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Abstract—

The emergence and wide adoption of web applications have
moved the client-side component, often written in JavaScript,
to the forefront of computing on the web. Web application
developers try to move more computation to the client side to
avoid unnecessary network traffic and make the applications
more responsive. Therefore, JavaScript applications are becoming
larger and more computation intensive. Trace-based just-in-time
compilation have been proposed to address the performance
bottleneck in these applications. In this paper, we exploit the extra
processing power in multicore systems to further improve the
performance of trace-based execution of JavaScript programs.
In trace-based engines, a considerable portion of execution time
is spent on running guards which are operations inserted in the

native code to check if the properties assumed by the compiled
code actually hold during execution. We introduce ParaGuard
to off-load these guards to another thread, while speculatively
executing the main trace. In a manner similar to what happens
in current trace-based JITs, if a check fails, ParaGuard aborts
the native trace execution and reverts back to interpreting
the JavaScript bytecode. We also propose several optimizations
including guard branch aggregation and profile-based snapshot
elimination to further improve the performance of our technique.
We show that ParaGuard can achieve an average of 15%
performance improvement over current trace-based compilers
using an extra processor on commodity multicore processors.

I. INTRODUCTION

JavaScript has become ubiquitous for client side web pro-

gramming due to its flexibility, ease of prototyping, and porta-

bility. Dynamically downloaded JavaScript programs combine

a rich and responsive client-side experience with centralized

access to shared data and services provided by data centers.

The uses of JavaScript range from simple scripts utilized for

creating menus on a web page to sophisticated applications

that consist of many thousands of lines of code executing in

the user’s browser. Some of the most visible applications, such

as Gmail and Facebook, enjoy widespread use by millions of

users. Other applications, such as image processing applica-

tions and games, are also becoming more commonplace due

to the ease of software distribution.

As JavaScript applications become popular and their com-

plexity grows, the need for higher performance will become

essential. However, this is a difficult challenge for dynamically

typed languages such as JavaScript. The types of variables and

expressions may vary at run-time, thus the compiler must emit

generic code that can handle all potential type combinations.

This code is then executed through interpretation, which is

often extremely slow in comparison to the code generated for

statically typed languages such as C or C++.

There is disagreement in the community about the forms of

JavaScript applications that will dominate and thus the best

strategy for optimizing performance. JSMeter [28] character-

izes the behavior of JavaScript applications from commercial

websites and argues that long-running loops and functions with

many repeated instructions are uncommon. Rather, they are

mostly event-driven with thousands of events being handled

based on user interactions.

While this characterization of interaction-intensive appli-

cations reflects the current dominance of applications such

as Gmail and Facebook, it may not reflect the future. More

recently, Richards et al. [30] performed similar analyses on

a fairly large number of commercial websites and concluded

that in many websites, execution time is, in fact, dominated by

hot loops, but less so than Java and C/C++. Furthermore, an

emerging class of online games and client-side image editing

applications are becoming more and more popular. There

are already successful examples of image editing applications

written in ActionScript for Adobe Flash [8], [10]. There are

also many efforts in developing online games and gaming

engines in JavaScript [1], [14]. These compute-intensive ap-

plications are dominated by frequently executed loops and

functions.

The main obstacle preventing wider adoption of JavaScript

for compute-intensive applications is historical performance

deficiencies. These applications must be distributed as native

binaries because consumers would not accept excessively poor

performance. A circular dependence has developed where poor

performance discourages developers from using JavaScript

for compute-intensive applications, but there is little need to

improve JavaScript performance because it is not used for

heavy computation.

This circular dependence is being broken through the de-

velopment of new dynamic compilers for JavaScript. Trace-

Monkey, a trace-based JavaScript engine, was developed for

the Firefox web browser to remove some of the inefficiencies

associated with dynamic typing [19]. TraceMonkey identifies

hot bytecode sequences and compiles them to native machine

code with statically assumed types. As long as the sequences

(traces) remain type-stable, execution remains in the type-

specialized machine code. TraceMonkey works at the gran-

ularity of individual loops, and therefore, is very well suited
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Fig. 1. Fraction of instructions devoted to computing guards across four
groups of benchmarks: SunSpider, V8, Pixastic image processing applications,
and a set of JavaScript games. These bars include guards and portion of the
backward slice only needed by guards and not used elsewhere.

for compute-intensive web applications.

While compiling hot traces to the native code, TraceMonkey

inserts runtime checks, called guard instructions, into the trace

to check for type, control flow, and other assumptions that

were made during the JIT compilation process. These checks

are heavily biased not to fire as the vast majority of the

time the types do not vary and a single control flow path

is dominant [19]. However, these guards comprise a signifi-

cant fraction of total executed instructions. Figure 1 presents

the overhead of guards consisting of the guard instructions

themselves as well as the dependent computation used by the

them. These are the instructions only used by guards and are

not needed elsewhere in the trace. The average overhead is

presented for four groups of applications: SunSpider [13] and

V8 [15] benchmark suites, and two sets of applications from

the image processing and gaming domains (more details on the

benchmarks are provided in Section V). These values range

from a low of 22% to a high of 42%, which represents a

significant runtime penalty.

In this work, we focus on reducing this overhead using

a multi-threaded dynamically decoupled execution framework

called ParaGuard. We decompose traces generated by Trace-

Monkey into two concurrent threads. The main thread consists

of the code to implement the bulk of the user program, while

the ParaGuard thread performs most of the runtime checks.

With this model, the main thread speculatively executes ahead

assuming that the checks will not fire and the common

execution scenario will proceed. When a check does fail, it

reverts back to the interpreter and safely discards the improper

speculative work. During speculative execution, the program

is sandboxed to make sure no catastrophic execution failures

happen until ParaGuard checks have been validated. In mul-

ticore systems with under-utilized cores, we can execute the

main and guard threads concurrently to increase performance.

The contributions offered by this paper are as follows:

• We propose ParaGuard, a method to dynamically decom-

pose a type-specialized trace into two concurrent threads:

the first speculatively performs the core computation

along the expected path of control and the second verifies

that the assumptions used to create the trace are valid.

• We introduce several optimizations including guard

branch aggregation and profile-based snapshot elimina-

tion to increase the efficiency of the decoupled execution.

