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Abstract

Microprocessor designers commonly utilize SIMD accel-
erators and their associated instruction set extensions topro-
vide substantial performance gains at a relatively low cost
for media applications. One of the most difficult problems
with using SIMD accelerators is forward migration to newer
generations. With larger hardware budgets and more de-
mands for performance, SIMD accelerators evolve with both
larger data widths and increased functionality with each new
generation. However, this causes difficult problems in terms
of binary compatibility, software migration costs, and ex-
pensive redesign of the instruction set architecture. In this
work, we proposeLiquid SIMD to decouple the instruction
set architecture from the SIMD accelerator. SIMD instruc-
tions are expressed using a processor’s baseline scalar in-
struction set, and light-weight dynamic translation maps the
representation onto a broad family of SIMD accelerators.
Liquid SIMD effectively bypasses the problems inherent to
instruction set modification and binary compatibility across
accelerator generations. We provide a detailed description of
changes to a compilation framework and processor pipeline
needed to support this abstraction. Additionally, we show
that the hardware overhead of dynamic optimization is mod-
est, hardware changes do not affect cycle time of the pro-
cessor, and the performance impact of abstracting the SIMD
accelerator is negligible. We conclude that using dynamic
techniques to map instructions onto SIMD accelerators is an
effective way to improve computation efficiency, without the
overhead associated with modifying the instruction set.

1 Introduction
Single-instruction multiple-data (SIMD) accelerators are

commonly used in microprocessors to accelerate the execu-
tion of media applications. These accelerators perform the
same computation on multiple data items using a single in-
struction. To utilize these accelerators, the baseline instruc-
tion set of a processor is extended with a set of SIMD instruc-
tions to invoke the hardware. Intel’s MMX and SSE exten-
sions are examples of two generations of such instructions
for the x86 instruction set architecture (ISA). SIMD accel-
erators are popular across desktop and embedded processor
families, providing large performance gains at low cost and
energy overheads.

While SIMD accelerators are a proven mechanism to im-
prove performance, the forward migration path from gener-
ation to generation is a difficult problem. SIMD hardware
evolves in terms of width and functionality with each gen-
eration. For example, the Intel MMX instructions operated
on 64-bit vectors and this was expanded to 128-bit for SSE2.

The opcode repertoire is also commonly enhanced from gen-
eration to generation to account for new functionality present
in the latest applications. For example, the number of op-
codes in the ARM SIMD instruction set went from 60 to
more than 120 in the change from Version 6 to 7 of the ISA.

SIMD evolution in desktop processors has been relatively
stagnant recently, with vector lengths standardizing at 4 to
8 elements. However, this is not the case in embedded sys-
tems. For example, the ARM Neon SIMD instructions were
extended from 4 to 16 8-bit elements in 2004 [5]. Other re-
cent research [22] has proposed vector lengths of 32 elements
are the most suitable size for signal processing accelerators.
Undoubtedly, SIMD architectures are still evolving in many
domains.

Migration to new generations of SIMD accelerators is
very difficult, though. Once an application is targeted for
one set of SIMD instructions, it must be rewritten for the
new set. Hand-coded assembly is commonly used to ex-
ploit SIMD accelerators; thus, rewriting applications is time
consuming, error prone, and tedious. Programming with a
library of intrinsics can mitigate the problem to some de-
gree, but software migration still requires substantial effort,
as code is usually written assuming a fixed SIMD width and
functionality.

To effectively deal with multiple generations of SIMD ac-
celerators and overcome the software migration problems,
this paper investigates the use of delayed binding with SIMD
accelerators. Delayed binding is a technique used in many
areas of computer science to improve the flexibility and the
efficiency of systems. For example, dynamic linkers delay
the binding of object code to improve portability and space
efficiency of applications; dynamic compilers take advantage
of late binding to perform optimizations that would other-
wise be difficult or impossible without exact knowledge of
a program’s runtime environment [17]. Examples of delayed
binding in processors include the use of trace caches and var-
ious techniques for virtualization [26]. Just as in software
systems, these techniques aim to improve flexibility and effi-
ciency of programs, but often require non-trivial amounts of
hardware and complexity to deploy.

In this work, delayed binding of SIMD accelerators is ac-
complished through compiler support and a translation sys-
tem, collectively referred to asLiquid SIMD. The objective
is to separate the SIMD accelerator implementation from
the ISA, providing an abstraction to overcome ISA migra-
tion problems. Compiler support in Liquid SIMD trans-
lates SIMD instructions into a virtualized representationus-
ing the processor’s baseline instruction set. The compiler
also isolates portions of the application’s dataflow graph to
facilitate translation. The translator dynamically identifies



these isolated dataflow subgraphs, and converts them into
architecture-specific SIMD instructions.

Liquid SIMD offers a number of important advantages for
families of processor implementations. First, SIMD acceler-
ators can be deployed without having to alter the instruction
set and introduce ISA compatibility problems. These prob-
lems are prohibitively expensive for many practical purposes.
Second, delayed binding allows an application to be devel-
oped for one accelerator, but be utilized by completely dif-
ferent accelerators (e.g., an older or newer generation SIMD
accelerator). This eases non-recurring engineering costsin
evolving SIMD accelerators or enables companies to dif-
ferentiate processors based on acceleration capabilitiespro-
vided. Finally, SIMDized code in a Liquid SIMD system can
be run on processors with no SIMD accelerator or translator,
simply by using native scalar instructions.

The contributions of this paper are fourfold:

• It describes an compiler/translation framework to real-
ize Liquid SIMD, which decouples the SIMD hardware
implementation from the ISA.

• It develops a simple, ISA-independent mechanism to
express width-independent SIMDization opportunities
to a translator.

• It presents the design and implementation of a light-
weight dynamic translator capable of generating SIMD
code at runtime.

• It evaluates the effectiveness of Liquid SIMD in terms
of exploiting varying SIMD accelerators, the runtime
overhead of SIMD translation, and the costs incurred
from dynamic translation.

2 Overview of the Approach

SIMD accelerators have become ubiquitous in modern
general purpose processors. MMX, SSE, 3DNow!, and Al-
tiVec are all examples of instruction set extensions that are
tightly coupled with specialized processing units to exploit
data parallelism. A SIMD accelerator is typically imple-
mented as a hardware coprocessor composed of a set of func-
tional units and an independent set of registers connected to
the processor through memory. SIMD accelerator architec-
tures vary based on the width of the vector data along with
the number and type of available functional units. This al-
lows for diversity in two dimensions: the number of data
elements that may be operated on simultaneously and the set
of available operations.

The purpose of this work is to decouple the instruction set
from the SIMD accelerator hardware by expressing SIMD
optimization opportunities using the processor’s baseline in-
struction set. Expressing SIMD instructions using the base-
line instruction set provides an abstract software interface
for the SIMD accelerators, which can be utilized through
a lightweight dynamic translator. This lessens the devel-
opment costs of the SIMD accelerators and provides binary
compatibility across hardware and software generations.

There are two phases necessary in decoupling SIMD ac-
celerators from the processor’s instruction set. First, anof-
fline phase takes SIMD instructions and maps them to an
equivalent representation. Second, a dynamic translation
phase turns the scalar representation back into architecture-
specific SIMD equivalents.
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Figure 1. Pipeline organization for Liquid SIMD. Gray
boxes represent additions to a basic pipeline.

Converting SIMD instructions into an equivalent scalar
representation requires a set of rules that describe the con-
version process, analogous to the syntax of a programming
language. The conversion can either be done at compile time
or by using a post-compilation cross compiler. It is important
to note that the SIMD-to-scalar conversion is completely or-
thogonal to automated SIMDization (i.e., conversion can be
done in conjunction with compiler-automated SIMD code or
with hand coded assembly). Further, no information is lost
during this conversion. The resulting scalar code is func-
tionally equivalent to the input SIMD code, and a dynamic
translator is able to recover the SIMD version provided it un-
derstands the conversion rules used.

