
An Architecture Framework for Transparent Instruction Set
Customization in Embedded Processors

Nathan Clark1, Jason Blome1, Michael Chu1, Scott Mahlke1, Stuart Biles2 and Krisztián Flautner2

1Advanced Computer Architecture Laboratory 2ARM, Ltd.
University of Michigan - Ann Arbor, MI Cambridge, United Kingdom

{ntclark, jblome, mchu, mahlke}@umich.edu {stuart.biles, krisztian.flautner}@arm.com

ABSTRACT
Instruction set customization is an effective way to improve
processor performance. Critical portions of application data-
flow graphs are collapsed for accelerated execution on spe-
cialized hardware. Collapsing dataflow subgraphs will com-
press the latency along critical paths and reduces the num-
ber of intermediate results stored in the register file. While
custom instructions can be effective, the time and cost of
designing a new processor for each application is immense.
To overcome this roadblock, this paper proposes a flexible
architectural framework to transparently integrate custom
instructions into a general-purpose processor. Hardware ac-
celerators are added to the processor to execute the col-
lapsed subgraphs. A simple microarchitectural interface is
provided to support a plug-and-play model for integrating
a wide range of accelerators into a pre-designed and verified
processor core. The accelerators are exploited using an ap-
proach of static identification and dynamic realization. The
compiler is responsible for identifying profitable subgraphs,
while the hardware handles discovery, mapping, and execu-
tion of compatible subgraphs. This paper presents the de-
sign of a plug-and-play transparent accelerator system and
evaluates the cost/performance implications of the design.

1. INTRODUCTION
Application specific instruction processors, or ASIPs, have

the potential to meet the challenging high-performance de-
mands of embedded applications. Integrating specialized
hardware computation blocks is a pervasive technique used
to accelerate individual applications. This specialized hard-
ware is exploited through the use of customized instructions
or instruction set extensions, which allow critical portions
of an application’s dataflow graph to be more efficiently ex-
ecuted than through the general purpose processor. Sev-
eral commercial tool chains design ASIPs with customized
instructions, including ARM OptimoDE, Tensilica Xtensa,
and ARC Architect. ASIP solutions are desirable because
they offer a cost and energy efficient approach to increas-
ing processor performance. Further, they maintain a degree
of system programmability; this substantially reduces the
software burden of porting applications to new platforms by
providing the flexibility of a processor-based solution.

The central problems with an ASIP approach are the
hardware design and software migration time/costs. ASIP
designs incur substantial non-recurring engineering costs.
For example, each new ASIP must be verified both from
the functionality and timing perspectives. Additionally, a
new mask set must be created to fabricate the chip. On the

software side, the compiler must be retargeted to each new
processor and any hand-written libraries must be migrated
to the new platform. Automation of some of these tasks
may be possible; however, the majority of this work is still
a manual process. All of these challenges make it difficult
to adopt a new ASIP despite the potential advantages.

The difficulties with ASIP design are altogether avoided in
general-purpose processors (GPPs) by offering a small fam-
ily of processors with the same instruction set and software
toolchain. The disadvantage of this approach is poor perfor-
mance. Efficiency gains achieved through specialization are
not possible, as one processor is created for all application
domains. In this paper, we investigate the use of applica-
tion specific processing technologies in the context of a GPP.
More specifically, the objective is to make use of specialized
hardware blocks and custom instructions while maintaining
a fixed processor design and general-purpose instruction set.
We refer to this technique as transparent instruction set cus-

tomization. Transparent instruction set customization on a
GPP enables many of the performance advantages of ASIPs
without the associated overhead.

Our work builds upon prior work in which a configurable
compute accelerator (CCA) is defined to execute selected
computation subgraphs [7]. The CCA consists of an array of
simple function units interconnected in a feed-forward man-
ner. The CCA is exploited using one of two methods. First,
a dynamic method was proposed to identify and remap sub-
graphs to the CCA in a trace cache fill unit [21]. Second,
a static strategy identifies subgraphs offline during compila-
tion and replaces the subgraphs with CCA instructions at
run-time using a translation table provided in the binary.
Both solutions have major drawbacks. The dynamic ap-
proach relies on a trace cache and its associated hardware
optimization system. Such hardware is generally not ap-
propriate for embedded processors due to cost and energy
consumption. Further, run-time identification of patterns
is inherently constrained to simple approaches as it is per-
formed during application execution. The static approach
offers no flexibility in terms of supporting multiple accel-
erators, as a fixed mapping to the CCA is assumed. Fur-
ther, register encoding limitations in the GPP instruction
set severely restrict the size of subgraphs that can map to
the CCA.

This paper presents the design of an architectural frame-
work to efficiently support transparent instruction set cus-
tomization in an embedded GPP, such as an ARM. The
framework utilizes a hybrid approach of statically-identified,
dynamically-realized custom instructions. Subgraphs tar-

geted for acceleration are identified during compilation or
as a post-link optimization and are marked in the program
executable. At run time, subgraphs are discovered, mapped,
and executed on specialized hardware blocks. The hybrid
approach enables the combination of sophisticated offline
subgraph detection algorithms with the flexibility of online
realization of the customized instructions.

Several important challenges are addressed in the pro-
posed framework. First, a plug-and-play accelerator model
is defined that consists of an augmented GPP pipeline with
a predefined interface to an optional hardware accelerator
block. The augmented GPP is designed and verified once.
Second, the framework supports a wide range of accelerator
designs including standard predefined accelerators (such as
a CCA) and user-defined hardware accelerators. Regardless
of the specific accelerator (or lack thereof), a single applica-
tion binary is created and executed on all platforms. Third,
the acceleration of complex acyclic computation subgraphs
is supported. Prior work often limits subgraphs to linear
chains, thereby precluding many of the performance bene-
fits achieved with custom instructions in ASIPs. Fourth, the
limited expressibility of the target instruction set architec-
ture in terms of register names does not limit contents of
the selected subgraphs. For GPP instruction sets such as
ARM with only 16 registers, register spills often limit sub-
graphs to small sizes, thus its important to overcome this
limitation. Finally, a low-cost and energy-efficient solution
is selected to make the approach appropriate for embedded
computing.

2. RELATED WORK
Utilizing instruction set extensions to improve the com-

putational efficiency of applications is a well studied field.
Examples of industry standard domain specific instruction
set extensions such as Intel’s SSE or AMD’s 3DNow! mul-
timedia instructions are commonplace in modern systems.
Techniques for generating domain specific extensions are
typically ad-hoc, where an architect examines a family of
target applications and determines what extensions can be
expected to provide increased performance.

In contrast to domain specific extensions, many techniques
for generating application specific instruction set extensions
have been proposed [3, 6, 8, 12, 13, 25]. Each of these algo-
rithms provide either exact formulations or heuristics to ef-
fectively identify those portions of an application’s dataflow
graph that can efficiently be implemented in hardware. These
techniques are not directly applicable to this work, because
they do not take into account the underlying structure of
the execution hardware.

