations, other numbers followed by ‘r’ (e.g. ‘8r’) indicate routi ng slots for
corresponding computation operations. ‘reg’ nodes indicate live-in values stored in the central RF.

To illustrate the complexities of CGRA modulo scheduling, Fig-
ure 2(a) shows the dataflow graph (DFG) for the dominant loop
from one of our benchmark applications,fsed, an image halfton-
ing algorithm. Memory operations are shaded dark grey. The
DFG is being scheduled onto a 4×4 CGRA, similar to the one
shown in Figure 1, with II=4. The partial schedule is shown in
Figure 2(b). schedule is shown. Bold numbers are computation
operations; other numbers followed by ‘r’ (e.g. ‘8r’) are routing
operations for the corresponding computation operations;and, Xs
represent slots that are occupied due to the modulo constraint. ‘reg’
nodes indicate live-in values that are stored in the centralRF. All
operations above operation 23 (light grey) in the DFG have been
scheduled at this point.

There are several points to observe. First, only FUs 1, 2, 9, and
10 support memory operations, thus all of the memory operations
must be scheduled on those FUs. Next, observe how values are
routed to operation 23, which is considered for execution onFU 10
at time 17, and has two producers: 21 and 22. Figure 2(c) shows
the possible routes of the operands from two producers. One pos-
sible way to route the operand from 21 to 23 is through FU 9. The
operand is first routed diagonally from FU 4 to FU 9 via a shared
register fie, then it is routed to the neighboring FU 10 via themesh
connection. However, taking this option leaves only two memory
slots for the unscheduled memory operations (27 and 28). There-
fore, the operand of 21 is routed through FU 5 rather than through
FU 9. Similarly, the operand of 22 is routed directly from FU 15 to
FU 10 rather than through FU 11. The value is stored in a rotating
register file for 6 cycles and is read out by 23 at time 17. The chal-
lenge here is how to guarantee the availability of storage inthe reg-
ister file. The available storage must be carefully considered during
scheduling as simply pushing register allocation to after scheduling
can result in costly spilling and may require complete rescheduling
of the loop. It can be seen that routing is complex, and various re-
sources including FUs, registers, register file ports, and connection
links must be modeled by the compiler to properly orchestrate the
flow of values from producers to consumers. Further, this routing
adds latency to the schedule: operation 23 has an earliest start time
of 11, but is actually scheduled at time 17.

3. CORE CONCEPTS
Prior to describing the EMS algorithm, we describe several of

the important concepts along with their rationale. These concepts
are described in isolation (and hence will appear disconnected), but
they are tied together in Section 4.

3.1 Integrated Placement and Routing
CGRA scheduling can be broken down into two tasks: placement

of operations into computation slots (FU and time) and routing of
operands. Previous techniques ([14], [18]) address the schedul-
ing problem in a node-centric manner, meaning that the scheduler
places operations first and then does the routing. When an oper-
ation is scheduled, it is placed in a slot where it can execute, and
operands from other producers or consumers are then routed to the
scheduled slot. However, scheduling failures usually occur during
the routing phase because of the limited connectivity between re-
sources. In this work, we propose an edge-centric approach where
the scheduler primarily focuses on routing, and placement occurs
during the routing process.

Node-centric Approach.Node-centric approaches place opera-
tions in a way that minimizes a heuristic routing cost. The routing
cost consists of various metrics that determine the qualityof place-
ment (e.g., the number of resources used for routing) [18]. The
scheduler visits candidate slots one by one until it finds a solution.
The operation is placed in each candidate slot, and edges to the
placed producers and consumers are routed. Figure 3(b) shows how
an optimal placement is found with this approach. A DFG contain-
ing two producers P1 and P2 and a shared consumer C is mapped
onto the hypothetical 1×5 CGRA in Figure 3(a). For illustration
purposes, we assume no register file in this architecture. P1and P2
are already placed and the scheduler places the consumer C byvis-
iting all the empty slots as shown in Figure 3. The slots with dotted
circles are failed attempts where the scheduler could not route val-
ues from P1 or P2 due to resource conflicts. After visiting those
slots, the scheduler successfully places C on FU 4 at time 4 (slots
will be referred as (FU #, time) hereafter).

One can observe two inefficiencies with this approach. First,
the scheduler makes unnecessary visits to empty slots (0,2), (0,3),

(b) (c)

FU 0 FU 1 FU 2 FU 3 FU 4FU 0 FU 1 FU 2 FU 3 FU 4

(a)

(d) (e)

: free slot : occupied slot : routing slot

FU 2

0

1

2

4

3

FU 4FU 3

MEM

FU 1FU 0time FU 2

0

1

2

4

3

FU 4FU 3

MEM

FU 1FU 0time FU 2

0

1

2

4

3

FU 4FU 3

MEM

FU 1FU 0time FU 2

0

1

2

4

3

FU 4FU 3

MEM

FU 1FU 0time

CC

C C C

C C C

C C

C

C

C

C

P2P1

C

P2P1

C

time FU 0 FU 1 FU 2 FU 3

MEM

FU 4

0

1

2

3

4

time FU 0 FU 1 FU 2 FU 3

MEM

FU 4

0

1

2

3

4

P

C

C

time FU 0 FU 1 FU 2 FU 3

MEM

FU 4

0

1 1 10

2 1 1 1 1

3 1 1

4 1 1 1

time FU 0 FU 1 FU 2 FU 3

MEM

FU 4

0

1 1 10

2 1 1 1 1

3 1 1

4 1 1 1

P

Figure 3: High level comparison of scheduling approaches: (a)
1x5 CGRA, (b) compile time example of node-centric, (c) com-
pile time example of edge-centric, (d) performance exampleof
node-centric, (e) performance example of edge-centric. Shaded
boxes in the reservation tables indicate slots occupied by other
operations.

and (0,4). This is because the scheduler places operations without
routing information. The second inefficiency is that there are re-
dundant routings made when the scheduler visits (2,1), (2,2), (2,3),
(2,4), and (3,4). For example, when the scheduler visits slot (3,4),
it already knows that there is a path P1→(2,1)→(2,2)→(2,3) since
it was discovered when slot (2,3) was visited. These observations
show that placement without routing information can lead tore-
dundant routing calls, which increases compilation time. One can
argue that a different visiting order can solve this problem(visiting
slots in the same FU first). Even though this can work for this par-
ticular case, there is no general order that works for all thecases in
the node-centric approach.

