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ABSTRACT

Clustered architectures are a solution to the bottleneck of
centralized register files in superscalar and VLIW proces-
sors. The main challenge associated with clustered architec-
tures is compiler support to effectively partition operations
across the available resources on each cluster. In this work,
we present a novel technique for clustering operations based
on graph partitioning methods. Our approach incorporates
new methods of assigning weights to nodes and edges within
the dataflow graph to guide the partitioner. Nodes are as-
signed weights to reflect their resource usage within a clus-
ter, while a slack distribution method intelligently assigns
weights to edges to reflect the cost of inserting moves across
clusters. A multilevel graph partitioning algorithm, which
globally divides a dataflow graph into multiple parts in a hi-
erarchical manner, uses these weights to efficiently generate
estimates for the quality of partitions. We found that our
algorithm was able to achieve an average of 20% improve-
ment in DSP kernels and 5% improvement in SPECint2000
for a four-cluster architecture.

Categories and Subject Descriptors

D.3.4 [Programming Languages|: Processors—code gen-
eration, retargetable compilers; C.1.1 [Processor Archi-
tectures]: Single Data Stream Architectures—RISC/CISC,
VLIW architectures

General Terms
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1. INTRODUCTION

Superscalar and VLIW processors achieve high perfor-
mance by exploiting instruction-level parallelism (ILP) to
issue multiple operations each cycle. As the number of op-
erations issued each cycle grows, the demands to supply
operands to these operations increases in turn. In a con-
ventional processor, a centralized register file is responsible
for operand supply. Supplying a larger and larger number
of operands each cycle from a centralized register file can
quickly become the bottleneck in a processor design. The
bottleneck results due to the combined effects of: register file
cost and access time growing with the square of the number
of register ports; a larger number of registers being necessary
as issue width increases to maintain more temporary values;
register bypass logic growing quadratically with the number
of operations issued per cycle; and the distance separating
function units (FUs) from the register file increasing with a
larger number of FUs [8] [7].

A natural solution to these problems is to remove the cen-
tralized register file and create a decentralized architecture
with several smaller register files. Each of the smaller reg-
ister files supplies operands to a subset of the FUs. These
smaller register files can be efficiently designed, thereby al-
leviating the register file bottleneck while maintaining the
desired level of ILP. This strategy is generally referred to
as a clustered architecture or a multicluster processor [10].
One of the first clustered architectures was the Multiflow
Trace. Clustered architectures are becoming increasingly
popular in many recent processor designs including the Al-
pha 21264, TI C6x series, and Analog Tigersharc. FEach of
these processors is a two-cluster design.

The central challenge with clustered architectures is com-
pilation support. The compiler must effectively partition
operations across the resources available on each cluster to
maximize ILP. However, this goal must be achieved while
carefully considering the implications of inter-cluster com-
munication. Communication of values between clusters is
both slow and bandwidth-limited. Thus, operations must
be partitioned to ensure that ILP is not constrained by
frequent inter-cluster communication. A common rule of
thumb is that breaking a processor into two identical clus-
ters reduces program performance by around 20%. Further-
more, a four cluster processor loses around 30% performance
over the equivalent single cluster processor [7]. Generally,
these numbers get worse when the clusters are not identical.
While clustering makes sense from an architectural perspec-



tive, a large amount of performance is left on the table with
this choice.

Examining common operation partitioning algorithms in
more depth reveals two recurring problems. First, partition-
ing algorithms are modeled closely after operation schedul-
ing. They make local, greedy decisions to optimize the place-
ment of an operation based on the placement of its neigh-
bors. This strategy makes sense as clustering and schedul-
ing are heavily intertwined. However, locally optimal deci-
sions may actually be poor decisions when the global picture
is considered. The second problem is that clustering algo-
rithms are notoriously slow due to the detailed modeling of
processor resource constraints. Resource models similar to
(or often identical to) those used during operation schedul-
ing are repeatedly evaluated for each candidate operation
placement. The final code schedule is indeed very sensi-
tive to the partition chosen, so this seems like the proper
strategy. However, detailed modeling of a particular place-
ment can be counterproductive when it limits the number
of choices that can be considered. Furthermore, as proces-
sors have more resources and their resource usage patterns
become more complex, detailed modeling of each placement
choice may become infeasible for production compilers.

