Par allelizing Sequential Applications on Commodity Hardware
using a L ow-cost Software Transactional Memory

Mojtaba Mehrara Jeff Hao

Po-Chun Hsu Scott Mahlke

Advanced Computer Architecture Laboratory
University of Michigan Ann Arbor, Ml 48109

{mehrara jeffhao,pchsu,mahlke}@umich.edu

Abstract

Multicore designs have emerged as the mainstream desigdigar
for the microprocessor industry. Unfortunately, provglimultiple
cores does not directly translate into performance for rapgti-
cations. The industry has already fallen short of the decati
performance trend of doubling performance every 18 momhs.
attractive approach for exploiting multiple cores is to/reh tools,
both compilers and runtime optimizers, to automaticallyrant
threads from sequential applications. However, despitadies of
research on automatic parallelization, most techniquesly ef-
fective in the scientific and data parallel domains wherayadom-
inated codes can be precisely analyzed by the compiler.athre
level speculation offers the opportunity to expand paliatigion
to general-purpose programs, but at the cost of expensiig ha
ware support. In this paper, we focus on providing low-oeexh
software support for exploiting speculative parallelisie pro-
pose STMIite, a light-weight software transactional meymapdel
that is customized to facilitate profile-guided automatiod paral-
lelization. STMIlite eliminates a considerable amount oéaiting
and locking overhead in conventional software transaatiorem-
ory models by decoupling the commit phase from main transac-
tion execution. Further, strong atomicity requirementsgeneric
transactional memories are unnecessary within a stylizenhaatic
parallelization framework. STMlite enables sequentigiaations
to extract meaningful performance gains on commodity rooitg
hardware.

Categories and Subject Descriptors D.3.3 [Programming Lan-
guages]: Language Constructs and Features—Concurrent program-
ming structures; D.3.4Frogramming Languages]: Processors—
Code generation, Compilers

General Terms Languages, Algorithms, Design, Performance

Keywords Software transactional memory, Automatic paralleliza-
tion, Thread-level speculation, Loop level parallelisnrofite-
guided optimization

Permission to make digital or hard copies of all or part of thiork for personal or
classroom use is granted without fee provided that copesarmade or distributed
for profit or commercial advantage and that copies bear titiseand the full citation
on the first page. To copy otherwise, to republish, to posteswess or to redistribute
to lists, requires prior specific permission and/or a fee.

PLDI'09, June 15-20, 2009, Dublin, Ireland.
Copyright(© 2009 ACM 978-1-60558-392-1/09/06. . . $5.00

1. Introduction

As the scaling of clock frequency and complexity of unipsce
sors has reached physical limitations, the industry hasetuto
multicore designs. Example systems include special perpos-
cessors like the Sony/Toshiba/IBM Cell processor that istsef
9 cores [20], the NVIDIA GeForce 8800 GTX that contains 16
streaming multiprocessors each with eight processings U],
and the Cisco CRS-1 Metro router that utilizes 192 Tenshica
cessors [12] and more general purpose processors incltirgun
UltraSparc T1 that has 8 cores [22]. Furthermore, Intel aMDA
are producing quad-core x86 systems today and larger systeen
on their near term roadmaps. One of the most difficult chglsn
going forward is software: if the number of devices per cluptm-
ues to grow with Moore’s law, can the available hardwareusses
be converted into meaningful application performance giaul-
tiple cores readily help where threads are plentiful, sushvab
servers. However, they provide little or no gains for sedjaénp-
plications. In fact, performance of sequential appligagionay suf-
fer due to the use of simpler cores and smaller caches per core

Many new languages have been proposed to ease the burden
of writing parallel programs, including Atomos [5], Cilk4], and
Streamlt [41]. Despite these and other languages, thet effor
volved in creating correct and efficient parallel programstill far
more substantial than writing the equivalent single-tbesaver-
sion. Developers must be trained to program and debug tpeir a
plications with the additional concerns of deadlock, ibeN, and
race conditions. Converting an existing single-threagugalication
is often more challenging, as it may not have been developed t
be easily parallelized in the first place. The lack of neagssam-
piler technology is increasingly apparent as the push tgemeral-
purpose software on multicore platforms is required.

Techniques for parallelizing Fortran programs [3, 8, 15)-us
ally target counted loops that manipulate array accessesaffine
indices, where memory dependence analysis can be prepisely
formed. Unfortunately, these techniques do not often taaasvell
to C and C++ applications. These applications, includiraséhin
the scientific and media processing domains, are much mffire di
cult for compilers to analyze due to the extensive use oftpoin
recursive data structures, and dynamic memory allocaore
sophisticated memory dependence analysis, such as poiate!-
ysis [31], can help, but parallelization often fails due toasolv-
able memory accesses.

Thread-level speculation (TLS) offers an opportunity farad-
lelizing C and C++ applications. With TLS, the architectalews
optimistic execution of code regions before all values arevin
[16, 21, 40, 45]. Hardware and/or software structures track
ister and memory accesses to determine if any dependenee vio
lations occur. In such cases, register and memory stateolee r

back to a previous correct state and sequential re-execigtimi-
tiated. With TLS, the programmer or compiler can delineate r
gions of code believed (but not provably) to be independent a
amenable to parallelization [7, 11, 25, 27]. Profile dataftero
utilized during this process. The POSH compiler is an eroll
example where TLS yielded approximately 1.3x speedup for a 4
way CMP on SPECIint2000 benchmarks [25]. More recent work
has shown that additional loop-level parallelism is codenp by

a small number of register and control dependences, but ean b
unlocked with several dependence breaking transformaf{id].
Outer-loop pipeline parallelism has also been identifiec &gy
parallelization opportunity. Bridgeat al. report a geometric mean
of 5.5x gain on SPECint2000 (with variable number of threagls

to 32) using decoupled software pipelining [4].

Proponents of TLS advocate hardware support for specalatio
generally in the form of transactional memory or similarhtec
niques [16, 40]. Bulk tracking of memory dependences usimgs
tures along with dedicated structures for managing speeaistate
provide an efficient environment for TLS [6]. However, thastand
complexity of implementing hardware or hybrid hardwaréisare
TMs are high. With the notable exception of the Sun Rock pro-
cessor, hardware support for TLS has not made it into maastr
multicore systems yet.

Alternatively, software TMs, or STMs, offer the opportuyrior
TLS support without any dedicated hardware. The first STM by
Shavitet al. maintained read and write access locations in order
to roll back in case of a transaction abort [35]. Many otherkso
[19, 17, 26, 32, 10] proposed different forms of STM to tackle
various performance and correctness issues involved iisTié
paradigm. However, these STM implementations are far tpem®x
sive in terms of run-time overhead. For parallel applicagicSTMs
typically result in visible slowdowns of 2x or more. The pla is
even worse for compiler parallelized sequential applacatiwhere
all the gains and more are typically wiped out by the STM.

STMs generally focus on flexibility to support a wide variety
of transactions and scalability to enable many concuritemeiatls.
STM control is fully distributed to the running threads. histpa-
per, we take the opposite approach by introduciyllite, a lean
and efficient STM specifically customized for compiler plaiata-
tion. With our focus on compiler parallelization, the goslnnan-
aging a modest number of speculative threads (2-8) that itemm
can realistically expect to find in C and C++ applicationsitFer,
we focus on tightly integrating the STM with the compiler @ar
lelization framework to ensure low overhead. Some requérgm
of more generic STMs such as strong atomicity [36] and specia
handling of local variables are not needed in this settirogks are
removed by centralizing the TM bookkeeping on a single, @gsh
idle, core. In this manner, bookkeeping tasks occur in fenaith
transaction execution and the overhead on each work theeaiht
imized. Most importantly, centralized control obviates tieed for
locks and their associated overhead. The obvious down$ickne
tralized control is the lack of scalability, but for a modesimber
of threads, large increases in efficiency are possible ftr paral-
lelized and multithreaded applications.