A node-centric approach can also lead to a poor solution because
it does not consider routing information when placing an operation.
Figure 3(d) shows a different example where P is already placed
and the edge from P to C is about to be routed. Here, we assume
that C can be placed in only two slots, (4,2) and (2,4). Note that slot
(3,1) is the only remaining memory access slot, thus it is critical to
avoid using this slot for routing if possible. Since the node-centric
approach visits slot (4,2) before slot (2,4), it will simplychoose the
path to slot (4,2) in Figure 3(d), using the memory slot for rout-
ing. If any memory operation still needs to be scheduled, theII
must be increased. Here, we are assuming that the node-centric ap-
proach visits slots in an increasing order of time. Althougha differ-
ent visiting order can give priority to slot (2,4) over slot (4,2), that
particular order cannot be applied to general cases withoutrouting
information. In general, the node-centric approach needs to per-
form an exhaustive search of all the available slots to handle this
problem.

Edge-centric Approach. In an edge-centric approach, the place-
ment of an operation is integrated into the routing function, and the

placement decision is deferred until routing information is discov-
ered. When scheduling an operation, the scheduler does not place
the operation up front. Instead, it picks an edge from the opera-
tion’s previously-placed producers or consumers and starts routing
the edge. The router will search for an empty slot that can execute
the target operation, rather than routing towards a placed operation.
Once a compatible slot is found, the target operation is placed in the
slot and the scheduler continues routing edges to other producers or
consumers.

Figure 3(c) shows the same example of Figure 3(b), but the con-
sumer is scheduled using an edge-centric approach. The scheduler
begins with the edge from P1 to C, instead of scheduling opera-
tion C directly. When an empty slot is encountered, the scheduler
temporarily places the target operation and checks if thereare other
edges connected to the consumer; if so, it recursively routes those
edges. For example, when the router visits slot (2,1) in Figure 3(c),
it temporarily places C there and recursively calls the router func-
tion to route the edge from P2 to C. When it fails to route the edge
from P2 to C, routing resumes from slot (2,1), not from P1, anda
solution is eventually found at slot (3,4). So, slots (2,1),(2,2), (2,3),
(2,4), and (3,4) are all visited in one routing call. Compared to 11
routing calls made for the edge from P1 to C in Figure 3(b), only
one routing call is required to find the same solution in the edge-
centric approach. The number of routing calls for the edge from
P2 to C is same for both approaches (5 calls), as the router is only
called for that edge if the edge from P1 to C is routed successfully.

The second benefit of an edge-centric approach lies in the aspect
of solution quality. In the example in Figure 3(d), it is desirable
not to use slot (3,1) for routing. The edge-centric approachavoids
using the memory slot (3,1) for routing by assigning a highercost
to the slot as shown in Figure 3(e). Here, a cost of 10 was assigned
to slot (3,1) and all the other slots were assigned a cost of 1.Then,
the edge-centric approach will automatically find a path that avoids
slot (3,1) by prioritizing the route path by cost. So, it successfully
finds a path to slot (2,4) using the left path in Figure 3(d).

An edge-centric approach can perform faster and achieve a better
result than a node-centric approach. However, it has a greedy na-
ture in that it optimizes for a single edge at a time, and the solution
can easily fall into local minima. There is no search mechanism
in the scheduler at the operation level and every decision made in
each step is final. We address this problem by employing intelligent
routing cost metrics explained in the next section.

3.2 Routing Cost Metrics
The routing function is the basic building block of the edge-

centric scheduler, and every scheduling task, including placement,
occurs in the routing function. The final schedule is formed by
calling the routing function for each edge in the DFG.

It is important to achieve a good mapping for each individual
edge. The routing function needs to have a global perspective of
the entire mapping since individual decisions affect the routing of
other edges. The order in which the router visits each scheduling
slot is determined by arouting costassociated with each slot. Thus,
it is crucial to develop a good routing cost function.

There are two main objectives when routing a single edge:

• Minimize the number of routing resources used, to leave more
slots available for routing other edges.

• Proactively avoid routing failure: avoid using resources that
will block future routes, and reserve computation slots for
expensive operations.

(a) (b)

P1 P2

C1 C2

.

.

.

.

ST

(c)

: free slot : occupied slot : routing slot

6

3

2

4

0

FU 2

1

5

7

FU 4

MEM

FU 3FU 1FU 0time

6

3

2

4

0

FU 2

1

5

7

FU 4

MEM

FU 3FU 1FU 0time

P1

C1

P2

C2

R0

R1

R2

0.50.56

0.331.03

1.02

1.04

0.330

FU 2

0.331

0.50.55

7

FU 4

MEM

FU 3FU 1FU 0time

0.50.56

0.331.03

1.02

1.04

0.330

FU 2

0.331

0.50.55

7

FU 4

MEM

FU 3FU 1FU 0time

P1

C1

P2

C2

Figure 4: Routing cost example: (a) dataflow graph, (b) possi-
ble mappings, and (c) probabilistic cost.

3.2.1 Minimizing the Number of Routing Resources
Using the fewest routing resources is simple when considering a

single edge. Each routing resource is assigned a statically-determined
fixed cost, and the router will find a path that minimizes the total
cost.

Typically, an operation is connected to multiple producersand
consumers, so the router must consider the usage of routing re-
sources when the other edges are routed as well. To address this
issue, anaffinity costwas proposed in previous work [18]. The
affinity value for a pair of operations reflects their proximity in the
DFG. In the edge-centric scheduler, each slot is assigned anaffinity
cost depending on how close it is to any already-placed operations
that have high affinity with the target operation. This givesa pref-
erence for placing an operation near its producers and consumers,
hence reducing the number of routing resources used.

3.2.2 Proactively Avoiding Routing Failure
Figure 4 gives an example of when naïve routing of an edge can

lead to routing failures of other edges. The DFG on the left is
mapped onto the example CGRA in Figure 3(a). The six opera-
tions at the top are being placed and the three at the bottom have
not been placed yet. The operation ST at the bottom is a store
operation; assume that only FU 4 can execute memory operations.
When routing the edge from P1 to C1, there are three possible paths
(R0, R1, and R2) as shown in Figure 4(b). All three paths use the
same number of routing resources. However, there is a preferred
choice when routing of other edges is considered. First, thepath on
the left (R0) should not be selected because it would block the only
path between P2 and C2, causing a subsequent routing failurefrom
P2 to C2. The path in the middle (R1) is preferred to the path on
the right (R2) because occupying slot (4,3) leaves only two mem-
ory slots of FU4 for the ST operation. So, the scheduler will have
fewer options when scheduling the ST, leading to a greater chance
of routing failure in the future.