We use an approach opposite to this scheduler-centric
methodology. Operation partitioning is performed at a glo-
bal scope with the view of all operations in a region (a group
of closely related basic blocks is referred to as a region [11]).
We adapt two powerful techniques that are commonly used
in VLSI design: multilevel graph partitioning and slack dis-
tribution. Multilevel graph partitioning divides the dataflow
graph into multiple parts in a hierarchical manner. Op-
erations are iteratively partitioned from a coarse level of
groups of related operations down to a fine-grained level of
individual operations. Slack distribution identifies available
scheduling slack within a region and allocates it to specific
dataflow edges. In this manner, the cost of cutting specific
dataflow edges to create a partition is determined.

Graph partitioning also requires a processor resource mod-
el to determine the quality of a partition. Again, we take
a non-scheduler-centric approach. We employ a simple es-
timation strategy that is similar to the RESMII (resource
minimum initiation interval) calculation used with modulo
scheduling [24]. However, we focus on scalar scheduling as
opposed to software pipelining. Resource usage estimates
are computed prior to partitioning and used to estimate
the resource load for each candidate partition. While this
method suffers inaccuracies, it is both more efficient and
accurate enough to provide a suitable guide to the opera-
tion partitioning algorithm. Our proposed approach is re-
ferred to as region-based hierarchical operation partitioning,
or RHOP.

The remainder of this paper is organized into five sec-
tions. Section 2 provides an overview of architectural model
and the basics of operation partitioning. Section 3 presents
RHOP algorithm itself. A preliminary experimental evalu-
ation is given in Section 4. We compare and contrast our
work with previous work in Section 5. Conclusions and fu-
ture work are discussed in the last section.

2. OVERVIEW OF CLUSTERING

This section introduces the clustered architectural model
that is assumed for this paper and the basic process of
partitioning a dataflow graph (DFQG) for this architecture.

Interconnection Network

Register File 1 Register File 2
FU FU FU FU FU

Figure 1: A heterogeneous two-cluster machine.

Next, we present a high-level classification of the common
approaches for clustering and break them down by four cat-
egories: phase ordering, scope, desirability metric, and op-
eration grouping. Last, we conclude with a discussion of the
limitations of scheduler-centric approaches to motivate the
work in this paper.

2.1 Basics

The architectural model assumed in this paper is as in
Figure 1. Each cluster consists of a tightly connected set
of register files (RFs) and function units (FUs). FUs in a
cluster may only address those registers within the same
cluster. Transfers of values between clusters are accom-
plished through explicit move operations that go through
an interconnection network. The interconnection network is
assumed to have a uniform connection to all clusters with a
fixed bandwidth. Though this assumption is not necessary,
it simplifies the compiler algorithms. Clusters in a machine
may be homogeneous, each containing the same types and
numbers of RFs and FUs, or heterogeneous, each having a
unique mix of resources. The machine in Figure 1 is het-
erogeneous and has three FUs and one RF in cluster 1, and
two FUs and a RF in cluster 2.

The goal of clustering is to obtain a balanced workload
that takes advantage of parallelism available within the ma-
chine. The notion of balance on a cluster relates to the
resources available on that cluster and the operations sched-
uled on it. For example, given a machine with two hetero-
geneous clusters such that cluster 1 has twice as many FUs
as cluster 2, a balanced workload would tend to have twice
as many operations scheduled on cluster 1 as on cluster 2.

Data is transferred from cluster to cluster via explicit
inter-cluster move operations. Inter-cluster moves have a
non-zero latency (1 cycle is assumed in this paper) and thus
can lengthen the schedule. However, if the latency of the
move can be overlapped with the execution of other oper-
ations, then the inter-cluster moves will not affect perfor-
mance by much. A good partitioning of operations mini-
mizes overall schedule length by simultaneously maximizing
the number of operations executed in parallel while minimiz-
ing the number of moves that negatively affect performance.

Figure 2 shows two possible clusterings of an example
DFG. For simplicity, the machine that will be used for the
example is a homogeneous two-cluster machine, with one RF
and one FU per cluster. Each FU is capable of executing
any operation. The latencies of all operations are assumed
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Figure 2: Example dataflow graph with (a) locally
greedy and (b) region-aware cluster assignment.

to be one cycle. Furthermore, the interconnection network
is capable of sustaining one inter-cluster move per cycle.

For the example in Figure 2, the clustering algorithm must
partition the operations into two sets with each set executing
on a particular cluster. Any time an edge is broken, an inter-
cluster move is required to copy the data from the producing
cluster to the consuming cluster. The critical path through
this example graph is 5 cycles going through operations 1, 2,
6, 10, and 12. Cutting edges along the critical path increases
the critical path length; thus, most clustering algorithms
avoid such cuts.

