
Reducing Control Power in CGRAs with Token Flow

Hyunchul Park, Yongjun Park, and Scott Mahlke
Advanced Computer Architecture Laboratory, University of Michigan

Ann Arbor, MI, USA
{parkhc, yjunpark, mahlke}@umich.edu

src0 const src1 route write

pred

FU
RF

opcode pred src0

8 3 4 4 4 3 3 3 941 Bits

PE PE PE PE

Central RF

PE PE PE PE

PE PE PE PE

PE PE PE PE

C
o
n
f
i
g

M

e
m

o
r
y

src1 route write waddr raddr const

Figure 1: CGRA overview: 4x4 array of PEs (left), a detailed
view of a PE (right), and a PE instruction (bottom)

1. INTRODUCTION
Today’s mobile applications are multimedia rich, involving sig-

nificant amounts of audio and video coding, 3D graphics, signal
processing, and communications. These multimedia applications
usually have a large number of kernels in which most of the execu-
tion time is spent. Traditionally, these compute-intensive kernels
were accelerated by application specific hardware in the form of
ASICs to meet the competing demands of high performance and
energy efficiency. However, increasing convergence of different
functionalities combined with high non-recurring costs involved
in designing ASICs have pushed designers towards programmable
solutions.

Coarse-grained reconfigurable architectures (CGRAs) are be-
coming attractive alternatives because they offer large raw compu-
tation capabilities with low cost/energy implementations. CGRAs
generally consist of an array of a large number of function units
(FUs) interconnected by a mesh style network(Figure 1). Register
files are distributed throughout the CGRA to hold temporary val-
ues and are accessible only by a small subset of FUs. The FUs can
execute common word-level operations, including addition, sub-
traction, and multiplication.

A major bottleneck for deploying CGRAs into a wider domain
of embedded devices lies in the control path. The appealing fea-
tures in the datapath of CGRAs ironically come back as a major
overhead in the control path. The distributed interconnect and reg-
ister files require a large number of configuration bits to route val-
ues across the network. The abundance of computation resources
simply adds up the list for configurations to the control path. As
a result, the total number of control bits to configure the whole
array can reach nearly 1000 bits each cycle, and the control path
takes up to 43% of the total power consumption in existing CGRA
designs [2, 1]. Moreover, control bits are read from the on-chip
memory every cycle regardless of the array’s utilization. To our
knowledge, no previous work has addressed a general solution
for power-efficient control path design in tiled accelerators like
CGRAs. In this paper, we propose a new control path design that
improves the code efficiency of CGRAs by leveraging token net-
works originally proposed for dataflow machines.

2. MOTIVATION
Conventionally, code compression is performed at the instruc-

tion level with no-op compression or a variable length encoding.
No-op compression is widely used in VLIW processors and many
DSPs [4]. However, instruction-level compression does not work
well in CGRAs due to the highly distributed nature of the re-
sources. We discovered that only 17% of PE instructions are pure
no-ops (all the components in the same PE is not active), while the

(a)

(b)

Token Network

decoded inst w/ dest

Config Memory

Decoder

encoded inst

IF

to datapath

decoded inst

format

Config Memory

Decoder

Config Memory

to datapath

decoded inst

(c)

decoded inst w/ src

to datapath

format

encoded inst

F R F R F R F R

F R F R F R F R

F R F R F R F R

F R F R F R F R

Figure 2: Different Control Path Designs: (a) No compres-
sion, (b) Fine-grain code compression with static instruction
format, (c) Fine-grain code compression with a token network
(F and R indicate FU token module and RF token module, re-
spectively)

average utilization of FUs is 55%.
However, there is a good opportunity for a fine-grain code com-

pression: compressing instruction fields (e.g., opcode, MUX se-
lection, register address) rather than the whole instruction. On
average, only 35% of all instruction fields contain valid data, thus
efficiency can potentially be increased by removing unused fields.
Slide 6 shows a high-level organization that utilizes a static fine-
grain compression approach. In the simplest variant, presence bits
are added for each field to indicate whether the field exists or not.
Instruction encoding consists of the presence bits(instruction for-
mat) followed by the subset of valid instruction fields concatenated
together. With this approach, decoding can become complex due
to the variable length nature of the encoding, but all unused fields
can be removed in principle.