• We evaluate the ParaGuard system on a set of JavaScript

applications from the gaming and image processing do-

mains, in addition to two popular benchmark suites,

SunSpider and V8.

II. BACKGROUND

In statically typed languages such as C or C++, the compiler

can generate efficient machine code based on the type infor-

mation provided by the programmer. However, in dynamically

typed languages such as JavaScript, variable types can change

at runtime and therefore, the compiler cannot generate machine

code specialized for only one specific type. This forces the

compiler to generate generalized machine code with the ability

to handle potential dynamic type changes, causing the code to

be considerably slower than the statically typed machine code.

Some static compile-time type inference techniques can be

applied to dynamically typed languages, but such techniques

are far too slow for a language like JavaScript that needs to

be loaded and compiled quickly in the web browser.

There have been a number of efforts to efficiently compile

and execute JavaScript applications on different browsers. One

of the most recent proposals is TraceMonkey [19] by Mozilla

which is implemented on top of SpiderMonkey [12] and is

now integrated in their web browser, Firefox [7].

TraceMonkey uses a trace-based compilation method that

reduces JavaScript execution time by exploiting high per-

formance type-specialized machine code when possible. It

starts off by running the JavaScript application in a bytecode

interpreter and at the same time identifies and records hot

bytecode execution sequences. These sequences, called traces,

are then compiled to native code. In TraceMonkey, traces are

formed out of individual hot loops. This choice is based on

the assumption that hot loops are mostly type-stable, thereby

allowing most of the program execution to be expressed by

type-specialized and natively compiled traces.

Each compiled trace consists of a single path in the pro-

gram with a specific value-type mapping. However, this type-

mapping is not guaranteed to be always correct, because

different code paths may be taken or different types may be

assigned to a value in subsequent loop iterations. Therefore,

executing the same trace for later loop iterations is based

on the speculation that the path and types will match what

was observed during recording. These speculations are verified

using a number of checks (called guards) along the trace.

The guards are inserted wherever there is a need to check for

alternate typing, control flow paths or other runtime checks (as

described in the beginning of Section III). If these checks fail,

the trace exits and reverts back to interpreting the bytecode.

Likewise, if the exit becomes hot, a branch trace is generated

and compiled to cover the new path. In this way, a trace tree

is eventually formed which covers all hot paths in the loop.

Figure 2 describes the major phases of JavaScript execution

in TraceMonkey. These phases happen in the trace monitor

which coordinates the whole tracing process. Initially, the

program starts in the bytecode interpreter, and when the

interpreter reaches a loop edge, the trace monitor is called
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Fig. 2. JavaScript tracing and type specialization in TraceMonkey. This state
machine describes how the trace monitor manages trace-based just-in-time
compilation.

to determine whether a new trace should be recorded or an

existing native trace could be executed for the loop. At the

start of execution, since there are no compiled traces, the trace

monitor simply profiles the number of loop edge crossings and

enters the recording state after a loop becomes hot. During

recording, the code along the trace is recorded in a low-

level intermediate representation (LIR) which encodes all the

operations and types in the trace. The LIR also contains guards

to ensure that the control flow and types are identical to what

was observed during recording. If the recorder is unable to

continue recording, for example when faced with eval calls

or reaching the trace length limits in a small-memory device, it

chooses to abort the recording. On such an abort, the monitor

discards the recorder and returns to the monitoring state. The

monitor also keeps track of how many times the recording

has failed for a trace starting at each program counter (PC)

value. Therefore, if a particular PC causes too many aborted

recordings, the monitor blacklists the PC and will not attempt

to record it again.

The recording is finished when execution reaches the loop

header or exits the loop. Subsequently, the trace is compiled

to the native code based on the types and control path of the

recorded trace. From then on, whenever the monitor interprets

a backward jump to a PC with a matching compiled trace (with

the same type map), it enters native execution mode. In this

mode, before calling the native trace, the monitor allocates a

trace activation record containing imported local and global

variables, temporary stack space, and space for arguments

to native calls. The monitor then calls the trace native code

with the activation record as an argument. The native code

returns with a pointer to a structure containing information

about how the trace exited. Based on this information, the

monitor restores interpreter state by copying back the imported

variables from the trace activation record.

The monitor behaves differently afterwards, based on the

success of the trace return. If the trace exits unsuccessfully

(e.g., due to having garbage collection triggered, running out

of native stack, or noticing other abnormal conditions), the

monitor returns to the monitoring state. However, if the trace

exits successfully (e.g., due to running out of native code or

hitting a branch condition for which no native code exists yet),

the monitor checks whether the side exit PC has become hot

or not. If not, it just keeps monitoring the interpretation to find
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Fig. 3. Breakdown of different types of guards in SunSpider, V8, Pixastic
image processing and JavaScript games.

other hot traces. If it has become hot, the monitor moves on

to the recording state immediately, starting a new branch trace

from that point and patching the side exit to jump directly to

that branch. Using this approach, a single trace expands to a

multiple-exit trace which could span a fairly large portion of

the frequent execution graph.

In practice, loops are typically entered with only a few

different combinations of variable types. Therefore, a small

number of traces per loop is sufficient to run a program

efficiently. TraceMonkey is able to achieve speedups of 2x

to 20x on programs for which tracing is feasible [19].

III. PARAGUARD: CONCURRENT GUARD EXECUTION

During LIR generation, the following categories of guards

can be inserted into the trace.

Loop guards: They are inserted at the end of the loop and

check for the loop termination condition.

Branch and case guards: When the LIR corresponding to

a trace is generated, conditional branches and case statements

are first replaced with unconditional ones, taking the same path

that had been taken during trace recording. Guard instructions

are then inserted to actually check the branch/case conditions

and abort the trace if a different path needs to be taken.

Condition mismatch guards: These guards are inserted to

terminate trace execution in case a condition, relied upon at

recording time, no longer holds. In some of these situations,

the alternate path of execution is so rare or difficult to handle in

the native code, that it is preferable to have it interpreted rather

than traced and compiled. One example is a negative array

index access which requires string-based property lookups,

compared to a positive index access which is merely a simple

memory access. Type mismatch guards are also included in

this category, and they check if the actual type during native

execution matches with what was observed during recording.