From the previous example, we can see that the scheduler needs
to know the resources that are likely to be used by other edgesin the
future. To account for this, the scheduler associates an occupancy
probability with each scheduling slot. The probabilities are calcu-
lated for two different types of operations: expensive operations
and placed operations.

Expensive operations are defined as ones that only a subset of
FUs can execute, such as memory and multiply operations. For
each scheduling slot that can execute expensive operations, the prob-
ability is calculated by dividing the number of unscheduledex-
pensive operations by the number of remaining slots that arecom-
patible. When non-expensive operations are scheduled, therouter
prefers to avoid using slots that are capable of supporting expensive

operations. For operations already placed in the scheduling space,
the scheduler determines how many routing options there arefor
routing values to either producers or consumers.

For the placed operation P2 in Figure 4(c), probabilities are an-
notated in each reachable slot depending on the number of routing
options. Empty slots in FU 4 are also annotated with a probability
of 0.33 calculated by dividing the number of memory ops left by
the number of available slots. These probabilities are accounted for
when the routing cost is calculated for each slot, and the router will
visit slots in the order of routing cost.

3.3 Stage Re-assignment
In modulo scheduling, better throughput (smaller II) is often

achieved by scheduling some operations up front. A good example
is operations on recurrence cycles. Since each iteration isexecuted
every II cycles, all operations in the recurrence cycle mustbe sched-
uled within II cycles. For this reason, most modulo scheduling
algorithms process operations on recurrence cycles prior to other
operations.

When placing an operation in a recurrence cycle early in the
scheduling process, it is likely that there are no producersor con-
sumers placed already. In a conventional modulo scheduler,the
scheduler utilizes ASAP/ALAP (as soon/late as possible) times cal-
culated statically by looking at the longest paths between opera-
tions. In CGRA scheduling, the ASAP/ALAP time is not an accu-
rate measure of the actual time slot because routing can takemul-
tiple cycles. If an operation is scheduled too early, the scheduler
will fail to place its predecessors. If an operation is scheduled too
late, there can be a waste of routing resources or increase inregister
pressure.

Accurate ASAP/ALAP times are not easily obtained in CGRA
scheduling because they depend on routing latency which is not
known a priori. Thus, we take an alternative approach: placed
operations can be lowered or hoisted along the time axis by re-
assigning the stage. Since only stage count is changed, the resource
occupancy status does not change. When an operation’s stageis
changed, operations connected to it in the scheduling spaceand
routing between them must be moved as well. Since all the con-
nected components are moved together, the stage reassignment is a
local transformation and does not affect other operations.

An example of stage re-assignment is shown in Figure 5(a). Op-
erations B and C form a recurrence cycle and are initially scheduled
in stage 1 (times 2 and 3). Later, when operation A is being sched-
uled, the router is called for the edge from A to B. Since resources
are repeatedly used every II cycles, FU 3’s slot at time 6 is also
occupied by operation B. Operations A and B are not connected
by any placed edge, so B can be re-assigned to time 6 (in stage 3).
Since operation C is connected to B by a placed edge, it is also
re-assigned to time 7.

3.4 Edge Categorization
Modulo scheduling for the CGRA is a problem of allocating a

fixed number of routing resources to the edges in the DFG. It is
important to observe that not all edges are the same in terms of
how important they are to the overall schedule. In EMS, edges
in DFGs are categorized as described below, and different routing
approaches are applied for each edge type.

Recurrence edges.It is crucial to schedule the edges in a re-
currence cycle ahead of other operations, especially when the II is
close to the length of the recurrence. These edges are thus sched-
uled with highest priority.

Simple edges and high-fanout edges.Simple edges are defined
as the outgoing edge of an operation that has only one consumer.

(a) (b)

stage 0

stage 1

stage 2

stage 3

0

1

6

2

73

4

5

8

B

C

A

.

.

.

.

6

3

2

4

0

FU 2

1

5

7

FU 4FU 3FU 1FU 0time

6

3

2

4

0

FU 2

1

5

7

FU 4FU 3FU 1FU 0time

B

C

A

B

C

Figure 5: (a) Stage re-assignment example (II = 2) that re-
assigns the recurrence cycle B-C from time 2-3 to time 6-7 after
operation A is scheduled; (b) Example dataflow graph to illus-
trate non-critical edges.

When there are multiple consumers, the outgoing edges are called
high-fanout edges. With the limited number of routing resources,
edges routed earlier are likely to use less routing resources than
edges routed later, since there is more flexibility when slots are not
yet occupied. Therefore, the scheduler needs to intelligently decide
which edges are routed first.

The edge-centric scheduler gives priority to simple edges over
high-fanout edges for the following reason. When a simple edge
is routed later and thus is not optimized very well, it will likely
end up using more resources than required. Since there is no other
consumer for the producer of the simple edge, those additional re-
sources are just being wasted. However, additional resources in a
high-fanout edge can actually be helpful when routing edgesfrom
the same producer to other consumers, since there are more re-
source slots that contain the producer’s value.

An analysis on simulated annealing’s result also shows thistrend.
Frequently, an operation that has multiple consumers is located far
apart from its consumers on the time axis, while operations con-
nected with simple edges are located close to each other. This ob-
servation motivates our priority calculation method usingfanout
clustering, described in the next section.

Non-critical edges. When there are multiple disjoint paths be-
tween a pair of nodes in the DFG, dependencies are generated be-
tween edges in different paths. An example is shown in Figure5(b).
Assume the recurrence cycle at the bottom (operations 5, 6, and 8)
was scheduled first. When node 0 is scheduled, the scheduler sees
that its consumer node 6 is already scheduled. However, the edge
from 0 to 6 should not be routed yet because it is not on the critical
path from 0 to 6. The scheduler should wait until all of the edges
in the critical path are routed before routing the 0→6 edge. There-
fore, a dependency is generated from the 0→6 edge to the critical
path between 0 and 6. Similarly, dependencies are generatedfor
edges on paths between nodes 1 and 4. In this case, edges 1→7
and 7→4 depend on the critical path between nodes 1 and 4. When
an edge has a dependency on a pair of nodes, the routing of the
edge is deferred until the edges on the critical path are scheduled.

4. IMPLEMENTATION
This section describes the implementation of EMS. The system

flow is shown in Figure 8. First, the DFG of the target loop is con-
verted into a reduced form by collapsing some nodes. The reduced
DFG is then clustered by ignoring high-fanout edges and opera-
tions are prioritized based on the clustered result. Then, the oper-
ations are scheduled either by calling a placement functionor call-
ing a routing function depending on whether they have previously

Figure 6: An example dataflow graph from H.264.

placed producers or consumers. After finding a legal schedule for
the given II, the collapsed nodes are expanded first and configu-
rations are generated for each component. If scheduling fails, the
scheduler increases II and repeats scheduling.