The biggest challenge for applying static fine-grain compres-
sion lies in the instruction formats. Using a simple fine-grain static
compression scheme that we designed for a CGRA, the code ef-
ficiency increases by 24% with the average number of instruction
bits decreasing from 845 to 647. However, 172 of the 647 bits are
used for encoding the instruction formats. Since the instruction
format of 172 bits needs be read from the configuration memory
every cycle regardless of the number of fields present, the instruc-
tion format itself becomes a significant overhead in the control
path. To address this limitation, we propose to dynamically dis-
cover the instruction formats by applying a dataflow token net-
work explained in the next Section.

3. TOKEN NETWORK
3.1 Concepts

The basic idea of dynamic instruction format discovery is that
resources need configurations only when there is useful data that
flows through them. By looking at the locations of data coming
into a PE, we can infer the instruction format of the current in-
struction. We can utilize a token network in dataflow machines [3]
to provide information on where data flows in the distributed net-
work. A token is sent from a producer to its consumers one cycle
ahead of the actual data execution. Originally, the consumer fired
when it accumulated sufficient tokens. However, this concept can
be altered as all tokens for a single instruction are guaranteed to
arrive at the same time. Hence, the set of tokens uniquely de-
termine the instruction format so that the necessary fields can be
fetched from the instruction memory. When the actual data arrives

in the subsequent cycle, the required instruction fields are already
decoded and the PE is ready to execute the scheduled operation.

3.2 Overview
To utilize tokens for instruction format discovery, a token net-

work is inserted between the decoder and the datapath as shown in
Figure 2(c). The token network consists of two components: to-
ken interconnect and token modules. Each datapath element, such
as an FU, RF and MUX, has a corresponding token module in the
token network.

Token modules are connected by a 1-bit token interconnect that
has the same topology as the datapath interconnect. The token
network takes the decoded instructions from the decoder and sends
tokens across the token interconnect. The token network has two
responsibilities. First, the token network provides the instruction
formats to the decoder. Second, it generates control signals for the
datapath.

3.2.1 Token Generation and Routing
Tokens are first generated at the start of data streams in the

dataflow graph: live-in values. A token generated at the top of
the dataflow graph flows across the array visiting different re-
sources and finally terminates when it either reaches a register
file or merges into another token in an FU. A token terminated
in a register file can be re-generated later, creating another token
stream.

For tokens generated from live-in, the generation information
(time and resource) needs be encoded in the configuration mem-
ory since there is no producer that sends token to those nodes. The
tokens coming out from register files also require their generation
information stored in the configuration memory since the tokens
can be re-generated anytime once they are stored in the register
file. Therefore, the configuration memory will hold the token gen-
eration information for all the tokens coming out from register file
read ports. Each cycle, the token generation information stored in
the configuration memory fires tokens into the token network and
the configurations for the datapath are generated as tokens flow
across the array.

After tokens are generated, they are routed following the edges
in the dataflow graph. To send tokens from producers to con-
sumers, the destination information is stored in the configuration
memory instead of the source information. The MUX selection
bits in a PE instruction (Figure 1) are replaced by dest fields. As in
dataflow machines, only two destinations are allowed for each data
generating component (FU output ports, RF read ports). An anal-
ysis on the scheduling result of our benchmark loops shows that
86% of the communication patterns are unicast (requiring only
one destination), and 98% of communications can be covered by
two destinations. Therefore, the performance degradation with the
limited number of destinations is minimal.

3.2.2 Token Processing
Tokens flowing on the token network are utilized for two tasks.

First, the instruction formats are discovered with tokens and they
are sent back to the decoder. With these instruction formats, the
decoder can decode the compressed instructions for the subse-
quent cycle. Also, the dest fields in the decoded instructions are
converted into the source fields for MUX selection bits and sent to
the datapath.

Token Sender: For each output port of a datapath element (FU
output ports, RF read ports), a token sender is created in the token
network to send out tokens to the consuming resources. It simply
decodes the dest field (dest) and sends out tokens to the connected
modules.

Token Receiver: Since only destination fields are encoded in
the configuration memory, the source fields (MUX selection bits)
for the datapath need be discovered when tokens are coming into
the input ports of each resource. For each MUX in the datapath,
a token receiver is created. A token receiver generates the MUX
selection bits(MUX sel) by looking at the position of an incoming
token. Since only one input of a token receiver can have incoming
token, the MUX selection bits can be generated with several OR
gates as in the figure. Along with the MUX selection bits, it also
notifies the attached module (FU/RF token module) whether there
is a token coming into this input port or not (has token).