This paper is organized as follows. In Section 2, we discuss
challenges in STM systems and customization opporturtitesd
on our main goal — exploiting loop-level parallelism. SentB de-
scribes STMlite, our proposed STM model. We discuss our par-
allelization framework and the interaction between the iben
generated code and STMlite in Section 4. In Section 5, weeptes
our experimental results. Finally, Section 6 discussesadIwork
and Section 7 concludes the paper.

B TxLoad M TxCommit

{EE

vacation low vacation high kmeans low kmeans high

M Application TxStore

7.00

6.00

5.00

4.00

3.00 o

2.00 A

1.00 -

0.00 -

Figure 1. Single-threaded runtime breakdown of a state-of-art
STM system on two STAMP transactional benchmarks.

2. Motivation
2.1 Challengesin Software Transactional Memory Systems

STMs have the advantage of requiring no additional hardware
run. However, since it is implemented entirely in softwatrentails

a large runtime overhead in maintaining transactionakstéhe
high overheads of an STM are due to several reasons. Thetarge
bottleneck in STMs is the maintenance and validation of setd

in read-write transactions. These sets keep track of ewdatyeas
read by a transaction, and are used to maintain coherencedret
transactions. For each load, the STM has to execute at least o
transactional load and revalidate its timestamp when #restction
commits. As transactions read larger amounts of data, veihead
becomes substantial.

Secondly, global locks are necessary for transactions tie wr
back their final “correct” data. During a transactional stathe
address and value are stored into a write set, deferringtamge in
memory until commit. This allows transactions to remainereimt
with each other, but adds a considerable overhead duringnitom
time for obtaining the locks on these addresses and writiegit
back to their final location. The use of locks in the data wiek
is expensive as it involves atomic instructions.

In order to get a better understanding of what the major &surc
of overhead are in an advanced STM system, we performed an ex-
periment on two STAMP benchmarks [28] using a state-of-aMS
system - Sun’s Transactional Locking 2 (TL2) [10]. We meadur
the time spent in each TM component of a single threaded-trans
actional execution of these benchmarks using the TL2 fbrar
similar analysis has also been done in [29]. Figure 1 showseh
sult of this experiment. The vertical axis in these chartsghthe
execution time normalized to the sequential runtime. Théoz
bars show the fractions of runtime spent in the main apptinat
transactional commits (TxCommit), transactional stoflesStore),
and transactional loads (TxLoad).

The chart clearly shows the large overhead of read set mainte
nance in the Vacation benchmark, which has large transextigth
many transactional reads. Keeping track of the read seesamm-
siderable overhead, as depicted by the TxLoad portion df bac
Additionally, the checks required during commit to maintagad
set coherence are extremely costly [38], representing feséthe
runtime in Vacation with high contention. For the Kmeansdben
mark, the overheads are not as severe because its read esets ar
smaller, but it still exhibits similar behavior.

2.2 Speculation Requirementsfor Loop Parallelization

There are several aspects of STM models that are cruciabfer ¢
rectness in general. However, we can loosen some of thega-lim

tions and requirements in the loop parallelization domaimake
the software-based speculation more efficient.

1. One of the shortcomings in STM models is the lack of strong
atomicity guarantees, which raises correctness issuearai-p
lel programs. Previous works [1, 36, 33] have addressedsthe i
sue of strong atomicity in STMs. While being effective, thes
approaches incur a non-trivial amount of complexity or perf
mance overhead on the system. However, using STM for specu-
lation in loop parallelization obviates the need for stramgm-
icity, because the execution consists of at most a singlkgint
parallel loop at each point. Since all the code in the loopiis r
ning inside transactions, there can be no non-transattoda
running at the same time as transactional code.

. Special handling of local variables in a STM is not reqdire
for loop parallelization, because the loop iterations artesnip-
posed to share any local variables on stack. Otherwise, they
cause unresolvable cross iteration dependences, whicarire
loop parallelization to begin with. Therefore, there is reed
to have specialized transactional loads and stores forVacia
ables.

. Zombie transactions are transactions that have reatbavatae
or pointer from memory and have taken an incorrect code path
which might lead to an infinite loop. One of the main sources
of zombie transactions are loops with complicated linkst-I
operations. These loops are generally not parallelizabté a
therefore, we do not need to provide efficient and complitate
ways for handling zombies in a STM for loop parallelization.

However, to ensure correctness in other cases, we provide a

mechanism for handling zombies in later sections that does n
affect normal execution of transactions.

With these challenges in mind, we aim to tackle the two main
sources of STM overhead: read-set maintenance and logdbas
writeback mechanism. In addition, based on the specificudgec
tion requirements in loop-level parallelism, we make sifiga-
tions to STMlite that makes it even more efficient.

3. STMlite

In this section, we describe our proposed STM model, STMite
was mentioned in Section 2, in traditional STM models, a s
able part of the execution time is spent in maintaining aaryildata
structures needed for providing correctness guarantegmrticu-
lar, one of the major bottlenecks is construction, maimeaaand
frequent checking of read logs. The read log structure keepk
of the addresses (or objects in object-based implemengtiead
by each transaction. At transaction commit, these logs atked
over, and each address is checked for consistency. In addéi-
though the programmer does not have to deal with the sudxlefi
lock-based programming, thanks to the usage of atomic blankl
TM primitives, the performance of the underlying runtimestgyn
still suffers from the downsides of using locks in many inmpénta-
tions. In order to address these problems, and as a steiostsl-
ized customization for speculation used in loop-level eliaa-
tion, we developed a new software-based model that eliesrihe
need for read log maintenance during transaction execatidrex-
plicit locking during memory writebacks.

We assign a dedicated software thread for managing the
cution of the transactions involved in the main computatibnis
thread, which runs on an individual core, is referred to ashtans-
action Commit Manager (TCM). Having a central commit mamage
provides an environment in which the manager is responille
ensuring that, at any given time, at most one transactionriis w
ing to a particular memory location. With higher numbersrahs-
actions, there can be several coordinating TCMs with each TC

exe-

— Abort Execution
Execute : Commit R IR
Start transaction | {| transaction \LVnt: Finish
i " acl
transaction Compute “f’ Copy RdSig & WrSet to transaction
WrSig & Rdsig | | | WrSigto pre- Memory
i commit log
\ Conflict | T
Ready for commit _>r ''''' —_——— ! No conflicts
[5
Check RdSigs Transact!on
Walk over against Commit
pre-commit log committed Manager
WrSigs

Figure 2. STMlite execution model. Solid lines denote execution
flow. Dashed lines denote passing messages by signals ormnemo
polling. The dash-dot line shows an indirect write/reachtieh
(each transaction writes to a precommit log entry which terla
read by the TCM).

Transaction Header

Start -
R i A ?
T* Version ead Signature bort a
ID i Q.
Commlt Write Signature Commit? (1)
Version —
Write Set IsWriting? =
CommitLog
Head
Transaction Commit
:> Write Si t Valid
Header Pointer Version fite slgnature all
Transachpn Comrmt Write Signature Valid
Tail * Header Pointer Version
Transaction Commit
}:> Write Signat Valid
Header Pointer Version nite Slghature al
Transaction Commit e .
Header Pointer Version Write Signature Valid
PreCommit Log entry
Transaction Commit Write Read Read
Header Pointer Version Signature | Signature Y
. Writeback
EinSVLoe Action-list
Inside TCM

Figure 3. STMIlite data structures. Each transaction has an indi-
vidual header. The TCM has a single commit log and there is a
precommit log for each execution core inside the TCM.

managing a group of execution transactions (TCM virtusilizg.
In this way, we can avoid having a single point of serializatin
highly parallel applications.

The STMlite model essentially consists of several exeautio
cores for running individual transactions and a TCM corenfi@in-
taining transactional consistency in the system. In théoiohg
subsections, we explain in more detail how each step works.

3.1 Overview

Figure 2 summarizes the operation of STMlite. The top regian
shows the execution flow inside each transaction. The boprin
is a summary of what happens inside the TCM.