Much attention has been given to the structure of a CCA
design for accelerating dataflow subgraphs. The research
in [27] proposed using a fine granularity CCA based on
slightly specialized FPGA-like elements. Restricting the in-
terconnect of the FPGA-like elements reduces the delay of
a CCA without radically affecting the number of subgraphs
that can be mapped onto the accelerator. While the flexi-
bility to map many subgraphs onto configurable hardware is
appealing, there are significant drawbacks of a large number
of control bits and the substantial delay of FPGA-like ele-
ments. A key observation is that the flexibility of an FPGA
is generally more than is necessary for dataflow graph accel-
eration.

Other recent work [5, 23] proposed CCA structures specif-

ically optimized for linear chains of execution. That is to say
these structures only execute subgraphs that have two in-
puts, one output, and a small number of intermediate nodes.
Constraining the subgraphs in this way has been shown to
effectively increase the bandwidth of execution resources,
however it severely restricts the performance increase from
dataflow graph compaction [28]. Since embedded processors
are typically in-order and single-issue, resource contention is
not a major issue. In this work, we use a more generic CCA
architecture, similar to [7], to support the execution of more
arbitrary acyclic dataflow subgraphs. These subgraphs are
larger than simple linear subgraphs, and attack the compu-
tation limitations of embedded processor instead of resource
limitations.

Once a CCA execution engine is developed, techniques
are needed to map dataflow subgraphs onto the execute en-
gines. Many hardware based frameworks exist for this pro-
cess. Most of these arose from the observation that in sys-
tems with a trace cache, the latency of the fill unit has a neg-
ligible performance impact until it becomes very large (on
the order of 10,000 cycles [11]). That is, once instructions
retire from the pipeline and a trace is constructed, there is
ample time before that trace will be needed again. Two re-
cently proposed schemes [7, 23] used this latency to perform
the mapping of dataflow subgraphs onto specialized execu-
tion hardware. While the trace cache provides an excellent
place for mapping subgraphs into the instruction stream, it
is far too large and inefficient for embedded domains.

A simplified dynamic subgraph mapping system was de-
scribed in [15, 24]. These papers used the design proposed
in [22] as the baseline of their system, which greatly simpli-
fies the mapping problem. Because our goal was to allow
for more flexibility than their CCA design allowed for, our
presented identification algorithm is much more complex.

Other recent work [5] proposes using the DISE [9] frame-
work to dynamically replace subgraphs in the instruction
stream. A special instruction is used to signal the DISE en-
gine, which then inserts the appropriate control logic into
the pipeline. This model requires a DISE aware operating
system and processor, since the subgraphs are specified in
the binary at load time, and must be replaced to execute
the binary at runtime. Conversely, the framework proposed
in this work does not affect the operating system, nor does
it require any special replacement engine to run the binary.

The key difference between this paper and prior work is
that instead of proposing a CCA architecture, we propose an
architecture framework into which many CCA architectures
fit. This framework provides a clean interface between a
processor pipeline and a CCA, enabling easy customization
of a CCA for the expected system workload. We demon-
strate how the framework can process a dataflow subgraph
to generate CCA instruction on the fly, without the costs as-
sociated with a trace cache. Beyond the architecture frame-
work, we describe the compilation process, by which sub-
graphs are identified in applications and communicated to
the architecture framework.

3. ARCHITECTURAL FRAMEWORK
The primary contribution of this work is a configurable

architectural framework to facilitate transparent instruction
set customization. This framework allows architects to de-
sign hardware accelerators tuned for an expected workload
and easily incorpoorate them into a general purpose pro-

Program Program

BRL

BRL

SG1

SG2

SG1

SG2

Core

CCA

Subsystem

Subgraph Results

Configure

CCA

Core

CCA

Subsystem
Subgraph

Results

Execution 1 Execution 2 N

(a) (b)

Figure 1: A high-level overview of the executing with a CCA: (a) subgraph identification and relocation and
(b) setting up the CCA subsystem on the first invocation of a subgraph for future uses

cessor via a well-defined interface. The use of a workload-
specific accelerator allows manufacturers to build machines
targeted toward many domains at the cost of designing and
verifying only a single general purpose core and a set of ap-
plicable accelerators.

This section begins with an operational overview of the
framework. The remaining subsections present a descrip-
tion of the proposed pipeline microarchitecture, the stages
of execution of dataflow subgraphs within this pipeline, and
the system interface to support subgraph execution on the
system.

3.1 Overview
The objective of a framework for transparent instruction

set customization is the support of a hybrid form of execu-
tion where subgraphs are statically identified and dynami-
cally realized. Static identification refers to offline compiler
identification of potential subgraphs for execution on custom
hardware. Dynamic realization refers to hardware synthesiz-
ing the custom instructions at run-time and offloading their
execution to the CCA.

The high-level process is illustrated in Figure 1. Initially,
a program is analyzed by the compiler to identify critical
computation graphs that can be mapped onto the CCA.
The operations that comprise the subgraphs are pulled out
of their original locations and placed into a separate func-
tion body as illustrated in Figure 1(a). The BRL, or branch
and link, instruction is used to denote a function call in this
figure. Dynamic realization is accomplished in two phases.
Initially, the subgraph is executed on the hardware of the
uncustomized core, denoted as Execution 1 in Figure 1(b).
During this execution, a hardware engine determines the
CCA configuration necessary to execute the entire subgraph
as an atomic unit. In essence, a complex opcode is synthe-
sized on the fly. On subsequent executions of the subgraph,
the new complex opcode is substituted for the invocation of
the subgraph function. Thus, as shown in Figure 1(b), the
standard hardware must execute the first occurrence of the
subgraph, while all subsequent executions will be relegated
to the CCA.

The combination of static identification and dynamic real-
ization enables powerful offline algorithms to optimize code
for subgraph extraction. Further, a well-defined architec-
tural interface introduces a layer of flexibility so that pre-
viously designed and verified cores can be easily integrated
with multiple CCA designs. The remainder of this section
expands the details of the architectural framework to ac-
complish this model of execution.

3.2 Pipeline Organization
Figure 2 presents a block diagram of the proposed archi-

tecture framework. The baseline processor, at the bottom of
the figure, is augmented with the CCA subsystem at the top
of the figure. The CCA subsystem consists of three major
parts: the CCA itself, a configuration cache, and a control
generator. The control generator is responsible for examin-
ing a sequence of retiring instructions and determining the
required control signals for the CCA. Each entry of the con-
figuration cache specifies the necessary control signals for
configuring the CCA, including the opcode implemented on
each CCA function unit, the interconnect between function
units, and any literal values used by the subgraph.

The core processor is augmented in several places to inter-
act with the CCA. Changes primarily occur in the instruc-
tion fetch stage of the pipeline, where instruction stream
substitution occurs. The branch target address cache, or
BTAC (sometimes called BTB in other literature), is ex-
tended to store additional information to decide when it is
possible to substitute a CCA instruction for an invocation
of a subgraph function. To accomplish this, a CCA configu-
ration cache entry and register indexes for values consumed
by the subgraph are included in the BTAC. The decode and
writeback stages are also modified to provide register inputs
and accept register results from the CCA.