Dynamic translation converts the virtualized SIMD code
(i.e., the scalar representation) into processor-specificSIMD
instructions. This can be accomplished using binary transla-
tion, just-in-time compilation (JITs), or hardware. Offline bi-
nary translation is undesirable for three reasons. First, there
is a lack of transparency; user or OS intervention is needed
to translate the binary. Second, it requires multiple copies of
the binary to be kept. Lastly, there is an accountability issue
when applications break. Is the application developer or the
translator at fault?

JITs or virtual machines are more viable options for dy-
namic translation. However, in this work we present the de-
sign of a dynamic translator using hardware. The main ben-
efit of hardware-based translation over JITs is that it is more
efficient than software approaches. This paper shows that the
translation hardware is off the processor’s critical path and
takes less than 0.2mm2 of die area. Additionally, hardware
translation does not require a separate translation process to
share the CPU, which may be unacceptable in embedded sys-
tems. Nothing about our virtualization technique precludes
software-based translation, though.

The remainder of this paper describes a compiler tech-
nique for generating code for an abstracted SIMD interface,
coupled with a post-retirement hardware method for dynamic
translation. Our high level processor architecture is pre-
sented in Figure 1. A basic pipeline is augmented with a
SIMD accelerator, post-retirement dynamic translator, and
a microcode cache that stores recently translated SIMD in-
structions. This system provides high-performance for data
parallel operations without requiring instruction set modifi-
cations or sacrificing binary compatibility.

3 Liquid SIMD Compilation

The purpose of the compiler in the Liquid SIMD frame-
work is to translate SIMD instructions into an equivalent
scalar representation. That is, the compiler re-expresses



SIMD instructions using an equivalent set of instructions
from the processor’s scalar ISA. Since the scalar ISA is
Turing-complete, any SIMD instruction can be represented
using the scalar ISA. The challenge is finding a representa-
tion that is easy to convert back to SIMD and is also relatively
efficient in its scalar form.

It is important note that this paper is not proposing
any techniques that rely on the compiler to automatically
SIMDize a program. While the approach presented could
be used in conjunction with automatic SIMDization tech-
niques [6, 13, 20, 21, 31], this is not the main focus of this
work. Instead, we focus on how to design a scalar represen-
tation of SIMD code, which executes correctly on a baseline
processor, and is amenable to runtime translation.

3.1 Hardware and Software Assumptions

Before describing the actual strategy for abstraction, it
is important to explicitly state some assumptions about the
hardware targeted and applications to be run. First, it is as-
sumed that the targeted SIMD accelerators operate as a sep-
arate pipeline. That is, the SIMD accelerator shares an in-
struction stream and front end with a baseline pipeline, but
has separate register files and execution units.

Second, it is assumed that the SIMD accelerator uses
a memory-to-memory interface. That is, when executing
SIMD instructions, the basic sequence of events is a loop that
loads vectors, operates on them, and finally stores the vectors
back to memory. In this model, there is no register-to-register
communication between the scalar register file and the vec-
tor register file, and intermediate data not stored to memory
is not accessed by successive loops. The assumption that
there is little register-to-register communication is validated
by production SIMD accelerators, which usually have either
very slow or no direct communication between the two reg-
ister files. The lack of intermediate data communication be-
tween loops is a side-effect of the types of loops being opti-
mized; typically the ideal size of a vector, from the software
perspective, is much too large to fit into the hardware vector
size. For example, one of the hot loops in 171.swim oper-
ates on vectors of size 514. If hardware supported vectors
that long, then computed results could be passed between
successive loops in a register. Since the results do not fit in
hardware, the results have to be passed through memory.

A last assumption is that the application must be compiled
to some maximum vectorizable length. That is, even though
the binary will be dynamically adjusted based on the vec-
tor width supported in the hardware, there is some maximum
vector width supported by the binary. The reason for this
assumption is due to memory alignment. Most SIMD sys-
tems restrict memory accesses to be aligned based on their
vector length. To enforce such alignment restrictions, the
compiler aligns data based on an assumed maximum width.
The binary can be dynamically adjusted to target any width
less than the maximum. The trade off here is code size may
unnecessarily increase if an accelerator supports narrower
widths than the assumed vector size.

Implicit in this alignment restriction is the assumption that
targeted accelerators only support execution widths that are
a power of 2 (i.e., 2, 4, 8, ...). That is, a binary compiled
for maximum vector width of 8 could not (easily) be dynam-
ically translated to run on a 3-wide SIMD accelerator, be-
cause data would be aligned at 8 element boundaries in the
binary. Assuming SIMD accelerators are power-of-2 widths

is certainly valid for the majority of SIMD accelerators in use
today.

3.2 Scalar Representation of SIMD Operations
With these assumptions in mind, we now discuss how to

convert SIMD instructions into an equivalent scalar repre-
sentation. The conversion rules are shown in Table 1. This
section will walk through the thinking behind these rules, and
Section 3.4 will demonstrate the usage of the rules in a de-
tailed example.

The most natural way to express SIMD operations using
scalar instructions is by creating a scalar loop that processes
one element of the SIMD vector per iteration. Since SIMD
accelerators have a memory-memory interface, vector loads
can be converted to scalar loads using the loop’s induction
variable to select a vector element. The size of a vector’s el-
ements is derived from the type of scalar load used to read
the vector (e.g., load-byte means the vector is composed of
8-bit elements). Similar to memory accesses, data parallel
SIMD operations can be represented with one or more scalar
instructions that perform the same computation on one ele-
ment of the vector. Essentially, any data parallel SIMD in-
struction can be converted to scalar code by operating on one
element of the SIMD vector at a time.

If any SIMD operation does not have a scalar equivalent
(e.g., many SIMD ISAs but few scalar ISAs support sat-
urating arithmetic), then the scalar equivalent can be con-
structed using an idiom consisting of multiple scalar instruc-
tions. For example, 8-bit saturating addition could be ex-
pressed in the ARM scalar ISA asr1 = add r2, r3;
cmp r1, 0xFF; movgt r1, 0xFF, where the move
instruction is predicated on the comparison. Vector masks,
or element-specific predication, is another common example
of a SIMD instruction that would likely be constructed us-
ing idioms. A dynamic translator can recognize that these
sequences of scalar instructions represent one SIMD instruc-
tion, and no efficiency is lost in the dynamically translated
code. Again, the scalar instruction set is Turing-complete, so
any data parallel SIMD instructioncanbe represented using
scalar instructions. The only downside is potentially lessef-
ficient scalar code if no dynamic translator is present in the
system.

More complicated SIMD instructions, which operate on
all vector elements to produce one result (e.g., max, min,
and sum), can be represented using a loop-carried register in
the scalar loop. For example, category (4) in Table 1 shows
how a vector min can be represented. If the result register is
used both as a source and destination operand, and no other
operation definesr1 in the loop, thenr1 will accumulate
the minimum of each vector element loaded intor2. The
dynamic translator can easily keep track of which registers
hold loop-carried state, such asr1 in this example, mean-
ing vector operations that generate a scalar value fit into the
Liquid SIMD system.

One difficulty in using a scalar loop representation of
SIMD instructions is handling operations that change the or-
der of vector elements. Permutation instructions illustrate
this problem well. Suppose a loop is constructed and begins
operating on the first element of two SIMD vectors. After
several data parallel instructions, a permutation reorders the
vector elements. This means that the scalar data that was be-
ing operated on in one loop iteration is needed in a different
iteration. Likewise, the permutation causes scalar data from
future (or past) iterations to be needed in the current iteration.