4.1 Prepass Steps
Generating the Reduced Dataflow Graph
First, the DFG is converted into a reduced form where certain

nodes are collapsed into edges. An operation is collapsibleif it
is inexpensive (can execute on any FU in the array), and has only
one producer and one consumer. When such a node is found, the
scheduler removes it and draws an edge directly from its producer
to its consumer. The new edge is annotated with the number of
nodes that were collapsed. This simplifies the DFG, and also allows
the router to treat a path of nodes as a single edge during routing,
potentially leading to a better schedule for that path.

In the DFG in Figure 6, collapsible nodes are shown in white.
When these nodes are collapsed into edges, a reduced DFG (RDFG)
is generated as shown in Figure 7. In all, 17 out of 65 nodes were
collapsed, resulting in a smaller scheduling problem. For the loops
in the media applications evaluated in Section 5, 18% of nodes were
collapsed on average.

Priority Calculation using Fanout Clustering
The scheduling priority of operations in the RDFG are calculated

in such a way that simple edges get higher priority than high-fanout
edges, as described in Section 3.4. First, the DFG is clustered by
ignoring high-fanout edges. Each group of nodes connected by
simple edges forms a cluster as shown in Figure 7. The scheduler
processes clusters such that each cluster is scheduled as soon as all
of its producers are placed. Within a cluster, producer operations
are also scheduled before consumers. Basically, nodes are visited
in a post-order traversal starting from the bottom.

For the target loop in Figure 7, the operations in recurrencecy-
cles are scheduled up front. Then, the scheduling order of each
cluster is determined. The scheduler will start with C8, which is
one of the clusters at the bottom. A post-order traversal gives an
order of C0, C3, C1, C4, C2, C7 and C8. The final order for clus-
ters are C0, C3, C1, C4, C2, C7, C8, C5, C9, C6, C10, and C11.
Within a cluster, operations are scheduled the same way.

4.2 Edge-centric Modulo Scheduler
Once priorities are calculated for all nodes in the RDFG, the

nodes are scheduled. For each target operation, first the scheduler
determines whether there are any placed producers or consumers.
If not, the target operation is placed in a scheduling slot with min-
imum cost; this is the only time where the placement functionis
called. For an operation that has placed producers or consumers,
the scheduler decides which edge to route first. The decisionis
made based on various factors such as schedule time and stage-
changeability of producers or consumers, and how many routing
options are available.

1

1

1 1 1 11 1 1

1

1

1

1

1

1

1

1

1

C0 C1 C2 C3 C4 C5 C6

C8 C9

C7

C10 C11

Figure 7: Example from Figure 6 after fanout clustering.

When an edge is selected, the router is called and it first decides
the routing direction. Forward routing starts from the producer and
finds a compatible slot for the consumer; backward routing does
the opposite. When both producer and consumer are placed, both
directions are possible, and the decision is made based on stage-
changeability of the producer and consumer. Since only operations
at the end of a route can have their stages re-assigned, the router
will select a direction that starts from a fixed operation.

4.2.1 Search Window Setup
The router will visit neighboring scheduling slots starting from a

slot where a source operation is placed. The scheduler needsto set
up the time axis of the search window with care. A search window
that is too small can result in failure to find a compatible slot, while
there can be a waste of time if a window is too large. Even though
ASAP/ALAP times are not an accurate measure of the time slotsfor
operations to be placed, they can be a good lower/upper boundfor
routing. The search window is determined by ASAP/ALAP time of
the target operation considering stage re-assignment. When routing
an edge from a placed producer (P) to a non-placed consumer (C),
ASAP time can be calculated by Equation 1.p denotes a placed
predecessor ofC. d(x, y) is the longest path delay betweenx and
y. up(x) is the max number of stagesx can be hoisted anddn(x) is
the maximum number of stagesx can be lowered. Similarly, ALAP
time is calculated by Equation 2 wheresdenotes a placed successor
of C.

ASAP (C) = MAX(time(p)+d(p,C)−(up(p)−dn(P))×II)
(1)

ALAP (C) = MIN(time(s)−d(C,s)+(up(P)−dn(s))×II)
(2)

4.2.2 Routing Cost Calculation
When scheduling an edge, a routing cost is calculated for each

available slot. This cost is used by the router to determine the order
in which to explore slots during routing. Routing cost has three
primary components, described below.

Static cost. A fixed costCstatic is assigned to each slot so that
the scheduler can minimize the number of routing resources used.

Affinity cost. As described in Section 3.2.1, affinity cost is cal-
culated based on a slot’s distance from placed producers. Equa-
tion 3 calculates the affinity between two operationsA andB. Affin-
ity is given to a pair of operations that have common consumers
(direct or indirect use of the destination ofA and B). Common
consumers withinmax_distin the DFG are considered for affin-
ity calculation. num_cons(A,B,d)denotes the number of common
consumers ofA andB at the distanced in DFG.

M
o
d

u
lo

 S
c
h
e

d
u

le
r

P
re

p
ro

c
e

s
s

Fanout clustering

Prioritize edges

Select target edge

Search window setup

Target placed ?

Final schedule

Generate reduced DFG

Route to others ?

Find value

Place target

Find slot

Cost calculation

Figure 8: System flow for edge-centric modulo scheduling.

affinity(A, B) =
max_dist

X

d=1

2max_dist−d
× num_cons(A, B, d)

(3)
The affinity costCaff is then calculated for each slot as follows,

wheredist is the distance in hops from the current slot to the slot
where the producer is placed. When there are multiple placedpro-
ducers,Caff is summed for all producers.

Caff =

(

0 affinity(A, B) = 0
dist

affinity(A,B)
affinity(A, B) > 0

(4)

Probability cost. The router should take care not to block cer-
tain slots because they may be required for routing of futureedges.
Thus, a cost is assigned to each slot reflecting the probability that it
will be required in the future. There are two cases: reserving expen-
sive slots, and reserving slots to route results of previously placed
nodes. The individual probabilities are calculated as described in
Section 3.2.2. These probabilities must then be combined together,
as a given slot may support multiple types of expensive operations
and/or be used to route multiple placed nodes. Since the individ-
ual probabilities are correlated, getting the exact overall probability
for a slot is difficult. An approximation is obtained by treating the
probabilities independently. The following equation expresses the
total probabilityP of a slot givenn individual probabilitiespi:

P =
n

X

k=1

“

(−1)k−1
X

I⊂{1,...,n}
|I|=k

Y

i∈I

pi

”

(5)

Total routing cost. The total routing costC for a slot is obtained
by combining the three costs above:

C =

(

Cstatic + waff × Caff + wP × P P < 1

∞ P = 1
(6)

The costs are combined with weighting factorswaff andwP . In
addition, ifP = 1, the slot will definitely be required in the future
and cannot be used for routing the current edge; thus, routing cost
is infinite.