Central to the framework is a well-defined interface be-
tween the core and the CCA subsystem. The interface is
designed so that the core can use multiple CCA designs.
Since any hardware placed on the CCA subsystem increases
the cost of customization, the necessary structures were in-
tegrated into the main pipeline as much as possible while
maintaining the flexibility of the interface. The numbered
arrows in Figure 2 denote the five interface points between
the CCA subsystem and the CPU. These points are the only
communication required between the CPU and the CCA
subsystem:

1. The CCA subsystem generates entry information for
the BTAC. This includes subgraph live-in register in-
dexes and a configuration cache index where the con-
trol bits are stored.

2. During instruction decode, the configuration cache in-
dex is sent to the CCA subsystem.

3. As previously mentioned, the decode stage also pro-
vides the CCA with values for registers that are inputs
to the subgraph.

4. The output values from the subgraph are relayed from
the CCA subsystem back to the CPU for register write-
back.

CCA

SUBSYSTEM

CCA

Config

Cache

CCA

Control

Generator

CPU

Fetch Q

Instruction

Cache

Stall

BTAC

PC

CCA Index

+4 ID EX MEM WB@ 1 R1, R6

Branch

Target

Config

Cache

Entry

Live In

Registers

BTAC

Config Cache

Index

Live In

Values

Results

to write

back

CCA Control, Live Out Values

Live Ins, CCA Config Cache Index

Instructions

1 2 3 54

Figure 2: Transparent instruction set customization architectural framework

5. After retirement, completed instructions are provided
to the control generator so that it can synthesize the
CCA instructions from dataflow subgraphs.

3.3 Dataflow Subgraph Execution
A single instruction is added to the baseline instruction

set to allow the compiler to delineate patterns for execution
on the CCA hardware. A discussion of how the compiler
uses these instructions follows in Section 4. The introduced
instruction is dubbed BRL’ because its semantics are very
similar to a branch-and-link operation commonly used for
subroutine calls. BRL’ is treated just like a normal branch-
and-link instruction in processors without a CCA subsys-
tem: the current program counter (PC) is stored to a link
register and control branches to the branch target address.
The processor without a CCA will execute the instructions
in the target subroutine and return to the call site, just as
it would for any other subroutine. To a processor with a
CCA subsystem, the BRL’ signifies the start of a subgraph
to execute on the CCA.

When the BRL’ is fetched from the instruction cache, its
address is used to index into the BTAC. The BTAC is a stan-
dard component of modern branch prediction schemes used
to hold the destination of a taken branch. In this framework,
the BTAC is augmented to contain two additional pieces of
information for each BRL’ instruction. Register numbers
for the inputs to CCA instructions are one of the additional
pieces of information. These values are fed to the instruction
decode stage for register reads. An index into the CCA con-
figuration cache is the second additional piece of information
stored in the BTAC. The configuration cache on the CCA
subsystem contains the control bits for the CCA execution
unit. If a BRL’ hits in the BTAC, the configuration cache
index is passed through the pipeline with other control bits
and the PC simply increments to the next instruction (i.e.,
the branch is not taken because the BRL’ was recognized
as a subgraph). This prevents pipeline bubbles that would
form if the branch target was taken. If the BRL’ misses in
the BTAC, then it is executed as a normal BRL and control

branches to the procedure.
Recall that control bits from the BTAC provide the reg-

isters that are read during the decode stage of execution.
Since we assume only two register reads are supported in
one cycle, it may be necessary to use multiple cycles to read
all of the operands necessary for the CCA instruction. Ex-
tra communication is provided allowing the decode stage to
stall the fetch unit in order to facilitate this multi-cycle reg-
ister read. As the registers are read, they are passed to the
CCA system, keeping the width of the interface connection
to a minimum.

The BTAC also passes a configuration cache index through
the decode stage and into the CCA system. The configura-
tion cache contains information pertaining to the routing of
the signals on the CCA, as well as the operations to perform
at each node in the CCA grid. This information is separated
from the BTAC for two main reasons. First, the number of
control bits is highly dependent on the structure of the CCA.
Putting the configuration cache in the core, as part of the
BTAC, effectively restricts the size and organization of the
CCA, since the number of control bits is set a priori. Second,
putting the control bits in a separate configuration cache al-
lows reuse of the same control bits for different subgraphs.
For example, if two separate subgraphs were identical except
for the registers that provide their inputs, they could share
an entry in the configuration cache.

Once the registers and configuration data are passed along,
the CCA executes the subgraph as a single operation and
feeds the results to the writeback stage of the core. The
CCA operates like any other function unit in this regard.
An example of a potential CCA implementation can be seen
in Figure 3. The CCA here is implemented as a grid-like
grouping of function units with full interconnect between
adjacent rows. Because of delay constraints, the two rows
have slightly different opcodes available for execution, the
white nodes support add, subtract, compare, sign extend,
and all logical operations, while the gray nodes only sup-
port sign extend and logical operations. The design in this
figure was taken directly from our previous work [7], and a

Figure 3: Example of a CCA implementation

more thorough discussion of the design rationale is described
there. After execution on the CCA, results are written to
the register file and instructions are fed the the CCA control
generator, which is responsible for mapping subgraphs onto
the CCA.

3.4 Dataflow Subgraph Control Generation
Dynamically determining the control signals for the CCA

is the most complex portion of the CCA subsystem, and is
best illustrated through an example, as shown in Figure 4.
In this example, the subgraph in the top left corner will
be mapped to the CCA in the bottom left corner. The
nodes of this CCA are labeled A-O for easy reference. The
assembly code and subgraph in this example were taken from
the Rijndael encryption algorithm.

Instructions are fed through the control generator one at
a time after the writeback stage. The two loads at the top
of the example are fed through and ignored, since they are
not part of a subgraph. When the third instruction, a BRL’,
is retired, it signals the beginning of a subgraph and that
the CCA subsystem should generate control information for
it. The PC of the BRL’ is recorded so that it can be used
to update the BTAC with the appropriate data when the
subgraph has been fully processed.

After the BRL’, instructions are mapped to the CCA grid
as they enter the control generator. Determining where to
map the instructions requires several pieces of state, shown
in the right portion of Figure 4. The table at the top of each
step is a content addressable memory, or CAM, that maps
a stack offset to a node that produces the value. The CAM
is used to determine which node in the CCA produced the
spilled value when a different operation in the gets its input
from the stack. This allows the control flow generator to
eliminate spill code of transient values within the subgraph.
The size of this CAM equals the number of nodes in the
CCA, since each node could potentially spill its produced
value.