FU token module:
The input MUXes of the FU is translated into token receivers

and the FU itself is replaced with an opcode processor. For the
output ports of the FU, token senders are created. The opcode
processor first takes ’has token’ signals from the attached token
receivers and discovers the instruction format. The opcode pro-

power (mW) area (mm^2)
design # bits perf sram dec token total sram dec token total
baseline 845 100.0 104.0 5.4 0.0 109.4 0.539 0.015 0.000 0.554
static 647 98.5 56.4 18.2 0.0 74.6 0.412 0.120 0.000 0.532
token 456 103.8 27.2 17.1 4.8 49.1 0.291 0.113 0.048 0.452

Figure 3: Performance, power and area comparison of control
path designs

cessor sends out a ’read opcode’ signal when both src0 and src1
have incoming tokens. Also, it sends out read signals for dest
fields of both data (dest) and predicate (pdest) if there is any in-
coming token in the input ports. The opcode processor also deter-
mines the latency of computation by looking at the opcode field.
The dest fields from the decoder are fed into the token senders di-
rectly. When the opcode processor signals the token senders with
an enable signal, they send out tokens to the designated consumers
specified in the dest fields.

RF token module: Similar to FU token modules, a token re-
ceiver and token senders are created for the write port MUX and
two read ports of RFs, respectively. Any incoming token into the
write port sends a read signal to the configuration memory for the
write address field and it also sends a write enable signal. For the
read ports of register files, there are no incoming tokens from the
token network. Instead, the generation of tokens from the read
ports are encoded statically in the configuration memory. When
a token generation signal comes in, the RF module sends a read
signal for the read address and the dest field.

4. EXPERIMENTAL RESULTS
Three control path designs were evaluated for performance, area,

and power consumption and the results are shown in Figure 3.
baseline design is the conventional control path of CGRAs that has
no code compression(Figure 2(a)). static design employs a fine-
grain code compression, but the instruction format is statically en-
coded in the configuration memory(Figure 2(b)). token also em-
ploys a fine-grain code compression and the instruction format is
discovered dynamically with token network(Figure 2(c)).

Fine-grain Code Compression: Comparison between baseline
and static designs reveals that the fine-grain code compression can
improve both power consumption and area of the control path with
increased code efficiency. Overall, the power consumption was
reduced by 32% and the area decreased by 4%. There is a small
performance degradation of 1.5% due to the sharing of field entries
and lack of multicasting capability(only two dests are allowed).

Among the average configuration bits of 647 in static design,
the instruction format takes 172 bits and it needs be read from the
memory every cycle. The power consumption of reading instruc-
tion format alone is 24.6 mW, which is almost one-third of the
total power consumption in the control path. So, there is poten-
tial for further enhancing the control path design in the instruction
format.

Token Network: We can evaluate the token network by com-
paring token to static. The only difference between two designs is
how the instruction format is discovered. In token design, the to-
ken network is added for dynamic discovery of the instruction for-
mat. The overhead of the token network is relatively small, intro-
ducing only 3% and 5% of baseline design’s power consumption
and area, respectively. However, introducing the token network
improves all three features of the control path: code efficiency,
power consumption, and area. token design further reduces the
power consumption by 31% over static design and by 53% over
baseline design. The area of the control path also decreases even
with the overhead of the token network since the instruction for-
mat is no longer stored in the configuration memory.

5. REFERENCES
[1] F. Bouwens, M. Berekovic, B. D. Sutter, and G. Gaydadjiev. Architecture

enhancements for the adres coarse-grained reconfigurable array. In Proc. of the
2008 International Conference on High Performance Embedded Architectures
and Compilers, pages 66–81, Jan. 2008.

[2] Y. Kim, I. Park, K. Choi, and Y. Paek. Power-conscious configuration cache
structure and code mapping for coarse-grained reconfigurable architecture. In
Proc. of the 2006 International Symposium on Low Power Electronics and
Design, Oct. 2006.

[3] G. M. Papadopoulos and D. E. Culler. Monsoon: an explicit token-store
architecture. In Proc. of the 17th Annual International Symposium on Computer
Architecture, pages 82–91, May 1990.

[4] Texas Instruments. TMS320C55x DSP CPU Programmer’s Guide, Aug. 2001.
http://focus.ti.com/lit/ug/spru376a/spru376a.pdf.

