
From SODA to Scotch: The Evolution of a Wireless Baseband Processor

Mark Woh∗, Yuan Lin∗, Sangwon Seo∗, Scott Mahlke∗, Trevor Mudge∗, Chaitali Chakrabarti†,
Richard Bruce‡, Danny Kershaw‡, Alastair Reid‡, Mladen Wilder‡ and Krisztian Flautner‡
∗Advanced Computer Architecture Laboratory, University of Michigan - Ann Arbor, MI

{mwoh, linyz, swseo, mahlke, tnm}@umich.edu
†Department of Electrical Engineering, Arizona State University, Tempe, AZ

chaitali@asu.edu
‡ARM, Ltd., Cambridge, United Kingdom

{richard.bruce, danny.kershaw, alastair.reid, mladen.wilder, krisztian.flautner}@arm.com

Abstract

With the multitude of existing and upcoming wireless stan-
dards, it is becoming increasingly difficult for hardware-only
baseband processing solutions to adapt to the rapidly chang-
ing wireless communication landscape. Software Defined
Radio (SDR) promises to deliver a cost effective and flexible
solution by implementing a wide variety of wireless protocols
in software. In previous work, a fully programmable multi-
core architecture, SODA, was proposed that was able to meet
the real-time requirements of 3G wireless protocols. SODA
consists of one ARM control processor and four wide single
instruction multiple data (SIMD) processing elements. Each
processing element consists of a scalar and a wide 512-
bit 32-lane SIMD datapath. A commercial prototype based
on the SODA architecture, Ardbeg (named after a brand
of Scotch Whisky), has been developed. In this paper, we
present the architectural evolution of going from a research
design to a commercial prototype, including the goals, trade-
offs, and final design choices.

Ardbeg’s redesign process can be grouped into the fol-
lowing three major areas: optimizing the wide SIMD dat-
apath, providing long instruction word (LIW) support for
SIMD operations, and adding application-specific hardware
accelerators. Because SODA was originally designed with
180nm technology, the wide SIMD datapath is re-optimized
in Ardbeg for 90nm technology. This includes re-evaluating
the most efficient SIMD width, designing a wider SIMD
shuffle network, and implementing faster SIMD arithmetic
units. Ardbeg also provides modest LIW support by allowing
two SIMD operations to issue in the same cycle. This LIW
execution supports SDR algorithms’ most common parallel
SIMD execution patterns with minimal hardware overhead.
A viable commercial SDR solution must be competitive
with existing ASIC solutions. Therefore, algorithm-specific
hardware is added for performance bottleneck algorithms
while still maintaining enough flexibility to support multiple
wireless protocols. The combination of these architectural
improvements allows Ardbeg to achieve 1.5-7x speedup over
SODA across multiple wireless algorithms while consuming
less power.

1. Introduction
In recent years, we have seen an increase in the number

of wireless protocols that are applicable to different types of
communication networks. Traditionally, the physical layer of
these wireless protocols is implemented with fixed function
ASICs. Software Defined Radio (SDR) promises to deliver a
cost effective and flexible solution by implementing a wide
variety of wireless protocols in software. Such solutions
have many potential advantages: 1) Multiple protocols can
be supported simultaneously on the same hardware, allow-
ing users to automatically adapt to the available wireless
networks; 2) Lower engineering and verification efforts are
required for software solutions over hardware solutions;
3) Higher chip volumes because the same chip can be
used for multiple protocols, which lowers the cost; and
4) Better support for future protocol changes. With the
tremendous benefits of SDR, it is likely that many mobile
communication devices are going to be supported by SDR
technologies in the foreseeable future. Recently, Samsung
was the first to announce a mobile phone that supports TD-
SCDMA/HSDPA/GSM/GPRS/EDGE standards using a SDR
baseband processor [1].

Wireless Protocol Workloads. The computational re-
quirements of current generation wireless protocols are or-
ders of magnitude higher than the capabilities of modern
general-purpose processors. A wireless protocol processor
must sustain this high computation throughput while meeting
the strict power budget of an embedded mobile terminal.
This is the reason why many wireless protocols to date are
implemented with custom hardware. The challenge of SDR
is to meet these performance and power requirements while
maintaining the flexibility of a programmable processor.
Previous work on workload characterization of 3G wireless
and other wireless baseband processing protocols showed
that there exists large amount of data-level parallelism
(DLP), with the majority of the operations being long vector
arithmetic computations [2].

SODA Processor Architecture. The SODA multi-core ar-
chitecture was proposed for supporting 3G wireless baseband
processing [3]. SODA consists of an ARM control processor,
four data processing elements (PEs), and a shared global
scratchpad memory. Designed for long vector arithmetic
operations, each SODA PE includes a wide 512-bit SIMD

unit that is capable of operating on 32 16-bit elements
concurrently. In addition, each PE also has a scalar datapath,
local scratchpad memories, address generation unit (AGU),
and direct memory access (DMA) support.

Ardbeg Processor Architecture. A commercial proto-
type, Ardbeg, based on SODA has been developed by ARM
Ltd. Ardbeg shares many features with SODA. It is a multi-
core architecture, with one control processor and multiple
data PEs. Each data PE contains a 512-bit wide SIMD
datapath. Ardbeg adds algorithm-specific hardware and opti-
mizes the architecture specifically for wireless applications.
In contrast, SODA was designed to test the feasibility
of a fully programmable wireless baseband solution and
purposely avoided algorithm-specific designs. While SODA
was focused on supporting 3G wireless protocols, Ardbeg
is also designed to scale for future protocols. Overall,
Ardbeg achieves between 1.5-7x speedup over SODA while
operating at a lower clock frequency.

The evolution of SODA to Ardbeg was a process with
many design choices. The major design choices can be
grouped into the following three categories:

• Optimized Wide SIMD Design. SODA was originally de-
signed in 180nm technology. In 90nm technology, the SIMD
datapath choices need to be re-examined. We re-evaluated the
SIMD width and found that SODA’s original 32-lane 512-bit
SIMD datapath is still the best SIMD design point in 90nm.
On the other hand, the SIMD shuffle network redesigned
to support faster vector permutation operations. Compared
with SODA’s two cycle multiplier, 90nm technology enables
a single cycle multiplier, which provides significant speedup
for several key SDR algorithms.

• LIW Support for Wide SIMD. For W-CDMA and 802.11a,
the SODA SIMD ALU unit is utilized around 30% of the total
execution cycles. LIW execution on the SODA SIMD pipeline
was considered a poor choice due to the low utilization of the
SIMD units and was abandoned due to the concern about the
extra power and area costs of adding more SIMD register
file ports. We revisited this concern when designing Ardbeg
in order to improve the computational efficiency. The result
was Ardbeg issuing two SIMD operations each cycle. Not
all combinations of SIMD instructions are allowed. Ardbeg
implements a restricted LIW designed to support the most
common parallel execution patterns found in SDR algorithms
with minimal hardware overhead. Our analysis shows that
having this restricted LIW support would provide better
performance and power efficiency over single-issue SIMD
datapath, but also that having larger issue widths does not
provide any additional performance benefit over a simple two-
issue LIW.

• Algorithm Specific Hardware Acceleration. A set of al-
gorithm specific hardware is also added to the Ardbeg ar-
chitecture. These include an ASIC accelerator for Turbo
decoder, block floating point support, and fused permute and
arithmetic operations. This set of algorithm specific hardware
was chosen to achieve higher computational efficiency while
maintaining enough flexibility to support multiple protocols.

The rest of the paper is organized as follows. Section 2
gives a brief description of the overall architectures of
SODA and Ardbeg. Section 3 presents the architectural
evolution from SODA to Ardbeg. We provide experimental
results and analysis to explain the rationale behind the major
Ardbeg architectural design decisions. Section 4 presents
the performance results of the two architectures for various

wireless protocols. Section 5 provides a survey of the current
SDR processor solutions.