Since the proposed CCA subsystem does not support mem-
ory access operations, if the compiler is unable to allocate
registers to all of the transient variables in a subgraph, then
spill code would effectively partition the subgraph. This re-
stricts performance improvement simply because of register

pressure and is our rationale for performing spill code elim-
ination.

The second piece of state in Figure 4 is the current pro-
ducer table. For each register in the machine, this table con-
tains the node of the CCA that produced the most recent
value computed for that register. The control generator also
keeps two tables marking live-in and live-out values of the
current subgraph. The table of live-out values records every
time a value is produced by a CCA node. It is necessary
to assume that all register values created are live-out, and
must be written to the register file, until proven otherwise.
The live-in registers record which registers are needed as in-
puts to the subgraph and are communicated to the BTAC
after control generation is complete. The live-in table is the
size of the maximum number of inputs allowed on the CCA
execution unit, in this case four. At the bottom of each step
is a running count of the nodes in the CCA (marked in dark
gray) which have been allocated an operation by the control
generator.

When the first instruction, AND R3, R1, #-4, enters
the control generator, that instruction looks up each source
operand in the current producer table. Since R1 has no cur-
rent producer, it is added to the list of live-ins. No other
nodes in the subgraph create results that this operation con-
sumes, so the AND instruction can be assigned to node A
in the first row of the CCA. The current producer table is
updated to reflect that R3 is generated by CCA node A, and
R3 is marked as potentially live-out. The opcode AND and
constant -4 are stored as the function executed by node A.
The state after processing the AND instruction is reflected
as Step 1 in Figure 4.

Spill code for R3 is the next instruction entering the con-
trol generator. The compiler guarantees that any spill code
within the subgraph is only for transient values, and thus
can be optimized away without affecting the correctness of
the program. In this example the spill code stores R3 to
stack offset 20. Since R3 is produced by node A, that node
value is stored with an index of the stack offset in the CAM.
Future instructions that use values spilled on the stack, use
the CAM to determine which node in the CCA generates the
instruction’s inputs. Step 2 in Figure 4 shows the control
configuration state after mapping the store instruction.

Following the spill instruction, the SEXT instruction en-
ters the control generator. Since this instruction uses R2,
and R2 has no producer in the current producer table, R2 is
marked as live-in and the instruction is placed at node B in
the first row of the CCA. This instruction produces a value
for the spilled register R3, so the current producer of R3 is
changed to node B, and the live-out bit of R3 remains set.
When the next AND instruction is mapped, a look up of
its source operand R3 shows that node B produces it. This
means that the AND operation must be placed in the row
below node B, in this case node G. The current producer
table is then updated to reflect that R2 is now produced by
node G.

The next retired instruction is the spill code load for R3.
The control generator looks up the spill offset in the CAM
and finds that node A generated the value being loaded.
Thus, the LD instruction resets the current producer of R3
to node A, and it remains marked as live-out. After the
spill code load, an OR instruction with sources R2 and R3
is processed. Both of these sources are produced by other
nodes in the subgraph. Since it is dependent on node G,

A B C D E F

G H I J

K L M

N O

0

1

2

0

1

2

3

4

0

1

2

3

CCA

Node

Number

Register

Number

Step 1 Step 2 Step 3 Step 4

CCA Structure

SP

Offset Node

Current

Producer Live-Out

Live-In

R1

False

False

False

True

False

A

Step 5 Step 6

SP

Offset Node

Current

Producer Live-Out

Live-In

A

20

R1

False

False

False

True

False

A

SP

Offset Node

Current

Producer Live-Out

Live-In

A20

False

False

False

True

False

B

R1

R2

SP

Offset Node

Current

Producer Live-Out

Live-In

A20

R1

R2

False

False

True

True

False

B

G

SP

Offset Node

Current

Producer Live-Out

Live-In

A20

R1

R2

False

False

True

True

False

A

G

SP

Offset Node

Current

Producer Live-Out

Live-In

A20

R1

R2

False

False

True

True

True

A

G

K

AND R3, R1, #-4 ST [SP+20], R3 SEXT R3, R2 AND R2, R3, #3 LD R3, [SP+20] OR R4, R2, R3

Step 7

SP

Offset Node

Current

Producer Live-Out

Live-In

A20

R1

R2

True

False

True

True

True

A

G

K

AND R0, R4, #3

LD R1, []

LD R2, []

BRL’ SUBGRAPH

CMP R5, #1

AND R3, R1, #-4

ST [SP+20], R3

SEXT R3, R2

AND R2, R3, #3

LD R3, [SP+20]

OR R4, R2, R3

AND R0, R4, #3

SUBGRAPH:

RET

N

Subgraph Code

Figure 4: Example mapping subgraph onto a CCA

this operation must execute in the third row. It is placed
at node K and updates the current producer table accord-
ingly. In addition, because the operation requires a source
from the first row (R3), a move must be inserted in row
2. Moves are necessary because only adjacent rows in this
CCA architecture are directly interconnected. This move is
marked in light gray at the bottom of step 6. Similar to
previous instructions, the AND is inserted in the last row of
the CCA. The final instruction, an RET, marks the end of
this pattern.

Once the end of the subroutine is reached, the control
data is not yet ready to be written to the BTAC and CCA
configuration cache, since there exist more live-outs than
are supported by the execution system. The compiler is
responsible for proving that only a limited number of live-
outs exist in each pattern. Therefore, to determine which
ones are not actually live-out, it is necessary to monitor the
retiring instruction stream and unset the live-out bit for any
register that is defined before used.

Determining true live-outs can either be done by waiting
for other instructions to naturally kill potential live-outs,
or by having the compiler insert artificial instructions to
ensure that false live-outs are killed quickly. Regardless of
the strategy, the latency of killing live-outs should prove
irrelevant to system speedup as prior work [11] has shown
that moderate latencies are likely between trace retirement
and recurrence.

If at any point the control generator cannot map a sub-
graph onto the underlying CCA execution unit, then it sim-
ply aborts control generation for that pattern. This allows
applications compiled for CCA subsystem 1 to run on CCA
subsystem 2 even when the second may not support all the
subgraphs that the first supports. Providing the dynamic
control generator as part of the CCA subsystem is key to
the retargetability of the system.

To determine the overhead of adding the CCA control
generator, we synthesized a control generator to target the
CCA execution unit shown in Figure 3. Using Synopsis de-
sign tools, with a 250 MHz target clock speed, and a 130nm

Artisan standard cell library, we found that the total die
area of the control generator is only 0.169mm

2. For com-
parison, the die area of an ARM 926 processor in 130nm

is 5.0mm
2. The delay of the control generator is is only

0.46ns plus latch setup time, meaning that this can easily
be fit into a modern embedded processor’s timing model.