Analogous to category (7), but writes elements to 

memory in a different order, instead of reading them.

r3 = ld [bfly + ind]

r4 = add ind, r3

[addr + r4] = str r1

v1 = vbfly v2

[addr] = vstr v1

(8) Permutations; reorders 

vector elements

Compiler inserts a read-only array, bfly, into the 

code, which stores how elements are reordered. This 

is used in conjunction with the induction variable to 

bring in vector elements in a different order. Values 
stored in bfly uniquely identify a permutation.

r3 = ld [bfly + ind]

r4 = add ind, r3

r1 = ld [addr + r4]

v2 = vld [addr]

v1 = vbfly v2

(7) Permutations; reorders 

vector elements

Similar to category (5), r3 = add r1, ind

[addr + r3] = str r2

[addr + r1] = vstr v2(6) Base-plus-displacement 

memory accesses

Induction variable is used to select one vector 

element to operate on each iteration. Loads are used 

to identify width of vector elements (e.g., byte or 

halfword).

r1 = ldb [addr + ind]v1 = vldb [addr](5) Memory accesses

Loop-carried dependence (r1) is used to represent 

that each element of the vector is used to calculate 

one result.

r1 = min r1, r2r1 = vmin v2(4) Reductions; multiple 

vector elements used to 

compute one result

Compiler inserts a read-only array, cnst, into the 

code, which stores the unsupported constant. The 

array is indexed using the loop’s induction variable to 

retrieve the appropriate portions during each scalar 

iteration.

r3 = ld [cnst + ind]

r1 = or r2, r3

v1 = vor v2, 0xFF00FF00(3) Data parallel; operates 

on vector and non-scalar 

supported constant

Analogous to category (1)r1 = and r1, 0xFFv1 = vand v2, 0xFF(2) Data parallel; operates 

on a vector and a scalar 

supported constant

Used for any operation which has an equivalent 

scalar operation. SIMD operations without a scalar 

equivalent (e.g., saturating arithmetic) must construct 

an idiom using multiple instructions.

r1 = add r2, r3v1 = vadd v2, v3(1) Data parallel; operates 

on two vectors

CommentsScalar EquivalentExample SIMD InstructionSIMD Category
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Table 1. Rules for translating SIMD instructions into scala r equivalents. Operands beginning with r are scalars, operands
beginning with v are vectors, and ind is the loop’s induction variable.

To overcome this problem, we propose limiting permu-
tation instructions to only occur at memory boundaries of
scalar loops. This allows the reordering to occur by using
loads or stores with a combination of the induction variable
and some statically defined offset. Essentially, this loadsthe
correct element for each iteration.

The last two rows of Table 1 briefly illustrate how reorder-
ing at memory boundaries works. In category (7), a but-
terfly instruction reorders the elements ofv2. In order for
the scalar loop to operate on the correct element each itera-
tion, the induction variable needs to be modified by an offset,
based on what type of permutation is being performed. The
compiler creates a read-only array,bfly, that holds these
offsets. Once the offset is added to the induction variable,
the scalar load will bring in the appropriate vector element.
A dynamic translator uses the offsets to identify what type of
permutation instruction is being executed in the scalar equiv-
alent. Offsets are used, as opposed to absolute numbers, to
ensure vector width independence of the scalar representa-
tion.

The downside of using offsets to represent permutations is
that element reordering operations must occur at scalar loop
boundaries using a memory-memory interface. This makes
the code inherently less efficient than standard SIMD instruc-
tion sets, which can perform this operation in registers.

Using only the rules in Table 1 and simple idiom exten-
sions, we were able to express the vast majority of the ARM
Neon SIMD instruction [5] set using the scalar ARM ISA.
Neon is a fairly generic SIMD instruction set, meaning the

techniques developed here are certainly applicable to a wide
variety of other architectures.

3.3 Limitations of the Scalar Representation

Although using this scalar representation has many bene-
fits, there are some drawbacks that must be taken into con-
sideration. The most obvious is that virtualized SIMD code
will not be as efficient on scalar processors as code compiled
directly for a scalar processor. This is primarily because of
the memory-to-memory interface, the lack of loop unrolling,
and the use of idioms. Performance overhead is likely to
be minimal, though, since vectors in the working set will be
cache hits, the loop branch is easy to predict, and the idioms
used are likely to be the most efficient scalar implementation
of a given computation. Another mitigating factor is that the
scalar code can be scheduled at the idiom granularity to make
the untranslated code as efficient as possible. As long as the
idioms are intact, the dynamic translator will be able to re-
cover the SIMD code.

Another drawback of the proposed virtualization tech-
nique is increased register pressure. Register pressure in-
creases because the scalar registers are being used to rep-
resent both scalars and vectors in the virtual format. Addi-
tionally, temporary registers are needed for some of the pro-
posed idioms. This could potentially cause spill code which
degrades performance of both the scalar representation and
translated SIMD code. Empirically speaking, register pres-
sure was not a problem in the benchmarks evaluated in this
paper.



for(i = 0; i < 128; i += 8) {

for(j = i, n = 0; n < 4; j++, n++) {

k = j + 4;

tr = ar[i] * RealOut[k] -

ai[i] * ImagOut[k];

RealOut[k] = RealOut[j] - tr;

RealOut[j] += tr;

}

}

Figure 2. Example FFT loop.

A last limitation is that there are two classes of instruc-
tions, from ARM’s Neon ISA, which are not handled by the
proposed scalar representation. One such instruction isv1
= VTBL v2, v3. In theVTBL instruction, each element
of v2 contains as an index for an element ofv3 to write into
v1. For example, if the first element ofv2 was 3, then the
third element ofv3 would be written into the first element
of v1. This is difficult to represent in the proposed scalar
representation, because the induction variable offset, which
defines what vector elements are needed in the current loop
iteration, is not known until runtime. All other permutation
instructions in Neon define this offset statically, allowing the
compiler to insert a read-only offset array in the code.

The second class of unsupported instructions is inter-
leaved memory accesses. Interleaving provides an efficient
way to split one memory access across multiple destination
registers, or to write one register value into strided memory
locations. This is primarily used to aggregate/disseminate
structure fields, which are not consecutive in memory. There
is no scalar equivalent for interleaved memory accesses, and
equivalent idioms are quite complex.

The performance of certain applications will undoubt-
edly suffer from not supporting these two classes. None of
the benchmarks evaluated utilized these instructions, though,
meaning the most important SIMD instructionsare sup-
ported by the proposed scalar representation.

3.4 SIMD to Scalar Example

To illustrate the process of translating from SIMD to the
scalar representation, this section walks through an example
from the Fast Fourier Transformation (FFT) kernel, shown
in Figure 2. There is a nested loop here, where each itera-
tion of the inner loop operates on eight elements of floating
point data stored as arrays in memory. This is graphically
illustrated in Figure 3. The compiler (or engineer) identi-
fies that these operations are suitable for SIMD optimization
and generates vector load instructions for each eight element
data segment. The compiler then schedules vector operations
for the loaded data so that the entire inner loop may be ex-
ecuted as a small sequence of SIMD operations, shown in
Figure 4(A).