Miscellaneous guards: There are several other categories of

guards such as allocation failure, execution timeout, variable

overflow, and deep bail guards. Deep bail guards are triggered

when during the execution of a native C function call in the

trace, a trace exit is triggered.

Figure 3 shows the average relative ratio of different guard

types in SunSpider and V8 suites, and our suite of image



Original 

trace with 

all guards Side 

exit

Loop 

back-edge

Modified 

main trace 

w/ a subset 

of guards

Side 

exit

Loop 

back-edge

ParaGuard

trace with 

remaining 

guards
Side 

exit

Loop 

back-edge

Thread 1 Thread 2Single thread

State snapshot

Fig. 4. Offloading guard execution to the ParaGuard thread.

processing programs and JavaScript games. Miscellaneous

guards comprise the top five sections in each bar. As can be

seen, branch guards are the most frequently generated guards

across all benchmarks. Condition mismatch, loop and overflow

guards are other common ones.

In the ParaGuard technique (Figure 4), the majority of

guards are moved to another trace (ParaGuard trace) and are

executed in a separate thread (ParaGuard thread), in parallel

to the main trace. ParaGuard trace code is generated along

with the main trace and is invoked at the same time during

trace monitoring. The following subsections describe how

we generate ParaGuards and restore the correct state of the

interpreter after a ParaGuard is triggered and the trace is

aborted. In Section IV, two optimizations are introduced to

further improve the performance of our technique.

A. ParaGuard Generation

The optimizations in TraceMonkey are performed in two

pipelined phases over the trace. During trace recording, im-

mediately after the recorder emits an LIR instruction, the

instruction is sent through the forward optimization pipeline.

This forward pass consists of several optimizations including

common subexpression elimination and expression simplifica-

tions such as constant folding. The second phase is a backward

pass which goes through the whole trace from bottom to top

after trace recording is complete. The optimizations in this

pass include dead code elimination and dead data-stack and

call-stack store elimination. After an LIR instruction passes

the last stage in the optimization pipeline, the code generator

emits the corresponding machine instructions.

Traditional guards are generated and inserted in the LIR

during the forward pass. However, since we want to move

guard instructions along with the LIR instructions that they

depend on (their backward slice), we need to generate Para-

Guards as an extra pipeline stage after all optimizations in

the backward pass. We call this stage, guard promotion. The

goal of guard promotion is to identify LIR instructions (guards

and non-guards) that can be moved to the ParaGuard trace. A

non-guard instruction is moved to the ParaGuard trace if it

is only used for computing the inputs of a relocated guard.

Furthermore, some instructions are marked for duplication in

the ParaGuard trace, since they need to be re-executed there

to minimize communication between the ParaGuard and main

threads. During guard promotion, two groups of instructions

are constructed. The first category is “to-be-copied” which

contains the instructions duplicated on both the main and

var myArray = new Array();

function init() {
var j = 0;

for (j = 0; j < 200; ++j)
myArray[j] = j*2;

}

Fig. 5. Sample JavaScript source code.

ParaGuard traces. The second group, called “to-be-moved”,

consists of all instructions that are moved from the main trace

to the ParaGuard trace by the end of the guard promotion pass.

This pass is performed in two steps:

Step 1: This is essentially a partial implementation of

backward slicing. Starting from each guard instruction in the

trace, the compiler keeps track of def instructions for the

guard’s source operands. Likewise, it tracks defs of the source

operands of those def instructions. This procedure is continued

recursively, traversing def/use chains and marking defs as “to-

be-copied”. The destinations of these def instructions are also

kept in a list for use in the second step. To avoid violating

memory consistency between the main and ParaGuard thread,

tracking defs is stopped after reaching a load instruction.

Because if the load is copied or moved to the ParaGuard

trace, the code needs to ensure that the load in the ParaGuard

thread is not executed before the corresponding store in the

main thread. Enforcing this requires adding locking primitives,

which can cause high overheads.

Step 2: The goal of this step is to remove the defs that

are only used in the guard’s backward slice from the main

trace. First the candidate guard for moving is marked as “to-

be-moved”. As the trace is traversed backwards, all uses of

the candidate guard’s source operands are recursively kept in

a “use-set”. When a def marked as “to-be-copied” (during step

1) is reached, its “use-set” is checked to see whether all its

members are marked as “to-be-moved”. If so, it is clear that

this def is not going to be used in the main trace before

the guard instruction, if all “to-be-moved” instructions are

moved to the ParaGuard trace. Furthermore, a def’s destination

liveness after the guard instruction should also be checked. In

order to do that, the live set at the guard instruction is used and

if the def’s destination operand is not a member of this live set,

the def’s category can safely be changed from “to-be-copied”

to “to-be-moved”. These live sets are already generated prior

to the guard promotion pass. To summarize, a def must meet

three conditions to qualify for relocation to the ParaGuard

trace:

1. It is marked as “to-be-copied”.

2. All its uses before the guard are marked as “to-be-

moved”.

3. Its destination is not live after the guard instruction.

In addition to this analysis, guard promotion uses a heuristic

that rejects promotion of the guard instructions whose back-

ward slice is either very small or should be mostly copied to

the ParaGuard trace rather than moved. Therefore, by the end

of the guard promotion pass, some guards still remain in the

main trace.

At runtime, live-in values to the ParaGuard trace are copied

to a per-guard single-reader/single writer buffer, similar to the



label1:

(*)1 : cx = ldq state[16] // load context pointer
2 : ld1 = ld sp[-8] // load ’j’ from stack

(+)3 : ld2 = ld cx[0] // load context object
(+)4 : eq3 = eq ld2, 0 // check if context is valid

(+)5 : xf eq3 // side exit if it’s not
(*)6 : $globl0 =ldq state[848] // load myArray pointer from

// trace activation record

7 : stqi sp[0] = $globl0 // store myArray on stack
8 : sti sp[8] = ld1 // store j on the stack

9 : sti sp[24] = 2 // store 2 on the stack
(*)10: mul1 = mul ld1, 2 // multiply j by 2

(+)11: ov2 = ov mul1 // check overflow on mul op
(+)12: xt4: xt ov2 // side exit if mul overflows
(+)13: eq2 = eq mul1, 0 // check if mul1 is zero

(+)14: xt eq2 // side exit if so
15: sti sp[16] = mul1 // store mul result on stack

