
AnySP: Anytime Anywhere Anyway Signal Processing

Mark Woh1, Sangwon Seo1, Scott Mahlke1, Trevor Mudge1, Chaitali Chakrabarti2
and Krisztian Flautner3

1Advanced Computer Architecture Laboratory 2Department of Electrical Engineering
University of Michigan, Ann Arbor, MI Arizona State University, Tempe, AZ

{mwoh,swseo,mahlke,tnm}@umich.edu chaitali@asu.edu
3ARM, Ltd.

Cambridge, United Kingdom
krisztian.flautner@arm.com

ABSTRACT
In the past decade, the proliferation of mobile devices has
increased at a spectacular rate. There are now more than
3.3 billion active cell phones in the world—a device that we
now all depend on in our daily lives. The current gener-
ation of devices employs a combination of general-purpose
processors, digital signal processors, and hardwired acceler-
ators to provide giga-operations-per-second performance on
milliWatt power budgets. Such heterogeneous organizations
are inefficient to build and maintain, as well as waste silicon
area and power. Looking forward to the next generation of
mobile computing, computation requirements will increase
by one to three orders of magnitude due to higher data
rates, increased complexity algorithms, and greater com-
putation diversity but the power requirements will be just
as stringent. Scaling of existing approaches will not suffice
instead the inherent computational efficiency, programma-
bility, and adaptability of the hardware must change. To
overcome these challenges, this paper proposes an exam-
ple architecture, referred to as AnySP , for the next gener-
ation mobile signal processing. AnySP uses a co-design ap-
proach where the next generation wireless signal processing
and high-definition video algorithms are analyzed to cre-
ate a domain specific programmable architecture. At the
heart of AnySP is a configurable single-instruction multiple-
data datapath that is capable of processing wide vectors or
multiple narrow vectors simultaneously. In addition, deeper
computation subgraphs can be pipelined across the single-
instruction multiple-data lanes. These three operating modes
provide high throughput across varying application types.
Results show that AnySP is capable of sustaining 4G wire-
less processing and high-definition video throughput rates,
and will approach the 1000 Mops/mW efficiency barrier
when scaled to 45nm.

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
ISCA’09, June 20–24, 2009, Austin, Texas, USA.
Copyright 2009 ACM 978-1-60558-526-0/09/06 ...$5.00.

Categories and Subject Descriptors
C.1.2 [Processor Architectures]: Multiple Data Stream
Architectures (Multiprocessors); C.3 [Special-Purpose and
Application-Based Systems]: [Signal processing systems]

General Terms
Algorithms, Design, Performance

1. INTRODUCTION
In the coming years, the deployment of untethered com-

puters will continue to increase rapidly. The prime exam-
ple today is the cell phone, but in the near future we ex-
pect to see the emergence of new classes of such devices.
These devices will improve on the mobile phone by mov-
ing advanced functionality such as high-bandwidth inter-
net access, human-centric interfaces with voice recognition,
high-definition video processing, and interactive conferenc-
ing onto the device. At the same time, we also expect the
emergence of relatively simple, disposable devices that sup-
port the mobile computing infrastructure. The requirements
of these low-end devices will grow in a manner similar to
those for high-end devices, only delayed in time.

Untethered devices perform signal processing as one of
their primary computational activities due to their heavy
usage of wireless communication and their rendering of au-
dio and video signals. Fourth generation wireless technology
(4G) has been proposed by the International Telecommuni-
cations Union to increase the bandwidth to maximum data
rates of 100 Mbps for high mobility situations and 1 Gbps
for stationary and low mobility scenarios like internet hot
spots [28]. This translates to an increase in the computa-
tional requirements of 10-1000x over previous third genera-
tion wireless technologies (3G) with a power envelope that
can only increase by 2-5x [33]. Other forms of signal pro-
cessing, such as high-definition video, are also 10-100x more
compute intensive than current mobile video.

Figure 1 presents the demands of the 3G and 4G proto-
cols in terms of the peak processing throughput and power
budget. Conventional processors cannot meet the power-
throughput requirements of these protocols. 3G protocols,
such as W-CDMA, require approximately 100 Mops/mW.
Desktop processors, such as the Pentium M, operate below
1 Mop/mW, while digital signal processors, such as the TI
C6x, operate around 10 Mops/mW. High performance sys-
tems, like the IBM Cell [24], can provide excellent through-

128

1

10

100

1000

10000

0.1 1 10 100

B
etter

P
ow

er E
fficiency

1 Mops/mW

10 Mops/mW100 Mops/mW

1000 Mops/mW

SODA
(65nm)

SODA
(90nm)

TI C6X

Imagine

VIRAM Pentium M

IBM Cell

P
er

fo
rm

an
ce

 (
G

o
p

s)

Power (Watts)

3G Wireless

4G Wireless

Mobile HD
Video

Figure 1: Performance verses power requirements
for various mobile computing applications.

put, but its power consumption makes it infeasible for mo-
bile devices [24]. Research solutions, such as VIRAM [14]
and Imagine [1], can achieve the performance requirements
for 3G, but exceed the power budgets of mobile terminals.
SODA improved upon these solutions and was able to meet
both the power and throughput requirements for 3G wire-
less [17]. Companies such as Phillips [32], Infineon [26],
ARM [34], and Sandbridge [8] have also proposed domain-
specific systems that meet the requirements for 3G wireless.

For 4G wireless protocols, the computation efficiency must
be increased to greater than 1000 Mops/mW. Three central
technologies are used in 4G: orthogonal frequency division
multiplexing (OFDM), low density parity check (LDPC)
code, and multiple-input multiple-output (MIMO) techni-
ques. OFDM is a modulation scheme that transmits a sig-
nal over many narrow band sub-carriers. Fast Fourier trans-
forms (FFTs) are key as they are used to place signals from
the baseband to the sub-carriers. LDPC codes provide supe-
rior error correction capabilities, and less computation com-
plexity compared to Turbo codes used in 3G. However, par-
allelizing the LDPC decoding algorithm is more challenging
because of the large amount of data shuffling. Lastly, MIMO
is based on the use of multiple antennae for both transmis-
sion and reception of signals, and requires complex signal
detection algorithms. The need for higher bandwidth and
increases in computation complexity are the primary rea-
sons for the two order-of-magnitude increase in processing
requirements when going from 3G to 4G.

Mobile computing platforms are not limited to perform-
ing only wireless signal processing. High-definition video is
also an important application that these platforms will need
to support. Figure 1 shows that the performance require-
ments of video exceed that of 3G wireless, but are not as
high as 4G wireless. Thus the power per Gops requirement
is further constrained. Moreover, the data access complex-
ity in video is much higher than wireless. Wireless signal
processing algorithms typically operate on single dimension
vectors, whereas video algorithms operate on two or three
dimensional blocks of data. Thus, video applications push
designs to have more flexible higher bandwidth memory sys-
tems. High definition video is just one example of a growing
class of applications with diverse computing and memory
requirements that will have to be supported by the next
generation of mobile devices.

The design of the next generation of mobile platforms
must address three critical issues: efficiency, programmabil-
ity, and adaptivity. The existing computational efficiency of

3G solutions is inadequate and must be increased by at least
an order of magnitude for 4G. As a result, straightforward
scaling of 3G solutions by increasing the number of cores
or the amount of data-level parallelism is not enough. Pro-
grammability provides the opportunity for a single platform
to support multiple applications and even multiple stan-
dards within each application domain. Further, programma-
bility provides: 1) faster time to market as hardware and
software development can proceed in parallel; 2) the ability
to fix bugs and add features after manufacturing; and, 3)
higher chip volumes as a single platform can support a family
of mobile devices. Lastly, hardware adaptivity is necessary
to maintain efficiency as the core computational character-
istics of the applications change. 3G solutions rely heavily
on the widespread amounts of vector parallelism in wireless
signal processing algorithms, but lose most of their efficiency
when vector parallelism is unavailable or constrained.

To address these challenges, this paper proposes AnySP—
an example of an advanced signal processor architecture that
targets the next generation mobile computing. Our objec-
tive is to create a fully programmable architecture that sup-
ports 4G wireless communication and high-definition video
coding at efficiency levels of 1000 Mops/mW. Programma-
bility is recognized as a first class design constraint, thus
no hardwired ASICs are employed. To address the issues of
computational efficiency and adaptivity, we introduce a con-
figurable single-instruction multiple-data (SIMD) datapath
as the core execution engine of the system. The datapath
supports three execution scenarios: wide vector computa-
tion (64 lanes), multiple independent narrow vector compu-
tation threads (8 threads × 8 lanes), and 2-deep subgraphs
on moderate wide vector computation (32 lanes × depth 2
computations). This inherent flexibility allows the datap-
ath to be customized to the application, but still retain high
execution efficiency. AnySP also attacks the traditional in-
efficiencies of SIMD computation: register file power, data
shuffling, and reduction operators.