Figure 4(B) presents the scalar mapping of the SIMD code
from Figures 3 and 4(A). Here, the vector operations of the
SIMD loop are converted into a series of sequential oper-
ations, and the increment amount of the induction variable
is decreased from eight to one, essentially converting each
eight element operation into a single scalar operation. The
vector load and butterfly instructions in lines2-5 of the
SIMD code are converted into a set of address calculations
and load instructions in lines2-5 of the scalar code. As pre-
viously mentioned, SIMD permutation operations are con-

trRealOut

- +

& &

|

RealOut

ar RealOut ai ImagOut

** **

-

Figure 3. Vector representation of Figure 2.

verted into scalar operations by generating a constant array
of offset values added to the loop’s induction variable. These
offsets are stored in the static data segment of the program at
the labelbfly. The value stored at the addressbfly plus
the induction variable value is the offset of the element of the
data array to be loaded in the current iteration.

Most of the vector operations from the SIMD code in lines
6-18 are data parallel, and simply map to their scalar equiv-
alent operation (e.g., thevmult on SIMD line 8 is converted
to amult on scalar line 8). However, there are a few con-
siderations that need to be made for non-parallel operations.
Note that the operation on line17 of the SIMD code requires
that all of the values invf3 be computed before theor oper-
ation, because thevbfly operation in line15 exchanges the
position of the first and last vector element. In order to prop-
erly transform this code segment into a set of scalar instruc-
tions, the loop body for the scalar code must be terminated
early, and the operands to theor operation must be calcu-
lated and stored in a temporary location at the end of each
loop iteration, as shown in lines18-19 of the scalar code.
Then, a second loop is created (lines24-30) that performs
the serialor operation across each element of data. By sep-
arating scalar equivalents in different loops, the compiler es-
sentially performs a loop fission optimization to ensure that
certain SIMD operations are fully completed before others in
the next loop are started.

3.5 Function Outlining

Once the SIMD instructions are translated into scalar
code, the compiler needs some way to identify to the trans-
lator that these portions of code are translatable. This is ac-
complished by outlining the code segment as a function, sim-
ilar to the technique proposed in [10]. The scalar equivalent
code is surrounded by a branch-and-link and a return instruc-
tion so that the dynamic translator is notified that a particular
region of code has potential for SIMD optimization.

In the proposed hardware-based translation scheme, when
a scalar region is translated into SIMD instructions, the
SIMD code is stored in the microcode cache (see Figure 1),
and the branch-and-link is marked in a table in the proces-



A. B.

mov    r0, #0 # Initialize i

Top_of_loop_1:

ld    r1, [bfly + r0]       # Load offset for butterfly

add   r1, r0, r1

ld    f0, [RealOut + r1]    # Load the shuffled vectors

ld    f1, [ImagOut + r1]

ld    f2, [ar + r0]         # Load ar and ai

ld    f3, [ai + r0]

mult  f2, f2, f0            # Compute tr

mult  f3, f3, f1

sub   f6, f2, f3

ld    f5, [RealOut + r0]

sub   f3, f5, f6            # Add/Sub RealOut and tr

add   f4, f5, f6

ld    r2, [mask + r0]       # Load the mask values

and   f3, f3, r2            # Mask off the useless data

and   f4, f4, r2

ld    r3, [bfly + r0]

add   r3, r0, r3

str   [tmp0 + r3], f3       # Store butterflied data

str   [tmp1 + r0], f4       # Need to store other live data

add   r0, r0, #1 # Increment i

cmp   r0, #128

blt   Top_of_loop_1

mov   r0, #0                # Reset induction variable

Top_of_loop_2:

ld    f3, [tmp0 + r0]       # Load the butterflied data

ld    f4, [tmp1 + r0]       # Load the other live data

or    f0, f3, f4            # Combine the two vectors

str   [RealOut + r0], f0    # Store the result

add    r0, r0, #1

cmp    r0, #128

blt    Top_of_loop_2
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mov    r0, #0 # Initialize i

Top_of_loop_1:

ld    r1, [bfly + r0]       # Load offset for butterfly

add   r1, r0, r1

ld    f0, [RealOut + r1]    # Load the shuffled vectors

ld    f1, [ImagOut + r1]

ld    f2, [ar + r0]         # Load ar and ai

ld    f3, [ai + r0]

mult  f2, f2, f0            # Compute tr

mult  f3, f3, f1

sub   f6, f2, f3

ld    f5, [RealOut + r0]

sub   f3, f5, f6            # Add/Sub RealOut and tr

add   f4, f5, f6

ld    r2, [mask + r0]       # Load the mask values

and   f3, f3, r2            # Mask off the useless data

and   f4, f4, r2

ld    r3, [bfly + r0]

add   r3, r0, r3

str   [tmp0 + r3], f3       # Store butterflied data

str   [tmp1 + r0], f4       # Need to store other live data

add   r0, r0, #1 # Increment i

cmp   r0, #128

blt   Top_of_loop_1

mov   r0, #0                # Reset induction variable

Top_of_loop_2:

ld    f3, [tmp0 + r0]       # Load the butterflied data

ld    f4, [tmp1 + r0]       # Load the other live data

or    f0, f3, f4            # Combine the two vectors

str   [RealOut + r0], f0    # Store the result

add    r0, r0, #1

cmp    r0, #128

blt    Top_of_loop_2
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mov    r0, #0 # Initialize i

Top_of_loop:

vld    vf0, [RealOut + r0]  # Load the vectors

vld    vf1, [ImagOut + r0]

vbfly  vf0, vf0 # Butterfly RealOut

vbfly  vf1, vf1 #  and ImagOut

vld    vf2, [ar + r0]       # Load ar and ai

vld    vf3, [ai + r0]

vmult  vf2, vf2, vf0        # Compute tr

vmult  vf3, vf3, vf1

vsub   vf6, vf2, vf3

vld    vf5, [RealOut + r0]

vsub   vf3, vf5, vf6        # Add/Sub RealOut and tr

vadd   vf4, vf5, vf6

vmask  vf3, vf3, 0xF0       # Mask off the useless data

vbfly  vf3, vf3

vmask  vf4, vf4, 0xF0

vor    vf0, vf3, vf4        # Combine the two vectors

vstr   [RealOut + r0], vf0  # Store the result

add    r0, r0, #8 # Increment i

cmp    r0, #128

blt    Top_of_loop
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mov    r0, #0 # Initialize i

Top_of_loop:

vld    vf0, [RealOut + r0]  # Load the vectors

vld    vf1, [ImagOut + r0]

vbfly  vf0, vf0 # Butterfly RealOut

vbfly  vf1, vf1 #  and ImagOut

vld    vf2, [ar + r0]       # Load ar and ai

vld    vf3, [ai + r0]

vmult  vf2, vf2, vf0        # Compute tr

vmult  vf3, vf3, vf1

vsub   vf6, vf2, vf3

vld    vf5, [RealOut + r0]

vsub   vf3, vf5, vf6        # Add/Sub RealOut and tr

vadd   vf4, vf5, vf6

vmask  vf3, vf3, 0xF0       # Mask off the useless data

vbfly  vf3, vf3

vmask  vf4, vf4, 0xF0

vor    vf0, vf3, vf4        # Combine the two vectors

vstr   [RealOut + r0], vf0  # Store the result

add    r0, r0, #8 # Increment i

cmp    r0, #128

blt    Top_of_loop
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Figure 4. (A) SIMD code for Figure 2, and (B) scalar represent ation of the SIMD code in Figure 4(A).

sor’s front end. The next time this branch is encountered, the
front end can utilize the SIMD accelerator by simply access-
ing the SIMD instructions in the microcode cache and ignor-
ing the branch. This allows a processor to take advantage of
SIMD accelerators without explicit instruction set modifica-
tions.