(*)16: ldq1 = ldq $globl0[8] // load myArray class

(+)17: qi1 = qiand ldq1, //

quad #FFFFFFFF:FFFFFFFC
(+)18: cl = quad #0:803D20 //

(+)19: arrayg = qeq qi1, cl // check if class is an array
(+)20: xf arrayg // side exit if not

21: returng=js_Array_set( // set myArray element
$globl0 ld1 mul1)

22: eq1 = eq returng, 0 // check js_Array_set return value

23: xt eq1 // side exit if failed
(*)24: add1 = add ld1, 1 // add 1 to j

(+)25: ov1 = ov add1 // check add for overflow
(+)26: xt ov1 // side exit if overflows

27: sti sp[-8] = add1 // store add result on stack
28: sti sp[8] = 200 // store 200 on stack

(*)29: lt1 = lt add1, 200 // check loop condition

(*)30: xf lt1 // exit trace if finished
31: sti sp[-8] = add1 // store add result on stack

(*)32: j -> label1 // jump back to the top

Fig. 6. Original TraceMonkey’s Low-level IR for the source code in Figure 5. Instructions marked with (*) are to be copied and the ones with (+) are to
be moved to the ParaGuard trace.

label1:
1 : cx = ldq state[16] // (*) load context pointer

2 : ld1 = ld sp[-8] // load ‘‘j’’ from stack
PG1: st shared_buf[0] = ld1 // store ld1 in the shared_buff

6 : $globl0 =ldq state[848] // (*) load myArray pointer
// from trace activation record

7 : stqi sp[0] = $globl0 // store myArray on stack

8 : sti sp[8] = ld1 // store j on the stack
9 : sti sp[24] = 2 // store 2 on the stack

10 : mul1 = mul ld1, 2 // (*) multiply j by 2
15 : sti sp[16] = mul1 // store mul result on stack
16 : ldq1 = ldq $globl0[8] // (*) load myArray class

21 : returng=js_Array_set( // set myArray element
$globl0 ld1 mul1)

22 : eq1 = eq returng, 0 // check js_Array_set return val
23 : xt eq1 // side exit if failed

24 : add1 = add ld1, 1 // (*) add 1 to j
PG2: count = add count, 1 // inc snapshot counter
27 : sti sp[-8] = add1 // store add result on stack

28 : sti sp[8] = 200 // store 200 on stack
29 : lt1 = lt add1, 200 // (*) check loop condition

30 : xf lt1 // (*) exit trace if finished
PG3: eq2 = eq count, N // check snapshot condition

PG4: jt eq2 -> label2 // jump if snapshot needed
31 : sti sp[-8] = add1 // store add result on stack
32 : j -> label1 // (*) jump back to the top

label2:
barrier paraguard_finish

take_snapshot()
count = 0
j -> label1

(a) Main Trace LIR

label1:
1’ : cx = ldq state[16] // (*) load context pointer

3 : ld2 = ld cx[0] // (+) load context object
4 : eq3 = eq ld2, 0 // (+) check if context is valid

5 : xf eq3 // (+) side exit if it’s not
6 : $globl0 =ldq state[848] // (*) load myArray pointer
PG5: barrier shared_buf[0] // wait for of shared_buf[0]

PG6: ld1 = ld shared_buf[0] // load ld1 from the shared_buf[0]
10’ : mul1 = mul ld1, 2 // (*) multiply j by 2

11 : ov2 = ov mul1 // (+) check overflow on mul op
12 : xt4: xt ov2 // (+) side exit if mul overflows
13 : eq2 = eq mul1, 0 // (+) check if mul1 is zero

14 : xt eq2 // (+) side exit if so
16’: ldq1 = ldq $globl0[8] // (*) load myArray class

17 : qi1 = qiand ldq1, // (+)
quad #FFFFFFFF:FFFFFFFC

18 : cl = quad #0:803D20 // (+)
19 : arrayg = qeq qi1, cl // (+) check if class is an array
20 : xf arrayg // (+) side exit if not

PG7: count = add count, 1 // inc snapshot counter
24’: add1 = add ld1, 1 // (*) add 1 to j

25 : ov1 = ov add1 // (+) check add for overflow
26 : xt ov1 // (+) side exit if overflows

29’: lt1 = lt add1, 200 // (*) check loop condition
30’: xf lt1 // (*) exit trace if finished
PG8: eq3 = eq count, N // check snapshot condition

PG9: jt eq3 -> label2 // jump if snapshot needed
32’: j -> label1 // (*) jump back to the top

label2:
bdcast paraguard_finish
j -> label1

(b) ParaGuard Trace LIR

Fig. 7. Main and ParaGuard traces after the guard promotion pass.

buffers in [27], which is written by the main trace and read

by the ParaGuard trace. Initializing these per-guard buffers is

done in the ParaGuard thread and is off the critical path in the

main trace. The initial sizes of these buffers are determined at

compilation time and in case more space is needed at runtime,

they are dynamically expanded. During native execution, Para-

Guard trace can start or resume execution once these values

are written in the buffers by the main trace.

Figure 5 shows an example JavaScript code snippet. Trace-

Monkey’s LIR for this code can be seen in Figure 6. Backward

slices for each guard are highlighted with a different gray

shade. Instructions belonging to multiple backward slices are

highlighted with the same shade as the earliest observed

guard in the trace. For instance, the backward slice for guard

instruction 30 consists of instructions 29, 24 and 2. Likewise,

the backward slice for instruction 26 are instructions 25, 24

and 2, and for instruction 23 are instructions 22, 21, 10, 6 and

2. Instructions marked with (*) are “to-be-copied” and the

ones with (+) are “to-be-moved” after performing the guard

promotion algorithm on the guards. This algorithm decided not

to move the guard at instruction number 23, since it would

have only saved two instructions (22 and 23) on the main

trace, while either js_Array_set had to be re-executed in

the ParaGuard trace or its return value had to be copied to the

ParaGuard trace buffer.

Finally, Figure 7 shows the modified main trace along with

the generated ParaGuard trace after applying guard promotion.

The same gray shades have been applied to guard instructions’

backward slices. PG* instructions highlighted in black are

added to these traces during guard promotion. PG1 copies ld1

to the shared buffer between the main and ParaGuard traces.