2. Architecture Overview
Because the majority of the SDR computations are based

on vector arithmetic, previous work on SODA has demon-
strated that having a wide SIMD datapath can achieve signif-
icant speedup while maintaining low power consumption [3].
With a 32-lane SIMD datapath, SODA was able to achieve
an average of 47x speedup for W-CDMA DSP algorithms
over a general purpose Alpha processor. However, as an
initial research prototype, many architectural optimizations
were overlooked. Ardbeg has improved upon the base SODA
architecture, as will be illustrated in the subsequent sections.
This section provides an overview of the SODA and Ardbeg
architectures and summarizes the differences.
2.1. SODA Architectural Overview

The SODA multicore system is shown on the left in
Figure 1. It consists of four data PEs, a scalar control
processor, and a global L2 scratchpad memory, all connected
through a shared bus. Each SODA PE consists of five major
components: 1) an SIMD datapath for supporting vector
operations; 2) a scalar datapath for sequential operations;
3) two local L1 scratchpad memories for the SIMD pipeline
and the scalar pipeline; 4) an AGU pipeline for providing the
addresses for local memory access; and 5) a programmable
DMA unit to transfer data between memories. The SIMD,
scalar, and AGU datapaths execute in lock-step, controlled
with one program counter.

The SIMD datapath consists of a 32-lane, 16-bit datapath,
with 32 arithmetic units working in lock-step. It is designed
to handle computationally intensive DSP algorithms. Each
datapath includes a 2 read-port, 1 write-port 16 entry register
file, and one 16-bit ALU with multiplier. Synthesized in
180nm technology, the multiplier takes two execution cycles
when running at the targeted 400 MHz. Intra-processor
data movements are supported through the SSN (SIMD
Shuffle Network). The SSN consists of a shuffle exchange
(SE) network, an inverse shuffle exchange (ISE) network,
and a feedback path. Various SIMD permutation patterns
require multiple iterations of the SSN network. SIMD-to-
scalar (VTS) and scalar-to-SIMD (STV) units are used to
transfer data between the SIMD and scalar datapath.
2.2. Ardbeg Architecture

The Ardbeg system architecture is shown on the right in
Figure 1. Similar to the SODA architecture, it consists of
multiple PEs, an ARM general purpose controller, and a
global scratchpad memory. The overall architecture of the
Ardbeg PE is also very similar to the SODA PE, with a
512-bit SIMD pipeline, scalar and AGU pipelines, and local
memory. Ardbeg was designed using the OptimoDE frame-
work [4]. The framework allowed the creation of custom
VLIW-style architectures and evaluating many architectural
design trade-offs quickly. These trade-offs will be discussed
in the next section. The instruction set for Ardbeg was
derived from the ARM NEON extensions [5]. The bottom
portion of Figure 1 also provides a side-by-side comparison
between the two architectures.

The Ardbeg system has two PEs, each running at 350
MHz in 90nm technology. In addition, it includes an accel-

512-bit
SIMD
Reg.
File

E
X

512-bit
SIMD
ALU+
Mult

SIMD
Shuffle

Net-
work
(SSN)

W
B

Scalar
ALU

W
B

E
X

Scalar
RF

L1
SIMD
Data

Memory

L1
Scalar
Data

Memory

S
T
V

AGU
RF

E
X

W
B

AGU
ALU

1. wide SIMD

2. Scalar

4. AGU

V
T
S

Pred.
Regs

W
B

SIMD
to

Scalar
(VtoS)

ALU

RF

DMA

SODA PE

5. DMA

3. Local
memory

SODA System

To
System

Bus

512-bit
SIMD
Reg.
File

512-bit
SIMD
Mult

SIMD
Shuffle

Net-
work

Scalar
ALU+
Mult

Scalar
RF+ACC

L1
Data

Memory

AGU
RF

AGU

1. wide SIMD

Pred.
RF

SIMD+
Scalar
Transf
Unit

Ardbeg PE

3. Memory

SIMD
Pred.
ALU

Scalar
wdata

1024-bit
SIMD

ACC RF

SIMD
wdata

512-bit
SIMD
ALU
with

shuffle

E
X

E
X

I
N
T
E
R
C
O
N
N
E
C
T
S

I
N
T
E
R
C
O
N
N
E
C
T
S

L2
Memory

2. Scalar & AGUL1
Program
Memory

Controller

Interconnect Bus

L2
Scratchpad

Memory
Control

Processor

L1
Memories

Execution
Unit

PE

L1
Memories

Execution
Unit

PE

L1
Memories

Execution
Unit

PE

L1
Memories

Execution
Unit

PE

64-bit AMBA 3 AXI Interconnect

Turbo
Coprocessor

DMACPeripherals

L1
Mem

Control
Processor

L1
Mem

Execution
Unit

PE

L1
Mem

Execution
Unit

PE
L2

Mem

51
2-

bi
t

 B

us

E
X

E
X

AGU

AGU

Ardbeg System

SODA Ardbeg

SIMD + scalar + AGU SIMD + scalar + AGU
SIMD/Scalar LIW SIMD/Scalar and SIMD/SIMD LIW
400MHz (180nm) 350MHz (90nm)

PE Architecture

single issue ALU + memory + SSN
512 bits 512 bits

16-bit FXP 8/16/32-bit FXP

SIMD Architecture

no yes
yes yes

2 cycles 1 cycle
32-lane 1-stage iterative perfect shuffle 128-lane 7-stage Banyan network

reduction tree pair-wise operation/reduction tree
2 read/1 write ports, 16 entries 3 read/2 write ports, 15 entries

8KB 32KB~128KB
64KB 256KB~1MB

no Turbo coprocessor
no software pipelining

Others

Organization
Execution Model

PE Frequency

SIMD Datapath
SIMD Width

Data Precision
Block Floating Point

SIMD Predication
SIMD Mult Latency

SIMD Shuffle Network
Reduction Network

SIMD Reg File
L1 Memory
L2 Memory

Coprocessor
Compiler Opti.

Comparison summary of the architectural features of SODA and Ardbeg

L1
Program
Memory

Controller

W
B

W
B

W
B

W
B

E
X

Figure 1: SODA and Ardbeg architectural diagrams, and a summary of the key architectural features of the two designs.

erator dedicated to Turbo decoding. In comparison, in the
SODA system, Turbo decoding is allocated to one of the
four PEs. Both the Ardbeg and SODA PEs have three major
functional blocks: SIMD, scalar, and AGU.

The SODA and Ardbeg PEs both support 512-bit SIMD
operations. The SODA PE only supports 16-bit fixed point

operations, whereas the Ardbeg PE also supports 8-, 32-bit
fixed point, as well as 16-bit block floating point operations.
Support for 8-bit helped lower the power for many of the
W-CDMA kernels that only needed 8-bit precision. Legacy
wireless protocols like 802.11b have many kernels that
operate on 8-bit data and do not require the 16-bit precision

0

0.2

0.4

0.6

0.8

1

1.2

8 16 32 64

SIMD Width

N
or

m
al

iz
ed

 E
ne

rg
y

0

0.2

0.4

0.6

0.8

1

1.2

8 16 32 64

SIMD Width

N
or

m
al

iz
ed

 D
el

ay

a) Normalized Energy vs SIMD Width b) Normalized Delay vs SIMD Width c) Normalized Energy-Delay Product and Area vs SIMD Width

0

0.2

0.4

0.6

0.8

1

1.2

8 16 32 64

SIMD Width

E
ne

rg
y-

D
el

ay
 P

ro
du

ct

0

2

4

6

8

10

12

Ar
ea

Energy-Delay Area

Figure 2: Plots of normalized energy, delay, and energy-delay product versus area plots for different Ardbeg SIMD width configurations
running 3G wireless algorithms. The results are normalized to the 8-wide SIMD design.

that SODA supported. Support for 32-bit was added in order
to accommodate future algorithms which may require higher
precision.

One of the key differences between Ardbeg and SODA
is that the Ardbeg PE supports LIW execution on its SIMD
pipeline, allowing different SIMD units to execute in paral-
lel. In the SODA PE, only one SIMD operation can be issued
per cycle. Also, SODA’s SIMD permutation network is a
single stage, multi-cycle perfect shuffle network, whereas
Ardbeg’s SIMD permutation network is a modification of
a 7-stage, single-cycle Banyan network. Detailed analysis
of the Banyan network can be found in [6]. The shuffle
instructions that are used in Ardbeg are an extended set of
the ARM Neon permutation instructions. In terms of the
number of registers, the Ardbeg PE has additional SIMD
and scalar accumulators to hold the output of the multiplier.
Ardbeg has a 1-cycle multiplier, whereas SODA’s multiplier
requires 2 cycles.