The key contributions of this paper are as follows:

• An in-depth analysis of the computational characteris-
tics of 4G wireless communication and high-definition
video algorithms.

• The design, implementation, and evaluation of AnySP—
an example programmable processor that targets next
generation mobile computing.

• The design and organization of a configurable SIMD
datapath for sustaining high throughput computing
with both wide and narrow vector widths.

2. MOBILE SIGNAL PROCESSING

2.1 Overview of Benchmarks

2.1.1 4G Wireless Protocol
We model our 4G wireless system after the NTT DoCoMo

test 4G wireless system [31], because there is no standard
yet for 4G. The major components of the physical layer con-
sists of three blocks: a modulator/demodulator, a MIMO
encoder/decoder, and a channel encoder/decoder. These
blocks constitute the majority of the 4G computations [33].

The role of the modulator is to map data sequences into
symbols with certain amplitudes and phases, onto multiple

129

Algorithm SIMD Scalar Overhead SIMD Width Amount
Workload (%) Workload (%) Workload (%) (Elements) of TLP

FFT/IFFT 75 5 20 1024 Low
STBC 81 5 14 4 High
LDPC 49 18 33 96 Low
Deblocking Filter 72 13 15 8 Medium
Intra-Prediction 85 5 10 16 Medium
Inverse Transform 80 5 15 8 High
Motion Compensation 75 5 10 8 High

Table 1: Data level parallelism analysis for MSP algorithms. Overhead workload is the amount of instructions
needed to aid the SIMD operations like data shuffle and SIMD load/store.

orthogonal frequencies. This is done using inverse FFT. The
demodulator performs the operations in reverse order to re-
construct the original data sequences. The MIMO encoder
multiplexes many data signals over multiple antennae. The
MIMO decoder receives all the signals from the antennae
and either decodes all the streams for increased data rates
or combines all the signals in order to increase the signal
strength. The algorithm used to increase data rate is the
vertical Bell Laboratories layered space-time (V-BLAST),
and the algorithm used to increase the signal quality is the
space time block coding (STBC). Finally, the channel en-
coder and decoder perform forward error correction (FEC)
that enables receivers to correct errors in the data sequence
without retransmission. There are many FEC algorithms
that are used in wireless systems. LDPC is used because
it supports the highest data rates. Our target for 4G wire-
less is the maximum data rate for high mobility, which is
100Mbps. This 4G configuration utilizes the FFT, STBC,
and LDPC kernels.

2.1.2 H.264 Video Standard
Video compression standards, such as MPEG-4 and H.264,

are being actively considered for mobile communication sys-
tems because of the increasing demand for multimedia con-
tent on handheld devices. In this paper, H.264 is selected as
the multimedia benchmark because it achieves better com-
pression compared to previous standards and also contains
most of the basic functional blocks (prediction, transform,
quantization, and entropy decoding) of previous standards.
Of the three profiles in H.264, we focused on the Baseline
profile due to its potential application in videotelephony, and
videoconferencing.

The H.264 decoder receives a compressed bitstream from
the network abstract layer (NAL). The first block is the en-
tropy decoder which is used to decode the bitstream. After
reordering the stream, the quantized coefficients are scaled
and their inverse transform is taken to generate the resid-
ual block data. Using header information in the NAL, the
decoder selects prediction values for motion compensation
in one of two ways: from a previously decoded frame or
from the filtered current frame (intra-prediction). Accord-
ing to the power profile of H.264, about 75% of the de-
coder power consumption is attributed to three algorithms:
deblocking filter (34%), motion compensation (29%), and
intra-prediction (10%) [16]. Therefore, these three algo-
rithms are selected as the H.264 kernel algorithms in this
study.

2.2 Algorithm Analysis
To build a unified architecture for mobile signal process-

ing (MSP), we performed a detailed analysis of the key ker-
nel algorithms. These are FFT, STBC, and LDPC for the
wireless workload, and deblocking, intra-prediction, inverse
transform, and motion compensation for the video process-
ing workload. Our goal was to explore the characteristics
of each algorithm in order to find their similarities and dif-
ferences. This section will discuss the studies that helped
define our example architecture for MSP.

2.2.1 Multiple SIMD Widths
Many previous studies have analyzed and determined the

best SIMD width that should be implemented for general-
purpose and application-specific workloads. The optimal
SIMD width is different in each study because width depends
on the algorithms that constitute the workload. Examples
are the 2-8-wide Intel MMX extensions [23], the 16-wide
NXP EVP [32], and the 32-wide SODA [17].

Table 1 presents our study analyzing the data level paral-
lelism (DLP) of MSP algorithms. We calculate the available
DLP within each of the algorithms and show the maximum
natural vector width that is achievable. The instructions are
broken down into 3 categories: SIMD, overhead, and scalar.
The SIMD workload consists of all the raw SIMD computa-
tions that use traditional arithmetic and logical functional
units. The overhead workload consists of all the instructions
that assist SIMD computations, for example loads, stores
and shuffle operations. The scalar workload consists of all
the instructions that are not parallelizable and must be run
on a scalar unit or on the address generation unit (AGU).

From Table 1, we see that many of the algorithms have
different natural vector widths–4, 8, 16, 96, 1024. Also, the
algorithms with smaller SIMD widths exhibit a high level
of TLP, which means that we can process multiple threads
that work on separate data on a wide SIMD machine. For
instance, 8 instances of STBC that have SIMD width of 4
can be processed on a 32-wide machine. Unlike most SIMD
architectures that are designed with a fixed SIMD width to
process all the algorithms, this study suggests that the best
solution would be to support multiple SIMD widths and to
exploit the available thread-level parallelism (TLP) when
the SIMD width is small. By supporting multiple SIMD
widths, the SIMD lane utilization can be maximized as will
be demonstrated in Section 3.1.1.

Though the scalar and overhead workloads are not the ma-
jority, they still contribute 20-30% of the total computation.
In instances such as LDPC, comprised of mostly simple com-
putations, data shuffling and memory operations dominate
the majority of the workload. This suggests that we can-
not simply improve the SIMD performance, but also must
reduce the overhead workload. This can be accomplished

130

Move
I: Ain

O: V_tap0r

Move
I: Ain

O: V_tap0i

Mult
I:V_resultr, V_Wr

O: V_result1

Add
I:V_tap0r, V_tap1r

O: V_final0r

Move
I: Coeff
O: V_Wr

Move
I: Coeff
O: V_Wi

Add
I:V_tap0i, V_tap1i

O: V_final0i

Mult
I:V_resulti, V_Wi

O: V_result2

Sub
I: V_result1, V_result2

O: V_resultABWr

Mult
I:V_resultr, V_Wi

O: V_result1

Mult
I:V_resulti, V_Wr

O: V_result2

Add
I: V_result1, V_result2

O: V_resultABWi

Move
I: V_resultABWi

O: Aout

Move
I: V_resultABWr

O: Aout

Move
I: Ain

O: V_tap1r

Move
I: Ain

O: V_tap1i

Sub
I:V_tap0r, V_tap1r

O: V_resultr

Sub
I:V_tap0i, V_tap1i

O: V_resulti

Move
I: V_final0i

O: Aout

Move
I: V_final0r

O: Aout

SUB
I: P1, V1, V2

O: V3

V_CMP_SET
I: V4, V3
O: P3, V5

V_P_SELECT
I: P3, V6, V4

O: V6

V_P_SELECT
I: P2, V7, V5

O: V4

V_P_CMP_SET
I: P3, V8, V3

O: P3, V8

V_SIGN
I: V3
O: P4

P_XNOR
I: P5, P4

O: P5

p3 p2 p1 p0 q0 q1 q2 q3

P3+p
2

P2+p
1

P1+p
0

P0+q
0

Q0+
p0

Q1+
q0

Q2+
q1

Q3+
q2

>>2 + + + + + + >>2

+ + + + + +

+4 ,
>>3

+2,
>>2

+4,
>>3

+4,
>>3

+2,
>>2

+4,
>>3

a) Deblocking Filter Subgraph b) FFT Subgraph
c) Subgraph for Bit Node and Check

Node Operation

Figure 2: Select subgraphs for the inner loops of MSP algorithms.

by introducing better support for data reorganization or by
increasing the scalar and AGU performance. Table 1 also
shows how much TLP is available; high TLP means that
many independent but identical threads can be spawned and
low means only one or a few can be spawned mainly due to
data dependencies or absence of outer loops.