Centralized management of individual transactions is npade
sible by using transactional read and write signatureschvhre
essentially hash-based representations of all reads atesver-
formed during execution. Using signatures in hardware was fi
proposed in [6]. However, unlike hardware, hash-based atemp
tions can become quite expensive in software. Therefomgsihg

TxLoad (Addr) {
if SignatureFind(Addr, Self->wrSig)
Load the correct value from the wrSet
else
Load from memory
SignatureInsert(Addr, Self->rdSig)
}
TxStore(Addr, Data){
Store Data to the WriteSet
SignatureInsert (Addr, Self->wrSig)
}

Figure4. Pseudocode for transactional loads and stores.

the right set of hash functions and the proper size for sigeat
is crucial in software systems to ensure minimal overheaidfen

false positives at the same time. In [18], hashing schermeeased
to remove duplicates in the read-log and undo-logs of then&sa
transaction. However, in order to use signatures for cdrflitec-
tion between different transactions, a central manageeé&ied
to check signatures against each other. In signature-bdd$ats

[6, 43], this is done in the coherence protocol. Here, it inedby

the TCM.

Each transaction maintains a transaction header whictoigrsh
in Figure 3. The transaction header contains some infoomati
gathered during transaction execution and is used durigdm-
mit process. The main idea behind STMlite is that all tratieas
compute read and write signatures during their executiocof-
mit, they copy these signatures to a list called the precartogi
(Figure 3). This log is basically a single-reader/singlétav buffer
that is read by the TCM and written by transactions. Its djp@nas
inspired by the reservation station in traditional outeofler pro-
cessors. Committed transactions reside in another datatuste
called commit log (Figure 3). The commit log is only updated a
read by the TCM.

The TCM goes through precommit log entries and checks
whether their read signatures have conflicts with the wigea
tures of overlapping already-committed transactions éncthmmit
log. If there is no hash collision, the transaction is ndtifie start
writing back its write set. Otherwise, the transaction &band
restarts its execution. During the write back process, G&1Tis
responsible for preventing concurrent writes to the sandeesdes
in memory. TCM operation is detailed in Section 3.3.

In order to keep track of the relative start and commit timies o
transactions, we use a global clock mechanism similar toT[9¢
TCM increments the global clock value whenever a writingigra
action commits. We define the start version for each traisaes
the value of the global clock at transaction start. Likewike com-
mit version is the value of the global clock at commit time.

3.2 Transactional Loadsand Stores

Figure 4 shows the pseudocode for STMlite’s transactionadi |
and store functionsTxLoad first checks the transaction’s write
signatureyrSig) to see if this transaction has previously written to
Addr. If so, it reads the data from the write setfet) and returns.
In order to avoid walking through the entire write set whea th
number of store-to-load forwarding instances is high, weealda
hash map to each transaction that caches the latest statezsaes
and values for quick retrieval. Therefore,fifidr is found in the
write signature, this hash table is checked before walkimgugh
the write set. This helps to lower transactional load ovadhi
many cases. If the transaction hasn’t writtedddr, data is loaded
from memory andiddr is inserted into the read signatuteifig).
TxStore storesData to the write set and insersidr to the write
signature.

TcMO) {
for entry precommitTX in PrecommitLogs
if (precommitTX.Ready)
if (ConflictCheck(precommitTX))
Grant commit permission to precommitTX
else
Abort precommitTX
}

ConflictCheck(precommitTX) {
for entry committedTX in CommitLog {
if (precommitTX.startVersion
< committedTX.commitVersion)
if HashCollision(precommitTX.rdSig,
committedTX.wrSig)
return O;
}
if !(precommitTX.readOnly){
Go through WBActionList
wait for concurrent conflicting WBs to finish
}
return 1;

}

Figure5. Commit management in the TCM.

though they remain low-cost for moderately sized signatureir-
thermore, the signature operations can be inserted in andeco
posed fashion, separate form transactional loads andsstene
abling more aggressive compiler optimizations such agihgithe
signature calculations out of the loops with the aid of pairalias
analysis.

3.3 Transaction Commit Manager

As mentioned before, the TCM has two main data structures: th
precommit log and the commit log (Figure 3). The commit log
keeps track of committed transactions, and the precomuitdm-
tains transactions waiting to be served by the TCM. In order t
reduce contention among transactions, a separate pretdoogns
assigned to each core. Figure 5 provides a summary of what hap
pens in the TCM during runtime.

The TCM constantly poll&eady flags of precommit log entries
(firstfor loop in the figure). When it detectReaady is set, it reads
the transaction’s start version and checks it against tmenub
versions of commit log entries (in th@nflictCheck function).

If the start version of the committing transaction is lesantithe
commit version of a commit log entry, we know that their exéemu
has overlapped at some point in time. Therefore, they shoeld
checked for possible conflicts (in thshCollision function).
In case of a hash collision between the signatures, the ctiimgni
transaction is instructed to abort by setting theort flag in its
header. If the committing transaction passes the checkstgall
overlapping commit log entries, it is safe to be committedisT
is all that needs to be done for read-only transactions. efbies,
the TCM sets theCommit flag in the transaction header. It is not
necessary to copy any information about read-only traiwsacto
the commit log.

However, the mechanism is more subtle for writing transasti
Since we want to avoid having individual locks for writingdia
the write set to memory, the TCM needs to make sure no concur-
rent writes are happening to the same address during wekeba
The TCM uses a secondary structure called the writebackracti
list (WBActionList) for this purpose. The action-list has the same
number of entries as the active threads in the system. At ixay g
time, it contains the write signatures of the transactidraé have
passed the commit check in the TCM and are writing back their

As can be seen, the only major extra overhead in transacttiona write set to the memory. When a transaction is ready to conthat

loads and stores is due to the signature insert and find opesat

commit manager checks its write signature against all vgitgea-

tures in the writeback action-list. If there is no collisjdine commit
manager sets theommit flag in the transaction header and writes
the transaction’s write signature to the action-list. @thise, it
keeps checking the list until the colliding entry has findeiting
back. An extra bit is added to the list to make sure that TCMsdoe
not repeatedly keep checking the signatures that have pésse
collision test with the current committing transactiondref These
checks could potentially become the TCM’s bottleneck, giowe
did not notice any considerable busy waiting in our expenitse
Subsequently, the TCM writes the necessary informationiathe
committed transaction to the commit log, and moves on tolkdhgc
the next entry in the precommit log.

Since commit log entries are no longer needed after all agerl
ping transactions have finished, a clean up mechanism igeedo
remove unnecessary entries. For this purpose, we maintainia
mum start version (minSV) log which contains the start \@rsiof
all in-flight transactions. Each transaction adds an ewtithis log
at start time and removes it at commit or abort. After eachstaa-
tion commit or abort, the TCM starts from the commit log head
entry and checks it against the start versions in the minQV lo
If there are no overlapping in-flight transactions with thoenenit
log head entry, that entry is removed and the head pointecis-
mented. We keep doing this until the head entry in the conoyit |
has an overlapping in-flight transaction. The reason wedeekcio
use a circular buffer for the commit log (as opposed to a lirkst
buffer) is to avoid the extra overhead of maintaining a lohkist.
Our commit log model only allows us to remove entries from the
head of the log and add entries to the tail.

34

When a transaction reaches the commit point, it fills up aryent
its precommit log with a pointer to its transaction headet sets
the entry’'sReady flag. Subsequently, it keeps polligpmmit and
Abort fields, waiting for them to be filled by the TCM. In order to
avoid busy waiting at this point, we can relinquish the ¢avkich
is particularly useful when we have a larger number of thsehdn
cores.

After a transaction receives commit permission from the TCM
it walks through its write set and writes back the actual ealto

Individual Transaction Commits

mit log entries from being cleaned up. However, we can exphe
minSV log to resolve the zombie transaction issue. Each time
go through the commit log reading the minSV entries, if thie di
ference between the start version of a particular trarmaetid the
global clock is more than a threshold, the TCM identifies thee:
sponding transaction as a potential zombie. Subsequérgl{,CM
checks the suspicious transaction’s read signature dgeaiits sig-
natures of the commit log entries (although it has not redi¢he
commit point yet). If there is a conflict, the TCM forcibly at®
the zombie transaction by sending an abort signal. We haigmals
handler in each transaction that calls the abort functioeneker
it receives the TCM’s abort signal. Otherwise, the TCM cadek
that the suspicious zombie was just a long running transaetind
avoids aborting it. In this work, since we do not paralleliaeps
with complicated linked list operations (which are the nsonrces
of zombies transactions), the possibility of having zoralgequite
low in our framework.