The memory hierarchy in Ardbeg is similar to the Cell
processor [7] in that each PE has a local scratchpad memory
and PEs share a global memory, which are all explicitly
managed. The DMA can transfer data between each of
the PE’s local memories and also to and from the global
memory. A write buffer to memory is also added to Ardbeg.
Both Ardbeg’s local and global memories are larger than
SODA’s memories. In addition, instead of the separate scalar
and SIMD memories in SODA, Ardbeg has one unified local
scratchpad memory. Because many DSP algorithms don’t
have much scalar code, it is more efficient to share the
memory space between the SIMD and scalar datapath.

For system mapping in Ardbeg, the application is repre-
sented as a task graph and a set of filters (like StreamIt [8]).
The compiler performs coarse-grain software pipelining to
assign tasks to PEs and inserts DMA transfers to transfer
data between PEs. Streaming dataflow is explicit, so data
follows the task assignment and no special data partitioning
is required. Oversubscription of the PE’s local memory is
handled by spilling sections to the global memory. More
details about system mapping and scheduling can found
in [9].

3. Architectural Evolution: SODA to Ardbeg
3.1. Optimized Wide SIMD Design

Since the majority of the SDR algorithms operate on
wide vectors, SODA used a wide SIMD datapath, namely a
512-bit 32-lane SIMD datapath. Ardbeg has also adopted
the 512-bit SIMD datapath, and extended it to support

64-lane 8-bit and 16-lane 32-bit SIMD arithmetics. The
SIMD shuffle network (SSN) is redesigned to provide better
performance at lower power. With a target frequency of
350 MHz, implementing Ardbeg in 90nm also allows for
a single-cycle SIMD multiplication unit. The rest of this
section explains our rationale for these architectural design
decisions. For each of the studies, we synthesized in 90nm
the different sizes and configurations of the functional units
and calculated the number of cycles and energy to run the
kernels.

SIMD Width Analysis. The SODA architecture was
designed using a 180nm process technology. A 32-lane con-
figuration was found to be the most energy efficient SIMD
configuration. One of the first Ardbeg design considerations
is to determine if SODA’s proposed 32-lane SIMD is still the
best configuration in 90nm. In this study, we examine SIMD
configurations ranging from 8-lane to 64-lane. Figures 2a
and 2b show the normalized energy and delay for different
SIMD width Ardbeg processors synthesized for 350 MHz
in 90nm for various key SDR algorithms like FFT, FIR, W-
CDMA Searcher, and Viterbi. All values are normalized to
the 8-wide SIMD configuration.

The figures show that as SIMD width increases, both
delay and energy consumption decreases. The delay result is
expected as wider SIMD configurations can perform more
arithmetic operations per cycle. While power consumption
of a wider SIMD is greater, because wider SIMD takes fewer
cycles to perform the same number of arithmetic operations
and the control overhead per instruction is amortized across
the SIMD, the overall energy consumption is lower for
wide SIMD. Figure 2c shows the energy-delay product and
the area of these SIMD configurations. A 32-lane SIMD
configuration has better energy and performance results
compared to the 8-lane and 16-lane SIMD configurations. A
64-lane SIMD configuration has slightly better results than
the 32-lane SIMD configuration. If energy and delay are the
only determining factors, then implementing Ardbeg with
a 64-lane SIMD configuration is probably the best design
choice. However, in a commercial product, area is also a
major design factor. As SIMD width increases, area increases
at a higher rate than the decrease in either energy or delay.
Taking area into account, Ardbeg chose to keep SODA’s 32-
lane SIMD datapath configuration.

SIMD Permutation Support. It is common for DSP
algorithms to rearrange vector elements before computation.
One of the central challenges in designing a wide SIMD
architecture is the vector permutation support. A partially

16 wide Perfect
Shuffle+Exchange (SE)

16 wide Inverse Perfect
Shuffle+Exchange (ISE)

16 wide 1 stage iterative
SODA SSN with SE and ISE

Flip-flop 2-to-1 MUX

16 wide 4 stage Ardbeg SSN with
Banyan Network

16bit switch element

Figure 3: SIMD shuffle network for the SODA PE and the Ardbeg PE. For illustration clarity, these examples show 16-wide shuffle networks.
The SODA PE has a 32-wide 16-bit 1-stage iterative shuffle network, and the Ardbeg PE has a 128-lane 8-bit 7-stage Banyan shuffle network.

0

0.2

0.4

0.6

0.8

1

1.2

64pt FFT
Radix-2

2048pt FFT
Radix-2

64pt FFT
Radix-4

2048pt FFT
Radix-4

Viterbi K9

N
or

m
al

iz
ed

 E
ne

rg
y

32 Wide Perfect 64 Wide Perfect
64 Wide Banyan 64 Wide Crossbar

0

0.2

0.4

0.6

0.8

1

1.2

64pt FFT
Radix-2

2048pt FFT
Radix-2

64pt FFT
Radix-4

2048pt FFT
Radix-4

Viterbi K9
En

er
gy

-D
el

ay
 P

ro
du

ct

32 Wide Perfect 64 Wide Perfect
64 Wide Banyan 64 Wide Crossbar

a) Normalized energy for key SDR algorithms that use the shuffle
network running on Ardbeg for different shuffle network topologies

b) Normalized energy-delay product for key SDR algorithms that use the
shuffle network running Ardbeg for different shuffle network topologies

Figure 4: Normalized energy and energy-delay product for key SDR algorithms running on Ardbeg for different shuffle network topologies.

connected SIMD shuffle network (SSN) was employed in
SODA as shown in Figure 3. It is a 32-lane single stage
iterative shuffle network consisting of a perfect shuffle
and exchange (SE) pattern, an inverse perfect shuffle and
exchange (ISE), and a feedback path. Multi-stage networks
were considered, but in 180nm technology the delay for the
multi-stage network was more than one clock cycle running
at 400 MHz. In addition, there were concerns that the area
for a multi-stage network may be too large. Therefore, a
multi-cycle iterative shuffle network was chosen for SODA.
In designing Ardbeg’s shuffle network in 90nm, several
SIMD configurations and network topologies were revisited.
We first examined the performance and energy trade-offs
of a wider SSN. Figure 4a provides the normalized energy
of key SDR algorithms for 32-lane and 64-lane SODA
SSNs. The SIMD datapath is still 32-lane for both SSN
configurations. The 64-lane SSN operates on two 32-lane
SIMD vectors by reading from two SIMD register file ports.
Filter algorithms are excluded from this study because their
implementations do not use the SSN. Compared to the 32-
lane network, a 64-lane network consumes approximately
20% less energy across all benchmarks, despite the fact that
the 64-lane network consumes more power than the 32-
lane network. This is because these DSP algorithms operate
on long vectors, where the vector width is greater than
the SIMD width. Because many long vector permutations
require extra instructions to store intermediate permutation
results, the number of instructions required to perform long
vector permutations does not always scale linearly with the

width of the SSN. A smaller SSN requires more instructions
than a larger SSN, which results in more frequent SIMD
register file accesses and other execution overhead.

We then examined the performance and energy trade-offs
of different network topologies. In addition to the itera-
tive SE/ISE network, we also examined a 64-lane Banyan
network and full crossbar. The SE/ISE and the Banyan
networks are shown in Figure 3. The Banyan network
is a flattened 7-stage network that can perform 64-lane
16-bit vector permutations in a single cycle. Energy and
energy-delay products of these three networks are shown
in Figure 4. For radix-2 FFT, a 64-lane iterative SE/ISE
network is slightly better than a 64-lane Banyan network,
because there exists an implementation of this algorithm that
is optimized specifically for the SE/ISE network. However,
if an algorithm requires more complex permutation patterns,
such as the radix-4 FFT and Viterbi algorithms, the single-
cycle Banyan network has shorter delays than the multi-
cycle iterative shuffle network. Though the difference in
energy consumption between the iterative SE/ISE network
and 64-lane Banyan is not very large, Figure 4b shows
that the single-cycle Banyan network has better energy-
delay product than the iterative SE/ISE network. Overall, the
Banyan network performs as well as the full crossbar, and
with ∼17x area savings compared to the crossbar. Therefore,
Ardbeg’s SSN is implemented with the Banyan network. In
addition to supporting 16-bit permutations, Ardbeg’s Banyan
network can also support 32-lane 32-bit and 128-lane 8-bit
vector permutations.

of SIMD RF Ports RequiredArdbeg Function Units
1 read / 1 write
2 read / 1 write

2 read / No write (ACC RF)
2 read / 2 write
1 read / 1 write
1 read / 2 write

2 read / 1 write (Pred. RF)

Memory Load/Store
SIMD Arithmetic

SIMD Multiply
SIMD Shuffle

SIMD+Scalar Transfer Unit
ACC-to-SIMD Move
SIMD Comparison

Mem.
Arith.
Mult.