2.2.2 Register Value Lifetimes
For many processors, the register file (RF) contributes a

large percentage of the power consumption. Some architec-
tures have RFs that consume 10-30% of the total processing
element (PE) power [11] [22]. This is due to the reading
and writing of values for each instruction. Many architec-
tures, like very large instruction word (VLIW), compound
this problem by having multi-ported RFs that increase the
energy per access. Recent works in [9] and [7] show that
performance and power can be reduced by bypassing the
RF for short-lived values and storing the value within a reg-
ister bypass pipeline. The bypass network is a non-critical
path structure for holding values a fixed number of cycles
before they are consumed. By bypassing the RF, access
power and register pressure are reduced allowing for more
effective register allocation. Another technique used to re-
duce register file power is register file partitioning. Previous
research found that for some embedded applications, a small
set of registers accounted for the majority of the register file
accesses [11]. By splitting the register file into a small and
large region, the high access registers can be stored in the
small partition resulting in less energy consumed per access.

One focus of this paper is to study the potential for elim-
inating RF accesses in MSP applications. Figure 2 shows
the subgraphs for several of the MSP inner loops. We see
that there exists large amounts of data locality in these sub-
graphs, which is illustrated by the number of single lines
that go from one source to one destination. The MSP ap-
plications fit the streaming dataflow model, where data is
produced and then read once or twice. The values are usu-
ally consumed by the instructions directly succeeding the
producer. The number of temporary registers needed are
small but are accessed often suggesting a register bypass
network or a partitioned RF can reduce power and increase
performance.

We further analyze the MSP algorithms to determine the
extent to which RF accesses can be reduced. We use the
SODA architecture [17] with a small four entry RF partition

0%
10%
20%
30%
40%
50%
60%
70%
80%
90%
100%

FFT STBC LDPC Deblocking
Filter

Intra‐
Prediction

Inverse
Transform

Bypass Write Bypass Read Register Access

Figure 3: Register file access for the inner loops of
MSP algorithms. Bypass write and read are the RF
read and write accesses that do not need to use the
main RF. Register accesses are the read and write
accesses that do need to use the main RF.

modification creating a total of 20 registers: 16 main regis-
ters and 4 temporary registers. Figure 3 shows the break-
down of accesses that can and cannot bypass the RF. By-
pass write and bypass read correspond to the RF read and
write accesses that do not need to use the main RF and can
be eliminated with either data forwarding or by storing the
data in a small RF partition. Register accesses are the read
and write accesses that cannot be bypassed and need to use
the main RF. For most of the algorithms a large portion of
register accesses can be bypassed. The exception to this is
LDPC where many values are calculated and stored for a
several cycles before one of them is chosen. Based on our
analysis, we conclude that architectures that run MSP al-
gorithms should support bypass mechanisms to help reduce
the accesses to the main RF.

2.2.3 Instruction Pair Frequency
In typical digital signal processing (DSP) codes, there are

pairs of instructions that are frequently executed back to
back. A prime example of this is the multiply followed
by accumulate instruction. To improve performance and
decrease energy consumption, DSP processors such as the
Analog Devices ADSP and the TI C series introduced the
multiply-accumulate (MAC) operation. The work in [4] has
exploited this further by building specialized hardware to
exploit long chains of instructions.

We performed a study on the MSP algorithms to find the
most common producer-consumer instruction pairs. In each

131

Instruction Pair Frequency Total

1 multiply‐add 26.71% 26.71%

2 add‐add 13.74% 40.45%

3 shuffle‐add 8.54% 48.99%

4 shift right‐add 6.90% 55.89%

5 subtract‐add 6.94% 62.83%

6 add‐shift right 5.76% 68.59%

7 multiply‐subtract 4.14% 72.73%

8 shift right‐subtract 3.75% 76.48%

9 add‐subtract 3.07% 79.55%

10 Others 20.45% 100.00%

Instruction Pair Frequency Total

1 multiply‐add 26.71% 26.71%

2 add‐add 13.74% 40.45%

3 shuffle‐add 8.54% 48.99%

4 shift right‐add 6.90% 55.89%

5 subtract‐add 6.94% 62.83%

6 add‐shift right 5.76% 68.59%

7 multiply‐subtract 4.14% 72.73%

8 shift right‐subtract 3.75% 76.48%

9 add‐subtract 3.07% 79.55%

10 Others 20.45% 100.00%

Instruction Pair Frequency Total

1 shuffle‐move 32.07% 32.07%

2 abs‐subtract 8.54% 40.61%

3 move‐subtract 8.54% 49.15%

4 shuffle‐subtract 3.54% 52.69%

5 add‐shuffle 3.54% 56.23%

6 Others 43.77% 100.00%

Instruction Pair Frequency Total

1 shuffle‐move 32.07% 32.07%

2 abs‐subtract 8.54% 40.61%

3 move‐subtract 8.54% 49.15%

4 shuffle‐subtract 3.54% 52.69%

5 add‐shuffle 3.54% 56.23%

6 Others 43.77% 100.00%

Instruction Pair Frequency Total

1 shuffle‐shuffle 16.67% 16.67%

2 add‐multiply 16.67% 33.33%

3 multiply‐subtract 16.67% 50.00%

4 multiply‐add 16.67% 66.67%

5 subtract‐mult 16.67% 83.33%

6 shuffle‐add 16.67% 100.00%

Instruction Pair Frequency Total

1 shuffle‐shuffle 16.67% 16.67%

2 add‐multiply 16.67% 33.33%

3 multiply‐subtract 16.67% 50.00%

4 multiply‐add 16.67% 66.67%

5 subtract‐mult 16.67% 83.33%

6 shuffle‐add 16.67% 100.00%

a) Intra-prediction and
Deblocking Filter Combined

b) LDPC c) FFT

Figure 4: Instruction pair frequencies for different
MSP algorithms.

case the producer instruction’s value, once consumed, is not
referenced again. This allows the producer and consumer
instructions to be fused. Figure 4 shows the breakdown of
the most frequent instruction pairs that were found in MSP
algorithms programmed for SODA [17]. Among all the al-
gorithms, the MAC instruction was the most frequent, be-
cause a large number of these algorithms have a dot product
as their inner loop. Other fused instruction pairs that were
common were permute-add, add-add, and shift-add. The
permute-add pair occurs in many of the algorithms because
data must first be aligned to effectively utilize the SIMD
lanes. The add-add and shift-add pairs also occur quite
frequently in the video algorithms, because values are ac-
cumulated together and then normalized by a power of 2
division—a shift.

Based on this analysis, we conclude that the fused instruc-
tion pairs with high frequency should be supported. This
increases performance and decreases power because regis-
ter access between the producer and consumer instructions
would no longer be needed.

2.2.4 Algorithm Data Reordering Patterns
Most commercial DSP and general purpose processor(GPP)

multimedia extensions support some form of data reordering
operations. By data reordering we refer to both permuta-
tion and replication of data. In graphics terminology this
is referred to as swizzling. Swizzle operations are particu-
larly important in SIMD machines where they are essential
to keep the functional units utilized. For example, Intel’s
Larrabee [29], which supports 16-wide SIMD operations, has
a hardware “gather and scatter” instruction that allows 16
distinct memory addresses to build one SIMD vector. This
is one extreme case where the gather and scatter operations
can take multiple cycles and consume significant power if a
number of distinct cache lines have to be accessed. At the
other end of the spectrum is the data “shuffle” network in
SODA [17] where the programmer needs to align the data
within 32-wide SIMD blocks often requiring multiple shuffle
instructions. This consumes less power than Intel’s Larrabee
but can take multiple cycles to complete.

We performed a study to enumerate the number of swiz-
zle operations required for the MSP algorithms. Figure 5
shows a few of the common examples. The key finding was
that all of the algorithms had a predefined set of swizzle
operations, typically below 10 that were known beforehand.
Because all the swizzle operations were known beforehand,
sophisticated gather and scatter hardware support like that
of Larrabee is not needed. However, a shuffle network like
that of SODA, is not complex enough to support the needed
swizzle operations. An example is LDPC where the number
of predetermined swizzle operations(in this case permuta-
tions) were large. In LDPC we need a mechanism to change

B C D

A B C D B C D A B C D A B C D

A B C D

A A A A B B B B C C C C D D D D

A B C D

A B C D B C D C

E

E D E

F G

GF D E F

A

A B C D E F G H I J

A B C D G H I JG H I J A B C D

A B C D E F G

A

A B C D E F G H I J

A B C D E F G H I J

A B C D E F G H I J

K L

K L

A B B C C D DD D D DE F F G G

CDE EF FG GHI J JK KLI

CE F G H I J KI J K L D E FD

Figure 5: A set of swizzle operations that are re-
quired for a subset of MSP algorithms.

the swizzle operations based on a parity check matrix. In
SODA, the data shuffle network may require many cycles
to complete these task becoming a bottleneck in the perfor-
mance of LDPC. A network which can be easily configured
and also perform the operations in fewer cycles is desirable.
Either a swizzle network or a more complex programmable
fixed pattern network would be the best solution.