4. Loop Parallelization Using STMlite

In this section, we introduce our loop parallelization feamork
and customizations made to STMlite for parallelizing spetive
DOALL loops. Our framework successfully handles loops with
cross iteration control dependences (e.g., while loopsyealsas
normal counted loops.

The general structure of our parallelization frameworkdiob
the code generation schema used in [44]. However, using that
framework without the extra hardware support imposes aelarg
overhead on the execution time. At the same time, STMlitegiv
us the opportunity to simplify the parallelization framewdy
exploiting some of its underlying features that are alreasisyd for
providing transactional correctness.

4.1 BasdineParalldization Framework

The purpose of the parallelization framework is to distrébloop
execution across multiple cores. In this framework, DOAbbps
are categorized into DOALL-counted and DOALL-uncounted
types. In DOALL-counted loops, the number of iterationsriswn

at runtime, whereas in DOALL-uncounted loops, this number
is dependent on the loop execution (e.g. while loops). Irsehe

memory. Because the TCM has already made sure that there are:ases, starting every iteration is dependent on the outedreit

no concurrent transactions writing to the same locatidres com-
mitting transaction does not need to lock any memory locatio

branches in previous iterations (cross iteration contepkshdence).
Figure 6 shows the detailed implementation of the framework

We chose to use a lazy version management strategy, because ajn this scheme, loop iterations are divided into chunks. Gjperat-

eager version management system without locks introduees m
complications in rolling back updates to memory locatiofisraa
conflict.

To minimize the overhead of individual transactional lqaals
lazy conflict detection scheme is employed. This works palidily
well for speculation support in loop parallelism, becauseimum
transactional load overhead is important for gaining penfnce
from parallelizing loops. Furthermore, conflicts are rare do
the smart loop selection, and trying to detect conflicts Bags
each transactional load provides no extra benefit. In eagdtict
detection mechanism, since transactions are checkedrifirate at
each load and store, the possibility of having zombie tretitsas
is really low. However, eager conflict detection incurs sabsal
overhead on individual transactional operations.

Lazy conflict detection makes STMlite vulnerable to zombie
transactions. These transactions may never reach the ¢quoimi
and the commit manager normally does not get the chancede for
them to abort. As a matter of fact, zombie transactions arécpa
ularly bad for our implementation because their corresjpandn-
tries remain valid within the minSV log and prevent the ottam-

1In Linux, this can be done usingched_yield function.

ing system passes the number of available cores to the afipiic
and the framework is flexible enough to use any number of cores
for loop execution. An outer loop is inserted around the ingb
loop body to manage parallel execution between differennk.

The main threadTHREAD_0), which runs the sequential parts of
the program, spawns the required number of threads at theofta
the application. When a parallel loop is reached, a fungbicinter
containing the proper loop chunk along with necessary perams

is sent to each spawned thread and they start the executioapf
chunks.

In order to capture the correct live-out registers aftemajbalr
loop execution, we use a set of registers calledt_upd_idx,
one for each conditional live-out (i.e., updated in an #tsiment).
When a conditional live-out register is updated, the cqoesing
last_upd_idx is set to the current iteration number to keep track of
the latest modifications to the live-out values. If the laat-register
is unconditional (i.e., updated in every iteration), theafifive-
out value can be retrieved from the last iteration and ndkinac
by last_upd_idx is needed. It should be noted that loop chunks
in the framework do not share any local memory variables on
stack. Otherwise, the loop would have unresolvable cresatibn
dependences and would be unparallelizable. This leadsebn

| Spawn |

TxBegin
if (global_brk_flag)
break;
IE = min(IS+CS*SS,n);

v
for (i=IS;i<IE;i+=SS)
// original loop code
live_outy=.. //k** liveout assignment
last_upd idx,=1i;
if (brk_cond)
local_brk_flag= 1;
break;

Parallel Loop

v
TxCommit
if (local_brk_flag)
global brk flag= 1;
kill other_threads;
IS+=CS * TC * SS;

v

_

In all threads
for (all live_outs)

store live_outjand last_upd_idx; to memory
In THREAD 0

Get live_outs and last_upd idx values

Set live_ out; to the last updated value

Figure 6. Overview of the parallelization framework (CS: chunk
size, IS: iteration start, |IE: iteration end, SS: step siZe; thread
count).

Consolidation

the simplifications we made in STMIlite which is the elimirmeti
of the handling mechanism needed for speculative local mgmo
variables. Following is a description of the functionaldf each
segment in Figure 6.

Spawn: THREAD_0, the main thread, sends the function pointer
pointing to the start of loop chunks to the in-flight threalitugh
memory. It also sends along the necessary parameters (shamk
thread count, etc.) and live-in values.

Parallel Loop: The program stays in the parallel loop segment

tion is speculative and the break could be false. Insteagl, th
local brk_flag variable in each thread is used to keep track of
breaks in individual chunks. If a transaction commits sastdly
with its local brk_flag set, the break is no longer speculative,
and a transaction abort signal is sent to all threads. Intiaddia
global brk_flag is set, so that all threads break out of the outer
loop after restarting the transaction as a result of thetadigr
nal. The reason for explicitly aborting higher iteratiossthat, if
an iteration is started by misspeculation after the loomkseit
could produce an illegal state. The execution of this iteratnight
cause unwanted exceptions or might never finish if it costainer
loops. This procedure of explicit handling of breaks hashdeefit
of avoiding zombie transactions, and although STMlite camdfe
zombies, this explicit handling has much lower cost.

Consolidation: After all cores are done with the execution of
iteration chunks, they enter the consolidation phase. Each
sends its live-outs antlast_upd_idx array toTHREAD_O through
memory.THREAD_O picks the last updated live-out values. All other
threads keep waiting for chunks from other parallel looperlan
the program.

Since the goal is to provide a low-cost software-based paral
lelization mechanism, most of the extra code is kept outtide
main loop body, and is executed only once per chunk.

4.2 Interaction of Parallel Loopswith STMlite

As mentioned in the previous subsection, in-order commihdi
vidual loop chunks is crucial for correct parallel execntim order

to enforce that requirement, we add another log structuadidcc
the loop chunk commit log (LCCL) to the TCM. This log contains
the loop ID of the last committing parallel loop and the chuibk
of the last committed chunk in that loop. The loop ID is assiijn
to each loop statically at compile time. It should be noteat thur
model allows only one in-flight parallel loop at a time by ind}
ing a lightweight barrier at end of each chunk. Thus, theré wi
be no problem if a parallel loop is invoked twice, becausedlie
guaranteed to be no previous instances of this loop runfihi.

is important, because if two in-flight loops have the same Iidx
they can completely distort each other’s execution. Thg prib-
lem is the case of loops in recursive functions. In this werk,do
not parallelize loops with recursion. However, even in ttege, a
hash value based on the call site trace of the loop can be ased t

as long as there are some iterations to run and no break has hapyniquely identify individual loops [34].

pened. In this segment, each thread executes a set of clitauts.
chunk consists of several iterations starting from IS &itien start)

and ending at IE (iteration end). The value of IS and IE are up-
dated after each chunk using the chunk size (CS), threadt coun
(TC), and step size (SS). Each chunk is enclosed in a traosact
using TxBegin and TxCommit function calls. In order to ensure
correctness, an abort signal is sent to transactions rgrinigher
iterations if a conflict is detected.

One important requirement for parallelizing loop chunksois
force in-order chunk commit. This is necessary for mairitajcor-
rect execution and enabling partial loop rollback and recgvThe
TCM in STMlite already provides the means to enforce ordgrin
among transactions in the commit log. The same infrastraatan
be used for in-order chunk execution as well. Thereforerethe
no need for send/receive instructions and a scalar opemark
as was used in [44]. However, some extra book-keeping daga is
quired both for STMlite and the parallelization framewo8ince
this is mostly done in STMIlite and it is almost transparenth®
generated code, we explain these necessary steps in theufext
section detailing the interaction between STMlite and |papal-
lelization.