One potential problem with marking translatable code re-
gions by function calls is false positives. This happens if
the dynamic translator creates SIMD code for a function that
was not meant to be SIMDized. Typically, this is not a prob-
lem. ABIs require that functions have a very specific for-
mat, which does not match the outlined function format de-
scribed for scalarized loops. Therefore, the dynamic transla-
tor would not be able to convert most non-translatable func-
tions. Even if the translator was able to convert a function
that it was not meant to, the SIMD code would be function-
ally correct as long as there were no memory dependences
between scalar loop iterations. Remember, the translator is
simply converting between functionally equivalent represen-
tations. The scenario of a false positive that produces incor-
rect code is highly unlikely, but the only way to guarantee
correctness is to mark the outlined functions in some unique
way (e.g., a new branch-and-link instruction that is only used
for translatable regions).

4 Dynamic Translation to SIMD Instructions

Once a software abstraction is defined for describing
SIMD instructions using a scalar ISA, there needs to be a
runtime method for translating them back into SIMD instruc-
tions. As mentioned in Section 2, there are many valid ways
to do this: in hardware at decode time, in hardware after
instruction retirement, or through virtual machines or JITs.

The software abstraction presented in the previous sectionis
independent of the translation scheme.

Here, the design of a post-retirement hardware translator
is presented. Hardware was chosen because the implemen-
tation is simple, it adds little overhead to the baseline pro-
cessor, and hardware is more efficient than software. Post-
retirement hardware was chosen, instead of decode time, be-
cause post-retirement is far off the critical path of the proces-
sor. Our experiments in Section 5 and previous work [15]
both show that post-retirement optimizations can be hun-
dreds of cycles long without significantly affecting perfor-
mance. The biggest downside to a post-retirement dynamic
mapping is that the modified microcode needs to be stored in
a cache and inserted into the control stream in the pipeline
frontend.

4.1 Dynamic Translation Hardware

From a high level, the translator is essentiallya hardware
realization of a deterministic finite automaton that recog-
nizes patterns of scalar instructions to be transformed into
SIMD equivalents.Developing automata (or state machines)
to recognize patterns, such as the patterns in Table 1, is a
mature area of compiler research. A thorough discussion of
how to construct such an automata is described in [1].

The structure of the proposed post-retirement dynamic
translator is shown in Figure 5. To prove the practicality
of this structure, it was implemented in HDL (targeting the
ARM ISA with Neon SIMD extensions) and synthesized us-
ing a 90nm IBM standard cell process. The results of the
synthesis are shown in Table 2. Notice that the control gen-
erator runs at over 650 MHz, and takes up only 174,000 cells
(less than 0.2mm2 in 90 nm), without using any custom
logic. This shows that the hardware impact of the control
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Description Crit. Path Delay Area
8-wide Translator 16 gates 1.51 ns 174,117 cells

Table 2. Synthesis results for the dynamic translator.

generator is well within the reach of many modern architec-
tures.

Partial Decoder: The dynamic translator has three in-
puts from retirement of the baseline pipeline: the instruction
that retires (Inst in the figure), the data value that instruc-
tion generated (Data), and an abort signal (Abort). Ini-
tially, the retired instruction is fed into a partial decoder to
determine the source/destination operands and the opcode.
It is only a partial decoder, because it only needs to recog-
nize opcodes that are translatable; any other opcodes simply
cause translation to abort mapping of the outlined function.
This portion of the control generator is potentially redundant,
depending on the microarchitecture, because the retiring in-
struction will likely have the opcode and operand informa-
tion stored in its pipeline latch. Overall, the partial decoder
only takes a few thousand cells of die area, so it does not
contribute significantly to the area overhead; it is responsible
for 5 of the 16 gates in the critical path, though.

Legality Checks: The purpose of the legality checker in
the dynamic translator is to monitor the incoming instruc-
tions to ensure that they can be translated. Scalar instruc-
tions that do not map to a SIMD equivalent generate an abort
signal that flushes stateful portions of dynamic translator. In
addition to an instruction generated abort signal, there isan
abort signal from the base pipeline to stop translation in the
event of a context switch or other interrupt. The legality
checker also signals when a subgraph has finished mapping,
enabling the microcode buffer to write the translated SIMD
instructions into the microcode cache. The legality checks
only comprise a few hundred cells and do not occur on the
critical path.

Register State: After the instruction is decoded, the
operands/opcode access some state, which is indexed based
on the register numbers. This register state determines the
translation strategy for this instruction. Register statealso
includes whether or not a register represents a scalar or vec-
tor, the size of the data currently assigned to the register (e.g.,
16 or 32 bit), and previous values stored in the register. The
opcode and register state comprise the data used to transition
between states in the automata.

Overall, there are 56 bits of state per register and a large
number of MUXes in the register state module, making this
structure comprise 55% of the control generator die area.

Since the ARM ISA only has 16 architectural integer regis-
ters, 55% of the die area is likely proportionally smaller than
dynamic translators targeting architectures with more regis-
ters. Additionally, this structure will increase in area linearly
with the vector lengths of the targeted accelerator.

The previous values assigned to each register are stored in
the register state in order to identify operations that are de-
fined using offsets in memory (e.g., the butterfly instruction
discussed in Section 3). Recall that instructions that reorder
elements within a vector are encoded by loading an offset
vector, adding the offsets to the induction variable, and using
that result for a memory access. In the dynamic translator,
load instructions cause the data to be written to the desti-
nation register’s state. When a data processing instruction
uses that destination register as a source operand, (e.g., to
add those values to the induction variable), then the previous
values of the address are copied to the data processing in-
struction’s destination register state. When a memory access
instruction uses a source that has previous values recorded
in the register state, this signals that a shuffle may be occur-
ring. Those previous values (i.e., the offset vector) are used
to index a content addressable memory (CAM), and if there
is a hit, the appropriate shuffle is inserted into the SIMD in-
struction stream. If the CAM misses, then the offset being
loaded is a shuffle not supported in the SIMD accelerator and
translation is aborted. Note that storing the entire 32 bitsof
previous values is unnecessary, because the values are only
used to determine valid constants, masks, and permutation
offsets; numbers that are too big to represent simply abort
the translation process. The process of reading a source reg-
ister’s previous values, and conditionally writing them tothe
destination register, accounts for 11 of the 16 gates on the
critical path.

Opcode Generation Logic: Once register state for an in-
struction’s source operands has been accessed, it is passedto
the opcode generation logic. Opcode generation logic uses
simple combinational logic to determine how to modify an
opcode based on the operands. This essentially performs the
reverse of the mapping described in Section 3, using rules
defined in Table 3. For example, if the incoming instruction
is a scalar load, then the opcode logic will write a vector load
into the microcode buffer and tell the register state to mark
the destination as a vector. Likewise, if the incoming instruc-
tion is an add, and the register state says both source registers
are vectors, opcode generation logic will write a vector add
into the microcode buffer and mark the destination register
as a vector. A small amount of state is kept alongside this
logic to recognize idioms of scalar instructions. Whenever
an idiom is detected, this logic has the ability to invalidate
previously generated instructions in the microcode buffer.

Opcode generation logic is fairly simple provided the
SIMD instruction format is similar to the equivalent scalar
instructions, since the scalar instructions require little mod-
ification before insertion into the microcode buffer. This is
the case with our implementation, and thus the logic only
takes up approximately 9000 cells. Control generation is not
on the critical path in the current implementation, but it is
very close to being critical. It likely would be on the critical
path if there was not good correlation between baseline and
SIMD instruction formats.