2.2.5 Design Study Summary
The result of these studies provided us with four key in-

sights that will be exploited in the next section to design
an efficient high-performance architecture for MSP applica-
tions:

• Most algorithms have small natural vector widths and
large amounts of TLP

• A large percentage of register values are short-lived
and many do not need to be written to the register file

• A small set of instruction pairs are used a large per-
centage of the time

• Each algorithm uses a small set of predetermined swiz-
zle patterns

3. ANYSP ARCHITECTURE
In this section, we describe the AnySP architecture which

exploits the MSP algorithm features described in the previ-
ous section.

3.1 AnySP PE Design
The PE architecture is shown in Figure 6. It consists of

SIMD and scalar datapaths. The SIMD datapath in turn
consists of 8-groups of 8-wide SIMD units, which can be
configured to create SIMD widths of 16, 32 and 64. Each of

132

C
R
O
S
S
B
A
R

Scalar Pipeline

Bank
0

Bank
2

Bank
3

Bank
15

L1
Program
Memory

Controller

Bank
4

Bank
5

16-bit 8-wide
16 entry

SIMD RF-0

16-bit 8-wide
16 entry

SIMD RF-1

16-bit 8-wide
16 entry

SIMD RF-2

16-bit 8-wide
16 entry

SIMD RF-7

Scalar
Memory
Buffer

Multi-SIMD Datapath

AGU Group 0 Pipeline

AGU Group 7 Pipeline

AGU Group 1 Pipeline

Multi-Bank
Local Memory

DMA

To
Inter-PE

Bus

8 Groups
of 8-wide

SIMD
(64 Total
Lanes)

8-wide SIMD
FFU-0

8-wide SIMD
FFU-1

8-wide SIMD
FFU-2

8-wide SIMD
FFU-7

Swizzle
Network

16-bit 8-
wide 4-entry

Buffer-0

16-bit 8-
wide 4-entry

Buffer-1

16-bit 8-
wide 4-entry

Buffer-2

16-bit 8-
wide 4-entry

Buffer-7

Multi-
Output
Adder
Tree

Figure 6: AnySP PE. It consists of SIMD and scalar datapaths. The SIMD datapath consists of 8-groups of
8-wide SIMD units, which can be configured to create SIMD widths of 16, 32 and 64. Each of the 8-wide
SIMD units are composed of groups of Flexible Functional Units (FFUs). The local memory consists of 16
memory banks; each bank is an 8-wide SIMD containing 256 16-bit entries, totalling 32KB of storage.

the 8-wide SIMD units are composed of groups of Flexible
Functional Units (FFUs). The FFUs contain the functional
units of two lanes which are connected together through a
simple crossbar. The SIMD datapath is fed by eight SIMD
register files (RFs). Each RF is 8 wide and has 16 entries.
The swizzle network aligns data for the FFUs. It can sup-
port a fixed number of swizzle patterns of 8, 16, 32, 64 and
128 wide elements. Finally, there is a multiple output adder
tree that can sum of groups of 4, 8, or 16 elements, and store
the results into a temporary buffer.

The local memory consists of 16 memory banks; each bank
is an 8-wide SIMD containing 256 16-bit entries, totalling
32KB of storage. Each 8-wide SIMD group has a dedicated
AGU unit. When not in use, the AGU unit can run sequen-
tial code to assist the dedicated scalar pipeline. The AGU
and scalar unit share the same memory space as the SIMD
datapath. To accomplish this, a scalar memory buffer that
can store 8-wide SIMD locations is used. Because many of
the algorithms access data sequentially, the buffer acts as
a small cache which helps to avoid multiple accesses to the
vector banks. Details about each of these architectural fea-
tures is discussed in the rest of this section.

3.1.1 Configurable Multi-SIMD Width Support
We analyzed the performance of MSP algorithms on exist-

ing SIMD architectures like [17][32] and found that the full
SIMD widths could not always be utilized. In many of the
algorithms the natural vector width is smaller than the pro-
cessors’s SIMD width, leading to wasted lanes, and power
or performance penalties. In order to improve SIMD utiliza-
tion, code transform work, such as [18], tried to transform
the algorithms to fit the SIMD width. This was achieved at

the cost of increased total computation and complex code
transformations. These techniques should be avoided be-
cause of their complexity and increase in power consumption
from additional preprocessing requirements.

In Section 2.2.1, we showed that many of the algorithms
had different natural vector widths. While the small SIMD
width kernels had large amounts of TLP, the ones with
higher DLP showed little TLP. An interesting insight was
that independent threads were not the only contributors to
TLP. Specifically, in H.264, the same task would be run
many times for different macroblocks. Each task was in-
dependent of each other and ran the exact same code and
followed almost the same control path. The difference be-
tween each thread was that the data accesses from memory
were different. This meant that for each thread, separate
memory addresses would have to be computed. In SODA,
the only way we were able to handle these threads was to
execute them one at a time on the 32-wide SIMD. This is
inefficient because these algorithms had widths smaller than
the SIMD width. In order to support these types of ker-
nel algorithms, we chose to design a multi-SIMD width ar-
chitecture. Each group of 8-wide SIMD units has its own
AGU to access different data. The 8-wide groups can also
be combined to create SIMD widths of 16, 32 or 64. Such
a feature allows us to exploit the DLP and TLP together
for large and small SIMD width algorithms. Small SIMD
width algorithms like intra-prediction and motion compen-
sation, can process multiple macroblocks at the same time
while exploiting the 8-wide and 16-wide SIMD parallelism
within the algorithms. Large SIMD width algorithms like
FFT and LDPC, can use the full 64-wide SIMD width and
run multiple iterations.

133

Inside the 2-wide Flexible Functional Unit Slice

4-entry
Buffer

4-entry
Buffer

4-entry
Buffer

4-entry
Buffer

4-entry
Buffer

S
w
i
z
z
l
e

N
e
t
w
o
r
k

P
I
P
E
L
I
N
E

2-wide
FFU-0

2-wide
FFU-1

4-entry
Buffer2-wide

FFU-3

4-entry
Buffer

4-entry
Buffer2-wide

FFU-2

8-wide SIMD
FFU0

8-wide SIMD
FFU1

8-wide SIMD
FFU2

8-wide SIMD
FFU7

Swizzle
Network

16-bit 8-wide
4-entry
Buffer0

16-bit 8-wide
4-entry
Buffer1

16-bit 8-wide
4-entry
Buffer2

16-bit 8-wide
4-entry
Buffer7

Multi-
Output
Sum
Tree

Inside the 8-wide SIMD FFU

P
I
P
E
L
I
N
E

P
I
P
E
L
I
N
E

16-bit
4-Entry
Buffer

16-bit
4-Entry
Buffer

Reg A

Lane 0

Lane 1

Mult

ALU

Swizzle

Adder

Reg B

Mult

ALU

Swizzle

Adder

Reg B

Reg A

Xbar

Figure 7: Flexible Functional Unit

3.1.2 Temporary Buffer and Bypass Network
As discussed in Section 2.2.2, the RF is one of the major

sources of power consumption in embedded processors. We
implemented two different techniques in order to lower RF
power: temporary register buffers and a bypass network.

The temporary register buffers are implemented as a par-
titioned RF. The main RF still contains 16 registers. A sec-
ond partition containing 4 registers is added to the design,
making the total number of registers 20. This small par-
titioned RF shields the main RF from accesses by storing
values which have very short lifetimes. This saves power be-
cause the smaller, lower power RF is accessed multiple times
rather than the main, higher power, RF. Another benefit is
that by reducing accesses to the main RF, register file pres-
sure is lessened, thereby decreasing memory accesses.

The bypass network is a modification to the writeback
stage and forwarding logic. Typically in processors, data
that is forwarded to another instruction to eliminate data
hazards is also written back to the RF. In the bypass net-
work, the forwarding and writing to the RF is explicitly
managed. This is similar to TTA [5], which defines all in-
put and output ports of all modules as registers and the
programmer explicitly manages where the data should go.
However, in our design we only allow the bypass network
to be visible to the programmer. This means that the in-
struction dictates whether the data should be forwarded and
whether the data should be written back to the RF. This
eliminates RF writes for values that are immediately con-
sumed thus reducing RF power.