 Dataflow dead slot detection probabilities for P2->C2 probabilities for M1, M2 combined probabilities affinity cost final mapping

P1

P2

X

Y C1

Z

C2

M2

.

.

.

.

M1

12

10

11

9

13

0

1

7

5

4

6

2

FU 2

MEM

3

8

FU 4FU 3

MUL

FU 1FU 0time

12

10

11

9

13

0

1

7

5

4

6

2

FU 2

MEM

3

8

FU 4FU 3

MUL

FU 1FU 0time

P2 P1

X

C2

C2

Y

12

10

11

9

13

0

1.01

0.57

0.50.55

0.50.54

0.56

1.02

FU 2

MEM

0.50.53

0.58

FU 4FU 3

MUL

FU 1FU 0time

12

10

11

9

13

0

1.01

0.57

0.50.55

0.50.54

0.56

1.02

FU 2

MEM

0.50.53

0.58

FU 4FU 3

MUL

FU 1FU 0time

P2 P1

XY

0.212

0.210

0.211

9

0.213

0

0.21

0.27

5

0.24

6

0.22

0.2

0.2

FU 2

MEM

3

8

FU 4FU 3

MUL

FU 1FU 0time

0.212

0.210

0.211

9

0.213

0

0.21

0.27

5

0.24

6

0.22

0.2

0.2

FU 2

MEM

3

8

FU 4FU 3

MUL

FU 1FU 0time

P2 P1

XY

431012

10

421011

9

4321013

0

1

7

5

4

6

2

FU 2

MEM

3

8

FU 4FU 3

MUL

FU 1FU 0time

431012

10

421011

9

4321013

0

1

7

5

4

6

2

FU 2

MEM

3

8

FU 4FU 3

MUL

FU 1FU 0time

P2 P1P1

XY

Z

C1

4321012

10

321011

9

421013

0

1

7

5

4

6

2

FU 2

MEM

3

8

FU 4FU 3

MUL

FU 1FU 0time

4321012

10

321011

9

421013

0

1

7

5

4

6

2

FU 2

MEM

3

8

FU 4FU 3

MUL

FU 1FU 0time

P2 P1P1

XY

C1

Z

0.212

0.210

0.211

9

0.213

0

0.21.01

0.67

0.50.55

0.60.54

0.56

0.21.02

0.2

0.2

FU 2

MEM

0.50.53

0.58

FU 4FU 3

MUL

FU 1FU 0time

0.212

0.210

0.211

9

0.213

0

0.21.01

0.67

0.50.55

0.60.54

0.56

0.21.02

0.2

0.2

FU 2

MEM

0.50.53

0.58

FU 4FU 3

MUL

FU 1FU 0time

P2 P1P1

XY

(a) (b) (c) (d) (e) (f) (g)

Figure 9: Routing cost calculation example: (a) dataflow graph, (b) - (g) reservation table with computed routing costs.

4.2.3 Finding the Target
Once all routing costs are updated, the router will start finding a

path from the source to the target operation. Starting from aslot that
contains the source operation, the router visits neighboring slots in
the CGRA using a maze routing technique. Each neighboring slot
is put into a priority queue and the router visits the slots inorder of
their routing costs as calculated above.

When a collapsed edge is routed, the router ensures that it finds
a path that goes through at least as many FUs as the number of
collapsed nodes, so that the collapsed nodes can be expandedlater
into those FUs. A similar approach is taken for high-fanout edges.
Because the high-fanout edges are scheduled with low priority, the
corresponding values are likely to have long lifetimes. Therefore,
when high-fanout edges are routed, the scheduler attempts to find a
path that goes through a register file.

If the target is already placed, the route is towards the slotthat
contains the target operation. Otherwise, it will find a slotthat can
execute the target operation. Once a slot is found, the scheduler
checks if other edges connected to the target need to be placed,
and recurses to route those edges. When an edge has a dependency
on other edges as described in Section 3.4, the routing is deferred
until all edges in more critical paths are scheduled. When all of the
edges are successfully routed, the scheduler moves on to thenext
operation in priority order.

When the scheduler places recurrence cycles, edges are placed
even if their target operations are not placed yet. By calling the
router function recursively for all operations in the cycle, the sched-
uler can put more effort into finding a legal mapping for the recur-
rence cycles. To prevent exponential compile time for largere-
currence cycles, the number of recursive calls is limited toa fixed
value. When the scheduler successfully routes all the connected
edges, it finalizes the placement of the target operation andpro-
ceeds with the next one.

4.2.4 Routing Example
Figure 9 shows an example of how EMS routes an edge with

updated routing costs for each slot. Again, we assume no register
files in the target architecture for illustration purposes.The DFG in
Figure 9(a) is mapped onto the 1x5 CGRA. Here, we assume that
P1, P2, X, and Y are already placed and the scheduler is about to
route the edge from P1 to C1. Further, C2 is a multiply operation
and can only execute on FU 3, and M1 and M2 are memory opera-
tions and can only execute on FU 2. First, the scheduler calculates

probabilities of routing slots generated for the unplaced edge from
P2 to C2 (Figure 9(b)). Then, it identifies dead slots that will not
lead to any compatible slots for C2 , as indicated by dark small dots
in Figure 9(b). Once all the dead slots are identified, probabilities
are propagated along the routing live slots. Figure 9(c) shows the
final probabilities. Slot (0,2) gets 1.0 since there is only one path
from P2. Slots (0,3) and (1,3) get the probability of 0.5 since there
are two routing options from the previous slot.

Next, probabilities are generated for the expensive operations,
M1 and M2, that are not placed (Figure 9(d)). With two expensive
operations and 10 available slots on FU 2, each slots gets a 0.2
probability.