Microcode Buffer: The final component of the dynamic
translator is the microcode buffer. This is primarily just a
register array used to store the SIMD instructions until a re-
gion of scalar code has completed mapping. The maximum
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variable

(2) r1 = ld [r2 + r3]

r1 = mov #constr1 is marked as the induction 

variable

(1) r1 = mov #const
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v1 = vdp v2, v3r1 is a vector; size of r1 is 

recorded

r2 is a vector; r3 is a vector(6) r1 = dp r2, r3

[r1 + r2] = vstr v3r1 is a scalar; r2 is the induction 

variable

(4) [r1 + r2] = str r3

v3 = vpermute v3

[r1 + r2] = vstr v3

r1 is a scalar; r2 is a vector; r2 

has values loaded into it from an 

offset array

(5) [r1 + r2] = str r3

The input instruction is 

passed unmodified
all source operands are scalar(11) any other instruction

r1 = add r1, SIMD_widthr1 is the induction variable(10) r1 = add r1, #1

r1 = vred v2r1 is a scalarr1 is a scalar; r2 is a vector(9) r1 = dp r1, r2

None: this format is 

only used to update the 

induction variable for 

permutations.

r1 is a vector; values loaded into 

r2 are copied to r1

r2 is a vector; r3 is the induction 

variable (or vice-versa); r2 has 

values loaded into it

(8) r1 = dp r2, r3

v1 = vdp v2, #constr1 is a vector; size of r1 is 

recorded

r2 is a vector; r3 is a vector; r3 

has values loaded into it

(7) r1 = dp r2, r3

v1 = vld [r2 + ind]

v1 = vpermute v1

r1 is a vector; size of r1 is 

recorded

r2 is a scalar; r3 is a vector; r3 

has values loaded into it from an 

offset array

(3) r1 = ld [r2 + r3]

v1 = vld [r2 + r3]r1 is a vector; size of r1 is 

recorded (i.e., byte, halfword, 

etc.); value loaded is stored in r1

r2 is a scalar; r3 is the induction 

variable

(2) r1 = ld [r2 + r3]

r1 = mov #constr1 is marked as the induction 

variable

(1) r1 = mov #const

Instruction(s) GeneratedUpdated Register StateCurrent Register StateScalar Instruction

Table 3. Rules used to dynamically translate the scalar code to SIMD code. dp refers to any data processing opcode,
and vred refers to a vector opcode that reduces a vector to one scalar r esult (e.g., min).

length of a microcode sequence was limited to 64 instruc-
tions in this implementation. Section 5 shows that this is
sufficient for the benchmarks examined. At 32 bits per in-
struction, the microcode buffer contains 256 bytes of mem-
ory, which accounts for a little more than half of its 77,000
cells of die area. The rest of the area is consumed by an
alignment network for collapsing instructions when idioms
or permutations invalidate previously generated instructions.

Recall that the register state is used to detect when mem-
ory operations are indexed using a previously loaded off-
sets from constant arrays (Categories (7) and (8) in Table 1).
When this situation is detected, the opcode generation logic
will insert the appropriate permutation and memory instruc-
tions. At this point, the previously generated vector load of
the offset vector can safely be removed. Removing this in-
struction while inserting multiple other instructions requires
an alignment network. It should be noted that removing
the offset load is not strictly necessary for correctness, and
eliminating this functionality would greatly simplify themi-
crocode buffer.

After the microcode buffer receives the End signal from
the legality checker, SIMD instructions are written into the
microcode cache. SIMD code will then be inserted into the
pipeline upon subsequent executions of the outlined function.

4.2 Dynamic Translation Example
To better illustrate how the dynamic translation hardware

functions, Table 4 shows an example, translating the scalar
loop in Figure 4(B) back into SIMD instructions for an 8-
wide SIMD accelerator. The second loop from Figure 4(B)

would be translated in a similar manner, and not refused
with the original fissioned loop. Translation is very straight-
forward for the vast majority of opcodes in the example,
making the design of a hardware dynamic translator simple.

Instruction 1, the move, is the first instruction to enter the
dynamic translator. As per the rules in Table 3,r0 is marked
as the induction variable in the register state, and the instruc-
tion is inserted into the microcode buffer unmodified.

Next, instruction 2 is translated. This is a load based on
a scalar (the addressbfly) and the induction variable (r0).
Table 3 shows this is translated into a standard vector load.
R1 is marked as a vector and the value loaded is stored as a
previous value ofr1 in the register state. After that, instruc-
tion 3 is translated. The register state shows thatr0 is the
induction variable andr1 is a vector with previous values
associated with it. This instruction generates no instruction.

Now instruction 4 needs to be translated. Since one of
the sources,r1, has previous values associated with it, this
load may correspond to a shuffle instruction. The register
state will look at the previous values, use them to CAM into
a ROM and see that these offsets correspond to a known per-
mutation instruction. In parallel, the load is being turnedinto
a vector load by the opcode generation logic. Both of these
instructions are inserted into the microcode buffer. Addition-
ally, a pointer from the register state is used to remove the
vector load created for instruction 2; a load of the offset is
not necessary once the butterfly is inserted. This process of
creating a load and shuffle is repeated for instruction 5.

Translating the remaining instructions in this example is
just a matter of applying the rules presented in Table 3. Any



vf5 = vld [RealOut + r0]ld    f5, [RealOut + r0]11

SIMD GeneratedScalar Instruction

blt  Top_of_loop_1blt   Top_of_loop_123

cmp  r0, #128cmp   r0, #12822

r0 = add r0, #8add   r0, r0, #121

vf4 = vbfly vf4

[tmp1 + r0] = vstr vf4

str   [tmp1 + r0], f420

vf3 = vbfly vf3

[tmp0 + r0] = vstr vf3

str   [tmp0 + r3], f319

add   r3, r0, r318

v3  = vld [bfly + r0]ld    r3, [bfly + r0]17

vf4 = vmask vf4, #constand   f4, f4, r216

vf3 = vmask vf3, #constand   f3, f3, r215

v2  = vld [mask + r0]ld    r2, [mask + r0]14

vf4 = vadd vf5, vf6add   f4, f5, f613

vf3 = vsub vf5, vf6sub   f3, f5, f612

vf6 = vsub vf2, vf3sub   f6, f2, f310

vf3 = vmult vf3, vf1mult  f3, f3, f19

vf2 = vmult vf2, vf0mult  f2, f2, f08

vf3 = vfld [ai + r0]ld    f3, [ai + r0]7

vf2 = vfld [ar + r0]ld    f2, [ar + r0]6

vf1 = vfld [ImagOut + r0]

vf1 = vbfly vf1

ld    f1, [ImagOut + r1]5

vf0 = vfld [RealOut + r0]

vf0 = vbfly vf0

ld    f0, [RealOut + r1]4

add   r1, r0, r13

v1  = vld [bfly + r0]ld    r1, [bfly + r0]2

mov   r0, #0mov   r0, #01

vf5 = vld [RealOut + r0]ld    f5, [RealOut + r0]11

SIMD GeneratedScalar Instruction

blt  Top_of_loop_1blt   Top_of_loop_123

cmp  r0, #128cmp   r0, #12822

r0 = add r0, #8add   r0, r0, #121

vf4 = vbfly vf4

[tmp1 + r0] = vstr vf4

str   [tmp1 + r0], f420

vf3 = vbfly vf3

[tmp0 + r0] = vstr vf3

str   [tmp0 + r3], f319

add   r3, r0, r318

v3  = vld [bfly + r0]ld    r3, [bfly + r0]17

vf4 = vmask vf4, #constand   f4, f4, r216

vf3 = vmask vf3, #constand   f3, f3, r215

v2  = vld [mask + r0]ld    r2, [mask + r0]14

vf4 = vadd vf5, vf6add   f4, f5, f613

vf3 = vsub vf5, vf6sub   f3, f5, f612

vf6 = vsub vf2, vf3sub   f6, f2, f310

vf3 = vmult vf3, vf1mult  f3, f3, f19

vf2 = vmult vf2, vf0mult  f2, f2, f08

vf3 = vfld [ai + r0]ld    f3, [ai + r0]7

vf2 = vfld [ar + r0]ld    f2, [ar + r0]6

vf1 = vfld [ImagOut + r0]

vf1 = vbfly vf1

ld    f1, [ImagOut + r1]5

vf0 = vfld [RealOut + r0]

vf0 = vbfly vf0

ld    f0, [RealOut + r1]4

add   r1, r0, r13

v1  = vld [bfly + r0]ld    r1, [bfly + r0]2

mov   r0, #0mov   r0, #01

Table 4. Example translating scalar representation from
Figure 4(B) back into SIMD instructions.

instruction that does not match the rules defined in that ta-
ble does not meet the proposed scalar virtualization format,
and causes translation to abort. Once all scalar instructions
have been translated, the outlined function returns, and the
microcode buffer writes the SIMD instructions into the mi-
crocode cache. This enables the SIMD code to be inserted
into the instruction stream upon subsequent encounters of the
outlined function.