2.2 Approaches to Clustering

A large number of algorithms to perform clustering have
been proposed by the research community. To better un-
derstand the operation and relative strengths of these al-
gorithms, it is useful to understand the major characteris-
tics that differentiate them. We have identified four pri-
mary characteristics of clustering algorithms: phase order-
ing, scope, desirability metric, and grouping.

Phase Ordering. In the compilation process, cluster as-
signment can take place as a separate phase before schedul-
ing, where the scheduler is constrained by the decisions made
in the clustering phase. This isolates the clustering prob-
lem from the scheduling problem. Alternatively, clustering
can be integrated with the scheduling phase; in this case,
more information is available for making decisions, but the
complexity of the problem increases, limiting the number
of options that can be considered during the process. As
a compromise, clustering and scheduling can be done iter-
atively, such that decisions made by one phase are used to
guide the decisions made in the other, until a suitable result
is obtained.

Scope. The scope of the clustering algorithm can be lo-
cal, region-based, or global. A local algorithm generally ex-
amines one operation at a time and decides which cluster it
should be assigned to based on its immediate neighbors. As
with scheduling, operation priorities may guide the order in
which operations are considered. A region-based algorithm,
on the other hand, considers all of the operations within a
region such as a basic block or set of basic blocks at once.
Finally, a global algorithm uses knowledge of the entire pro-
gram or function to make intelligent decisions. The com-

plexity of the algorithm increases with the scope, but better
decisions can be made with higher level knowledge.

Desirability Metric. The cluster assignment algorithm
can use one of several ways to measure the quality of a can-
didate partition. It can perform an actual scheduling of the
code, which gives the most accurate measure since the per-
formance is then known. It can generate a pseudo-schedule
using an approximate machine model to provide a reason-
able estimate of the actual schedule. It can use quantitative
resource usage estimates to project the load a set of opera-
tions places on a cluster. Finally, it can use a simple count
of how many operations are on each cluster and how many
moves are required to get an idea of the desirability of a
partition.

Grouping. Another property of clustering algorithms
is whether they employ a hierarchical or flat partitioning
scheme. In the case of region-based or global clustering,
a hierarchical approach means that decisions are made on
multiple levels, with information available in a finer-grained
view of the operation graph being used to refine previous
decisions made from a coarser view of the graph.

2.3 Pitfalls of Scheduler-Centric Approaches

Scheduler-centric approaches to clustering employ a nat-
ural extension of the scheduling process to perform cluster
assignment. This does not mean clustering is done during
scheduling. In fact, any phase ordering is possible. The
two distinguishing characteristics of scheduler-centric ap-
proaches are local scope and flat grouping. These are the
primary characteristics of operation scheduling where opera-
tions are greedily placed into the schedule one by one consid-
ering the placement of those operations with higher priority
that have already been scheduled. The desirability metric
for scheduler-centric approaches is most often through the
use of an actual schedule. But again, this is not a require-
ment.

The most well known scheduler-centric clustering algo-
rithm is Bottom-Up Greedy, or BUG [6]. BUG occurs before
scheduling; other algorithms such as [19], [22], and [23] are
similarly scheduler-centric though they take place during or
interleaved with scheduling.

BUG proceeds by recursing depth-first along the DFG,
critical paths first. It assigns each operation to a cluster
based on estimates of when the operation and its predeces-
sors can complete earliest. These estimates are based on
resource usage information from the scheduler, and BUG
queries this information twice whenever it considers each
operation on each cluster—once before and once after its
predecessors have been bound.

This works well for simple graphs, but when the graph
becomes more complex such that locally good decisions may
have negative effects on future decisions, the algorithm can
be fooled into making a bad partition.

Figure 2(a) shows a likely partition generated by BUG or
other similar local, scheduler-centric algorithms. The crit-
ical path (1, 2, 6, 10, 12) is considered first, and nodes 1,
2, and 6 are placed together on one cluster. Nodes 3 and 7
are placed on the other cluster, since this allows node 10 to
begin and complete executing soonest. However, the right
subtree is now constrained by the decisions that were locally
optimal for the left subtree. As a result, in our example ma-
chine which executes one operation per cycle per cluster,
this code would take 8 cycles to complete.