PG5 is the barrier waiting for this value in the ParaGuard

trace and PG6 is loading it from the shared buffer. As the

figure illustrates, guard promotion has moved 13 out of 32

instructions in the original trace, while only adding four in-

structions. Instructions PG2, PG3, PG4, PG7, PG8 and PG9



are used for taking the native state snapshot for interpreter

state recovery as described in the next subsection.

B. Recovering Interpreter State using Selective Snapshots

As mentioned in Section II, before invoking a trace, the

interpreter builds a trace activation record that consists of the

temporary stack space, space for arguments to native calls,

and all imported global and local variables. These global and

local values are copied from i the interpreter state to the trace

activation record and the trace is later called like a normal call-

through-pointer in C. After a guard is triggered and the trace

call returns, the interpreter state is restored by copying the

imported global and local variables from the trace activation

record back to the interpreter state.

When using ParaGuard, this process gets more complicated.

Since the guards trigger asynchronously, the main thread

may have corrupted its state by executing instructions past

the original guard location and overwriting the correct state.

Therefore, some form of checkpointing support is needed for

imported native variables, so that when a guard triggers in

the ParaGuard trace, execution can roll back to a previous

snapshot of the correct execution state.

Traditional rollback support such as those in software trans-

actional memory would incur a high performance overhead

and is unacceptable here. Thus, instead of making a backup

copy of memory locations on every memory write, we use a

bulk snapshot mechanism in which the frequency of taking

memory snapshots is reduced to every N iterations. The exact

value of N is determined dynamically according to a runtime

heuristic which is based on the loop’s instruction count,

total iteration count, and number of memory operations per

iteration. When the execution on the main trace reaches the

loop guard and the trip count is a multiple of N, it stops at

a barrier, waiting for the ParaGuard thread to catch up. In

most cases, there is no waiting, because the ParaGuard trace

is shorter than the main trace. Subsequently, the main trace

takes the state snapshot, after which it continues executing.

Since TraceMonkey does not perform tracing if the code path

contains I/O accesses, the snapshot taking mechanism does

not have to deal with checkpointing I/O operations.

In order to further reduce the overhead of bulk snapshots,

a selective snapshot is taken which only includes critical

memory locations. These locations are all trace live-outs

including stack, heap and global variables, objects and data

structures. Snapshots of scalar non-object variables are taken

by simply cloning their value, while live-out objects are deep-

copied. The deep-copying process is set up such that there are

no duplicate copies of the same object in the snapshot in case

of cycles in the object graph or when two variables point to

the same object. For live-out arrays, an accumulative snapshot

mechanism is employed where after an array snapshot is taken

before the loop, during each N iteration period at runtime, the

minimum and maximum accessed array indices are recorded.

Subsequently, all elements between these indices are stored

into the array’s accumulative snapshot. Since all array indices

are already passed to the ParaGuard trace to be checked by the

lt0 = lt ld1,min0 // compare with min index

jt -> updateMin // if smaller, replace min
gt0= gt ld1,max0 // compare with max index

jt -> updateMax // if larger, replace max
label0: ...

...
updateMin:

min0 = ld1

j -> label0
updateMax:

max0 = ld1
j -> label0 // resume execution

Fig. 8. Extra code added after PG7 in Figure 7(b). label0 is inserted
right before instruction 24’. updateMin and updateMax code segments are
inserted after the label2 code segment.

condition mismatch guards, keeping track of these maximum

and minimum values is performed inside the ParaGuard trace.

Therefore, they impose no extra overhead on the main trace.

These values are later sent back to the main trace at the time

of periodic snapshot taking. Figure 8 shows the extra code for

this purpose that needs to be added to Figure 7(b).

TraceMonkey uses a mark-and-sweep garbage collector

(GC) and has an API function to add variables to the GC’s

root set to prevent anything the root points to from getting

collected. Since there will be no references to the snapshots

from within the JavaScript application, the garbage collector

needs to be asked explicitly not to touch them until the next

snapshot is taken by adding the snapshot entries to the root

set. Furthermore, because heap objects are deep-copied while

taking snapshots, no object in the snapshots points back to

the actual application heap. Therefore, although as explained

later, snapshots are recovered once a GC is triggered, in theory,

there would be no issue of the GC collecting objects in the

heap that are pointed to by the snapshot.

When a guard triggers inside the ParaGuard or the main

trace, the runtime aborts both threads by sending a signal, re-

stores the previous snapshot and moves back to the interpreter.

The rollback operation itself does not add extra overhead

compared to the original tracing technique, since it performs

the same value forwarding that would have been done for

updating the interpreter’s state using the native trace data.

Another important issue is what happens when a GC is

scheduled. In the original tracing technique, the trace aborts

when a GC is invoked. In ParaGuard, the latest correct

snapshot is restored after a GC call is triggered. The control is

later handed off to the interpreter from the execution location

of the previous snapshot. Finally, in order to ensure execution

safety in the main trace and avoid catastrophic failures such

as null pointer dereference in the native code, signal handlers

were defined to catch runtime exceptions, roll back execution

to a previous snapshot and switch to the interpretation mode.

In Figure 7(a), instructions PG2, PG3 and PG4 are used to

branch to label2 every N iterations. At label2, the main

thread waits on a condition, set by the ParaGuard thread and

marks the end of its execution. When the condition is set, the

main trace starts to take the snapshot. Likewise, PG7, PG8,

and PG9 are used to branch to label2 in the ParaGuard trace.

After branching, the ParaGuard thread broadcasts the barrier

release condition to the main thread.



IV. OPTIMIZATIONS ON PARAGUARD

In order to further improve the performance benefit of guard

promotion, two additional optimizations are introduced. As

mentioned in Section III-B, before starting the snapshot taking

process, the main thread needs to wait for the ParaGuard thread

to catch up. Therefore, the ParaGuard thread should be made

as fast as possible. We introduce the guard branch aggregation

optimization, during which, mid-trace guard conditions are

aggregated into a single variable, branches are removed, and

at the end of each N iterations, the single condition variable is

checked for any possible triggered guard. Furthermore, taking

snapshots can impose a high overhead on the runtime. To

tackle this issue, we propose profile-based snapshot elimina-

tion, in which, based on a profile of previous executions, the

guards that are likely to trigger are kept on the main trace,

and snapshots are removed altogether from the program.