4. COMPILER CODE GENERATION
In order to exploit the specialized CCA hardware, a CCA

cognizant compiler requires several new steps in the code
generation process. The overall structure of the compiler
flow is shown in Figure 5; steps added for CCA compilation
are gray in this figure. Normal code compilation has three
major steps: scheduling, register allocation, and postpass
scheduling of spill code. At the beginning of compilation,
a CCA compiler must determine which dataflow subgraphs
should execute on the CCA. The remaining complexity of
compiling for a CCA stems from the fact that some phases
of compilation need to treat the subgraphs as atomic units
and other phases need to understand each constituent node
of the subgraph. Each of these phases is explained in detail
in the remainder of this section.

4.1 CCA Compiler flow
Subgraph Identification: Given a dataflow graph as in-

put, subgraph identification determines which portions should
be executed on the CCA. This is very similar to the problem
of technology mapping in VLSI design. In the general case,
where the subgraphs are not necessarily trees, the problem is
NP-hard [1]. Difficulty of the problem is the primary reason
subgraph identification is performed at compile time instead

DFG Subgraph

Identification

Code

Motion

Prepass

Sched

Subgraph

Expansion

Reg

Allocate

Subgraph

Compaction

Postpass

Sched

Expansion/

Function

Outlining

Assembly

File

Figure 5: Compiler flow diagram. New steps in the compilation process are shown in gray.

of runtime.
Heuristics for solving subgraph identification have been

the subject of much related work [1, 19, 20]. Because this is
a very complicated issue, the specific details of our algorithm
fall outside the scope of this paper, and we refer the curious
reader to our previous work [8], which gives a more thorough
treatment to the topic.

From a high level, subgraph identification is performed in
two steps. First, subgraphs are enumerated within a basic
block or superblock, using a branch and bound algorithm.
This algorithm generates the set of all subgraphs capable of
being executed on the target CCA. In the case that a block
is too large for full enumeration, the block is intelligently
split into smaller pieces, each of which is fully enumerated.

After enumeration, the second step of subgraph identi-
fication is selecting which of the enumerated subgraphs to
execute on the CCA. At issue is that each operation in the
dataflow graph may appear in multiple subgraphs, yet each
operation can only be mapped onto the CCA as a mem-
ber of one subgraph. Thus, it is necessary to either repli-
cate operations or a subset of subgraphs must be selected to
maximize performance subject to the constraint that each
operation appear in only one subgraph. Beyond that, it is
also necessary to determine if the target CCA is capable of
executing the subgraph more efficiently than the constituent
operations on the baseline processor. For example, if a sub-
graph consists of two dependent ADD operations, and the
latency of the target CCA is three cycles, then executing
that subgraph on the CCA is not worth the overhead. In
this work, subgraph selection is accomplished using a dy-
namic programming heuristic described in [8].

It is important note that subgraph identification is per-
formed before register allocation. Performing subgraph iden-
tification after register allocation introduces many false de-
pendencies within the dataflow graph, and hinders the size
of the subgraph that can be discovered. Indirect evidence
of these dependencies exists in the effectiveness of register
renaming logic in superscalar processors. Even though false
dependencies are a major problem, most related work per-
formed subgraph identification after register allocation, so
it could be done at link-time or run-time.

Code Motion: After subgraph identification, the se-
lected subgraphs are collapsed into a single instruction. In
order to effectively mark subgraphs as a special procedure
calls for the hardware, it is essential that the scheduler main-
tain the instruction order such that the subgraphs appear
contiguously in the code. Collapsing the subgraph into a
single node cleanly prevents operation reordering without
altering the scheduler internals.

When collapsing the subgraph, a problem arises if the sub-
graph crosses branch boundaries. Previous work has shown
that preventing subgraphs from crossing branch boundaries

AND

SEXT

AND

LD

LD

OR

AND

CMP

#3

#1

#-4 #3

Branch

LDLD

Branch

CCA

OP

CMP

#1

#-4 #3

AND

SEXT

AND

OR

Branch Target Block

(a) (b)

Figure 6: The process of downward code motion as
(a) the cross branch subgraph is identified and (b)
code is replicated in a new block

greatly constrains the size of the subgraphs [28]. Thus, a
decision must be made as to where to insert the CCA node
relative to the crossed branch. We consider the two ex-
treme possibilities: before the first branch and after the last
branch. Both choices have ramifications which must be cor-
rected in the code. The process of placing a CCA operation
after the last branch boundary is termed downward code mo-

tion and placing the CCA operation before the first branch
boundary is termed upward code motion. Without loss of
generality, each form of code motion is considered for a sin-
gle branch operation.

In downward code motion, the subgraph is assumed to
span the not taken direction of the branch. The problem
that arises is there could potentially be portions of the col-
lapsed subgraph which need to be executed before the code
at the branch target is executed. Consider the example in
Figure 6(a), which is a portion of the dataflow graph from
the Rijndael encryption benchmark. The subgraph identi-
fied for collapsing is encircled in gray. If the collapsed node
is executed after the branch boundary, the application will
execute correctly as long as the branch is not taken. How-
ever, if the branch is taken, then there are operations within
the collapsed subgraph that did not execute but should have.
These are the operations from Figure 6(a) that are within
the encircled gray subgraph and above the dotted branch
line.

After placing the collapsed subgraph below the branch
boundary, the portion above the branch must be replicated.
Figure 6(b) shows this process when the branch target is a

block of code with a multiple entries. A new block is created
with the code region from the collapsed node. This code re-
gion then unconditionally branches to the original branch
target. In the case where the target block has only one con-
trol flow entry point, this new block is simply collapsed into
the beginning of the branch target block. This process is es-
sentially the same as the bookkeeping code induced through
downward code motion used during trace scheduling [10].

Downward code motion easily extends to patterns which
cross multiple branch boundaries. Generally speaking, ex-
ecuting subgraphs that cross branch boundaries increases
the size of the computation subgraphs executed on the CCA,
which improves performance. The trade off is increased code
size from operation replication.

The alternative to downward code motion is to place the
collapsed subgraph above the branch boundary, or upward
code motion. In this case, the CCA could potentially exe-
cute code that should never have been executed, and there-
fore speculates that the branch will not be taken. If the
branch is taken, then code must be inserted to repair the
incorrectly executed instructions. Additionally, operations
that could potentially cause exceptions, such as a divide or
load operations, must not be speculatively executed to guar-
antee correct execution.

The CCA compiler system implemented in this work ex-
clusively uses the downward code motion process, placing
the CCA operation after the branch. This method always
produces functionally correct code regardless of excepting
instructions.

One potential area where downward code motion has dif-
ficulty is if a value produced by a CCA instruction is con-
sumed by the branch. For example, in Figure 6(a), if the live
out from the OR operation was used to determine whether
or not the branch is taken, then this subgraph cannot be
moved below the branch. In this case, the CCA compiler
rejects this potential subgraph as a target for collapsing.

Prepass/Postpass Scheduling: These two phases of
compilation are unchanged from the standard compiler. La-
ter in compilation, the subgraphs are turned into special
function calls using the BRL’ instructions, and thus, it is
important to keep all of the subgraph instructions contigu-
ous in the schedule. This is the main reason why subgraphs
are compressed into atomic instructions.