3.1.3 Flexible Functional Units
In typical SIMD architectures, power and performance is

lost when the vector size is smaller than the SIMD width due
as a result of underutilized hardware. The proposed flexible
functional units (FFU) allow for reconfiguration and flexi-
bility in the operation of different types of workloads. When
SIMD utilization is low, the FFUs are able to combine the
functional units between two lanes, which can speed up more
sequential workloads that underutilize the SIMD width by
exploiting pipeline parallelism. This effectively turns two
lanes of the SIMD into a 2-deep execution pipeline. Two dif-
ferent instructions can be chained through the pipeline, and
data can be passed between them without writing back to

0
0
1
0

0
0
0
0

0
1
0
0

1
0
0
1

1
2
3
4

4
3
1
4

Selection
Matrix

Input
Vector

Output
Vector

Input
Selection

Output
Selection

Figure 8: The swizzle operation in computer graph-
ics. The rows of the selection matrix correspond to
the input vector and the columns correspond to the
output vector selected. Each row can only have a
single 1, but columns can have multiple 1s which
allow for selective multi-casting of the data.

the RF. Ultimately, this allows two instructions per chained
FFU to be in flight per cycle. Using instruction chaining we
are able to extract different levels of parallelism like pipeline
parallelism and DLP within the same FFU unit.

As shown in Figure 7, each 8-wide SIMD group is built
from four 2-wide FFUs. Each functional unit consists of a
multiplier, ALU, adder and swizzle network sub-block. Such
a structure benefits algorithms with SIMD widths that are
smaller than 64. In chained execution mode, the functional
units among two internal lanes can be connected together
through a crossbar network. Overall, FFUs improve per-
formance and reduces power by adding more flexibility and
exploiting both TLP and DLP.

3.1.4 Swizzle Network
Our analysis in Section 2.2.4 showed that the number of

distinct swizzle patterns that are needed for a specific al-
gorithm is small, fixed, and known ahead of time. Previous
research has discussed building application specific crossbars
for SIMD processors [25]. Such designs hardwired only the
swizzle operations needed to support the application, yield-
ing a power efficient design. However, they lack flexibility
as they are unable to support new swizzle operations for
different applications post fabrication.

We propose using an SRAM-based swizzle network that
adds flexibility while maintaining the performance of a cus-
tomized crossbar. Figure 8 illustrates how the swizzle oper-
ation works. If the (i,j)th entry of the selection matrix is 1,
then input i is routed to output j.

The SRAM-based swizzle network is similar to the layout
of [10], where the layout is an X-Y style crossbar, where the
input buses are layed out horizontally and the outputs are
layed out vertically. Each point of intersection between the
input and output buses contains a pass transistor which is
controlled by a flip flop. This allows for more flexibility in
that configurations can be changed post fabrication. How-
ever, this design has three drawbacks. First, each output is
directly driven by the input. As the crossbar size increases,
the capacitance of the output lines increase requiring input
drivers to be larger, resulting in a higher power consumption.
Second, each time a different permutation is needed, the flip
flops have to be reprogrammed resulting in additional cy-
cles. Third, a large number of control wires is required for
reprogramming the flip flops increasing power consumption
and complicating the layout.

To solve these short comings, we leverage an SRAM-based

134

0

0.2

0.4

0.6

0.8

1

1.2

16x16 32x32 64x64 128x128

SRAM‐Based Mux‐Based

Crossbar Size

N
o

rm
al

iz
ed

 P
o

w
er

Figure 9: Comparison of power between the SRAM-
based swizzle network and MUX-based crossbar.
The values are normalized to the MUX-based cross-
bar for different crossbar widths with 16-bit data
inputs. These results correspond to a switching ac-
tivity of 0.50.

swizzle network in which multiple SRAM cells replace the
single flip flop of [10]. First, by using circuit techniques, we
decouple the input and output buses reducing the needed
input driver strength and decreasing the overall power con-
sumption while providing more scalability. Second, multiple
sets of swizzle configurations can be stored into the SRAM
cells, allowing zero cycle delays in changing the swizzle pat-
tern. Third, by storing multiple configurations we remove a
large number of control wires necessary.

Using the SRAM-based swizzle network, the area and
power consumption of the network can be reduced while
still operating within a single clock cycle. Figure 9 shows
the power difference between the SRAM-based swizzle net-
work and MUX-based crossbar for different crossbar sizes
using 16-bit inputs. As we can see, for crossbar sizes larger
than 32x32, the power of the SRAM-based swizzle network
is dramatically lower than the MUX-based one and is able
to run at almost twice the frequency.

This is one of the enabling technologies for very wide
SIMD machines to be power efficient and fast. Though only
a certain number of swizzle patterns can be loaded with-
out reconfiguration, it is a viable solution since only a lim-
ited set of swizzle patterns need to be supported for each
algorithm. These swizzle patterns can be stored into the
SRAM-based swizzle network configuration memory at ini-
tialization. Because it supports arbitrary swizzle patterns
with multi-casting capabilities, it functions better than pre-
vious permutation networks found in [17][34].

3.1.5 Multiple Output Adder Tree Support
SIMD architectures such as [17] have special SIMD sum-

mation hardware to perform “reduction to scalar” opera-
tions. To compute this, adder trees sum up the values of
all the lanes and store the result into the scalar RF. These
techniques worked for 3G algorithms but do not support
video applications where sums of less than the SIMD width
are needed. Other architectures capable of processing video
applications like [2][27] have sum trees, but their SIMD
widths were only 4-8 elements wide. For wide-SIMD ma-
chines like AnySP, we designed the adder tree to allow for
partial summations of different SIMD widths, which then
writeback to the temporary buffer unit. Writing the re-