A. Guard Branch Aggregation

Taking a snapshot of the trace state at every N iterations

gives us the opportunity to perform another optimization,

called guard branch aggregation, in the ParaGuard trace. At the

end of each N iteration chunk, we only need to know if trace

execution was successful or not and knowing which guard

actually triggered is not important. Regardless of the triggered

guard, execution is started from the previous snapshot. There-

fore, guard branch executions can be postponed until the end of

each N iteration execution chunk in the ParaGuard trace. The

two final instructions for every guard are the guard condition

generator and the branch itself. Guard branch aggregation

combines all guard conditions to a single variable which is

later checked by a final branch at the end of the trace after each

N iteration period. After applying this optimization, we have

essentially converted a trace with a single input and multiple

output edges, to one with a single input and two output edges.

One downside to using this approach is that in case one of

the middle guards fails, the trace has to execute until the end

of the iteration chunk. However, in type-stable loops this does

not cause any serious performance issues.

B. Profile-based Snapshot Elimination

In some traces, the overhead of taking snapshots turns out to

be quite high, mainly due to the high overhead of taking heap

and array snapshots. In these traces, the number of unique

memory updates per loop is high and causes the snapshot

taking mechanism to be inefficient. This effect can be detected

early on during trace execution by monitoring the snapshot

taking overhead.When detected, the native trace is aborted and

the execution falls back to the original tracing mode without

guard promotion. After switching to normal tracing execution,

triggered guards are recorded and stored on the client. Since

these operations are done inside the JavaScript engine, the

profile information can be stored on the client’s file system.

During the next execution of the same JavaScript program

on the client, the guard promotion phase only moves the

guards that, according to the stored profile, have not triggered

during previous executions. After guard promotion, since no

snapshots are taken, if a guard is triggered in the ParaGuard

trace, the execution aborts native execution, reverts back to

interpretation from the beginning of the loop and adds that

guard to the profile for use during future executions.

However, if a guard is triggered in the main trace, extra

measures should be taken to enable the interpreter to continue

from the guard point rather than the beginning of the loop.

During guard promotion, the main execution thread stores the

sequential order of all guards (both in the main and ParaGuard

traces) in a list referenced by the program counter. If a guard

triggers in the main trace, it checks to see if all previous guards

in the ParaGuard trace have passed successfully. If so, it falls

back to the interpreter and continues interpretation from the

guard point. Otherwise, it waits for the remaining guards in

the ParaGuard trace to pass. Meanwhile, if a guard triggers in

the ParaGuard trace, the execution rolls back to the beginning

of the loop in the interpretation mode.

The ParaGuard execution model when applying profile-

based snapshot elimination is that the first time a JavaScript

application is executed, profile is collected if taking snapshots

seem to be too costly. From then on, whenever the same

application is run on the client, this profile information can

be used and updated. Therefore, the first execution of the

application, in the worst case, is almost as fast as the baseline

tracing execution. In later executions, the application will be

enjoying the extra performance benefits of ParaGuard.

V. EXPERIMENTAL EVALUATION

A. Methodology

We evaluated our technique on the TraceMonkey version

distributed with Firefox 3.7a1pre using four sets of bench-

marks. In addition to the two popular benchmark suites,

SunSpider [13] and Google V8 [2], we put together two

other suites consisting of 12 image processing filters and 5

games implemented in JavaScript. The image processing filters

were extracted from the Pixastic JavaScript Image Processing

Library [11]. This library contains 28 filters and effects, out of

which the 12 most compute-intensive filters were selected. In

the JavaScript game suite, four of the benchmarks (Collision

demo [3], Thunder fighter [4], Super JS fighter [5], and In-

vaders from earth [6]) are demos written using the gameQuery

JavaScript game engine [1]. The last benchmark is a PacMan

game written in JavaScript [9]. All benchmarks were run 10

times, and the average execution time is reported.

In evaluating the profile-based snapshot elimination opti-

mization, we used different input sets for profiling and actual

execution in all 4 benchmark suites. In SunSpider and V8,

default inputs are used for actual execution and smaller inputs

were generated for the profile run. For the image processing

benchmarks, different images were used for profiling and

execution. In the gaming benchmarks, since the input to all

of them involved some kind of random element along with

interactions with the user, the evaluation was more involved.

In order to make the performance comparisons feasible, the

fact that the behavior of these programs are uniform dur-

ing the execution time was exploited. Therefore, they were



0%

20%

40%

60%

80%

100%

3
d

-c
u

b
e

3
d

-m
o

rp
h

3
d

-r
a

y
tr

a
c
e

a
c
c
e

ss
-f

a
n

n
k
u

c
h

 

a
c
c
e

ss
-n

b
o

d
y

a
c
c
e

ss
-n

si
e

v
e

b
it

o
p

s-
3

b
it

-b
it

s-
in

-b
y
te

b
it

o
p

s-
b

it
s-

in
-b

y
te

b
it

o
p

s-
b

it
w

is
e

-a
n

d

b
it

o
p

s-
n

si
e

v
e

-b
it

s

c
ry

p
to

-a
e

s

c
ry

p
to

-m
d

5

c
ry

p
to

-s
h

a
1

m
a

th
-c

o
rd

ic

m
a

th
-p

a
r!

a
l-

su
m

s

m
a

th
-s

p
e

c
tr

a
l-

n
o

rm

st
ri

n
g

-b
a

se
6

4

st
ri

n
g

-f
a

st
a

st
ri

n
g

-t
a

g
c
lo

u
d

st
ri

n
g

-v
a

li
d

a
te

-i
n

p
u

t

C
ry

p
to

ri
c
h

a
rd

s

b
le

n
d

-e
x
c
lu

si
o

n

b
le

n
d

-v
iv

id
li

g
h

t

b
lu

r

e
d

g
e

s2

e
d

g
e

s

e
m

b
o

ss

la
p

la
c
e

m
o

sa
ic

p
o

in
!