Subgraph Expansion: While scheduling considers the
subgraphs as atomic units, register allocation needs to con-
sider each instruction separately in order to properly assign
the registers to the internal values. Recall that processors
without CCA subsystems must still be able to execute the
code generated for processors with CCAs. This mandates
that the subgraph must be register allocated. Without ex-
panding the subgraphs, it is difficult for the register allocator
to correctly construct live ranges and assign registers.

Register Allocation: Expanding the subgraphs before
the register allocation allows this phase of compilation to be
relatively unchanged. Registers are simultaneously assigned
to all instructions, including the expanded subgraphs, just
as they would normally be. The only change has to do with
the addition of some caller save code for the subgraph. Re-
call that the subgraph will be implemented as a subroutine
call using the BRL’ instruction. The BRL’ will overwrite
the link register, if it is not saved to the stack. Thus, a
save and restore of the link register are added on either side
of the subgraph. No additional caller save code is neces-

sary, since we know exactly which registers will be used in
the subgraph and have already allocated appropriately. In
calling conventions where the link register is already callee
saved in the function prologue, this additional code is not
necessary.

An optional optimization to register allocation is to intel-
ligently prioritize the variables to be allocated. Since the
CCA control generator is capable of collapsing spill code of
transient values within subgraphs, there is no need to al-
locate a register for those values at the expense of other
variables. Giving these transient values very low priorities,
guarantees that register allocation will spill them if neces-
sary, and effectively increases the number of registers avail-
able to the machine.

Subgraph Compaction: After register allocation, the
full subgraph is again compressed to an atomic node in
preparation for postpass scheduling. This process is compli-
cated slightly by spill code that is introduced in relation to
the subgraph. If a transient value in the subgraph is spilled,
e.g. R3 in Figure 4, then this must be combined into the
subgraph. By placing this spill code in the subgraph, the
compiler guarantees that the results are not needed outside
of the subgraph and these loads/stores can be optimized
away by the CCA subsystem. If a value that is live-out of
the subgraph is spilled and also consumed in the subgraph,
then the store that spills the live out is replicated outside
of the subgraph. A copy of the store must remain in the
subgraph so that the control generator can determine which
node produced the spill value. Once the subgraphs are com-
pacted, postpass scheduling is performed.

Function Outlining: After postpass scheduling, the sub-
graphs are again expanded into their constituent nodes. Each
subgraph is moved to a separate portion of the code and a
BRL’ is inserted at the former location of the subgraph.
This process is referred to as function outlining.

The technique of function outlining (sometimes called pro-
cedure abstraction) has been used in previous work [16, 18]
for code size reduction. Since groups of instructions are of-
ten repeated at several different places within an application,
function outlining can combine these instances into one pro-
cedure. While the primary purpose of our function outlining
is to delineate subgraphs for the hardware, it also provides
us with code compression to help offset some of the code
replication from subgraphs that cross branch boundaries. It
should also be noted that the code size reduction could be
improved by making the register allocator more proactive in
assigning the same register values to isomorphic subgraphs.

With function outlining complete, an assembly file is out-
put that can be run on any processor which recognizes the
BRL’ instruction.

5. EXPERIMENTS
Our experimental system was built on top of the Trimaran

compiler infrastructure [26]. Trimaran was retargeted for
the ARM instruction set and augmented with a parame-
terized subgraph matcher to recognize dataflow subgraphs
that map onto the underlying CCA infrastructure. Once the
subgraphs are identified, code motion, scheduling, and the
rest of the steps described in Section 4 are performed. For
evaluation, SimpleScalar [4] ARM was modified to imple-
ment the CCA interface and configured to match the ARM-
926EJ [2]. The ARM-926EJ is a fairly simple, in-order, five-
stage pipelined processor with 16K, 64-way associative in-

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0

4 8 16 32 64 128 256 512 1K 2K 4K 8K 16K 32K 64K

BTAC Size (entries)

H
it

 R
a
te

SPECint2000

Mediabench

Encryption

Figure 7: BTAC hit rate with various entry sizes

struction and data caches.
For our experiments, we evaluated a set of embedded and

general-purpose benchmarks consisting of five encryption
related applications (Blowfish, MD5, RC4, Rijndael, and
SHA), and a subset of the MediaBench [17] and SPECint2000
applications. The range of our application set was limited
by the current capabilities of the ARM port of the Trimaran
compiler suite.

BTAC Size Study: Before evaluating the effectiveness
of the CCA, we investigated several possible configurations
for the BTAC, which holds the branch addresses and live-
in information for the CCA subsystem. Figure 7 shows the
BTAC hit rate given several different BTAC sizes. The three
lines indicate the average hit rates of the BTAC for the en-
cryption, MediaBench, and SPECint2000 applications. In-
terestingly, even with only 4 entries, the BTAC was able to
capture a fairly large number of the marked subgraphs. For
example, in the encryption domain, 45% of the subgraphs
were captured. In the remaining experiments, we used to
use a 512 entry, four-way associative BTAC, which achieved
a hit rate average of 98.5% across all benchmarks.

Performance Study: Figure 8 shows the relative speed-
ups that were achieved for code compiled using both basic
blocks and superblocks [14]. For each benchmark, three bars
are shown. The first bar is the speedup of basic block code
with a CCA relative to basic block code compiled without
CCA subgraphs. Both of the next two bars are superblock
code with a CCA relative to superblock code compiled with-
out CCA subgraphs. The first of the two superblock bars is
for code without code motion applied, which limits the sub-
graphs by not allowing them to cross branch boundaries.
The second superblock bar was generated by allowing the
compiler to perform code motion.

All of the results in Figure 8 used the general purpose
CCA designed in our previous work [7] and shown in Fig-
ure 3. Synthesis results showed that this CCA used 0.61
mm

2 of die area, and gave average speedups for the basic
block code of 1.60 for SPECint2000, 1.91 for MediaBench,
and 2.79 for encryption applications. The encryption ap-
plications showed the most improvement because they tend
to have the largest amount of computation between mem-
ory accesses, thereby creating larger subgraphs to map onto
the CCA. The results show that substantial performance
gains across a wide range of applications are realized with
a relatively inexpensive compute accelerator that is tightly

integrated into a processor. The CCA provides a more ef-
ficient hardware substrate to execute the subgraphs, which
translates into performance gain.

One trend to note in this graph is that in many cases,
using superblock code had a smaller relative speedup than
basic block code. Intuitively, superblock code should re-
sult in the identification of larger patterns, which should
directly translate into improved performance over the basic
block code. However, register pressure is an important per-
formance issue in the ARM processor. Forming superblocks
caused an increased size in register live ranges. This increase
in live range size dramatically affected the amount of reg-
ister spill code which the compiler was unable to optimize
using the CCA.