Shuffle
Trans.
Move

Comp.

Mem.
NA

High
High
Low
High
Low
Low

Arith.
--

NA
Mid
High
Mid
Low
Low

Mult.
--
--

NA
Mid
High
High
Low

Shuffle
--
--
--

NA
Mid
Low
Low

Trans.
--
--
--
--

NA
Low
Low

Move
--
--
--
--
--

NA
Low

Comp.
--
--
--
--
--
--

NA
b) Shaded box means Ardbeg can issue instructions on these two function units in
the same cycle. “High/Mid/Low” represent the relative usage frequency for each pair
of function units within wireless protocols.

a) This table lists the function units in Ardbeg, and the number of
SIMD register file ports required for each unit. At most two SIMD
operations can be issued every cycle.

c) Normalized delay for various key SDR kernels running on
Ardbeg with different VLIW configurations.

d) Normalized energy-delay product for various key SDR kernels
running on Ardbeg with different VLIW configurations

0

0.2

0.4

0.6

0.8

1

1.2

FIR CFIR FFT Rx2 FFT Rx4 Viterbi K7 Viterbi K9 Average

No
rm

al
iz

ed
 D

el
ay

2 Read/ 2 Write (Single Issue) 3 Read/ 2 Write (Ardbeg)
4 Read/ 4 Write (Any two SIMD ops) 6 Read/ 5 Write (Any three SIMD ops)

0

0.2

0.4

0.6

0.8

1

1.2

FIR CFIR FFT Rx2 FFT Rx4 Viterbi K7 Viterbi K9 Average

En
er

gy
-D

el
ay

 P
ro

du
ct

2 Read/ 2 Write (Single Issue) 3 Read/ 2 Write (Ardbeg)
4 Read/ 4 Write (Any two SIMD ops) 6 Read/ 5 Write (Any three SIMD ops)

Figure 5: Ardbeg VLIW support. The results are shown for software pipelined Ardbeg assembly code. Ardbeg has 7 different function units,
as listed in sub-figure a. These seven function units share 3 SIMD register file read and 2 write ports. At most two SIMD operations can be
issued per cycle, and not all combinations of SIMD operations are supported. Different LIW configurations are evaluated in terms of delay
and energy-delay product, as shown in sub-figures c and d.

Reduced Latency Functional Units. In SODA, the
180nm process technology put a constraint on the latency
of the functional units. Because SODA’s target frequency
was set to 400 MHz, the multiplier had to be designed with
a 2-cycle latency. For Ardbeg, the target frequency is set at
350 MHz due to the control latency for controlling the LIW
pipeline. With 90nm process technology, Ardbeg implements
power efficient multipliers with single cycle latency. Because
many DSP algorithms require a large number of multiplica-
tion operations, the single-cycle multiplication results in up
to 2x performance improvement (see Section 4).
3.2. LIW SIMD Execution

For W-CDMA and 802.11a, the SODA SIMD ALU unit is
utilized around 30% of the total time. The poor utilization is
mainly due to the fact that SODA’s SIMD datapath is shared
with the memory access unit and the SSN. Functional unit
under-utilization not only increases register file accesses but
also execution time. LIW execution on the SIMD pipeline
was considered for the SODA architecture to reduce these
problems, but was abandoned due to the concern about the
extra power and area costs of adding more SIMD register
file ports. In SODA, the SIMD register file was the largest
power consumer, accounting for approximately 30% of the
total power. When designing Ardbeg, we re-evaluated LIW
execution to decrease execution time and to reduce register
file power.

To determine the effectiveness of LIW, we analyzed
different kernels within the set of wireless protocols and
found how often functional units could be used in parallel.
There are 7 SIMD function units in Ardbeg’s SIMD datapath
as listed in Figure 5a, along with their register port require-
ments. The values listed in Figure 5b represent the frequency
that the functional units could execute instructions in paral-
lel. We can see that there are few instruction combinations

that occur in high frequency in the algorithms. This suggests
that we could implement a LIW and minimize the number of
register file ports to save power while increasing throughput.

We have studied the performance and energy efficiency
trade-offs for supporting various LIW configurations in
Ardbeg. We examined configurations with a different number
of SIMD register file read and write ports: single issue with 2
read and 2 write ports, restricted 2-issue LIW support with 3
read and 2 write ports, full 2-issue LIW support with 4 read
and 4 write ports, and full 3-issue LIW support with 6 read
and 5 write ports. The performance and energy efficiency
results of the synthesized implementations are shown in
Figures 5c and 5d. The performance is normalized to the
cycle count for a single issue Ardbeg. We found that LIW
support is beneficial for many key SDR algorithms. This
indicates that there is still instruction-level parallelism (ILP)
within SIMDized Ardbeg assembly code. However, we also
find that a 2-issue LIW configuration is enough to capture
the majority of the ILP, as a 2-issue configuration results in
a similar speedup as a 3-issue configuration. This is because
a significant portion of the parallelism is already exploited
through SIMD execution. Also, many SIMD operations can-
not execute in parallel simply because of data dependencies.

LIW execution is supported in Ardbeg, but with restric-
tions on the combinations of instructions that can be issued
in a cycle. This results in slower speedup than a full 2-
issue LIW, but provides better energy-delay product due to
a lesser number of SIMD register file ports. The set of
valid Ardbeg LIW instruction combinations are shown in
Figure 5b as shaded boxes. Among these LIW combinations,
overlapping memory accesses with SIMD computation is the
most beneficial because most DSP algorithms are stream-
ing. The SIMD arithmetic/multiplication and SIMD-scalar
transfer combination is the most beneficial for filter-based
algorithms. And, the SIMD multiply and move combination

is the most beneficial for FFT-based algorithms. The respon-
sibility is left to the compiler to produce valid instruction
schedules that can utilize this capability. Overall, Ardbeg’s
SIMD datapath can achieve an average of 60% SIMD ALU
utilization with restricted LIW execution.
3.3. Application Specific Hardware Acceleration

Designing an application specific processor for SDR is a
balancing act between programmability and performance. A
processor must be flexible enough to support a multitude of
wireless protocols. However, too much flexibility results in
an inefficient architecture that is unable to meet the stringent
performance and power requirements. SODA was designed
to meet the throughput requirements of 3G wireless proto-
cols, such as W-CDMA and 802.11a. In addition to these
3G protocols, Ardbeg was designed with future wireless
protocols in mind. Hardware accelerators were added in
Ardbeg to increase computational and energy efficiency.
3.3.1. Turbo Coprocessor

Turbo decoding is one of the error correction algorithms
used in the W-CDMA wireless protocol for the 2 Mbps
data communication channel. It is the most computationally
intensive algorithm in W-CDMA. In addition, it is the
most difficult algorithm to vectorize. Unlike the wide vector
arithmetics of other SDR algorithms, Turbo decoder operates
on narrow 8-wide vectors. Parallelization techniques can be
applied to utilize the 32-lane SIMD datapath by processing
four 8-wide vectors concurrently [10]. However, this requires
concurrent memory accesses for the 4 vectors. Because
the SODA and Ardbeg PEs only have one memory port,
serialized memory accesses become the bottleneck of the
algorithm. Software pipelining cannot help, because the
main loop in the decoder has data dependencies between
consecutive loop iterations. The combination of these factors
makes Turbo decoder the slowest algorithm on the SODA
and Ardbeg PEs. The SODA and Ardbeg PEs can sustain
50-400 Mbps of data throughput for various FIR and FFT
algorithms, but only 2 Mbps for Turbo decoder. The SODA
PE was targeted at 400 MHz because of the computational
requirements of the Turbo decoder. Offloading the Turbo
decoder to a coprocessor allows the Ardbeg PE to lower the
target frequency to 350 MHz.