For uncounted loops, if a break happens in any thread, higher
transactions are not aborted immediately because threacliex

We reuse the initial value of IS (iteration start) which igreo
puted at the beginning of each loop chunk as the chunk ID. When
a loop chunk reaches the commit instruction, it writes itspldD,
chunk ID, chunk size, and the loop’s first chunk ID to the preeo
mit log. After the TCM reads in an entry from the precommit,log
it performs one of the following two operations:

1. If the loop ID in the precommit log does not match the LCCL's
committing loop ID, it infers that a new loop has started com-
mitting. Subsequently, it writes the new loop ID and the feop
first chunk ID to the LCCL. If the committing chunk is the first
chunk in the loop, the TCM proceeds with the commit process.
Otherwise, it just moves on to checking the next precomngit lo
entry. This is because a chunk’s commit process should not be
started until all earlier chunks have been committed (ie@eh
got commit permission from the TCM and started the writeback
process).

If the loop ID of the committing chunk matches the entry in
the LCCL, the TCM checks to see if the current chunk is
right after the last committed chunk. If so, it proceeds wfith
chunk’s commit process. Otherwise, it starts checking the n
precommit log entry.

2.

The above mechanism provides low-cost commit ordering by
adding minimal complexity to the STMlite library. This inggeation

==STMlite Traditional STM STMlite - lock instead of short TX

of loop parallelization with STMlite leads to an efficientrphel , . Vacation - low contention , __ Vacation - high contention
loop execution platform. 25 ,
2
15 2
5. Results ! .
We set up two sets of experiments. First, we evaluated howlBaM 0 0
performs in a typical transactional environment using thABP v e s 878 o2 3 4 s 8 7 8
transactional benchmarks [28]. In the second set of exgetisn Kmeans - low contention Kmeans - high contention
we implemented the code generation part of the paralléizat s O;
framework in the LLVM compiler [24]. Using this framework, a 1 A3 |
set of SPECfp benchmarks and several kernel benchmarksuare p ,../ Zi //\
allelized. All benchmarks were written in C or convertediirgor- o3 re 02 /
tran to G. While the original Fortran applications can be paral- | | B
lelized using compilers such as SUIF [15], Fortran to C conve 12 3 4 s s 7 8 12 3 4 s 6 7 8
sion introduces a large number of pointer variables, thuspier)
. A Labyrinth Bayes
analysis alone was insufficient to parallelize all applmad. For 3 12

SPECint benchmarks, as previous works have shown [44,185],t |2°
level of loop-level parallelism is quite low, thus the oveald of 12 /_*-o—o/’ gz /v——_\
using an all-software parallelization approach is toodagyield 1 04
meaningful performance gains. More sophisticated pdizdlion 05 02
techniques for integer applications are possible, suchasetpro-

posed by [4], and can lead to substantial gains. However,ave h
not implemented these transformations within our comgistem,

yet they are orthogonal to what we are doing here. Figure7. STMIite performance on STAMP benchmarks. The ver-
) tical axis shows the speedup compared to the sequentialitexec
51 STMliteon STAMP and horizontal axis is the number of cores. The number ofsdore

We measured the performance of the STAMP benchmarks on aSTMIite includes one core that is used for the TCM.
SunFire T2000 with an 8-core UltraSPARC T1 processor, mmni
Solaris 10. We compare our performance with an implementati
of a state-of-art STM - Transactional Locking 2 (TL2) [9]gkre 7 TxBegin:

shows the benchmark speedups on STMilite and TL2, both nermal _- &™) .
] X - N start = TxLoad(global_i);
ized to sequential execution. The number of cores in the 8&MI TxStore(global_i,

results include the one extra core used for the TCM. For el@mp (start + CHUNK));

the 8 core results in STMlite have 7 computation cores and one TxCommit () ;

TCM core. Thus, STMlite results start from two cores on the-ho

zontal axis.

/* Lock-based Kmeans Code */
pthread_mutex_lock(&mutex1);
start = global_i;

global_i = start + CHUNK;

/* Original Kmeans Code*/

pthread_mutex_unlock(&mutex1) ;

. . . TxBegin() ; | pthread_mutex_lock(&mutex2);
~As can be seen, S_TMIlte not_lceably outperforr_ns TL2 in both TxStore._f(global_delta, | global_delta =

high and low contention executions of the Vacation benckmar T .

. xLoad_f (global_delta) | global_delta + delta;
This is mainly because this benchmark has long transactiiths + delta); |
a large number of loads. Therefore, the traditional STM qrené TxCommit () ; | pthread_mutex_unlock(&mutex2);
poorly due to the high overhead of transactional loads awdrit - - - -
hardly achieve speedup over sequential even with 8 corasets, Figure 8. Small transactions in Kmeans working on global data
using STMlite is particularly beneficial in these types ofhble- and their equivalent lock-based implementation.
marks. The overhead of transactional loads in our model is-mi
mal due to the complete elimination of the read set. Furtbeem The main reason STMlite performs similarly to TL2 in these
long length transactions and relatively low contention etine the benchmarks is the short length of transactions in Kmeans and
slight serialization effect that happens at commit timeerEfiore, relatively high rate of contention in Bayes and Labyrintb, Sie

our model achieves about 2.5x and 3.1x speedup over TL2 with savings STMIite gets in transactional loads, transactistaes,

8 cores, which is quite close to the speedup achieved byqusvi and writebacks gets offset by the extra overhead of commtinits

hybrid schemes [29]. . . between execution transactions and the TCM. However, S&N4li
STMIiite follows the performance of TL2 in Kmeans, Labyrinth still about 15% to 30% faster than TL2 in Kmeans for 4 and 8

and Bayes. First, it should be noted that poor scalabllmy(ﬂﬂ to threads. An interesting issue we found while looking thiotige

8 cores in Kmeans and from 2 to 8 cores in Bayes is mainly due to performance bottlenecks of STMlite in Kmeans, is that thisre

the fact that these benchmarks contain heavy floating pompa- small transaction in the source code towards the end of tiggm
tations. Since the UltraSPARC processor only has a singiéiriip that increments a global variable in all transactions (Fég). This
point unit that is shared by all processors, these floatifgt gom- part of the code causes a large number of transaction alorts i
putations become the sequential bottleneck of paralletiugian, STMIlite, which incurs a high cost considering the shorts$eation
especially with higher number of threads. We did not have&ny |engths. Whereas in TL2, since the library is acquiring bér
core x86 processors available to investigate the scathalrila more each address during writeback and uses a back-off mechahism
fair environment. However, the Bayes benchmark scalesfare f the |ock is not free, there are fewer transaction aborts.réferno
2to 4 cores on a quad-core x86 machine. to validate this observation, we placed a global lock arotired

transaction in Figure 8 and changed the transactional laads
2Fortran to C conversion was done using tetool with -a flag. stores to normal ones. The performance of the resultinguéiec

w Profiled Coverage = Provable Coverage ' Selected Coverage
100 +
90 -+
80
70
60 -
50
40
30
20
10 A
0 - T r r r T]
052.alvinn 056.ear 102.swim 107.mgrid 173.applu 183.equake

Figure 9. Profiled DOALL, provable DOALL and selected paral-
lel loop coverage. The vertical axis shows fraction of setjaé
execution.

==STMlite HTM =4=TL2 with software chunk sync
RLS FmRadio
8.0 3.0
25 o
6.0 e
20— 7,_&
4.0 e 15 +—
1.0 4+ /
20 +——>
W 05 ?ﬁ.gnﬂ
0.0 + 0.0
1 2 3 4 5 6 7 8 1 2 3 4 5 6 7 8
DCT BeamFormer
25 5.0
20 — 4.0 -
15 T 30 7¢
1.0 1 / 20
0.5 1.0 —Aﬁ-—-‘ﬂ—
0.0 +—he=* o 0.0 T T T T T T T 1
1 2 3 4 5 6 7 8 1 2 3 4 5 6 7 8

Figure 10. STMlite performance on automatically parallelized
kernel benchmarks. The vertical axis shows the speedup arethp
to the sequential execution and horizontal axis is the nurobe
cores. The number of cores in STMlite includes one core that i
used for the TCM.

is also shown in Figure 7. This change in the benchmark did not

affect the runtime for TL2 — since TL2 essentially does thesa
thing in short transactions. As can be seen in the figurepadth
STMilite still suffers from lack of enough floating point usijtit
performs better after replacing the small transaction Vatks in
Kmeans and Bayes.