5 Evaluation

To evaluate the Liquid SIMD system, an experimen-
tal framework was built using the Trimaran research com-
piler [29] and the SimpleScalar ARM simulator [3]. Tri-
maran was retargeted for the ARM instruction set, and was
used to compile scalar ARM assembly code. The ARM as-
sembly code was then hand-modified to include SIMD op-
timizations and conversion to the proposed scalar represen-
tation using a maximum targeted SIMD width of 16. Auto-
matic SIMDization would have been used had it been imple-
mented in our compiler. Again, automatic SIMDization is an
orthogonal issue to abstracting SIMD instruction sets.

In our evaluation, SimpleScalar was configured to model
an ARM-926EJ-S [2], which is an in-order, five stage
pipelined processor with 16K, 64-way associative instruc-
tion and data caches. A parameterized SIMD accelerator,
executing the Neon ISA, was added to the ARM-926EJ-S
SimpleScalar model to evaluate the performance of SIMD
accelerators for various vector widths. Simulations assumed
dynamic translation took one cycle per scalar instruction in
an outlined function. However, we demonstrate that dynamic
translation could have taken tens of cycles per scalar instruc-
tion without affecting performance.

Liquid SIMD was evaluated using fifteen bench-
marks from SPECfp2000 (171.swim, 179.art, 172.mgrid),

Benchmark Mean Max
052.alvinn 12.5 13
056.ear 34.5 36
093.nasa7 45.5 59
101.tomcatv 35.5 61
104.hydro2d 27.2 40
171.swim 37.8 51
172.mgrid 46.2 62
179.art 12.8 19
MPEG2 Dec. 12.5 13
MPEG2 Enc. 14.5 19
GSM Dec. 25 25
GSM Enc. 19.5 28
LU 11 11
FIR 11 11
FFT 31.3 38

Table 5. Number of scalar instructions in outlined func-
tion(s).

SPECfp95 (101.tomcatv, 104.hydro2d), SPECfp92
(052.alvinn, 056.ear, 093.nasa7), MediaBench (GSM
Decode and Encode, MPEG2 Decode and Encode), and
common signal processing kernels (FFT, LU, FIR). The set
of benchmarks evaluated was limited by applicability for
SIMD optimization and the current capability of the ARM
port of our compiler. None of these limitations were a result
of the Liquid SIMD technique.

Dynamic Translation Requirements: In order to further
understand the costs of Liquid SIMD, we first studied char-
acteristics of benchmarks that impact design of a dynamic
translator. One such characteristic is the required size ofthe
microcode cache. The microcode cache is used to store the
SIMD instructions after an outlined procedure call has been
translated. This characteristic is also important for software-
based translators, as it affects the size of code cache needed
for the application.

We found that supporting eight or more SIMD code se-
quences (i.e., hot loops) in the control cache is sufficient to
capture the working set in all of the benchmarks investigated.
One question remaining then is how many instructions are re-
quired for each of these loops. With a larger control cache
entry size, larger loops may be translated, ultimately pro-
viding better application performance. The downside is in-
creased area, energy consumption, and latency of the transla-
tor. However, large loops that do not fit into a single control
cache entry may be broken up into a series of smaller loops,
which do fit into control cache. The downside of breaking
loops is that there will be increased procedure call overhead
in the scalarized representation. This section later demon-
strates that procedure call overhead is negligible when using
an 8-entry control cache.

Table 5 presents the average and maximum number of in-
structions per hot loop in the benchmarks. In some bench-
marks, like 172.mgrid and 101.tomcatv, hot loops in the
Trimaran-generated assembly code consisted of more than
64 instructions, and were broken into two or more loops.
This decreased the number of instructions in each loop dra-
matically because it also reduced the number of load and
store instructions caused due to register spills. Table 5 shows
that 172.mgrid and 101.tomcatv have the largest outlined
functions with a maximum of nearly 64 instructions. In most
of these benchmarks, it would be possible to decrease the
number of instructions per loop to less than 32 in order to
decrease the size of the microcode cache.



Benchmark < 150 < 300 > 300 Mean
052.alvinn 0 0 2 19984
056.ear 0 0 3 96488
093.nasa7 0 0 12 23876
101.tomcatv 0 0 6 16036
104.hydro2d 0 0 18 24346
171.swim 0 0 9 33258
172.mgrid 0 0 13 5218
179.art 0 0 5 2102224
MPEG2 Dec. 0 1 1 269
MPEG2 Enc. 0 3 1 257
GSM Dec. 0 0 1 358
GSM Enc. 0 0 1 538
LU 0 0 1 15054
FIR 0 0 1 13343
FFT 0 0 3 7716

Table 6. Number of cycles between the first two consec-
utive calls to outlined hot loops. The first three columns
show the number of outlined hot loops that have distance
of less than 150, less than 300, and greater than 300 cy-
cles between their first two consecutive calls.

These results lead us to propose a control cache with 8
entries of 64 SIMD instructions each. Assuming each in-
struction is 32 bits, this would total a 2 KB SRAM used for
storing translated instruction sequences.

Another benchmark characteristic that affects dynamic
translator design is latency between two executions of hot
loops. Translation begins generating SIMD instructions for
outlined scalar code the first time that a code segment is ex-
ecuted. If translation takes a long time, then SIMD instruc-
tions might not be available for many subsequent executions
of that hot loop. This restricts the performance improvement
achievable from a Liquid SIMD system. Moreover, if trans-
lation takes a long time, then the dynamic translator will need
some mechanism to translate multiple loops at the same time.

Table 6 shows the number of cycles between the two first
consecutive calls to outlined hot loops for the benchmarks.
In all benchmarks except MPEG2 Encode and Decode, there
is more than 300 cycles distance between outlined procedure
calls. The reason for large distances is that the scalar loops
usually iterate several times over dozens of instructions,and
also because memory accesses tend to produce cold cache
misses. Table 6 shows that there is significant time for hard-
ware based dynamic translation to operate without adversely
affecting performance. A carefully designed JIT translator
would likely be able to meet this 300 cycle target, as well.

Performance Overhead from Translation: Figure 6 il-
lustrates the speedup attained using one Liquid SIMD binary
(per benchmark) on machines supporting different width
SIMD accelerators. Speedup reported is relative to the same
benchmark running on a ARM-926EJ-S processor without a
SIMD accelerator and without outlining hot loops. Compil-
ing with outlined functions would have added a small over-
head (less than 1%) to the baseline results.

In the ideal case, a SIMD-enabled processor with unlim-
ited resources can achieve a speedup of1S

W
+(1−S)

, whereS

is SIMD optimizable fraction of the code andW is the ac-
celerator vector width. Some of the factors that decrease the
amount of speedup in real situations are cache miss penalties,
branch miss predictions, and trip count of the hot loop.