Because of the high computational requirements, one
SODA PE is dedicated solely for Turbo decoding, account-
ing for roughly 25% of the total power consumption. In
a 90nm implementation, a SODA PE would be able to
maintain 2 Mbps while consuming an estimated power of
111mW. In contrast, in 130nm, an ASIC Turbo decoder is
able to support 13.44 Mbps while consuming 262 mW [11].
In 90nm technology, this roughly translates to 21 mW for
sustaining 2 Mbps throughput. Therefore, in the case of
Turbo decoder, the cost of programmability is approximately
5x in terms of power consumption. Furthermore, since 2
Mbps is the maximum throughput for a SODA PE running
at 400 MHz, higher decoding throughput, as required by
future protocols, would require either higher frequencies
or multiple PEs. Both these considerations led Ardbeg to
offload Turbo decoding on a coprocessor. Other DSP systems
aimed at wireless communications, such as the Phillips’
EVP [12], have also taken a similar approach.

SIMD operand vIn0SIMD operand vIn1

result vector vRes

op: vpadd_s16 vRes,vIn0,vIn1, #1

i3 i2 i1 i0i31 i30 i29 i28j3 j2 j1 j0j31 j30 j29 j28

r1 r0r15 r14r17 r16r31 r30

SIMD shuffle
SIMD add

Figure 6: Ardbeg’s pair-wise butterfly SIMD operation imple-
mented using a fused permute and ALU operation. The figure
shows pairs of a 2-element butterfly operation. Ardbeg supports
pairs of 1-,2-,4-,8-,and 16-element butterfly of 8- and 16-bits. This
butterfly operation uses the inverse perfect shuffle pattern because
the input to each SIMD ALU lane must come from the same SIMD
lane.

3.3.2. Application Specific Instruction Set Extensions
Many wireless protocols can share the same error correc-

tion ASIC accelerator, but the approach of using more ASIC
accelerators is not viable due to the inherent differences in
the protocols. However, while the algorithms are different,
they share many commonalities within their basic computa-
tional blocks. This allows us to increase computational effi-
ciency by adding re-usable algorithm-specific instructions.

Block Floating Point Support. Large point FFTs are
used in many wireless protocols. Even though the input
and output data are 16-bit numbers, the intermediate results
often require higher precision. Block floating point (BFP)
provides near floating point precision without its high power
and area costs. In floating point, each number has its own
mantissa and the exponent. In BFP, each number has its
own mantissa, but the exponent is shared between a block
of numbers. BFP is commonly used in ASIC design, but very
few programmable processors have provided direct hardware
support. A key operation in BFP is finding the maximum
value among a block of numbers. Most DSP processors
support this operation in software. However, for the 32-lane
Ardbeg SIMD datapath, this is inefficient, as all lane values
must be compared. In Ardbeg, BFP is supported through
special hardware that finds the maximum value in a 32-
lane 16-bit vector. Each instruction that supports BFP has
special flags which, when enabled, automatically perform
value tracking and store the result in a special register. BFP
support allows the Ardbeg PE to operate in the 16-bit SIMD
datapath mode for FFT computations, instead of the 32-
bit SIMD datapath mode that would have been required to
satisfy precision requirements. Though FFT is where BFP is
currently used, any algorithm that requires higher precision
can utilize the BFP instruction extensions.

Fused Permute-and-ALU Operations. It is common in
DSP algorithms to permute the vectors before performing
arithmetic operations. An example is the butterfly operation
in FFT, where vectors are first shuffled in a butterfly pattern
before vector adds and subtracts are performed. In an earlier
design of the SODA PE, the SSN was placed in front of the
SIMD ALU, so that permute-and-arithmetic operations could
be performed in one instruction. However, arithmetic oper-
ations that do not require permutations always go through
the SSN, increasing the number of pipeline stages and power
consumption. So in the final SODA PE design, the SSN was
taken out of the arithmetic pipeline, and placed as a separate
unit, as shown in Figure 1. To support the permute-and-

b8 b7 b6 b5 b4 b3 b2 b1 a8 a7 a6 a5 a4 a3 a2 a1

b5 b4 b3 b2 b1 a8 a7 a6 a5 a4 a3 a2 a1 b8 b7 b6

rotate(3)

b8 b7 b6 b5 b4 b3 b2 b1 a8 a7 a6 a5 a4 a3 a2 a1

b8 a8 b7 a7 b6 a6 b5 a5 b4 a4 b3 a3 b2 a2 b1 a1

zip(1) -- inverse perfect shuffle

b8 b7 b6 b5 b4 b3 b2 b1 a8 a7 a6 a5 a4 a3 a2 a1

b7 b8 b5 b6 b3 b4 b1 b2 a7 a8 a5 a6 a3 a4 a1 a2

transpose(1)

b8 b7 b6 b5 b4 b3 b2 b1 a8 a7 a6 a5 a4 a3 a2 a1

b3 b2 b1 a8 a7 a6 a5 a4

extract(3)

Figure 7: SSN shuffling patterns used for matrix transpose.

arithmetic operations, a separate permutation operation was
needed. The result of this permutation operation is written
back to the SIMD register file, only to be read out in the
next cycle for the arithmetic operation, thereby increasing
register file access power in SODA.

The Ardbeg PE addresses this problem by including two
shuffle networks. The 128-lane SSN is a separate unit that
can support many different permutation patterns. In addition,
a smaller 1024-bit 1-stage shuffle network is included in the
same pipeline stage in front of the SIMD ALU. This 1-stage
shuffle network only supports inverse perfect shuffle patterns
between different groups of lanes. This shuffle pattern im-
plements the various pair-wise butterfly operations shown
in Figure 6. In the figure, the shuffle and add operations
are performed in the same cycle. This shuffle network is
used to accelerate FFT and various other algorithms that
use butterfly-and-addition operations. Because these fused
butterfly operations are the majority of the permute-and-
arithmetic patterns, Ardbeg is able to benefit from the best of
both designs. A 2048-Point FFT is able to gain 25% speedup
using fused butterfly operations.

SIMD Support for Interleaving. Interleavers are com-
mon in wireless protocols. They are used to protect the
transmission against burst errors by rearranging the data
sequence. Unlike most other DSP algorithms, there is no
data processing or computations involved in interleaving;
interleavers simply rearrange the data sequence in different
patterns to account for varying types of transmission envi-
ronments.

Interleaving is essentially a long vector permutation oper-
ation, where the vector width is far greater than the SIMD
width. This is a challenge because the SODA and Ardbeg
SSNs can only permute vector patterns of SIMD width. If
we let N be the size of the vector, then a general purpose
permutation algorithm would take O(N) time. However, for
certain permutation patterns, different types of SIMD shuffle
patterns can be utilized to reduce the permutation latency. As
mentioned in Section 3.1, the Ardbeg SSN supports a set of
predefined permutation patterns for efficient implementation

of certain interleaving patterns. For example, one commonly
used pattern is the matrix transpose operation, where the
input vector is organized as an M×N matrix, and the output
vector is transposed into an N ×M matrix. A O(log(N))
algorithm exists that uses the zip, transpose, extract, and ro-
tate shuffling patterns [13] as shown in Figure 7. Using these
predefined patterns, a 192 element vector can be transposed
in just 37 cycles. This translates to an average speedup of 4x
for interleaving kernels for Ardbeg in comparison to SODA.

4. Results and Analysis
For the overall protocol performance evaluations, we have

implemented three different wireless communication proto-
cols that represent a wide spectrum of wireless communica-
tion applications. These are W-CDMA [14], 802.11a [15],
and DVB-T/H [16][17]. W-CDMA is a widely used 3G cel-
lular protocol. 802.11a is chosen to represent the workload
of a typical Wi-Fi wireless protocol. DVB-H (Digital Video
Broadcasting - Handheld) is a standard used for digital tele-
vision broadcasting for handheld receivers and DVB-T (DVB
- Terrestial) is used for stationary receivers. Beyond 3G,
many of the protocols are OFDM based such as WiMAX. We
analyzed DVB-H and 802.11a as representatives of OFDM-
based systems. These protocols are chosen to stress the
flexibility of the SODA and Ardbeg systems. Both SODA
and Ardbeg are able to support real-time computations for
these protocols.