5.2 STMliteon Parallelized Sequential Programs

Figure 9 shows the fraction of dynamic sequential executian
can be parallelized in several SPECfp benchmarkke first bar,
profiled coverage, shows the fraction of sequential exenuitn
loops identified as DOALL after profiling. The second bar,\pro
able coverage, is the fraction of sequential executiontipdaops
that could be statically identified as DOALL at compile time u

=4=STMlite HTM =4=TL2 with software chunk sync
052.alvinn 183.equake
20 20
15 ————g—l——x 15 =T
10 4 /4’*’* 10 4= 7&4—‘—
05 &~ 0.5 N > re 2 2
.——-A =
0.0 0.0
1 2 3 4 5 6 7 8 1 2 3 4 5 6 7 8
056.ear 102.swim
40 4.0
3.0 4 i 3.0 —
20 e 20
0.0 T T T T T T T . 0.0 T T T T T T T 1
1 2 3 4 5 6 7 8 1 2 3 4 5 6 7 8
107.mgrid 173.applu

20 25
20 ————————————pg—=u—0—8—

15

/ 1.0
O.S?MM.AA.A.

0.0 0.0

1
:

L

Figure 11. STMlite performance on automatically parallelized
SPECfp benchmarks. The vertical axis shows the speed up com-
pared to the sequential execution and horizontal axis iatingber

of cores. The number of cores in STMlite includes one coreitha
used for the TCM.

or the computation is not substantial. For instance, pelizilhg a
loop which initializes an array’s elements to zero or inceets

all elements in an array, can not provide much benefit, sihee t
overhead of parallelization would be more than the actuakwo
in these loops. Therefore, we added a loop selection hiuiist
our compiler which, according to the profile data, computes a
“parallelizability” metric based on the total number of dynic
operations in the loop, number of iterations and total nundfe
loop invocations in the program. The last bars in Figure 9sho
the total coverage of DOALLSs that passed this metric.

We have parallelized all these loops using the framework-nt
duced in Section 4.1. During the code generation pass, @iogor
to the static memory dependence analysis data, we perfaaraed
lective replacement of the loops’ loads and stores Wmithoad and
TxStore function calls. We essentially avoid changing loads and
stores that can be proved to cause no cross iteration depsasle

As a step towards showing the effectiveness of our appreaeh,
first tried the parallelization framework and STMLite on féernel
benchmarks: RLS, FMradio, DCT and beamformer. RLS is an im-
plementation of recursive least squares filter which is usexys-
tem identification problems and time series analysis. DGTop@s
a discrete cosine transform and is used in image procesppig a
cations. FMradio and beamformer are two streaming apmitsit
from the Streamlt benchmark suite [41]. All these benchmadve

ing LLVM’s memory dependence analysis. As can be seen, a non- very high profiled DOALL coverage. Figure 10 shows the adhiev

trivial percentage of DOALL coverage is obtained only afiefil-
ing, Finally the third bar, selected coverage, shows foaabf loops
that were eventually parallelized.

It should be noted that not all the loops included in the cager
numbers are suitable for parallelization. There are manADO
loops in these applications that do not contain any comiaumat

3These applications are a subset of SPECfp92/95/2000 thamnbderate
to high amount of loop level parallelism.

speedup using STMlite and TL2. The STMilite results include t
resource used for the TCM (1 extra core). Furthermore, sih@
doesn’t have any primitives for supporting chunk commitadiza-
tion, we implemented a software-based send/recv mechagiism
ilar to [44]. Lastly, we estimated the results on a similasteyn
with HTM support by replacing all transactional loads anofes
with normal ones. This would represent a best-case HTM, izuce s
we're only doing this for performance measurement, we igrtoe
possibility of incorrect execution due to the lack of progeec-

ulation and we only take into account the performance number
for executions that complete successfully. As can be seEN-S
lite outperforms TL2 with software based chunk synchrotiizea

by as much as a factor of 3x in FMradio. In beamformer and DCT,
STMilite follows the HTM results quite closely. For RLS, STinl
performs poorly compared to HTM results due to high number of
transactional operations, yet it still achieves 2x speeukgy se-
quential for 8 threads.

Returning to SPECfp, Figure 11 shows the speedup for these
benchmarks. Runtime values are normalized to the sequemtia
ecution of the program. The figure shows that we achieve @6x t
2.2x speedup compared to sequential by going from two toteigh
cores.

One of the reasons for performance degradation in TL2 with
software synchronization is the lack of library support éoiforc-
ing commit ordering in TL2. Adding this explicit softwarersshro-
nization has a noticeably negative impact on the performaRer-
formance degradation would be even more in traditional Tt sy
tems with eager conflict detection, like [39]. As previousrkg
have also suggested [38], workloads with transactions hbsae
large readsets and low contention (similar to our parakelise-
quential workloads), perform poorly with eager conflictedeton.
This is because eager conflict detection adds extra overteead
transactional loads and stores, but since conflicts are itadtees
not help improving the performance.

STMlite achieves decent speedup compared to HTM results
and outperforms TL2 with software chunk synchronization in
052.alvinn, 056.ear and 102.swim. This is due to the lower-ov
head of transactional operations in STMlite which makesuiteg
efficient with moderate number of these operations. Howeter
relative STMlite achieved speedup, while being noticedigher
than TL2 with software synchronization, is quite low congzhr
to HTM in other benchmarks. In SPECfp benchmarks, the paral-
lelized loops contain a large number of memory operatioas th
may cause cross iteration dependences based on the styisian
and therefore need to be transactified. Changing thesetimper&o
transactional versions causes the parallelized versmh®tome
slow in some cases. Software-based speculation mechaaigms
useful for parallelization in cases that the number of slative
variables is low, otherwise, the speculation mechanismrézes
the benefit caused by parallelization.

5.3 Effectsof static memory analysis and signature sizes

To better understand the tradeoffs involved in compilatiod exe-
cution parameters, we ran two other experiments. In thecfiqser-
iment, we measured the achieved speedup with and withcet-sel
tive replacement of loads and stores with transactionaioes. As
mentioned before, LLVM's memory dependence analysis isl use
to avoid transactifying memory instructions that provabty not
cause cross iteration dependence. Figure 12 shows theaéthib
experiment on the 052.alvinn benchmark. As can be seemirfidte
out unnecessary transactional operations, while keepmgéces-
sary ones, has a great impact on performance in both STMide a
TL2. This result further proves that software speculatigsteams
are best suited for applications in which speculation idiaggo a
limited number of memory variables.

Our second experiment involves changing the signatureaside
studying the resulting performance impact. The effect @ngfing
signature sizes on STMIlite’s performance is interestirigere is
a subtle tradeoff involved in determining the right sigmatsize.
Larger sizes reduce the number of false positives and theeeb
duce re-execution of correct transactions. However, atstrae
time, they lead to more time consuming signature operatidinge
STMlite is dependent on these operations in several parteeof
implementation, this can cause a noticeable performangeda-

=& STMlite

TL2 with SCS
Speedup
16

STMlite - no static mem analysis

==3é=TL2 SCS - no static mem analysis

0.4

0.2

0.0

4 5
Number of cores

Figure 12. Effect of using static pointer analysis on speedup for
052.alvinn.

Speedup
2

Signature size

4 =¥—=32 —9—1024

4096

2 7 8

4 5
Number of cores

Figure 13. Effect of varying signature size on speedup for RLS.

tion. Figure 13 illustrates this effect on the RLS kerneldienark.
Speedup values keep increasing up to signature sizes oftdg, a
which they start going down.