ll
iz

e

p
o

st
e

ri
ze

se
p

ia

sh
a

rp
e

n

C
o

ll
is

io
n

 D
e

m
o

T
h

u
n

d
e

r 
F
ig

h
te

r

S
u

p
e

r 
JS

 F
ig

h
te

r

In
v
a

d
e

rs
 f

ro
m

 E
a

rt
h

P
a

c
-m

a
n

SunSpider V8 Pixas!c Image Processing JavaScript Games

R
a

 
o

 o
f 

p
ro

m
o

te
d

 t
o

 a
ll

 g
u

a
rd

s

Fig. 9. Ratio of promoted guards to total number of guards.
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Fig. 10. Number of triggered guards in ParaGuard during every 100,000 instructions in the guard promotion technique without applying the profile-based
snapshot elimination. The y-axis is in logarithmic scale.

executed for a fixed number of events at the beginning of

the benchmark without any user interaction involved. All

random events during the execution were recorded and fed

back to the program for all runs (different random events were

recorded for profiling and actual runs). For instance, in the

PacMan game, the paths ghosts were taking were fixed and

the application ran until a ghost hit the PacMan which stayed

still at its original position. Likewise, in the Collision Demo

benchmark, all box locations, orientations and movement paths

were fixed and the benchmark ran until 10 small boxes collided

with the main box in the center. Similar measures were taken

in the other three programs as well.

SunSpider has 26 JavaScript programs. However, Trace-

Monkey does not support recursion, the eval function, and

regular expression replace operations, limiting the number

of programs that can be properly traced [19]. Consequently,

we excluded the following six benchmarks from our exper-

iments: controlflow-recursive, access-binary-trees,

date-format-tofte, date-format-xparb, string-unpa-

ck-code, and regexp-dna.

In the V8 suite, we excluded the RegExp benchmark due

to its dependence on the regular expression library inside the

engine rather than tracing. In addition, DeltaBlue, RayTrace,

and EarleyBoyer perform poorly on the tracing JIT as only

a small fraction of execution is spent running natively, mainly

due to the lack of support for recursion in TraceMonkey.

Therefore, we excluded them from our results as well. In this

section, when we refer to SunSpider and V8, we mean these

subsets of the suites. All experiments were performed on a

system with an Intel Core i7 processor running at 3.20 GHz,

and 4 GBs of main memory.

B. Results

Figure 9 presents the number of guards that passed the

promotion heuristic and were moved to the ParaGuard trace. In

addition to loop guards, which are always present in the main

trace after guard promotion and are counted as non-promoted

guards, most guards that check the integrity of various func-

tion return values (such as allocation functions) get rejected

by the guard promotion heuristic. In order to move these

guards, guard promotion either has to copy the corresponding

function calls or move the return value directly using the

buffers between the main and ParaGuard thread. Both of these

approaches are inefficient, since they add overhead while only

saving the guard comparison and branch on the main trace.

However, many branch/case, overflow and mismatch guards

successfully pass the heuristic and are moved to the ParaGuard

trace. As can be seen, the ratio of moved guards varies between

25% and more than 80%.

Figure 10 shows the number of triggered guards in the

ParaGuard trace, per 100,000 program instructions after ap-

plying guard promotion. This figure shows that many hot

loops in these applications are type-stable and have infrequent

changes in control-flow. This is the key to the effectiveness

of the original tracing approach [19] and also the reason

behind infrequent roll-backs from snapshots in our method.

The majority of these triggered guards are branch guards after

which ParaGuard rolls back the state and continues recording

other paths of the branch in interpretation mode.
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Fig. 11. ParaGuard speedup on 2 processors compared to the baseline tracing. The left bars show the speedup after guard promotion and the right bars show
the speedup after applying the profile-based snapshot elimination optimization.

We originally applied guard branch aggregation to the

ParaGuard trace. However, since the ParaGuard trace is shorter

than the main trace in all benchmarks, in practice, applying this

optimization proved ineffective on the overall performance.

Furthermore, due to the infrequent number of side exits in

these benchmarks (Figure 10), the drawback from identifying

guard failures after N iterations rather than at each individual

guard was negligible. Therefore, we present the performance

results without applying guard branch aggregation.

Figure 11 shows the results of applying ParaGuard to the

four benchmark suites on 2 processors, where one of them

is running the main thread and the other one is running the

ParaGuard thread. The left bars in this figure represent the

speedup gained compared to TraceMonkey’s sequential trace-

based execution after applying guard promotion. The right

bars show the resulting speedup after performing profile-based

elimination of state snapshots.

Applying guard promotion by itself leads to an average

slowdown of 12.2%, 0.1%, 14.7% and 24.2% on SunSpider,

V8, image processing and gaming benchmarks, respectively,

on two processors compared to the original tracing on one

processor. The main reason for the slowdowns in these bench-

marks is the large overhead of taking snapshots due to high

number of individual array and heap accesses. In some of the

benchmarks (16 out of 39 programs), where variable accesses

are mostly scalar or multiple iterations update the same array

or heap elements, the overhead of taking snapshots is much

less and an average speedup of 8% is achieved.

After performing the profile-based snapshot elimination, all

triggered guards during previous executions are kept in the

main trace. The distribution of the number of these guards is

similar to Figure 10. As can be seen in Figure 11, applying

this optimization improves the performance of SunSpider, V8,

image processing and game benchmarks to 11.2%, 21.4%,

18.3% and 19.8% over the baseline tracing, respectively. This

improvement is mainly caused by the elimination of the snap-

shot taking process, and since the guard behaviors are quite

stable with different inputs, the number of guards triggered in

the ParaGuard trace after applying this optimization is close

to zero. The main source of overhead in the execution is the

synchronization between the main and the ParaGuard traces.

The highest variation in the profile-based promotion results

exists in the SunSpider benchmark suite. This is mainly

due to various ratios of promoted guards and also the non-

uniform benefit from original tracing in these benchmarks.

For instance, crypto-md5 spends less than 20% of its to-

tal execution time in the native mode, and thereby, total

performance benefit of our technique is around 1% in this

benchmark. Overall, across the 39 benchmarks we studied,

the ParaGuard technique achieves an average of 15% speedup

over the original tracing technique.