The characteristics of these three protocols are listed in
Figure 8. These protocols consist of the following four major
algorithm categories: filtering, modulation, synchronization,
and error correction. Filtering is used to suppress signals
transmitted outside of the allowed frequency band so that
interference with other frequency bands is minimized. Mod-
ulation algorithms translate digital signals into analog wave
patterns consisting of orthogonal signals. Synchronization
algorithms synchronize the two communicating terminals
to ensure lock-step communication between the sender and
receiver. Error correction algorithms are used to recover data
from noisy communication channels.

The RTL Verilog model of the SODA processor was syn-
thesized in TSMC 180nm technology. The estimated power
and area results for 90nm technology were calculated using
a quadratic scaling factor based on Predictive Technology
Model [18]. The Ardbeg processor was developed as part
of the OptimoDE framework [4]. The architectural model
was written in OptimoDE’s hardware description language.
A Verilog RTL model, a cycle-accurate simulator, and a
compiler are generated by OptimoDE. The Ardbeg processor
was synthesized in TSMC 90nm using Synopsys physical
compiler to place and Cadence Encounter to route with clock
tree insertion. Ardbeg’s PE area is 75% larger than SODA’s
estimated 90nm PE area. The total system area is comparable
between the two systems because SODA contains 4 PEs
compared to 2 PEs in Ardbeg. Ardbeg was targeted for 350
MHz, while SODA for 400 MHz.
4.1. Wireless Protocol Results

Evaluation results show that an Ardbeg multicore system
synthesized in 90nm technology is able to support 3G wire-
less processing within the 500 mW power budget of a mobile
device [19]. Figure 9 shows the power consumption re-

Throughput

Filtering

Modulation

Synchronization

Error Correction

W-CDMA
Voice: 12Kbps

Data: 384Kbps/2Mbps

Complex FIR 65-taps
Scrambler/Descrambler
Spreader/Despreader

Combiner

Searcher

Interleaver
Viterbi K=9

Turbo Decoder K=4

802.11a

24Mbps, 54Mbps

FIR 33-taps

FFT/IFFT 64 points
QAM/IQAM 64 points

Interpolator

Interleaver
Viterbi K=7

DVB-T, DVB-H

5Mbps, 15Mbps

FIR 16-taps
FFT 2048 points

Scrambler/Descrambler
QAM/IQAM 4/16/64 points

Equalizer
Channel Est.

Bit Interleaver
Viterbi K=7

Figure 8: DSP algorithms that are used in W-CDMA, 802.11a and DVB, DVB-H wireless protocols.

W-CDMA 2Mbps

DVB-H

DVB-T

802.11a

W-CDMA data

W-CDMA voice

802.11a 180nm 802.11a

W-CDMA 2Mbps
180nm W-CDMA 2Mbps

802.11a

W-CDMA 2Mbps

W-CDMA data

W-CDMA voice

W-CDMA data

802.11a

W-CDMA 2Mbps

0.01

0.1

1

10

100

0.01 0.1 1 10 100 1000

Power (Watts)

A
ch

ie
ve

d
Th

ro
ug

hp
ut

 (M
bp

s)

Ardbeg
SODA
ASIC
Sandblaster
TigerSHARC
7 Pentium M

Figure 9: Throughput and power achieved for SODA and Ardbeg for W-CDMA, 802.11a and DVB-T/H. ASIC 802.11a, Pentium M,
Sandblaster, and ADI TigerSharc results are also included for comparison purposes. Results are shown for processors implemented in 90nm,
unless stated otherwise.

quired to achieve the throughput requirement of W-CDMA,
802.11a, and DVB-T/H. The graph includes the numbers
for the SODA and Ardbeg systems, as well as an ASIC
implementation for 802.11a [20], Sandbridge’s Sandblaster,
Analog Devices TigerSHARC, and Pentium M implemen-
tations. Data for the other processors was estimated using
datasheets and publications. General purpose processors,
such as Pentium M, require a power consumption two orders
of magnitude greater than the 500 mW power budget. On
the other end of the spectrum, an ASIC solution is still
5x more power efficient than any SDR solution. Overall,
Ardbeg is more power efficient than SODA for all three
wireless protocols. Because Ardbeg is designed to handle
high-throughput wireless protocols, its performance for low-
throughput W-CDMA voice channels is not as efficient.
This is because the available vector parallelism is lower
and the processing power of Ardbeg is not fully utilized. In
these cases, the scalar datapath in Ardbeg would be utilized
more frequently to save power. Both SODA and Ardbeg
are very competitive compared to other SDR processors,
including Sandbridge’s Sandblaster and Analog Devices’
TigerSHARC. The major sources of Ardbeg’s efficiency are:
the restricted LIW execution, application specific instruction
set extensions, and larger shuffle network.

4.2. Wireless Algorithm Analysis
In this section, we present a performance analysis of the

key DSP algorithms in each of the four algorithm categories.
Details of the kernels can be found in [2]. The speedups are
consolidated in Figure 10. The speedup analysis is further
broken up into the Ardbeg architectural improvements that
were highlighted in the Section 3. These improvements
include: optimized SIMD ALU, wider single cycle SSN, and
LIW execution. The OptimoDE framework used to design
Ardbeg generates a compiler that performs optimizations like
software pipelining and other compiler optimizations which
we also report.

Filtering. Finite Impulse Response (FIR) filters are widely
used in wireless communication protocols. Both the SODA
and Ardbeg PEs can support the computation requirements
of filters for real-time 3G wireless protocol processing.
Figure 10 shows the Ardbeg PEs speedup over the SODA
PE for various filter configurations. On average, Ardbeg
achieved a 3.4x speedup over SODA.

Multiply-and-accumulate (MAC) operations are the cen-
tral arithmetic operation for filtering. For complex filter
arithmetics, multiplications are even more important as every
complex multiplication requires four MAC operations. The
SODA PE has a two cycle multiplier, whereas the Ardbeg

0
0.5

1
1.5

2
2.5

3
3.5

4
4.5

FIR
 16

-ta
ps

FIR
 33

-ta
ps

FIR
 65

-ta
ps

CFIR
 16

-ta
ps

CFIR
 33

-ta
ps

CFIR
 65

-ta
ps

Ave
rag

e

FFT
 R

x2
 64

pt

FFT
 R

x2
 20

48
pt

FFT
 R

x4
 64

pt

FFT
 R

x4
 20

48
pt

QAM4

QAM16

QAM64

Des
pr

ea
der

Des
cra

mbler

Combine
r

Ave
rag

e

W-C
DMA Sea

rch
er

80
2.1

1a
 In

ter
pola

tor

DVB-T Equa
liz

er

DVB-T C
ha

n. E
st.

Ave
rag

e

Vite
rb

i K
7

Vite
rb

i K
9

Bit I
ntlv

 3

Bit I
ntlv

 6

Int
erl

ea
ve

r

Ave
rag

eA
rd

be
g

Sp
ee

du
p

O
ve

r S
O

D
A Baseline SODA SIMD ALU SIMD Shuffle VLIW Compiler Optimization

Filtering Modulation Synchronization
Error

Correction7x

Figure 10: Ardbeg speedup over SODA for the key DSP algorithms used in our wireless protocol benchmarks. The speedup is broken down
into the different architectural optimizations. These include optimized SIMD ALU, wider 1-cycle SIMD shuffle network, reduced SIMD
memory latencies through LIW execution, and compiler optimizations with software pipelining.

PE has a single cycle multiplier. A significant portion of
Ardbeg’s speedup is due to the faster multiplier.

In this analysis, both SODA and Ardbeg implement a
vectorized version that requires one 64-wide SIMD vector
permutation operation for processing each sample point. The
SODA PE only has a 32-wide SIMD permutation network,
compared to Ardbeg’s 64-wide network. The permutation
operation takes 3 cycles on SODA, but only one cycle on
Ardbeg. Because memory is accessed for each sample, LIW
support on the Ardbeg PE is able to hide the multi-cycle
memory latencies. Finally, software pipelining and other
compiler optimizations help better utilize Ardbeg’s LIW
datapath.