The probabilities in Figure 9(c) and Figure 9(d) are combined
using Equation 5 resulting in Figure 9(e). Based on the probabili-
ties calculated for unplaced edges and nodes, the router finds a path
for the edge from P1 to C1 as shown in Figure 9(e). There are two
candidate slots for C1; slot (3,11) and slot (4,11). Since C1and
Y have a common consumer Z, the placement of C1 can affect the
number of routing resources used later when the edge from Y to
Z is routed. As shown in Figure 9(f) and (g), slot (3,11) is pre-
ferred to slot (4,11) when considering the common consumer Z.
EMS utilizes the affinity heuristic [18] to make this decision. For
each slot, the affinity cost is assigned in a way that a higher cost
is given as the distance from Y increases. Therefore, the scheduler
prefers slots that are close to Y and (3,11) is selected. Later when
Z is scheduled, the routing cost can be reduced since Y and C1 are
placed close to each other.

4.2.5 Register Constraints
In CGRAs, values with long live ranges can be more efficiently

routed through distributed register files. The scheduler must care-
fully manage register resources so that values stored in theregis-
ter file are successfully routed to consumers. Traditionally, reg-
ister allocation is performed after scheduling, and spill code is in-
serted when the register requirement exceeds the register file capac-
ity. Spilling in the CGRA is quite costly since it involves routing
to/from the memory units and may require complete rescheduling
of the loop. Moreover, spilling can easily happen due to the small
size of the register files.

EMS performs register allocation during scheduling to avoid spill-
ing and guarantee routability through the register files. Register
allocation occurs frequently, as it is needed whenever the router
visits a register file. So, a simple and fast allocation scheme was

developed that focuses on the routability of stored values.Since
EMS gives low priority to high-fanout edges, consumers of the
same value are typically scheduled in different times. The sched-
uler needs to ensure that values stored in register files can be routed
to all of their future consumers. The details are omitted in this pa-
per due to space constraints.

4.3 Postpass Steps
When EMS finds a legal schedule, it generates the contents of the

CGRA’s configuration memories. First, it expands the collapsed
operations onto the FU slots that were found. Then, control bits
for the routing and computation resources are generated, including
MUX selection bits, FU opcode bits, and register file addresses.

5. EXPERIMENTAL RESULTS

5.1 Experimental Setup
To evaluate the performance of EMS, we took 214 loops from

four media applications from the embedded domain (H.264 de-
coder, 3D graphics, AAC decoder, and MP3 decoder). The loops,
varying in size from 4 to 142 operations, were mapped onto differ-
ent CGRA configurations.

The target CGRA architecture is a 4×4 heterogeneous array as
shown in Figure 1. Functionality for memory access is limited to
4 FUs and multiplication to 6 FUs. The array contains a 64 entry
(16 of which are rotating) central RF with 8 read and 4 write ports
wherein only FUs in the first row can directly read/write. Allother
FUs can only read from the central RF via column buses. The cen-
tral RF is primarily used for storing live-in values from thehost
processor. Each FU has its own local RF consisting of 8 rotating
register with one read and one write port. Local RFs can be also
written by FUs in diagonal directions (upper right/upper left/lower
right/lower left). For example, local RF in PE 5 can be written by
FUs 0, 2, 5, 8 and 10 and only FU 5 can read from it.

We created three architecture instances by differentiating FU and
RF connectivity: mesh-plus, mesh-only and no-RF-sharing.In
mesh-plus, FUs are connected in a mesh network, meaning that
each FU is connected to its immediate neighboring FUs. Addition-
ally, FUs that are two hops apart are also connected. This is asim-
ilar configuration to ADRES [14]. In the mesh-only configuration,
FU connectivity is limited to a simple mesh network. The no-RF-
sharing configuration has same FU connectivity as mesh-only, but
local RFs are not shared by FUs in diagonal directions, meaning
that each RF can be written/read only by the neighbouring FU.

The performance and compile time of EMS were compared to
three different modulo scheduling techniques:IMS : traditional it-
erative modulo scheduler that does not consider routing efficiency;
NMS: node-centric modulo scheduler that employs the same heuris-
tics as EMS, but scheduling is conducted in a node-centric way;
and,DRESC: IMEC’s simulated annealing based modulo sched-
uler. All evaluations were taken on an Intel Core 2 Duo system
running at 2.66GHz with 2GB memory. Compile time was mea-
sured by using only one core of the system. Scheduling results
were verified with a cycle accurate simulator.

5.2 Results
In modulo scheduling, MII defines the theoretical upper bound

of the performance of the scheduled loop. Therefore, we calculated
the performance of the modulo scheduler by dividing MII by the
achieved II in each loop. The performance comparison of the four
different modulo scheduling techniques is shown in Figures10, 11,
and 12 for the mesh-plus, mesh-only, and no-shared-RF configu-
rations, respectively. The first four groups show the performance

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

H.264 3D AAC MP3 overall

p
e

rf
o

rm
a

n
c
e

 r
a

ti
o

IMS

NMS

EMS

DRESC

Figure 10: Performance comparison of scheduling strategies
for the mesh-plus architecture. The fraction of the theoretical
maximum performance is plotted.

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

H.264 3D AAC MP3 overall

p
e

rf
o

rm
a

n
c
e

 r
a

ti
o

IMS

NMS

EMS

DRESC

Figure 11: Performance comparison of scheduling strategies
for the mesh-only architecture.

results of the loops within each domain and the last group shows
the overall performance across all 214 loops.

A more detailed view of the performance comparison between
EMS and DRESC is presented in Figure 13 for the mesh-plus con-
figuration. The x-axis shows all 214 target loops grouped by appli-
cation. Within each application, loops are sorted by increasing MII.
The gray line shows the value of MII for each loop. The achieved
II for EMS is shown as solid circular dots. The achieved II for
DRESC is shown only when it differs from EMS’s achieved II, asa
vertical line extending from the dot. For the mesh-plus architecture,
EMS achieves an average ILP of 9.6 across all the loops.

The final measurement performed is compilation time. The to-
tal compile time of all 214 loops for each scheduling technique is
shown in Table 1.

5.3 Analysis and Discussion
Comparison with IMS. EMS always outperforms traditional

IMS by more than 25% for both mesh-plus and mesh-only con-
figurations. Even though IMS works quite well for conventional
VLIWs, the lack of a global resource management strategy causes
frequent routing failures which forces II to be increased.

Comparison with NMS. EMS and NMS share most of the heuris-
tics developed in this paper, such as the various cost metrics, stage
reassignment, and the reduced dataflow graph. However, EMS
achieves 10-13% performance increase while compile time was re-
duced by 27-46% compared to NMS. This demonstrates the bene-
fits of the edge-centric over the node-centric approach in both per-
formance and compile time measures, as illustrated in Section 3.1.

arch IMS NMS EMS DRESC
mesh-plus 655 2105 1185 22341
mesh-only 1122 3046 2228 48035

Table 1: Compile time comparison (in seconds).