B1,2

B2,2

B3,2

B4,2

B1,2

B2,2

B3,2

B4,2

B1,2

B2,2

B3,2

B4,2

B1,2

B2,2

B3,2

B4,2

C1,1

C2,1

C3,1

C4,1

C1,2

C2,2

C3,2

C4,2

A1,1

A1,2

A1,3

A1,4

A2,1

A2,2

A2,3

A2,4

A3,1

A3,2

A3,3

A3,4

A4,1

A4,2

A4,3

A4,4

x

+

+

+

+

B1,1

B1,2

B1,3

B1,4

B2,1

B2,2

B2,3

B2,4

B3,1

B3,2

B3,3

B3,4

B4,1

B4,2

B4,3

B4,4

B1,1

B2,1

B3,1

B4,1

B1,1

B2,1

B3,1

B4,1

B1,1

B2,1

B3,1

B4,1

B1,1

B2,1

B3,1

B4,1

A1,1

A1,2

A1,3

A1,4

A2,1

A2,2

A2,3

A2,4

A3,1

A3,2

A3,3

A3,4

A4,1

A4,2

A4,3

A4,4

B1,1

B2,1

B3,1

B4,1

B1,1

B2,1

B3,1

B4,1

B1,1

B2,1

B3,1

B4,1

B1,1

B2,1

B3,1

B4,1

C1,1

C2,1

C3,1

C4,1

+

+

+

+

x

B1,1

B1,2

B1,3

B1,4

B2,1

B2,2

B2,3

B2,4

B3,1

B3,2

B3,3

B3,4

B4,1

B4,2

B4,3

B4,4

B1,1

B2,1

B3,1

B4,1

B1,1

B2,1

B3,1

B4,1

B1,1

B2,1

B3,1

B4,1

B1,1

B2,1

B3,1

B4,1

c) Equivalent part of Matrix Multiply on AnySP

x+ x

A1,1

A1,2

A1,3

A1,4

A2,1

A2,2

A2,3

A2,4

A3,1

A3,2

A3,3

A3,4

A4,1

A4,2

A4,3

A4,4

B1,1

B1,2

B1,3

B1,4

B2,1

B2,2

B2,3

B2,4

B3,1

B3,2

B3,3

B3,4

B4,1

B4,2

B4,3

B4,4

A1,1

A2,1

A3,1

A4,1

A1,1

A2,1

A3,1

A4,1

A1,1

A2,1

A3,1

A4,1

A1,1

A2,1

A3,1

A4,1

A1,1

A2,1

A3,1

A4,1

A1,1

A2,1

A3,1

A4,1

A1,1

A2,1

A3,1

A4,1

A1,1

A2,1

A3,1

A4,1

B1,1

B2,1

B3,1

B4,1

B4,1

B4,1

B4,1

B3,1

B3,1

B3,1

B2,1

B2,1

B2,1

B1,1

B1,1

B1,1

B1,1

B2,1

B3,1

B4,1

B4,1

B4,1

B4,1

B3,1

B3,1

B3,1

B2,1

B2,1

B2,1

B1,1

B1,1

B1,1

x

C1,1

C1,2

C1,3

C1,4

C2,1

C2,2

C2,3

C2,4

C3,1

C3,2

C3,3

C3,4

C4,1

C4,2

C4,3

C4,4

= x+

B1,1

B1,2

B1,3

B1,4

B2,1

B2,2

B2,3

B2,4

B3,1

B3,2

B3,3

B3,4

B4,1

B4,2

B4,3

B4,4

C1,1

C1,2

C1,3

C1,4

C2,1

C2,2

C2,3

C2,4

C3,1

C3,2

C3,3

C3,4

C4,1

C4,2

C4,3

C4,4

=

A1,1

A1,2

A1,3

A1,4

A2,1

A2,2

A2,3

A2,4

A3,1

A3,2

A3,3

A3,4

A4,1

A4,2

A4,3

A4,4

A1,1

A2,1

A3,1

A4,1

A1,1

A2,1

A3,1

A4,1

A1,1

A2,1

A3,1

A4,1

A1,1

A2,1

A3,1

A4,1

A1,1

A2,1

A3,1

A4,1

A1,1

A2,1

A3,1

A4,1

A1,1

A2,1

A3,1

A4,1

A1,1

A2,1

A3,1

A4,1

B1,2

B1,2

B1,2

B1,2

B2,2

B2,2

B2,2

B2,2

B3,2

B3,2

B3,2

B3,2

B4,2

B4,2

B4,2

B4,2

B1,2

B1,2

B1,2

B1,2

B2,2

B2,2

B2,2

B2,2

B3,2

B3,2

B3,2

B3,2

B4,2

B4,2

B4,2

B4,2

SIMD MAC SIMD MAC

b) Part of Matrix Multiply on Traditional SIMD Architectures

x =

B1,1 B1,2 B1,3 B1,4

B2,1 B2,2 B2,3 B2,4

B3,1 B3,2 B3,3 B3,4

B4,1 B4,2 B4,3 B4,4

C1,1 C1,2 C1,3 C1,4

C2,1 C2,2 C2,3 C2,4

C3,1 C3,2 C3,3 C3,4

C4,1 C4,2 C4,3 C4,4

A1,1 A1,2 A1,3 A1,4

A2,1 A2,2 A2,3 A2,4

A3,1 A3,2 A3,3 A3,4

A4,1 A4,2 A4,3 A4,4

a) Matrix Multiply Operation

Figure 10: Demonstration of the output adder tree
for matrix multiplication

sultant sum into the temporary buffer unit is key, because
many times the summed values have short lifetimes but are
updated and used very frequently within that period.

In the 4G and video decoding algorithms, matrix calcula-
tions occur frequently. One of these calculations is matrix
multiplication, shown in Figure 10a, and an example of do-
ing a 4x4 matrix multiply on a typical SIMD architecture is
shown in Figure 10b. This calculation requires many swiz-
zle operations to align both matrices. Figure 10c shows how
using an adder tree that adds only 4 numbers can reduce
the total operations required. Here, we see that only one
of the matrix values needs to be swizzled. Since the adder
tree only produces 4 of the 16 values per iteration, the adder
tree uses the temporary register buffer to store the partial
SIMD values in order to prevent wasted reading and writing
to the RF. After 4 iterations, 16 sums are produced forming
a complete SIMD vector that is then written back to the
RF. AnySP supports sums of 4, 8, 16, 32 or 64 elements.

4. RESULTS AND ANALYSIS

4.1 Methodology
The RTL Verilog model of the SODA processor [17] was

synthesized in TSMC 180 nm technology, and the power
and area results for 90 nm technology were estimated using
a quadratic scaling factor based on Predictive Technology
Model [12]. The main hardware components of the AnySP
processor were implemented as RTL Verilog and synthesized
in TSMC 90 nm using Synopsys physical compiler. The tim-
ing and power numbers were extracted from the synthesis
and used by our in-house architecture emulator tool to cal-
culate the timing and power values for each of the kernels.

135

0.0

0.2

0.4

0.6

0.8

1.0
N

o
rm

al
iz

e
d

 E
n

e
rg

y-
D

el
ay

SODA AnySP

FFT 1024pt
Radix-2

FFT 1024pt
Radix-4

STBC LDPC H.264
Intra

Prediction

H.264
Deblocking

Filter

H.264
Inverse

Transform

H.264
Motion

Compensation

Figure 12: Normalized Energy-Delay product for
each kernel algorithm

AnySP’s PE area is 130% larger than SODA’s estimated
90 nm PE area. Unlike SODA, where the target frequency
was 400 MHz, AnySP was targeted at 300 MHz. The major
kernels of the 100 Mbps high mobility 4G wireless protocol
and high quality H.264 4CIF video are analyzed. The 4CIF
video format is 704x576 pixels at 30 fps.

4.2 Algorithm-Level Results
In this section, we present the performance analysis of

key algorithms in MSP, namely FFT, STBC and LDPC of
4G wireless protocols and intra-prediction, deblocking filter,
inverse transform and motion compensation of an H.264 de-
coder.

The speedup of AnySP over SODA for each algorithm is
shown in Figure 11. Each improvement is broken down by
architectural enhancements: wider SIMD width (from 32 to
64), use of single-cycle SRAM-based swizzle network, fused
operations, and temporary buffer with the bypass network.
The energy-delay product for running the kernel algorithms
on SODA and AnySP are also presented in Figure 12. On av-
erage, AnySP achieves 20% energy-delay improvement over
SODA with more than 2x speedup. A detailed analysis is
presented next.

4.2.1 4G Algorithm Analysis
Fast Fourier Transform. Figure 11 provides results

of two different FFT configurations: 1024 point Radix-2,
and 1024 point Radix-4. On average, AnySP achieves a
2.21x speedup over SODA. A wider SIMD width is the main
contribution of the speedup because FFT is a highly paral-
lel algorithm. The radix-4 FFT algorithm has better per-
formance compared to radix-2. 34% of the speedup is at-
tributed to the fused-operations, such as shuffle/add. The
radix-4 FFT algorithm takes more advantage of the single-
cycle SRAM-based swizzle network compared to the radix-
2 algorithms, because radix-4 algorithms require complex
shuffle operations that cannot be done in a single cycle by
other networks.

STBC. As shown in Table 1, STBC contains large amounts
of DLP and TLP. Figure 11 shows that the wider SIMD
width along with the multi-SIMD support helped speed up
STBC by almost 100%. The rest of the speedup was ob-
tained with the FFU, where the fused-operations contributed
another 20% speedup. This was because fused pairs such as
add-add, subtract-add, add-subtract, and subtract-subtract
were used frequently in the algorithm. A combination of
fused-operations, register buffers, and data forwarding by-
pass network added to an almost 20% decrease in the energy-
delay product, making the algorithm run more efficiently
compared to the SODA architecture.

LDPC. Among the many decoding algorithms for LDPC,
the min-sum algorithm was selected because of its simple
operations and low memory requirements. As shown in Fig-

2 1 1 8

2 4 8 1

0 2 6 5

0 8 8 8

16

164
4

16x16 luma MB
prediction modes
for each 4x4 block

Prediction Modes
0. Vertical
1. Horizontal
2. DC
3. Diagonal Down Left
4. Diagonal Down Right
5. Vertical Right
6. Horizontal Down
7. Vertical Left
8. Horizontal Up

a b c d

e f g h

i j k l

m n o p

I

J

K

L

A B C DX A B C DXK J IL

f g h ieb c da o pnk l mj

 Shuffle + ADD

 Shuffle + ADD

 ADD 2 + Right_Shift 2

 Shuffle

i.e. a = (I+2X+A+2) >> 2

Use16 SIMD Lanes

Figure 13: Mapping a luma 16x16 MB intra-
prediction process on AnySP; Example of the Di-
agonal Down Right intra prediction for a 4x4 sub
block (grey block) is presented with each cycle’s op-
erations listed.

ure 11, AnySP’s LDPC implementation has a speedup of
2.43x compared to SODA. This performance jump is be-
cause of the wider SIMD width and the versatile swizzle
network which significantly reduced the number of register
reads/writes and cyclic shuffle operations when dealing with
large block codes. In addition, the support of temporary
buffers gives the LDPC min-sum decoding function storage
for the minimum and the second minimum values thereby
accelerating the corresponding compare/update process [30].

4.2.2 H.264 Algorithm Analysis
Intra-Prediction. Figure 13 shows how the H.264 intra-

prediction process is mapped onto AnySP. A 16x16 luma
macroblock is broken into 16 4x4 sub-blocks, and each 4x4
sub block has a different intra-prediction mode: Vertical,
Horizontal, DC, Diagonal Down Left, Diagonal Down Right,
Vertical Right, Horizontal Down, Vertical Left, or Hori-
zontal Up. As can be seen in Figure 13, 16 SIMD lanes
are used to generate 16 prediction values (a,b, ..., p) with
neighboring pixel values (capital letters). Independence be-
tween intra-prediction computations for 4x4 sub-blocks al-
lows other SIMD units to execute on different 4x4 sub blocks
simultaneously. A factor of 2 increase in the SIMD width
almost doubles the processing performance. In addition,
fused-operations (shuffle-add and add-shift) reduces unnec-
essary register read/write accesses, and the SRAM-based
swizzle networks supports single cycle complex swizzle op-
erations, both results in a speedup of 30%.