Modulation. Fast Fourier Transform (FFT) is widely used
in OFDM protocols like 802.11a/g and DVB-T. Figure 10
shows the Ardbeg PE speedup over the SODA PE for various
FFT configurations. On average, Ardbeg achieves a 2.5x
speedup over SODA. Like the filters, there is about a 50%
speedup attributed to single cycle multiplies. This speedup
is less for a Radix-4 implementation because multiplica-
tions are reduced by 25%. Another 50-100% speedup is
attributed to the fused operations. The butterfly operation
is implemented efficiently by fusing multiplication with add
or subtract operations. Another benefit is that Ardbeg allows
specialized shuffle operations, followed by ALU operations
to be computed in one cycle. Finally, the LIW scheduling
provides the remaining speedup. Ardbeg can overlap the
memory loads of the next butterfly with the current but-
terfly’s shuffle operation.

Modulation in W-CDMA consists of three kernels: de-
scrambler, despreader, and combiner. The despreader gains
significant speedup (almost half) by utilizing Ardbeg’s wide
shuffle network. The descrambler implementation on Ardbeg
is a direct translation of the SODA version. Ardbeg gains,
because in every cycle, it can overlap the memory and
ALU operations. The combiner, like the despreader and
descrambler, benefits from the LIW scheduling as well as
the one cycle multiplication. All three kernels benefit greatly
from LIW scheduling because each iteration of the inner-
loop is small and independent. This allows the overlap
of memory loads and stores, shuffle operations, and ALU
operations in the same cycle.

Synchronization. Synchronization in W-CDMA is ac-

complished by the searcher, which achieves almost 1.5x
speedup on Ardbeg. The gain in performance is due to
Ardbeg’s pipelined memories and LIW scheduling. However,
these gains are offset by performance loss due to its SIMD
predicate support. The number of instructions needed to
calculate the predicate values on the Ardbeg PE is 4 cycles,
whereas the SODA PE can perform the same task in 2
cycles. This is because SODA’s predicate values are stored
in the SIMD register file, whereas Ardbeg’s predicate values
are stored in a dedicated register file. Although Ardbeg’s
dedicated register file is able to compute different predicate
patterns more quickly, it takes longer to load the predicate
values into the SIMD datapath. Because all of searcher’s
predicate patterns can be pre-computed, SODA’s faster pred-
icate read latency proves to be more beneficial. This accounts
for a 20% performance difference. The major benefit of
Ardbeg’s LIW scheduling is hiding the memory’s multi-
cycle access latencies. Because half of every loop iteration
can be overlapped, the Ardbeg searcher still results in almost
2X speedup despite its inefficient predication support.

802.11a interpolator, DVB-T equalizer, and DVB-T chan-
nel estimation are all similar to the FIR operations, and
their speedup rationales are similar to those of the FIR. The
only difference is that these algorithms have intra-iteration
data dependencies that cannot exploit the LIW datapath.
Software pipelining is beneficial by scheduling different loop
iterations onto the LIW datapath.

Error Correction. There are two commonly used error
correction algorithms in wireless communication – Viterbi
and Turbo decoding. As mentioned in the previous section,
the Turbo decoder in Ardbeg is offloaded to an accelera-
tor. However, the Viterbi decoder is still implemented by
the Ardbeg PE. As shown in Figure 10, Ardbeg’s Viterbi
implementation has a speedup of only 1.2x to 1.6x com-
pared to SODA. The small speedup is because the Viterbi
computation does not have multiplication operations, so the
optimized SIMD ALU does not help. In addition, there are
data dependencies between consecutive loop iterations, so
software pipelining techniques do not help. The majority of
the speedup comes from hiding the memory access latency
through LIW execution on the SIMD pipeline.

Interleavers are widely used in many wireless protocols.
As mentioned in the last section, a few SIMD shuffle

patterns are added to accelerate these algorithms. As shown
in Figure 10, the Ardbeg interleaver implementations gain
a significant speedup, up to 7x speedup over SODA. The
speedup is solely due to the Ardbeg’s SSN. Because the
majority of the interleaver instructions are SIMD permu-
tation operations, Ardbeg’s single cycle 64-wide SSN has
a significant advantage over SODA’s multi-cycle 32-wide
SSN.

5. Wireless Baseband Processor Survey
There has been tremendous industrial interest in SDR,

resulting in a wide range of proposed architectural solutions
from many leading semiconductor companies. The proposed
SDR solutions can be categorized into two different design
philosophies – SIMD-based and reconfigurable architectures,
as explained in [21]. SIMD-based architectures usually
consist of one or few high-performance DSP processors.
The processors are usually connected together through a
shared bus, and managed through a general purpose con-
trol processor. Some SIMD-based architectures also have a
shared global memory connected to the bus. Both Ardbeg
and SODA fall under the SIMD-based architecture category.
Reconfigurable architectures are usually made up of many
simpler PEs. Depending on the particular design, these PEs
range from the fine-grain ALU units to the coarse-grain
ASICs. The PEs are usually connected together through a
reconfigurable fabric. The rest of this section will present
existing design solutions in these two categories.

SIMD-based SDR Architecture. In addition to Ardbeg
and SODA, there are several other SIMD-based SDR ar-
chitectures. These include Infineon’s MuSIC [22], Analog
Device’s TigerSHARC [23], Icera’s DXP [24], Phillips’s
EVP [12], and Sandbridge’s Sandblaster [25]. A comparison
between these architectures, SODA, and Ardbeg is shown
in Figure 11. These are all embedded systems that consist
of 1 to 8 high performance DSP processors. Because data
are accessed in a regular pattern, all of the processors
use software-managed scratchpad data memories instead
of caches to reduce power. Even though most of these
processors are designed in 90nm technology, they operate at
relatively low frequencies to reduce power. The exception
is the Icera DXP, which implements a deeply pipelined
high frequency design. Its SIMD ALUs are chained so that
a sequence of vector arithmetic operations are performed
before the data are written back to the register file. This has
the advantage of saving register file access power at the cost
of a less flexible SIMD datapath.

Most SIMD-based SDR processors support VLIW execu-
tion by allowing concurrent memory and SIMD arithmetic
operations. Analog Device’s TigerSHARC goes one step
further, and provides concurrent SIMD arithmetic operations
by having two 4-lane SIMD ALU units that are controlled
with two instructions. With 32 lanes, Ardbeg and SODA
have the widest SIMD design. Wider SIMD datapaths have
higher power efficiency, but also require higher levels of
vector parallelism within the software applications. Because
the majority of SDR’s computation are on wide vector
arithmetics, the 32-lane SIMD can be utilized fairly well. In
addition, Ardbeg’s execution stage is optimized so that any
arithmetic operation can finish in one cycle. As we showed
in the algorithm analysis, having single cycle ALU pro-

vides significant speedup for SDR algorithms. And finally,
like Ardbeg, some other commercial solutions also chose
to incorporate accelerators for error correction algorithms,
including Viterbi and Turbo decoders.

Reconfigurable SDR Architecture. Wireless protocols
can be broken down into key computational patterns, which
can be as fine-grained as a sequence of arithmetic operations,
or as coarse-grained as DSP kernels. There have been
numerous SDR solutions based on fine-grained computation
fabrics. Examples of such solutions include picoArray [26],
and the XiSystem’s XiRisc [27]. The XiRisc, also includes a
scalar/VLIW processor, with the reconfigurable logic acting
as an accelerator. One of the major drawbacks of this
approach is the high communication cost of data shuf-
fling within the computation fabrics. The coarse-grained
reconfigurable architectures contain a system of heteroge-
neous coarse-grained PEs, with each type of PE tailored
to a specific DSP algorithm group. Examples include Intel
RCA [28], QuickSilver [29] and IMEC ADRES [30]. Both
RCA and QuickSilver have 3 or 4 different types of PEs,
ranging from simple scalar processors to application specific
instruction processors to serve as Viterbi and Turbo accel-
erators. These heterogeneous SDR systems provide a trade-
off between overall system flexibility and individual kernel
computational efficiency. Different wireless protocols require
very different types of DSP algorithms and a heterogeneous
system is more-likely to under-utilize its hardware, resulting
in less efficient overall system operation.

6. Conclusion
Software defined radio promises to revolutionize the

wireless communication industry by delivering a low-cost
multi-mode baseband processing solution. Previous work has
proposed SODA, a multi-core wide SIMD DSP architecture.
Ardbeg is a commercial prototype based on SODA designed
by ARM Ltd. Aspects of the SODA design are kept intact,
such as the wide 512-bit SIMD datapath and the coupled
scalar and SIMD datapath. Application-specific design trade-
offs are made to achieve higher computational efficiency
while maintaining enough flexibility to support multiple
protocols. The evolution of SODA to Ardbeg happened due
to optimization in three main areas: wide SIMD design, LIW
support for wide SIMD, and algorithm specific hardware
acceleration. The results show that Ardbeg’s architectural
optimizations achieve between 1.5-7x speedup over SODA
across multiple wireless algorithms.