Applying the code motion techniques discussed in 4 to the
superblock code resulted in improved performance in most
cases since adding the code motion optimization allowed the
compiler to find patterns which cross branch boundaries. In
some cases, such as cjpeg and g721encode, the performance
improvement was as much as 50%, while a few other cases
suffered slight performance degradation. This performance
degradation is a result of code motion enlarging register
live ranges as operations are pushed down below branches
and new code is inserted in the target blocks. Again this
increases register pressure and may lead to increased spill
code.

Custom CCA Designs: Though a general purpose CCA
design provides impressive performance gains across a di-
verse set of applications, tailoring a CCA to either a single
application or a domain of applications can yield a more
area-efficient design. In order to explore the design of appli-
cation and domain specific CCAs, the compilation process
was augmented so that when subgraphs are identified, the
operations which comprise the subgraph and their profile
weights are passed to a scheduler. The scheduler then incre-
mentally builds a reservation table for each subgraph. Af-
ter all subgraphs in the application have been identified, the
scheduler then builds the application-specific CCA structure
as the union of all of the necessary reservations for each sub-
graph meeting a minimal profile weight requirement. Lastly,
domain specific CCA structures are built as the union of all
application specific CCAs synthesized for a particular do-
main. This approach is not intended to produce optimal
CCAs, but rather illustrate the flexibility of the proposed
architectural framework to support a wide variety of CCA
designs.

Figure 9 demonstrates the structure of a set of automati-
cally generated application and domain specific CCAs. The
top row of Figure 9 consists of one application specific CCA
designed for an application in each of the presented domains,
encryption, audio, and SPECint, respectively, while the bot-
tom row consists of the set of domain specific CCAs.

Table 1 presents an analysis of the design costs for each of
the CCAs shown in Figure 9. The table includes the num-
ber of control bits necessary to configure the CCA, the delay
through the CCA, and the area of the CCA. Each of these
designs was synthesized with Synopsys design tools using a
130nm Artisan library. In order to provide insight into the
cost of adding a CCA to an actual ARM core, we note that
the actual area of an ARM-926EJ is 5.0 mm

2. Also impor-
tant to note is that the design for the general purpose CCA
from [7] was hand-tuned to minimize the number of levels
including adders in the CCA thus significantly reducing de-

0.0

0.5

1.0

1.5

2.0

2.5

3.0

3.5

4.0

4.5

5.0

1
6
4
.g

z
ip

1
8
1
.m

c
f

1
9
7
.p

a
rs

e
r

2
5
6
.b

z
ip

2

3
0
0
.t

w
o
lf

c
jp

e
g

d
jp

e
g

e
p
ic

u
n
e
p
ic

g
7
2
1
e
n
c
o
d
e

g
7
2
1
d
e
c
o
d
e

g
s
m

e
n
c
o
d
e

g
s
m

d
e
c
o
d
e

p
e
g
w

it
e
n
c

p
e
g
w

it
d
e
c

ra
w

c
a
u
d
io

ra
w

d
a
u
d
io

B
lo

w
fi
s
h

M
D

5

R
C
4

R
ij
n
d
a
e
l

S
H

A

S
p
e
e
d
u
p

Basicblock w/CCA

Superblock CCA w/o Code Motion

Superblock CCA w/ Code Motion

6.49 5.25

SPECint2000 Mediabench Encryption

Figure 8: Speedup of basic block and superblock code when executing with a general purpose CCA

Description Design Control Delay Cell area

Application specific CCA for RC4 Figure 9(a) 73 bits 4.10 ns 0.25 mm
2

Application specific CCA for gsmdecode Figure 9(b) 84 bits 6.04 ns 0.33 mm
2

Application specific CCA for 181.mcf Figure 9(c) 55 bits 5.68 ns 0.26 mm
2

Domain specific CCA for encryption Figure 9(d) 181 bits 5.69 ns 0.45 mm
2

Domain specific CCA for audio Figure 9(e) 140 bits 5.86 ns 0.46 mm
2

Domain specific CCA for SPECint Figure 9(f) 171 bits 6.05 ns 0.56 mm
2

General purpose CCA from [7] Figure 3 172 bits 3.19 ns 0.61 mm
2

Table 1: Synthesis results for various CCA designs

lay through the CCA. A more intelligent automated design
process for our application and domain specific CCAs would
likely provide improvements in terms of both area and delay.

Figure 10 demonstrates the performance improvements
offered by the designs shown in Figure 9. In this graph,
the first bar indicates the performance of the general pur-
pose CCA relative to the baseline processor with no CCA.
The second bar demonstrates the speedup achieved by using
the domain specific CCA designed for the domain that the
application belongs to, assuming a 1-cycle delay through
the CCA. The third bar demonstrates the performance of
the same CCA as the second, but assumes a 2-cycle de-
lay through the CCA. The fourth bar shows the speedup
of using the application specific design shown in Figure 9
for each application in the same domain. This means that
for applications within the SPECint domain, all application
specific speedup is calculated using the CCA designed for
181.mcf, for the audio domain using the CCA designed for
gsmdecode, and for the encryption domain using the CCA
designed for rc4. The decision to use the application spe-
cific design for a variety of different benchmarks was to show
the applicability of these designs across a set similar bench-
marks. The last bar utilizes the same CCA structure as the
fourth, but assumes a 2-cycle delay through the CCA.

From Figure 10, it is clear that a domain specific CCA de-
sign can closely match the performance of the general pur-
pose design at lower cost, provided that it can fit into the
1-cycle delay constraint. Further, the application specific
CCA designs tend to closely track the performance of their
respective domain specific designs while still proving benefi-
cial to a variety of other applications within their domain at
nearly half the area overhead. It is important to note that
the domain specific designs tend to provide marginal per-
formance gains over their application specific counter parts
due to their ability to catch the few subgraphs that had been
pruned from the application specific CCA design.

6. CONCLUSIONS
In this work, we present the design and implementation of

a flexible architectural framework for supporting transparent

instruction set customization using configurable compute ac-

celerators. The use of this framework reduces both system
design and verification costs. A general purpose core im-
plementing the pre-defined CCA interface need only be de-
signed and verified once. The core may then be augmented
with several different styles of compute accelerators offering
a wide range of systems with performance characteristics
tailored to an application or domain of applications. In ad-

Figure 9: Application specific and domain specific CCA design results

dition to the architecture framework, we also demonstrate
the compilation process used to target an application toward
a particular CCA architecture.

Synthesis results demonstrate the feasibility of the pro-
posed architecture framework in terms of meeting the timing
and area constraints of common embedded processors. Fur-
ther, experimental results demonstrate average performance
gains of 2.21x for domain specific CCA designs, with mod-
est cost overhead beyond the original processor design. The
range of applicability of these designs may be restricted or
expanded in order to both meet area constraints and satisfy
performance goals for a specified range of applications. The
proposed architectural framework provides system design-
ers with a low-cost solution for designing a wide variety of
high-performance systems by augmenting a single core with
multiple implementations of the CCA subsystem.