6. Related Work

There is a significant amount of previous efforts in the arta o
transactional memory. Larus and Rajwar go through a deltaile
survey of different transactional memory techniques ir.[23

In particular, Shavitt al. proposed the first implementation of
software transactional memory in [35]. Several other watksh as
DSTM [19] and OSTM [17] proposed non-blocking STM imple-
mentations. A major part of non-blocking STMs is maintersaot
publicly shared transaction structures which contain tigounfor-
mation. In our implementation, the transaction structordg need
to be visible to the TCM and individual executing transausio
keeping contention on those structures to a minimum. Theoasit
in [18, 2] proposed a lock-based approach where write locks a
acquired when an address is written. Also, they maintairad set
which needs to be validated before commit. In our STMliteégles
no locks are required and correctness is guaranteed by the co
mit manager. Furthermore, we eliminate the need for the sead
which reduces the overhead of transactional loads andatrtios
commits. [10] proposes the Transactional Locking impletaion
which maintains a read set and a write set during transaetien
ecution. Subsequently, at commit time, it acquires locksefch
individual write set entry and writes back the data after Itiek
is secured. Also, the read set is checked during commit torens
consistency.

There is also a large body of work in parallelization of se-
quential applications. Hydra [16] and Stampede [40] were ofv

the earlier efforts in the area of general purpose prograralpa
lelization. The POSH compiler [25] uses loop-level pataiion
with TLS hardware support. The authors in [44] proposed d@np
transformation to extract more loop level parallelism freeguen-
tial programs. The compiler transformation part of that kvisror-
thogonal to what we are doing and can be applied simultaheous
here. Speculative decoupled software pipelining [42] tlaer ap-
proach that focuses on extracting parallelism from looph wioss
iteration dependencies. In that work, they distribute glsiitera-
tion of the loop over several cores. The SUDS framework [E3} p
forms automatic speculative parallelization of applicas for the
RAW processor. This system relies on the special architaldtea-
tures in RAW to accomplish efficient speculative state managnt
and synchronization, such as the scalar operand networkeyts

in all these works, hardware TLS or transactional memorypstip
and additional hardware mechanisms for synchronizatienres
quired. Whereas in this work, we are looking at a softwarkg-on
solution and although our achieved speed up in some casegds |
than these works, we have the advantage of running our system
commodity hardware.

Cezeet al. [6] proposed the idea of using Bloom filters to rep-
resent read and write sets for transactions. They showegvhithw
specialized hardware, transaction state can be maintdimedgh
signatures with less overhead. This technique was exteided
LogTM-SE [43] and SigTM [29], which are hybrid TM systems
requiring no modifications to hardware caches. Our work tises
idea of storing Bloom filter-based read and write sets inveafe
data structures, alleviating the need for the extra harelwiuthors
in [18] use software hashing to remove duplicates in the-tegd
and undo-log of the "same” transaction, whereas in STMiites,
used for conflict detection between different transactions

and eager notifications to transactions about coherencetseve
They propose software mechanisms for deciding how to manage
conflicts and for choosing appropriate conflict management a
commit protocols.

7. Conclusion

As we move further into the multicore era, a major challenge i
both hardware and software communities is exploiting thenab
dant computing resources made available by technologynagva
ments. Automatic parallelization of applications is an eadmg
solution for utilizing these resources; however, paraélon ef-
forts are commonly dependent on complex hardware changés su
as adding speculation support. These changes are not yatapop
among hardware manufacturers. On the other hand, softveesred
speculation support is still quite expensive in terms ofgrenance
to be widely used in parallel and parallelized applicatidnghis
work, we try to tackle these issues from two closely relategles.
First, we try to minimize the overheads of software basewufstaa-
tional memory models by decoupling and centralizing the oim
stage in STMlite. We also eliminate the need for maintairimgad
set during loads and checking them during commit. Secomgy,
are able to lower the overhead of loop parallelization bysirem
some of the underlying structures of STMlite. We have shdvat t
our work outperforms the state-of-art transactional memior-
plementations on transactional benchmarks with largesaetions
while achieving similar performance in smaller transatsioFur-
thermore, we show that achieving real speculative speedwgeo
quential applications is possible without extra hardwangpsrt.
We believe the value of this work lies in the idea that we made p
allelization of sequential applications feasible on cordityohard-

The most similar speculation management mechanism to oursWare.

is RingSTM [39] that uses a global ring structure to orgamias-
mitting transactions. They use Bloom filters to represeat rand
write sets for transactions. However, because the ringabat)
all threads face contention for ownership of the ring duiiogn-
mit, and prioritization is required to prevent starvatibteanwhile,
STMIlite has thread local precommit logs and can relinquish
cores while the corresponding transaction is waiting fer ¢dbm-
mit manager to validate the transaction. Our commit log wanka
round-robin fashion, ensuring all threads waiting to cotrare ser-
viced equally. Furthermore, in [39], the read signaturehisoged
against several write signatures at each transactiondl (eager
conflict detection), which adds considerable overhead.évew in
STMilite, transactional load overhead is minimal becauseottiy
extra operation added is insertion of the address in the s&ad
nature. This makes our model more prone to zombie transectio
but as mentioned in Section 3.4, the possibility of havingbies
in parallelized loops is quite low, though STMIlite can stifindle
them successfully.

Furthermore, we have customized STMlite to work for loop
parallelization. This customization would be more conguiec

—

in RingSTM. The reason is that transaction commit is done by

individual transactions after checking against the wrigmatures
of ring elements. Therefore, if a loop chunk does not get achto
commit in the first try (due to an unfinished previous churthgré
would be no efficient way of checking again later in the exiecut

Acknowledgments

We would like to thank Dr. Tim Harris for his useful feedbaak o
earlier drafts of this paper. We extend our thanks to anomgmo
reviewers for their excellent comments. We also thank Ganes
Dasika, Shuguang Feng, Shantanu Gupta and Amir Hormati for
providing feedback on this work. This research was supddrte
the National Science Foundation grant CCF-0811065, Semico
ductor Research Corporation (Task 1789.001), and the Gatms
Systems Research Center, one of five research centers funeed
der the Focus Center Research Program, a SemiconductarBese
Corporation program. Equipment was kindly provided by Sun M
crosystems and Intel Corporation.

References

[1] M. Abadi, T. Harris, and M. Mehrara. Transactional megnarith
strong atomicity using off-the-shelf memory protectiondveare. In
Proc. of the 14th ACM SIGPLAN Symposium on Principles and Prac-
tice of Parallel Programming, pages 185-196, 2009.

[2] A.-R. Adl-Tabatabai, B. T. Lewis, V. Menon, B. R. Murphg, Saha,
and T. Shpeisman. Compiler and runtime support for effigeftivare
transactional memory. IRroc. of the SGPLAN '06 Conference on
Programming Language Design and Implementation, pages 26-37,
2006.

The only way would be to use a back off mechanism and check [3] R. Allen and K. KennedyOptimizing compilers for modern architec-

back from time to time, which is inefficient. Whereas in STid)i
since the TCM is in charge of ordering loop chunks for commit,
even if a chunk misses its chance, the TCM makes sure thatiltiwo
be checked again in a timely manner.

An interesting, recently-proposed transactional memoogeh
called FlexTM [37] adds mechanisms in hardware to coordinat
read and write signature checking, speculative updatesadbhes

tures: A dependence-based approach. Morgan Kaufmann Publishers
Inc., 2002.

[4] M. J. Bridges et al. Revisiting the sequential programgnmodel for
multi-core. InProc. of the 40th Annual International Symposium on
Microarchitecture, pages 69-81, Dec. 2007.

[5] B. D. Carlstrom et al. The Atomos transactional prograngrian-
guage. InProc. of the SGPLAN '06 Conference on Programming
Language Design and Implementation, pages 1-13, June 2006.

[6] L. Ceze, J. Tuck, J. Torrellas, and C. Cascaval. Bulkrdisiguation
of speculative threads in multiprocessorsPhoc. of the 33rd Annual
International Symposium on Computer Architecture, pages 227-238,
Washington, DC, USA, 2006. IEEE Computer Society.

[7] M. K. Chen and K. Olukotun. Exploiting method-level pkeism
in single-threaded Java programs. Rroc. of the 7th International
Conference on Parallel Architectures and Compilation Techniques,
page 176, Oct. 1998.