Acknowledgment
We thank the anonymous referees for their useful com-

ments and suggestions. This research was supported by
ARM Ltd. and the National Science Foundation under
grants CSR-EHS 0615261, CSR-EHS 0615135, and CCR-
0325761.

References
[1] Samsung, NXP, and T3G Showcase World’s First

TD-SCDMA HSDPA/GSM Multi-mode Mobile Phone,
NXP Semiconductors, Nov. 2007. [Online]. Available:
http://www.nxp.com/news/content/file 1377.html

[2] H. Lee, Y. Lin, Y. Harel, M. Woh, S. Mahlke, T. Mudge, and
K. Flautner, “Software defined radio - a high performance
embedded challenge,” in HiPEAC. Volume 3793 of Lecture

DSPs
PE frequency in MHz
16-bit SIMD lanes

VLIW support on SIMD
Max # of EX stages

Scalar datapath
Hardware coprocessor

Scratchpad memory
Shared global memory

2
350
32

restricted
1

yes
yes
yes
yes

4
400
32
no
2

yes
no
yes
yes

4
300

4
yes
4

no
yes
yes
yes

8
250
2x4
yes
2

no
no
yes
no

–*
1000

4
yes
20
no
no
yes
–*

1
300
16

yes
–*
yes
yes
yes
no

4
600

4
yes
4

yes
no
yes
no

ARM
Ardbeg SODA Infineon

MuSIC
ADI

TigerSHARC
Icera
DXP

Phillips
EVP

Sandbridge
Sandblaster

Figure 11: Architectural comparison summary between proposed SIMD-based SDR processors. *For the Icera DXP and the Phillips EVP,
some of the architectural details are not released to the public at this time.

Notes in Computer Science. Springer, Nov 2005, pp. 6–26.
[3] Y. Lin, H. Lee, M. Woh, Y. Harel, S. Mahlke, T. Mudge,

and C. Chakrabarti, “Soda: A low-power architecture for
software radio,” in In Proc. of the 33rd Annual International
Symposium on Computer Architecture, 2006, pp. 89–101.

[4] N. Clark et al., “OptimoDE: Programmable Accelerator En-
gines Through Retargetable Customization,” in Proc. Hot
Chips 6, ”Aug.” 2004.

[5] ARM Neon Technology, ARM Ltd., Sep. 2004. [Online].
Available: http://www.arm.com/products/CPUs/NEON.html

[6] L. R. Goke and G. J. Lipovski, “Banyan networks for parti-
tioning multiprocessor systems,” in ISCA ’73: Proceedings of
the 1st annual symposium on Computer architecture. New
York, NY, USA: ACM, 1973, pp. 21–28.

[7] P. H. Hofstee, “All About the Cell Processor,” in IEEE Sym-
posium on Low-Power and High-Speed Chips(COOL Chips
VIII), April 2005.

[8] B. Thies, M. Karczmarek, and S. Amarasinghe, “Streamit:
A language for streaming applications,” in In Proceedings of
the International Conference on Compiler Construction, June
2002, pp. 179–196.

[9] M. Kudlur and S. Mahlke, “Orchestrating the execution
of stream programs on multicore platforms,” in PLDI ’08:
Proceedings of the 2008 ACM SIGPLAN conference on Pro-
gramming language design and implementation. New York,
NY, USA: ACM, 2008, pp. 114–124.

[10] Y. Lin, S. Mahlke, T. Mudge, C. Chakrabarti, A. Reid, and
K. Flautner, “Design and implementation of turbo decoders
for software defined radio,” Oct. 2006, pp. 22–27.

[11] M. Schneider, H. Blume, and T. G. Noll, “Power estimation
on functional level for programmable processors,” vol. 2,
2004, pp. 215–219. [Online]. Available: http://www.adv-
radio-sci.net/2/215/2004/

[12] K. van Berkel, F. Heinle, P. P. E. Meuwissen, K. Moerman,
and M. Weiss, “Vector processing as an enabler for software-
defined radio in handheld devices,” EURASIP J. Appl. Signal
Process., vol. 2005, no. 1, pp. 2613–2625, 2005.

[13] RealView Compilation Tools Assembler Guide,
ARM Ltd., Mar. 2007. [Online]. Available:
http://infocenter.arm.com/help/topic/com.arm.doc.dui0204h/

[14] H. Holma and A. Toskala, WCDMA for UMTS: Radio Access
For Third Generation Mobile Communications. New York,
New York: John Wiley and Sons, LTD, 2001.

[15] Wireless LAN Medium Access Control (MAC) and Physical
Layer (PHY) Specifications: High-Speed Physical Layer in
the 5 GHz Band, IEEE Standard 802.11a-1999, Part 11, 1999.

[16] Digital Video Broadcasting(DVB); Implementation guidelines
for DVB terrestrial services; Transmission aspects, ETSI TR
101 190 V1.2.1, Apr. 2004.

[17] Digital Video Broadcasting(DVB); Transmission System for

Handheld Terminals(DVB-H), ETSI EN 302 304 V1.1.1, Nov.
2004.

[18] Predictive Technology Model. [Online]. Available:
http://www.eas.asu.edu/ ptm/

[19] Y. Neuvo, “Cellular phones as embedded systems,” Feb. 2004,
pp. 32–37 Vol.1.

[20] P. Ryan, T. Arivoli, L. De Souza, G. Foyster, R. Keaney,
T. McDermott, A. Moini, S. Al-Sarawi, L. Parker, G. Smith,
N. Weste, and G. Zyner, “A single chip phy cofdm modem for
ieee 802.11a with integrated adcs and dacs,” Solid-State Cir-
cuits Conference, 2001. Digest of Technical Papers. ISSCC.
2001 IEEE International, pp. 338–339, 463, 2001.

[21] U. Ramacher, “Software-Defined Radio Prospects for Mul-
tistandard Mobile Phones,” Computer, vol. 40, no. 10, pp.
62–69, 2007.

[22] H.-M. Bluethgen, C. Grassmann, W. Raab, and U. Ramacher,
“A programmable platform for software-defined radio,” Nov.
2003, pp. 15–.

[23] J. Fridman and Z. Greenfield, “The TigerSharc DSP architec-
ture,” in IEEE Micro, Jan. 2000, pp. 66–76.

[24] S. Knowles, The SoC Future is Soft,
IEE Cambridge Branch Seminar 2005,
Dec. 2005. [Online]. Available: http://www.iee-
cambridge.org.uk/arc/seminar05/slides/SimonKnowles.pdf

[25] J. Glossner, E. Hokenek, and M. Moudgill, “The Sandbridge
Sandblaster Communications Processor,” in 3rd Workshop on
Application Specific Processors, Sept. 2004, pp. 53–58.

[26] R. Baines and D. Pulley, “Software defined baseband pro-
cessing for 3G base stations,” in 4th International Conference
on 3G Mobile Communication Technologies (Conf. Publ. No.
494), June 2003, pp. 123–127.

[27] A. Lodi et al., “XiSystem: A XiRisc-Based SoC With Recon-
figurable IO Module,” in IEEE Journal of Solid-State Circuits,
vol. 41, No. 1, Jan. 2006, pp. 85–96.

[28] I. Chen, A. Chun, E. Tsui, H. Honary, and V. Tsai, “Overview
of Intel’s Reconfigurable Communication Architecture,” in
3rd Workshop on Application Specific Processors, Sept. 2004,
pp. 95–102.

[29] B. Plunkett and J. Watson, Adapt2400 ACM Architecture
Overview, Quicksilver Technology, Jan. 2004. [Online].
Available: http://www.qstech.com

[30] B. Mei, S. Vernalde, D. Verkest, H. D. Man, and R. Lauw-
ereins, “ADRES: An architecture with tightly coupled VLIW
processor and coarse-grained reconfigurable matrix.” in Pro-
ceedings of the Conference on Field Programmable Logic,
vol. 2778. Springer, 2003, pp. 61–70.