Deblocking Filter. The H.264 deblocking filter smooth-
ens block edges of decoded macroblocks to reduce blocking
distortion. Based on data-dependent filtering conditions,
the function of this filter varies dynamically (three-tap, four-
tap, or five-tap filter). Figure 11 shows AnySP achieves
about 2.18x performance increase compared to SODA. The
wider SIMD width allows the deblocking filter to take twice
as many pixel values to process, which results in 2x speedup
over SODA. Like H.264 intra-prediction, fused operations
such as shuffle-add, shuffle-shift, and add-shift and the swiz-
zle network helps boost performance up to 27% and 16%,
respectively.

Motion Compensation. H.264 adopts tree structured
motion compensation (MC). The size of a MC block can
be one of 16x16, 16x8, 8x16, 8x8, 4x8, or 4x4, which uses
integer-pixel, half-pixel, quarter-pixel, or eighth-pixel reso-
lution. Because sub-sample positions do not exist in the

136

0.0

0.5

1.0

1.5

2.0

2.5
Baseline 64-Wide Multi-SIMD Swizzle Network Flexible Functional Unit Buffer + Bypass

N
o

rm
al

iz
ed

 S
p

ee
d

u
p

FFT 1024pt
Radix-2

FFT 1024pt
Radix-4

STBC LDPC H.264
Intra

Prediction

H.264
Deblocking

Filter

H.264
Inverse

Transform

H.264
Motion

Compensation

Figure 11: AnySP speedup over SODA for the key algorithms used in 4G and H.264 benchmarks. The
speedup is broken down into the different architectural enhancements - wider SIMD width, single-cycle
SRAM-based crossbar, fused-operations and buffer support

PE

System

Total

Components Units

SIMD Data Mem (32KB)
SIMD Register File (16x1024bit)

SIMD ALUs, Multipliers, and SSN
SIMD Pipeline+Clock+Routing

Intra-processor Interconnect
Scalar/AGU Pipeline & Misc.

ARM (Cortex-M3)
Global Scratchpad Memory (128KB)

Inter-processor Bus with DMA
90nm (1V @300MHz)

4
4
4
4

4
4
1
1
1

Area
Area
mm2

Area
%

9.76 38.78%
3.17 12.59%
4.50 17.88%
1.18 4.69%

0.94 3.73%
1.22 4.85%

0.6 2.38%
1.8 7.15%
1.0 3.97%

25.17 100%

Est. 65nm (0.9V @ 300MHz) 13.14
45nm (0.8V @ 300MHz) 6.86

4G + H.264 Decoder
Power
mW

Power
%

102.88 7.24%
299.00 21.05%
448.51 31.58%
233.60 16.45%

93.44 6.58%
134.32 9.46%

2.5 <1%
10 <1%
1.5 <1%

1347.03 100%
1091.09
862.09

SIMD Buffer (128B)
SIMD Adder Tree

4
4

0.82 3.25%
0.18 <1%

84.09 5.92%
10.43 <1%

Table ? : System Area and Power Summary (AnySP, targeted on 100Mbps)
Figure 14: PE Area and Power Summary for AnySP running 100Mbps high mobility 4G wireless and H.264
4CIF video at 30fps

1

10

100

1000

10000

0.1 1 10 100

B
etter

P
ow

er E
fficiency

1 Mops/mW

10 Mops/mW100 Mops/mW

1000 Mops/mW

SODA
(65nm)

SODA
(90nm)

TI C6X

Imagine

VIRAM Pentium M

IBM Cell

P
er

fo
rm

an
ce

 (
G

o
p

s)

Power (Watts)

3G Wireless

4G Wireless

Mobile HD
Video

AnySP
(90nm)

AnySP
(45nm)

Figure 15: Performance verses power requirements
for various mobile computing applications.

reference frames, the fractional pixel data is created by inter-
polation. For example, half-pixel values are generated by the
6-tap filtering operation, which fits into an 8-wide SIMD par-
tition; therefore a wider SIMD engine supports processing of
multiple filters at the same time. Also, buffer support helps
store half-pixel values while sliding a filter window, which
saves the number of SIMD-scalar data exchanges. Overall,
a 2.1x speedup is achieved by these enhancements.

4.3 System-Level Results
Figure 14 shows the power and area breakdown of AnySP

running both 100 Mbps high mobility 4G wireless and high
quality H.264 4CIF video. AnySP was able to meet the
throughput requirement of 100 Mbps 4G wireless while con-
suming 1.3 W at 90 nm. This is just below the 1000
Mops/mW target but close enough to meet that target in 45
nm process technology. We show this in Figure 15 where we
replot AnySP on the performance verses power chart of Fig-
ure 1. It can also be seen that high quality H.264 4CIF video
at 30 fps can be achieved with 60 mW at 90 nm, meeting
the requirements for mobile HD video.

The power breakdown of AnySP shows that the SIMD
functional units are the dominant power consumers. The
RF and data memory are lower in comparison which shows
that our design is efficient because the largest portion of the
power is spent doing actual computations. In comparison,
SODA’s RF and data memory power were the dominant
consumers which suggested that a lot of power was being
wasted reading and writing data from the register file and
memory. Our proactive approach to reducing register and
memory accesses has helped in improving the efficiency of
our design.

5. RELATED WORK
Many architectures have tried to exploit DLP and TLP in

order to increase power efficiency. For instance, the Vector-
Thread (VT) architecture [15] can execute in multiple modes:

137

SIMD, MIMD, and hybrids of the two by controlling which
processors fetch instructions. AnySP always executes in
SIMD mode. When vector lengths are less than the SIMD
width, neighboring lanes are combined to execute complex
subgraphs or simultaneously operate on multiple vectors us-
ing the FFU. Maintaining the single-instruction mode of op-
eration translates into gains in power efficiency compared
VT. Although VT is more flexible, the workload character-
istics of 4G and H.264 show that this level of flexibility is not
required. Judiciously restricting the flexibility helps increase
the power efficiency of AnySP.

The use of temporary buffer networks is not a new con-
cept, many former architectures have used it [6][11][21]. The
novelty here is the usage model of the temporary buffer and
bypass network. Like ELM [6], we use it to store the tempo-
rary values that usually do not need to be written back to
the register file. The temporary buffer units are connected
to the swizzle network in the 8-wide SIMD FFU. This allows
the temporary values to be exchanged within the lanes of the
SIMD group, which ELM cannot do. In order to communi-
cate data across multiple ALU units in ELM, the data has
to go through an ALU and then enter the distributed switch
network. By allowing connection between ALU units, the
performance and power is optimized in our SIMD design.

Current solutions that support 3G wireless protocols in
SDR solutions can be broken into two categories: SIMD-
based architectures and reconfigurable architectures. SIMD-
based architectures typically consist of one or few high-
performance SIMD DSP processors. The processors are usu-
ally connected together through a shared bus, and managed
through a general purpose control processor. Some SIMD-
based architectures also have a shared global memory con-
nected to the bus. Processors that fall into this category
are [17][34][8][13]. Reconfigurable architectures are usually
made up of many simpler PEs. Depending on the particular
design, these PEs range from fine-grain LUTs to coarser-
grain ALU units and even ASICs. The PEs are usually con-
nected together through a reconfigurable fabric. Processors
that fall into this category are [20][19][3].

ARM’s Ardbeg [34] is an example of a low power SIMD-
based architecture that focused solely on 3G wireless com-
munication. On top of the 3G requirements, AnySP was
designed to deal with two more challenges: 1) higher band-
widths and more complex algorithms in 4G wireless; and
2) the support for video on the same substrate. The central
challenge is simultaneously achieving both high performance
and low power for mobile platforms. There is evidence to
show that some companies are trying to reduce the number
of distinct intellectual properties in their systems, because
there is significant cost and power reduction. They are look-
ing for convergent architectures that can not only execute
the communication workload, but also handle some of the
other applications like video and graphics. AnySP can be
viewed as an example of such a convergent architecture that
can support applications with similar characteristics within
a limited power and cost budget.

6. CONCLUSION
Future uses for mobile devices will require more connec-

tivity at higher data rates, support of high quality audio and
video, as well as interactive applications. This increase in
application diversity can be addressed by combining differ-
ent processor types each tailored to a specific application.