Figure 12 shows the CPU utilization of the ParaGuard thread



0%

10%

20%

30%

40%

50%

60%

70%

80%

90%

SunSpider V8 Pixas c Image 

Processing

JavaScript 

Games

R
e

la
 

v
e

 U
 

li
za

 
o

n
ParaGuard U liza on

ParaGuard U liza on w/ Branch Aggrega on

Fig. 12. Utilization of the ParaGuard thread relative to the main thread before
and after applying guard branch aggregation optimization.

relative to the main thread with and without applying the

guard branch aggregation optimization. The average utiliza-

tion across all our benchmarks is 55% and guard branch

optimization is able to reduce it to an average of 51%.

This level of utilization shows a potential for using one

processor for running ParaGuard threads in two JavaScript

execution instances at the same time with each ParaGuard

thread exploiting approximately half of the processing power

in the extra core. Therefore, for instance, using 3 processors,

two JavaScript programs can be accelerated with ParaGuard.

VI. RELATED WORK

The idea of running traces for specializing hot code regions

was proposed in the Dynamo binary rewriting system [17].

Dynamo utilizes run-time information to find hot patches

and optimizes machine code accordingly. It also uses trace

linking to connect traces together if possible. Our work is

based on Mozilla’s TraceMonkey, the trace-based JIT compiler

described in [19] and released as a part of recent versions of

Firefox [7]. TraceMonkey is able to achieve more than 10x

speedup on some programs in the SunSpider suite compared

to previous versions of SpiderMonkey on Firefox (which is

an interpreter-only JavaScript engine). All this performance is

achieved by type specialization and the tracing mechanism.

Chang et al. [18] proposed a trace-based JIT compiler imple-

mented on top of Adobe’s Tamarin-Central (Tamarin-Tracing)

which is their VM for implementing ActionScript and can

execute JavaScript programs without any modifications. They

also investigate using simpler opcodes in their IR and achieve

up to 116% performance improvement over the non-traced

code on SunSpider benchmarks. As we showed, by dynami-

cally decomposing execution to main and ParaGuard traces

and using extra resources in multicore systems, additional

speedups can be achieved on top of tracing techniques on mul-

ticore systems. A recent proposal [20] presents a concurrent

trace-based JIT in which the compilation from LIR to native

code is performed as a background thread. This technique can

achieve an average of 6% and a maximum of 25% speedup

on the SunSpider benchmark suite. We choose a different

approach and parallelize the execution by decoupling runtime

checks rather than performing the compilation in parallel with

the monitoring/recording. However, these two approaches are

orthogonal and can be applied simultaneously.

SlipStream processors [25] speculate on certain code path

and execute a pruned version of the program itself in parallel

with the original execution. In SlipStream, the speculation

support is provided by hardware. The Mitosis compiler [26]

proposes a general framework to extract speculative threads as

well as pre-computation slices (p-slices) that allow speculative

threads to start earlier. MSSP [35] transforms code into master

and slave threads to expose speculative parallelism. It creates

a master thread that executes an approximate version of the

program containing a frequently executed path, and slave

threads that run to check results. All of these speculative multi-

threading works parallelize the main computation for purposes

of prefetching or exploiting computational parallelism, where

as in ParaGuard, we perform domain-specific runtime checks

in parallel with the main computation in a dynamic language.

Furthermore, in contrast to these works, we propose an all-

software solution which works on commodity hardware. The

LRPD test [29] performs runtime array tracking by using

shadow arrays to follow exactly what array elements are

touched in each thread. However, our accumulative array snap-

shot mechanism only keeps track of range of array accesses.

Several methods have been proposed for parallelizing run-

time checks in static languages such as C/C++ [23], [24],

[31], [33], [34]. Speck [24], FastTrack [23], ParExC [34], and

Prospect [33] parallelize security checks, array bounds checks

or data flow integrity checks by running the instrumented

application in parallel with the original version in separate

Linux processes. In these works, speculation is managed using

heavy-weight, memory page-based speculation mechanisms

at the OS kernel level. Due to the extremely high overhead

of the runtime checks these works are looking into (e.g.

upto more than 60x runtime overhead for dynamic memory

checks in [23]), heavy-weight speculation and parallelization

mechanisms could be used, at the cost of using a considerable

number of extra processors. For instance, FastTrack [23]

halves the overhead of the MudFlap memory safety instru-

mentation tool using 8 processors, though it is still several

times slower than the original application. The technique

proposed in [31] parallelizes information flow tracking using

expensive extra hardware support which does not exist in

commodity systems. However, in ParaGuard, we look into the

guards inserted by a tracing compiler in a dynamic language,

which poses a completely different set of challenges. Due

to the relatively lower overhead of these checks and much

tighter target performance constraints, we are not able to

utilize heavy-weight speculation mechanisms as were used

in those works. ParaGuard is the first software-only solution

for offloading the extra checking overhead incurred by the

runtime system to another thread in a dynamic language. A

large portion of these checks (such as variable type checking)

do not even exist in static language environments.

There is a significant amount of previous efforts in the area

of memory speculation and transactional memory. Harris et

al. goes through a detailed survey of different transactional



memory techniques in [21]. In particular, Shavit et al. proposed

the first implementation of software transactional memory in

[32]. The authors in [22], [16] proposed a lock-based approach

where write locks are acquired when an address is written. Our

rollback mechanism for taking interpreter snapshots in Para-

Guard is a very low-cost and domain-specific checkpointing

mechanism. Due to tight performance constraints, we were

not able to exploit many ideas from the software memory

speculation domain for ParaGuard’s speculation and roll-back.

VII. CONCLUSION

As the web becomes the ubiquitous platform for execu-

tion of more complicated applications, a growing amount of

computation is being handed-off to the client to minimize

network traffic and improve user experience. The flexibility

and ease of prototyping in the JavaScript language has made

it the language of choice for most client-side web applications.

However, as JavaScript applications are becoming larger and

more computation intensive, there is more need for building

high performance JavaScript engines in the client’s browser.

Trace-based JIT compilation is one approach towards tackling

this issue. In this work, we proposed ParaGuard, which de-

couples execution from the runtime checks in a trace-based

JavaScript engine and accelerates the execution by utilizing

extra resources on multicore systems. We also introduced

optimizations to further improve the performance. We showed

that ParaGuard obtains an average of 15% speedup on two

processors across 2 industry-standard benchmark suites, Spi-

derMonkey and V8, and two sets of JavaScript applications

from the image processing and gaming domains.
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