As expected, speedup generally increases by increasing
the vector width supported in the SIMD hardware. In some
of the benchmarks, like MPEG2 Decode, there is virtually no

performance gain by increasing the vector width from 8 to
16. This is because the hot loop(s) in these benchmarks op-
erate on vectors that are only 8 elements. Supporting larger
vector widths is not beneficial for these applications. 179.art
shows the least speedup of any of the benchmarks run. In
this case, speedup is limited because 179.art has many cache
misses in its hot loops. FIR showed the highest speedup of
any benchmark because approximately 94% of its runtime is
taken by the hot loop, the loop is fully vectorizable, and there
are very few cache misses.

Figure 6 shows that SIMD acceleration is very effective
for certain benchmarks. However, this fact has been well
established and is not the purpose of this paper. The main
purpose of Figure 6 is to demonstrate the performance over-
head of using dynamic translation in a Liquid SIMD system.
Overhead stems from executing SIMD loops in their scalar
representation whenever the SIMD version does not reside
in the microcode cache. To evaluate the overhead, the simu-
lator was modified to eliminate control generation. That is,
whenever an outlined function was encountered, the simula-
tor treated it like native SIMD code.

The performance improvement from using native instruc-
tions was measured for all fifteen benchmarks. Of these
benchmarks, the largest performance difference occurred in
FIR, illustrated in the callout of Figure 6. Native SIMD code
provided 0.001 speedup above the Liquid SIMD binary. This
demonstrates that the performance overhead from virtualiza-
tion is negligible.

Code Size Overhead: Compilation for Liquid SIMD
does increase the code size of applications. Code size over-
head comes from additional branch-and-link and return in-
structions used in function outlining, converting SIMD in-
structions to scalar idioms, and also from aligning memory
references to a maximum vectorizable length (discussed in
Section 3). Obviously, too much code size expansion will be
problematic, creating instruction cache misses, which may
affect performance.

To evaluate code size overhead, the binary sizes of un-
modified benchmarks were compared with Liquid SIMD ver-
sions. The maximum difference observed occurred in hy-
dro2d, and was less than 1%. The reason behind this is that
the amount of SIMD code in the benchmarks is very small
compared to the overall program size. Code size overhead is
essentially negligible in Liquid SIMD.

6 Related Work

Many different types of accelerators have been proposed
to make computation faster and more efficient in micropro-
cessors. Typically, these accelerators are utilized by chang-
ing the instruction set; that is, statically placing accelerator
control in the application binary. This means that the binary
will not run on systems without that accelerator, or even sys-
tems where the accelerator has changed slightly.

To allow more flexibility in the instruction set, some pre-
vious work [9, 10, 19, 24, 28, 32] has recognized the benefits
of dynamically binding instructions to an accelerator. Many
different methods have been proposed to generate microcode
for the various targeted accelerators at runtime. For example,
work by Hu [18, 19] demonstrated the effectiveness of using
binary translation software to dynamically generate control
for one type of accelerator, a 3-1 ALU. The rest of these
techniques utilize trace cache based hardware structures,to
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perform translation. Our method evolves this approach for
SIMD accelerators.

There is a great deal more related work if the scope of
dynamic binding is expanded to include benefits other than
accelerator utilization. Dynamic binding has long been used
to support modern microarchitectures in the context of legacy
ISAs, such as the use of micro-ops (including micro-op fus-
ing) in Intel processors [16]. Another motivation for dynamic
binding has been to enable runtime optimizations. Several
standard compiler optimizations, such as dead code elimina-
tion and constant propagation, benefit from runtime informa-
tion available to dynamic translators [17].

Continuous Optimization [14] and RENO [27] are both
examples of dynamic translators that perform traditional
compiler optimizations by translating instructions during the
decode stage of pipelines. The rePLay [26] project similarly
optimized code, but operated on instructions post-retirement.
Post-retirement translation is attractive because there is usu-
ally a long latency between instruction retirement and its next
use [15], effectively taking translation off the critical path.

Just in time compilers (JITs) and virtual machines, such
as Dynamo [4], DAISY [12], and the Transmeta Code Mor-
pher [11], are all examples software-only dynamic transla-
tors. Software dynamic translators have been proposed both
for code optimizations and to translate one ISA to another.

Virtualizing a SIMD ISA is similar to the way modern
graphics related shader applications [7] are executed. In
these applications, pixel and vertex shaders are distributed
in an assembly-like virtual language such as DirectX, which
has support for SIMD. At runtime, the shaders rely on a vir-
tual machine to translate the virtual SIMD instructions into
architecture-specific SIMD instructions. The benefits of us-
ing scalar instructions to virtualize SIMD instructions, as op-
posed a virtual language, is that a translator is not necessary
to run the application.

The hardware translator proposed in this paper is closely
related to two other works [25, 30]. These papers devel-
oped methods to utilize SIMD hardware dynamically, with-
out software support for identifying the instructions. That

is, these works (often speculatively) create SIMD instruc-
tions from an arbitrary scalar binary. The hardware support
required to perform this translation is generally more com-
plicated than our proposed design, which merely recognizes
and translates a set of predetermined instruction patterns.

The proposed hardware translator is also similar to work
by Brooks [8] and Loh [23]. These papers propose using
dynamic translation to detect when operations do not use the
entire data path (e.g., only 8-bits of a 32-bit ALU), and then
pack multiple narrow operations onto a single function unit.

Somewhat related to this paper are the decades of research
that have gone into automated compiler-based SIMDization.
Many of these techniques are summarized by Krall [20] for
the UltraSparc VIS instruction set, and by Bik [6] for Intel’s
SSE instructions. Recent work [13, 31] has investigated tech-
niques to vectorize misaligned memory references through
data reorganization in registers. Other recent work [21] in-
troduced techniques to extract vector operations within basic
blocks and selective vectorization of instructions. Automatic
SIMDization is completely orthogonal to the work in this pa-
per; the SIMD virtualization scheme proposed here can be
used in conjunction with or in the absence of any automated
SIMD techniques.

The main contribution of this work is the development
of a method for virtualizing SIMD instructions in a way
amenable to dynamic translation. No previous work has done
this. To demonstrate that our virtualization schema is easily
translated, the design of a post-retirement hardware transla-
tor was presented in Section 4. Any other style of dynamic
translator could have been used to prove this point, though.

7 Conclusion

Liquid SIMD is a combination of compiler support and
dynamic translation used to decouple the instruction set of
a processor from the implementation of a SIMD accelera-
tor. SIMD instructions are identified and expressed in a vir-
tualized SIMD schema using the scalar instruction set of a
processor. A light-weight dynamic translation engine binds



these scalar instructions for execution on an arbitrary SIMD
accelerator during program execution. This eliminates the
problems of binary compatibility and software migration that
are inherent to instruction set modification.

This paper presented a software schema powerful enough
to virtualize nearly all SIMD instructions in the ARM Neon
ISA using the scalar ARM instruction set. The design of a
hardware dynamic translator was presented, proving that the
software schema is translatable and that this translation can
be incorporated into modern processor pipelines. Synthesis
results show that the design has a critical path length of 16
gates and the area is less than 0.2mm2 in a 90 nm pro-
cess. Experiments showed that Liquid SIMD caused code
size overhead of less than 1%, and performance overhead
of less that 0.001% in the worst case. This data clearly
demonstrates that Liquid SIMD is both practical and effec-
tive at solving the compatibility and migration issues associ-
ated with supporting multiple SIMD accelerators in a modern
instruction set.
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