II

H.264 3D AAC MP3

0

2

4

6

8

10

12

14

MII

EMS

DRESC

Figure 13: Performance comparison of EMS and DRESC for the mesh-plus architecture.

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

H.264 3D AAC MP3 overall

p
e
rf

o
rm

a
n
c
e
 r

a
tio

IMS

NMS

EMS

DRESC

Figure 12: Performance comparison of scheduling strategies
for the no-RF-sharing architecture.

Comparison with DRESC. DRESC consistently achieves the
best IIs for most of the applications, except MP3 in the mesh-
plus architecture. Simulated annealing is an effective strategy for
CGRA scheduling, but its high performance comes at the cost of
slow compile time. When compared to DRESC, EMS shows quite
competitive performance results, achieving 98% and 91% of DRESC’s
overall performance for mesh-plus and mesh-only architectures, re-
spectively.

For the mesh-plus architecture, EMS shows virtually the same
performance as DRESC, achieving the same II or better for more
than 85% of loops (Figure 13). For most of the loops that are
scheduled at higher IIs, the large number of live-ins was thebot-
tleneck for EMS. Since all of the live-ins are stored in the central
RF, there is high contention for central RF ports among the op-
erations that consume live-ins. Though EMS reserves these high
contention resources by calculating probabilities in advance, it still
fails to achieve the same II as DRESC when the contention is too
high.

For the mesh-only architecture, EMS does not perform as well,
especially for H.264 and 3D. Those two domains have many com-
munication patterns in which one producer feeds multiple consumers.
The execution of such communication patterns is significantly lim-
ited with the sparse interconnect in the array. This trend ismore
obvious when looking at the results of no-RF-sharing configura-
tion 12. EMS is achieving 85% of DRESC’s performance when
interconnected further reduced by removing shared links tolocal
RFs. This result shows that EMS is more vulnerable to a lack of
routing resources. We are currently investigating CGRA designs
that have low hardware cost but still enable EMS to achieve high
performance.

Compile time. Since there are no intelligent heuristics for global
management of routing resources in IMS, it shows the fastestcom-

pile time among the four scheduling techniques. Except for IMS,
EMS performs the fastest, showing more than 18x speedup over
DRESC. A systematic approach for placement and routing indeed
allows a reasonable compile time while achieving competitive per-
formance. Compile times for mesh-only are larger than mesh-plus
because the achieved IIs are usually higher. Since the scheduler
starts at the MII for each loop, it takes more time to get to thesolu-
tions with higher IIs.

Effectiveness of Heuristics.EMS employs various heuristics to
guide the scheduler towards intelligent routing. The effectiveness
of individual heuristics varies based on the application characteris-
tics. The probability heuristic is effective for loops thathave high
contention on limited resources such as central RF ports or mem-
ory slots. Prioritizing edges based on the edge dependency analy-
sis effectively schedules loops with large recurrence cycles, espe-
cially when there are many recurrence cycles and some nodes are
included in multiple cycles. Stage-reassignment is effective when
DFGs have narrow and tall shapes.

6. RELATED WORK
Architectures. Many CGRA-like designs have been proposed in

the literature. The designs have different scalability, performance,
and compilability characteristics as discussed in Section2.1. The
ADRES architecture [14] is an example of an 8x8 mesh of process-
ing elements with both individual and central register files. Mor-
phoSys [13] is another example of an 8x8 grid with a more sophis-
ticated interconnect network; each node contains an ALU anda
small local register file. In the RAW architecture [22], eachnode
is actually a MIPS processor, including memory, registers,and a
processor pipeline. In addition, there are both dynamic andstatic
routing networks. PipeRench [7] is a 1-D architecture in which
processing elements are arranged in stripes to facilitate pipelining.
RaPiD [3] consists of heterogeneous elements (ALUs and regis-
ters) in a 1-D layout, connected by a reconfigurable interconnection
network. ElementCXI [5] and Ambric [8] are commercialized ar-
chitecture platforms that present large-scale CGRAs targeting em-
bedded domain applications. Hundreds of computing nodes are
connected in hierarchical interconnects and they exploitsILP and
TLP available in target applications.

Compilation Techniques.Many techniques have been proposed
for compiling to CGRAs. Lee et al. [10] propose a compilationap-
proach for a generic CGRA. They generate pipeline schedulesfor
innermost loop bodies so that iterations can be issued successively.
The main focus of their work is to enable memory sharing between
operations of different iterations placed on the same processing el-
ement. Our work proposes a generic scheduling strategy, andmem-
ory sharing and other such optimizations can be integrated into our

system as a preprocessing step. [1] investigated a loop-scheduling
problem in CGRA by dividing it into covering, partitioning and
layout subproblems. It spatially partitions the CGRA and maps
each loop iteration onto the partitioned CGRA. Modulo scheduling
differs from this approach in that it time-multiplexes the array for
different loop iterations.

RAWCC [11] tackles the scheduling problem for the RAW archi-
tecture where all the communication is fully exposed to the com-
piler. The scheduling problem is broken down into two tasks:spa-
tial assignment and temporal assignment. Operations are placed in
each tile first, and time slots are assigned for operations ineach
time. Convergent scheduling [12] is another compiler technique
proposed as a generic framework for instruction schedulingon the
RAW architecture. Their framework comprises a series of heuris-
tics that address independent concerns like load balancing, commu-
nication minimization, etc. [16] and [2] were also proposedfor
instruction scheduling of tiled architectures. The scheduling prob-
lem in tiled architectures is quite similar to our problem inthat the
compiler has to manage communications explicitly among com-
putation resources. The main difference is that tiled architectures
usually have a dynamically routed network that can sustain some
level of routing congestion during runtime. Having no such routing
network in CGRAs, the scheduler is responsible for orchestrating
every communication so that no congestion occurs. Whereas [11],
[12], [16] and [2] focus on ILP and propose scheduling methods
for acyclic regions of code, we focus on loop level parallelism. The
work of Mei et al. [14] is closest to our work, as discussed in Sec-
tion 1.

Similar to CGRAs, clustered VLIW machines are also spatial ar-
chitectures. Much work has been done towards compiling for clus-
tered VLIW machines [6, 17, 21]. Although some of the concepts
from these works can be adapted for CGRA compilation, they do
not consider the issue of routing values through the sparse inter-
connection network, which is a crucial step. The measure of affin-
ity used in our scheduler is similar to that used in Krishnamurthy’s
affinity-based clustering [9].