Such a solution is costly in terms of time, silicon area, and
power. In this paper, we presented AnySP, a programmable
and flexible SIMD architecture that is also low power. The
major contributions of AnySP are the configurable SIMD
datapath which supports wide and narrow vector lengths,
flexible functional units which can fuse instructions together,
temporary buffer and a bypass network which reduces reg-
ister and memory accesses, SRAM-based swizzle network
which reduces the power and latency of swizzle operations,
and a multiple output adder tree with speeds up video appli-
cations. Results show AnySP’s architectural design achieves
2-2.5x speedup over SODA for the set of MSP algorithms
while also operating at an energy-delay profile 20-30% more
efficient than SODA. AnySP meets the throughput require-
ment of 100 Mbps 4G wireless while consuming 1.3 W at
90 nm. This puts AnySP under the 1000 Mops/mW target
but is close enough that in 45 nm process technology it will
be able reach this milestone. Also, high quality H.264 4CIF
video at 30 fps can be achieved with power consumption of
60 mW at 90 nm making AnySP a suitable candidate for
mobile HD video processing.

7. ACKNOWLEDGEMENTS
We thank Ron Dreslinski for his help in organizing and

editing this paper. We also thank the anonymous referees for
their useful comments and suggestions. This research was
supported by ARM Ltd. and the National Science Foun-
dation under grants CNS-0615261, CSR-EHS-0615135, and
CCF-0347411.

8. REFERENCES
[1] J. H. Ahn, W.J. Dally, B. Khailany, U.J. Kapasi, and

A. Das. Evaluating the imagine stream architecture.
In Proc. of the 31st Intl. Symposium on Computer
Architecture, pages 14–24, Jun. 2004.

[2] ARM Ltd. The ARM Architecture Version 6
(ARMv6), 2002. White Paper.

[3] R. Baines and D. Pulley. The picoArray and
reconfigurable baseband processing for wireless
basestations. In Software Defined Radio, February
2004.

[4] N. Clark, J. Blome, M. Chu, S. Mahlke, S. Biles, and
K. Flautner. An architecture framework for
transparent instruction set customization in embedded
processors. In ISCA ’05: Proceedings of the 32nd
annual international symposium on Computer
Architecture, pages 272–283.

[5] H. Corporaal and H. (J.M.) Mulder. Move: A
framework for high-performance processor design. In
Supercomputing ’91: Proceedings of the 1991
ACM/IEEE conference on Supercomputing, pages
692–701, New York, NY, USA, 1991.

[6] W.J. Dally et al. Efficient embedded computing.
Computer, 41(7):27–32, July 2008.

[7] K. Fan et al. Systematic register bypass customization
for application-specific processors. Proceedings. IEEE
International Conference on Application-Specific
Systems, Architectures, and Processors, 2003, pages
64–74, June 2003.

[8] J. Glossner, E. Hokenek, and M. Moudgill. The
sandbridge sandblaster communications processor. In

138

3rd Workshop on Application Specific Processors,
pages 53–58, Sept. 2004.

[9] N. Goel, A. Kumar, and P. R. Panda. Power reduction
in VLIW processor with compiler driven bypass
network. In VLSID ’07: Proceedings of the 20th
International Conference on VLSI Design held jointly
with 6th International Conference, pages 233–238,
2007.

[10] R. Golshan and B. Haroun. A novel reduced swing
CMOS bus interface circuit for high speed low power
VLSI systems. volume 4, pages 351–354 vol.4, May-2
Jun 1994.

[11] X. Guan and Y. Fei. Reducing power consumption of
embedded processors through register file partitioning
and compiler support. International Conference on
Application-Specific Systems, Architectures and
Processors, pages 269–274, July 2008.

[12] Nanoscale Integration and Modeling Group. Predictive
Technology Model. http://www.eas.asu.edu/ ptm/.

[13] S. Knowles. The SoC Future is Soft. IEE Cambridge
Branch Seminar 2005, Dec. 2005. http://www.iee-
cambridge.org.uk/arc/seminar05/slides/SimonKnowles.pdf.

[14] C. Kozyrakis and C. Patterson. Vector vs. superscalar
and VLIW architectures for embedded multimedia
benchmarks. In Proc. of the 35th Intl. Symposium on
Microarchitecture, pages 283–293, Nov. 2002.

[15] R. Krashinsky et al. The vector-thread architecture.
In Proceedings of the 31st Annual International
Symposium on Computer Architecture, 2004., pages
52–63, June 2004.

[16] T. A. Lin, T. M. Liu, and C. Y. Lee. A low-power
H.264/AVC decoder. International Symposium on
VLSI Design, Automation and Test, 2005., pages
283–286, April 2005.

[17] Y. Lin et al. SODA: A low-power architecture for
software radio. In Proc. of the 33rd Annual
International Symposium on Computer Architecture,
pages 89–101, 2006.

[18] Y. Lin, S. Mahlke, T. Mudge, C. Chakrabarti,
A. Reid, and K. Flautner. Design and implementation
of Turbo decoders for software defined radio. IEEE
Workshop on Signal Processing Systems Design and
Implementation, 2006. SIPS ’06., pages 22–27, Oct.
2006.

[19] A. Lodi et al. Xisystem: A XiRisc-based SoC with
reconfigurable IO module. IEEE Journal of
Solid-State Circuits, 41(1):85–96, Jan. 2006.

[20] B.F. Mei et al. ADRES: An architecture with tightly
coupled vliw processor and coarse-grained
reconfigurable matrix. 13th International Conference
on Field-Programmable Logic and Applications, 2003.
FPL 2003, pages 61–70, Sept. 2003.

[21] S. Park et al. Register file power reduction using
bypass sensitive compiler. IEEE Transactions on
Computer-Aided Design of Integrated Circuits and
Systems, 27(6):1155–1159, June 2008.

[22] S. Park, A. Shrivastava, N. Dutt, A. Nicolau, Y. Paek,
and E. Earlie. Bypass aware instruction scheduling for
register file power reduction. In LCTES ’06:
Proceedings of the 2006 ACM SIGPLAN/SIGBED
conference on Language, compilers, and tool support
for embedded systems, pages 173–181, New York, NY,
USA, 2006.

[23] A. Peleg, S. Wilkie, and U. Weiser. Intel MMX for
multimedia PCs. Commun. ACM, 40(1):24–38, 1997.

[24] D. Pham et al. The design and implementation of a
first generation CELL processor. In IEEE Intl. Solid
State Circuits Symposium, February 2005.

[25] P. Raghavan et al. A customized cross-bar for
data-shuffling in domain-specific simd processors. In
ARCS, volume 4415 of Lecture Notes in Computer
Science, pages 57–68. Springer, 2007.

[26] U. Ramacher. Software-defined radio prospects for
multistandard mobile phones. Computer,
40(10):62–69, Oct. 2007.

[27] S.K. Raman, V. Pentkovski, and J. Keshava.
Implementing streaming simd extensions on the
pentium III processor. Micro, IEEE, 20(4):47–57,
Jul/Aug 2000.

[28] International Telecommunications Union M.1645
Recommendation. Framework and overall objectives of
the future development of IMT-2000 and systems
beyond IMT-2000”.
http://www.ieee802.org/secmail/pdf00204.pdf.

[29] L. Seiler et al. Larrabee: A many-core x86
architecture for visual computing. In SIGGRAPH ’08:
ACM SIGGRAPH 2008 papers, pages 1–15, New
York, NY, USA.

[30] S. Seo, T. Mudge, Y. Zhu, and C. Chakrabarti. Design
and analysis of LDPC decoders for software defined
radio. IEEE Workshop on Signal Processing Systems,
2007, pages 210–215, Oct. 2007.

[31] H. Taoka, K. Higuchi, and M. Sawahashi. Field
experiments on real-time 1-Gbps high-speed packet
transmission in MIMO-OFDM broadband packet radio
access. IEEE 63rd Vehicular Technology Conference,
2006. VTC 2006-Spring., 4:1812–1816, May 2006.

[32] K. van Berkel, F. Heinle, P. P. E. Meuwissen,
K. Moerman, and M. Weiss. Vector processing as an
enabler for software-defined radio in handheld devices.
EURASIP J. Appl. Signal Process.,
2005(1):2613–2625, 2005.

[33] M. Woh et al. The next generation challenge for
software defined radio. In Proc. 7th Intl. Conference
on Systems, Architectures, Modelling, and Simulation,
pages 343–354, Jul. 2007.

[34] M. Woh et al. From SODA to Scotch: The evolution
of a wireless baseband processor. Proceedings. 41th
Annual IEEE/ACM International Symposium on
Microarchitecture, 2008. MICRO-41., pages 152–163,
Nov. 2008.

139