[8] K. Cooper et al. The ParaScope parallel programmingrenuent.
Proceedings of the IEEE, 81(2):244—263, Feb. 1993.

[9] D. Dice, O. Shalev, and N. Shavit. Transactional Lockihgn Proc.
of the 2006 | nter national Symposium on Distributed Computing, 2006.

[10] D. Dice and N. Shavit. Understanding tradeoffs in seftransac-
tional memory. IrProc. of the 2007 International Symposium on Code
Generation and Optimization, pages 21-33, 2007.

[11] Z.-H. Du et al. A cost-driven compilation framework fepeculative
parallelization of sequential programs. Pnoc. of the SGPLAN '04
Conference on Programming Language Design and Implementation,
pages 71-81, 2004.

[12] W. Eatherton. The push of network processing to the tbphe
pyramid, 2005. Keynote address: Symposium on Architestfioe
Networking and Communications Systems.

[13] M. Frank. SUDS Automatic parallelization for Raw Processors. PhD
thesis, MIT, 2003.

[14] M. Frigo, C. E. Leiserson, and K. H. Randall. The impleration
of the Cilk-5 multithreaded language. Rroc. of the SGPLAN '98
Conference on Programming Language Design and Implementation,
pages 212-223, June 1998.

[15] M. Hall et al. Maximizing multiprocessor performancémthe SUIF
compiler. [IEEE Computer, 29(12):84-89, Dec. 1996.

[16] L. Hammond, M. Willey, and K. Olukotun. Data speculatisupport
for a chip multiprocessor. IliEighth International Conference on
Architectural Support for Programming Languages and Operating
Systems, pages 58-69, Oct. 1998.

[17] T.Harris and K. Fraser. Language support for lightwéigansactions.
Proceedings of the OOPSLA' 03, 38(11):388—402, 2003.

[18] T. Harris, M. Plesko, A. Shinnar, and D. Tarditi. Optizinig memory
transactionsProc. of the SGPLAN '06 Conference on Programming
Language Design and Implementation, 41(6):14-25, 2006.

[19] M. Herlihy, V. Luchangco, and M. Moir. The repeat offengroblem:
A mechanism for supporting dynamic-sized, lock-free datactures.
In Proceedings of the 16th International Conference on Distributed
Computing, pages 339-353. Springer-Verlag, 2002.

[20] H. P. Hofstee. Power efficient processor design and tHepBocessor.
In Proc. of the 11th International Symposium on High-Performance
Computer Architecture, pages 258-262, Feb. 2005.

[21] T. A.Johnson, R. Eigenmann, and T. N. Vijaykumar. Mirt-program
decomposition for thread-level speculation.Aroc. of the SGPLAN
'04 Conference on Programming Language Design and |mplementa-
tion, pages 59-70, June 2004.

[22] P. Kongetira, K. Aingaran, and K. Olukotun. Niagara: &-®ay
multithreaded SPARC processorlEEE Micro, 25(2):21-29, Feb.
2005.

[23] J. Larus and R. RajwaiTransactional Memroy. Morgan & Claypool
Publishers, 2007.

[24] C. Lattner and V. Adve. LLVM: A compilation framework fdife-
long program analysis & transformation. Rnoc. of the 2004 Interna-
tional Symposium on Code Generation and Optimization, pages 75—
86, 2004.

[25] W. Liu et al. POSH: A TLS compiler that exploits programnugture.
In Proc. of the 11th ACM SIGPLAN Symposium on Principles and
Practice of Parallel Programming, pages 158-167, Apr. 2006.

[26] V. J. Marathe, W. N. Scherer, and M. L. Scott. Adaptivétware
transactional memory. IRroc. of the 2005 International Symposium
on Distributed Computing, pages 354—-368, Sept. 2005.

[27] P. Marcuello and A. Gonzalez. Thread-spawning scheorespecu-
lative multithreading. IrProc. of the 8th International Symposium on
High-Performance Computer Architecture, page 55, Feb. 2002.

[28] C. C. Minh, J. Chung, C. Kozyrakis, and K. Olukotun. STRMStan-
ford transactional applications for multi-processingPhoceedings of
[1SWCO08, 2008.

[29] C. C. Minh, M. Trautmann, J. Chung, A. McDonald, N. Brons
J. Casper, C. Kozyrakis, and K. Olukotun. An effective hgtlirans-
actional memory system with strong isolation guarantee$rac. of
the 34th Annual International Symposium on Computer Architecture,
pages 69-80, New York, NY, USA, 2007. ACM.

[30] J. Nickolls and I. Buck. NVIDIA CUDA software and GPU padiel
computing architecture. INicroprocessor Forum, May 2007.

[31] E. Nystrom, H.-S. Kim, and W. Hwu. Bottom-up and top-dow
context-sensitive summary-based pointer analysi®rdo. of the 11th
Satic Analysis Symposium, pages 165-180, Aug. 2004.

[32] B. Saha, A. Adl-Tabatabai, and Q. Jacobson. Architattaupport
for software transactional memory. Froc. of the 39th Annual
International Symposium on Microarchitecture, pages 185-196, Nov.
2006.

[33] F. T. Schneider, V. Menon, T. Shpeisman, and A.-R. Aalhdtabai.
Dynamic optimization for efficient strong atomicity. RFroceedings
of the OOPSLA' 08, pages 181-194, 2008.

[34] M. L. Seidl and B. G. Zorn. Segregating heap objects lfgresmce
behavior and lifetime. IrfEighth International Conference on Archi-
tectural Support for Programming Languages and Operating Systems,
pages 12-23, Oct. 1998.

[35] N. Shavit and D. Touitou. Software transactional meyndournal of
Parallel and Distributed Computing, 10(2):99-116, Feb. 1997.

[36] T. Shpeisman, V. Menon, A.-R. Adl-Tabatabai, S. Baiefes,
D. Grossman, R. L. Hudson, K. F. Moore, and B. Saha. Enforcing
isolation and ordering in STM. IRroc. of the SGPLAN ' 07 Confer-
ence on Programming Language Design and Implementation, pages
78-88, 2007.

[37] A. Shriraman, S. Dwarkadas, and M. L. Scott. Flexiblec@gpled
Transactional Memory Support. Froc. of the 35th Annual Interna-
tional Symposium on Computer Architecture, pages 139-150, 2008.

[38] M. F. Spear, V. J. Marathe, W. N. S. lii, and M. L. Scott. rdlact de-
tection and validation strategies for software transaeficnemory. In
Proc. of the 2006 International Symposium on Distributed Computing,
2006.

[39] M. F. Spear, M. M. Michael, and C. von Praun. RingSTM:labke
transactions with a single atomic instruction. pages 288,-2008.

[40] J. G. Steffan and T. C. Mowry. The potential for usinget-
level data speculation to facilitate automatic paralélan. InProc.
of the 4th International Symposium on High-Performance Computer
Architecture, pages 2—-13, 1998.

[41] W. Thies, M. Karczmarek, and S. P. Amarasinghe. Streafnlan-
guage for streaming applications. Rnoc. of the 2002 International
Conference on Compiler Construction, pages 179-196, 2002.

[42] N. Vachharajani, R. Rangan, E. Raman, M. Bridges, Go®ttand
D. August. Speculative Decoupled Software Pipelining. Phoc.
of the 16th International Conference on Parallel Architectures and
Compilation Techniques, pages 49-59, Sept. 2007.

[43] L. Yen et al. LogTM-SE: Decoupling hardware transacibmemory
from caches. IrProc. of the 13th International Symposium on High-
Performance Computer Architecture, pages 261-272, Feb. 2007.

[44] H. Zhong, M. Mehrara, S. Lieberman, and S. Mahlke. Urcing
hidden loop level parallelism in sequential applications.Proc. of
the 14th International Symposium on High-Performance Computer
Architecture, Feb. 2008.

[45] C. Zilles and G. Sohi. Master/slave speculative paliathtion. In
Proc. of the 35th Annual International Symposium on Microarchitec-
ture, pages 85-96, Nov. 2002.