Stage scheduling [4] re-assigns operations’ stages to minimize
register pressure for modulo scheduled loops. While stage schedul-
ing is applied as a post pass, EMS re-assigns stages during the mod-
ulo scheduling process.

7. CONCLUSION
This paper proposes edge-centric modulo scheduling, an effec-

tive modulo scheduling technique for CGRAs. The distributed na-
ture of CGRAs, including sparse interconnect and distributed reg-
ister files, presents difficult challenges to a compiler. EMSfo-
cuses primarily on the routing problem, with placement being a by-
product of the routing process. Various routing cost metrics were
introduced to give a global perspective of resource management to
the scheduler. Edges in the dataflow graph are categorized based
on their characteristics and EMS uses different strategiesto route
them. Overall, EMS improves performance by 25% over traditional
modulo scheduling and achieves 85-98% of the performance com-
pared to a state-of-the-art simulated annealing technique. EMS also
reduces compilation time by 18x compared to simulated annealing.
Experimental results show that the performance of EMS heavily
depends on the characteristics of loop structure as well as the un-
derlying CGRA architecture. This encourages an in-depth analysis
of the application and exploration of the architecture in the future.

8. ACKNOWLEDGMENTS
Thanks to Greg Steffan and the anonymous referees who pro-

vided excellent suggestions for improving the quality of this work.
This research was supported by Samsung Advanced Institute of
Technology, the National Science Foundation grants CNS-0615261
and CCF-0347411, and equipment donated by Hewlett-Packardand
Intel Corporation.

9. REFERENCES[1] M. Ahn, J. W. Yoon, Y. Paek, Y. Kim, M. Kiemb, and K. Choi. A spatial
mapping algorithm for heterogeneous coarse-grained reconfigurable
architectures. InProc. of the 2006 Design, Automation and Test in Europe,
pages 363–368, Mar. 2006.

[2] K. Coons, X. Chen, S. Kushwaha, K. McKinley, and D. Burger. A spatial path
scheduling algorithm for edge architectures. In14th International Conference
on Architectural Support for Programming Languages and Operating Systems,
pages 129–140, Oct. 2006.

[3] C. Ebeling et al. Mapping applications to the RaPiD configurable architecture.
In Proc. of the 5th IEEE Symposium on Field-Programmable Custom
Computing Machines, pages 106–115, Apr. 1997.

[4] A. E. Eichenberger and E. S. Davidson. Stage scheduling:A technique to
reduce the register requirements of a modulo schedule. InProc. of the 28th
Annual International Symposium on Microarchitecture, pages 338–349, Nov.
1995.

[5] ElementCXI. http://www.elementcxi.com.
[6] J. Ellis.Bulldog: A Compiler for VLIW Architectures. MIT Press, Cambridge,

MA, 1985.
[7] S. Goldstein et al. PipeRench: A coprocessor for streaming multimedia

acceleration. InProc. of the 26th Annual International Symposium on Computer
Architecture, pages 28–39, June 1999.

[8] A. M. Jones and M. Butts. Teroops hardware: A new massively-parallel mimd
computing fabric ic. InIEEE 18th Hot Chips Symposium, pages 32–41, Aug.
2006.

[9] G. Krishnamurthy, E. Granston, and E. Stotzer. Affinity-based cluster
assignment for unrolled loops. InProc. of the 2002 International Conference on
Supercomputing, pages 107–116, June 2002.

[10] J. Lee, K. Choi, and N. Dutt. Compilation approach for coarse-grained
reconfigurable architectures.IEEE Journal of Design & Test of Computers,
20(1):26–33, Jan. 2003.

[11] W. Lee et al. Space-time scheduling of instruction-level parallelism on a RAW
machine. InEighth International Conference on Architectural Supportfor
Programming Languages and Operating Systems, pages 46–57, Oct. 1998.

[12] W. Lee, D. Puppin, S. Swenson, and S. Amarasinghe. Convergent scheduling.
In Proc. of the 35th Annual International Symposium on Microarchitecture,
pages 111–122, 2002.

[13] G. Lu, H. Singh, M.-H. Lee, N. Bagherzadeh, F. J. Kurdahi, and E. M. C. Filho.
The MorphoSys parallel reconfigurable system. InProc. of the 5th International
Euro-Par Conference, pages 727–734, 1999.

[14] B. Mei et al. Exploiting loop-level parallelism on coarse-grained reconfigurable
architectures using modulo scheduling. InProc. of the 2003 Design,
Automation and Test in Europe, pages 296–301, Mar. 2003.

[15] B. Mei, F. Veredas, and B. Masschelein. Mapping an H.264/AVC decoder onto
the ADRES reconfigurable architecture. InProc. of the 2005 International
Conference on Field Programmable Logic and Applications, pages 622–625,
Aug. 2005.

[16] M. Mercaldi, S. Swanson, A. Petersen, A. Putnam, A. Schwerin, M. Oskin, and
S. J. Eggers. Instruction scheduling for a tiled dataflow architecture. In14th
International Conference on Architectural Support for Programming
Languages and Operating Systems, pages 141–150, Oct. 2006.

[17] E. Nystrom and A. E. Eichenberger. Effective cluster assignment for modulo
scheduling. InProc. of the 31st Annual International Symposium on
Microarchitecture, pages 103–114, Dec. 1998.

[18] H. Park, K. Fan, M. Kudlur, and S. Mahlke. Modulo graph embedding:
Mapping applications onto coarse-grained reconfigurable architectures. InProc.
of the 2006 International Conference on Compilers, Architecture, and Synthesis
for Embedded Systems, pages 136–146, Oct. 2006.

[19] M. Quax, J. Huisken, and J. Meerbergen. A scalable implementation of a
reconfigurable WCDMA RAKE receiver. InProc. of the 2004 Design,
Automation and Test in Europe, pages 230–235, Mar. 2004.

[20] B. R. Rau. Iterative modulo scheduling: An algorithm for software pipelining
loops. InProc. of the 27th Annual International Symposium on
Microarchitecture, pages 63–74, Nov. 1994.

[21] J. Sánchez and A. González. Modulo scheduling for a fully-distributed
clustered VLIW architecture. InProc. of the 33rd Annual International
Symposium on Microarchitecture, pages 124–133, Dec. 2000.

[22] M. B. Taylor et al. The Raw microprocessor: A computational fabric for
software circuits and general purpose programs.IEEE Micro, 22(2):25–35,
2002.