7. ACKNOWLEDGMENTS
Assistance in synthesizing the CCA was provided by Hyun-

chul Park. Additional thanks go to Sami Yehia and the
anonymous referees who provided excellent feedback. This
research was supported in part by ARM Limited, the Na-
tional Science Foundation grants CCR-0325898 and CCF-
0347411, and equipment donated by Hewlett-Packard and
Intel Corporation.

8. REFERENCES

[1] A. Aho, M. Ganapathi, and S. Tijang. Code

generation using tree pattern matching and dynamic
programming. ACM Transactions on Programming
Languages and Systems, 11(4):491–516, Oct. 1989.

[2] ARM Ltd. ARM926EJ-S Technical Reference Manual,
Jan. 2004.
http://www.arm.com/pdfs/DDI0198D 926 TRM.pdf.

[3] K. Atasu, L. Pozzi, and P. Ienne. Automatic
application-specific instruction-set extensions under
microarchitectural constraints. In Proc. of the 40th
Design Automation Conference, pages 256–261, June
2003.

[4] T. Austin, E. Larson, and D. Ernst. Simplescalar: An
infrastructure for computer system modeling. IEEE
Transactions on Computers, 35(2):59–67, Feb. 2002.

[5] A. Bracy, P. Prahlad, and A. Roth. Dataflow
mini-graphs: Amplifying superscalar capacity and
bandwidth. In Proc. of the 37th Annual International
Symposium on Microarchitecture, pages 18–29, Dec.
2004.

[6] P. Brisk et al. Instruction generation and regularity
extraction for reconfigurable processors. In Proc. of
the 2002 International Conference on on Compilers,
Architecture, and Synthesis for Embedded Systems,
pages 262–269, 2002.

[7] N. Clark et al. Application-specific processing on a
general-purpose core via transparent instruction set
customization. In Proc. of the 37th Annual
International Symposium on Microarchitecture, pages
30–40, Dec. 2004.

[8] N. Clark, H. Zhong, and S. Mahlke. Processor
acceleration through automated instruction set
customization. In Proc. of the 36th Annual
International Symposium on Microarchitecture, pages

0.0

0.5

1.0

1.5

2.0

2.5

3.0

3.5

4.0

4.5

5.0

1
6
4
.g

z
ip

1
8
1
.m

c
f

1
9
7
.p

a
rs

e
r

2
5
6
.b

z
ip

2

3
0
0
.t

w
o
lf

g
7
2
1
e
n
c
o
d
e

g
7
2
1
d
e
c
o
d
e

g
s
m

e
n
c
o
d
e

g
s
m

d
e
c
o
d
e

ra
w

c
a
u
d
io

ra
w

d
a
u
d
io

B
lo

w
fi
s
h

M
D

5

R
C
4

R
ij
n
d
a
e
l

S
H

A

S
p

e
e
d

u
p

General Purpose CCA

Domain Specific CCA (1-cycle)

Domain Specific CCA (2-cycle)

Application Specific CCA (1-cycle)

Application Specific CCA (2-cycle)

SPECint Domain Audio Domain Encryption Domain
6.49 6.75

Figure 10: Application specific and domain specific speedup. For the SPECint domain, application specific
speedups are generated using the CCA designed for 181.mcf, for the audio domain using the design for
gsmdecode, and for encrypt domain using the design for RC4.

129–140, Dec. 2003.
[9] M. L. Corliss, E. C. Lewis, and A. Roth. DISE: A

programmable macro engine for customizing
applications. In Proc. of the 30th Annual International
Symposium on Computer Architecture, pages 362–373,
2003.

[10] J. Fisher. Trace scheduling: a technique for global
microcode compaction. IEEE Transactions on
Computers, 30(9):478–490, July 1981.

[11] D. Friendly, S. Patel, and Y. Patt. Putting the fill unit
to work: Dynamic optimizations for trace cache
microprocessors. In Proc. of the 25th Annual
International Symposium on Computer Architecture,
pages 173–181, June 1998.

[12] D. Goodwin and D. Petkov. Automatic generation of
application specific processors. In Proc. of the 2003
International Conference on on Compilers,
Architecture, and Synthesis for Embedded Systems,
pages 137–147, 2003.

[13] I. Huang. Co-Synthesis of Instruction Sets and
Microarchitectures. PhD thesis, University of Southern
California, 1994.

[14] W. Hwu et al. The Superblock: An effective technique
for VLIW and superscalar compilation. Journal of
Supercomputing, 7(1):229–248, May 1993.

[15] Q. Jacobson and J. E. Smith. Instruction
pre-processing in trace processors. In Proc. of the 5th
International Symposium on on High-Performance
Computer Architecture, pages 125–133, 1999.

[16] K. Kunchithapadam and J. R. Larus. Using
lightweight procedures to improve instruction cache
performance. Technical Report CS-TR-1999-1390,
Jan. 1999.

[17] C. Lee, M. Potkonjak, and W. Mangione-Smith.
Mediabench: A tool for evaluating and synthesizing
multimedia and communications systems. In Proc. of
the 30th Annual International Symposium on
Microarchitecture, pages 330–335, 1997.

[18] S. Liao. Code Generation and Optimization for
Embedded Digital Signal Processors. PhD thesis,

Massachussetts Institute of Technology, 1996.
[19] S. Liao et al. Instruction selection using binate

covering for code size optimization. In Proc. of the
1995 International Conference on on Computer Aided
Design, pages 393–399, 1995.

[20] P. Marwedel and G. Goossens. Code Generation for
Embedded Processors. Kluwer Academic Publishers,
Boston, 1995.

[21] S. J. Patel and S. S. Lumetta. rePLay: A Hardware
Framework for Dynamic Optimization. IEEE Trans.
Comput., 50(6):590–608, 2001.

[22] J. Phillips and S. Vassiliadis. High-performance 3-1
interlock collapsing alu’s. IEEE Trans. Comput.,
43(3):257–268, 1994.

[23] P. Sassone and D. S. Wills. Dynamic strands:
Collapsing speculative dependence chains for reducing
pipeline communication. In Proc. of the 37th Annual
International Symposium on Microarchitecture, pages
7–17, Dec. 2004.

[24] Y. Sazeides, S. Vassiliadis, and J. E. Smith. The
performance potential of data dependence speculation
& collapsing. In Proc. of the 29th Annual International
Symposium on Microarchitecture, pages 238–247, 1996.

[25] F. Sun et al. Synthesis of custom processors based on
extensible platforms. In Proc. of the 2002
International Conference on on Computer Aided
Design, pages 641–648, Nov. 2002.

[26] Trimaran. An infrastructure for research in ILP, 2000.
http://www.trimaran.org.

[27] S. Yehia and O. Temam. From sequences of dependent
instructions to functions: An approach for improving
performance without ilp or speculation. In Proc. of the
31th Annual International Symposium on Computer
Architecture, pages 238–249, June 2004.

[28] P. Yu and T. Mitra. Characterizing embedded
applications for instruction-set extensible processors.
In Proc. of the 41st Design Automation Conference,
pages 723–728, June 2004.