The optimal partitioning requires only 7 cycles and is
shown in Figure 2(b). Operations 4, 5, 8, 9, and 11 should be
placed on one cluster, with the remaining operations on the
other cluster, as the shading in the figure indicates. With
this partition, one inter-cluster move is needed along the
edge from 11 to 12. This partitioning minimizes the resul-
tant schedule length by balancing the workload effectively
and introducing only one move operation, which is not on
the critical path.

Another limitation of BUG is that it keeps track of which
resources are busy as it proceeds, and at every step of the
algorithm it performs checks to see if a cluster is free at a
certain time to perform a certain operation. Therefore, the
number of queries to the resource information grows with
the number of clusters in the machine and with the number
of nodes in the graph.

In order to avoid the potential pitfalls of local decision-
making and the compiler overhead of using detailed schedul-
ing information for resources, our approach is to view the
graph more globally and to use estimates for determining
resource load balance.

3. REGION-BASED HIERARCHICAL
OPERATION PARTITIONING

Our region-based hierarchical operation partitioning al-
gorithm consists of two distinct phases: weight calculation
and partitioning. Each operation is represented by a node
in a DFG, and node weights are created to represent the
resource utilization of the operation. The edges connecting
the nodes are given edge weights, which represent the cost on
the schedule length for adding an inter-cluster move between
those operations. Both node and edge weights are used to
guide the partitioning phase. The node weights are used
to balance the workload among the clusters, while the edge
weights are used to minimize the communication required
between them. The partitioning phase consists of a coars-
ening process, where highly related operations are combined
together and placed into clusters, and a refinement process,
which improves the initial partitioning. The refinement pro-
cess uses the calculated weights to consider moving opera-
tions between clusters, then iteratively improves the parti-
tion by weighing the benefits of improving load balance and
reducing inter-cluster communication.

The rest of this section includes a more detailed explana-
tion of the clustering process. The example code and DFG
shown in Figure 3 will be used throughout this section to
demonstrate the process.

3.1 Weight Calculation Phase
3.1.1 Node Weights

Node weights enable the algorithm to calculate an esti-
mate of how many cycles it will take to execute a set of
operations on a cluster, ignoring dependencies, when it is
determining the quality of a partition under consideration.
Thus, the weights reflect the quantity of resources an oper-
ation uses in the machine.

Resources can be characterized as being used by an indi-
vidual operation, such as FUs, or shared between operations,
such as buses or RF ports. In general, resource usage in a
machine forms a spectrum between these two extremes. We
use the two endpoints to compute an individual node weight

and a shared node weight for each operation. The worst
case of these provides an approximation of the operation’s
resource usage.

Individual node weight, or op_wgt., is calculated per node
for each cluster ¢, and is a measure of the resources used by
this particular node. Note that, in the case of heterogeneous
clusters, the weight of a node is dependent on which cluster
it is being considered on. For example, an ADD operation
on a cluster with one adder carries more weight than an
ADD operation on a cluster with two adders, because in the
second case it only uses up half of the available resources.

To determine the weight of a node on a cluster, the num-
ber of times that the resources available on that cluster will
support the execution of that operation in a single cycle is
counted. The weight is the inverse of this number:

1
F#ops supported on c in 1 cycle

op-wgte =

Since the example machine executes one operation per
cycle, the individual weight of all of the nodes in the graph
is 1.0 for both clusters.

To account for shared resources, a shared node weight
value is calculated per cluster for the region being clustered.
This shared node weight on a cluster, shared_wgt., is deter-
mined by placing all of the operations in a region on clus-
ter ¢, and dividing the resulting resource-limited minimum
schedule length by the number of operations. The mini-
mum schedule length is similar to RESMII used in mod-
ulo scheduling. Since this is done only to determine re-
source availability and ignores data dependencies, no actual
scheduling is done and the calculation is fast.

resource limited sched length on c

shared_wgt. =
#ops

In the example, placing the 14 operations on either cluster
reveals that a minimum of 14 cycles is required. Thus the
shared weight is 1.0 on each cluster. Due to the simplicity
of the machine, these numbers are somewhat trivial. Given
a real machine with more and varied resources available, as
was used in our experiments, the node weights become more
interesting.

3.1.2 Edge Weights

The weight of an edge is a measure of its criticalness. If an
edge is critical, then placing the nodes on either end of the
edge on different clusters and inserting the required move
will impact the schedule length. Therefore, edges on the
critical path have a higher weight than other edges, and the
graph partitioning algorithm attempts to minimize the sum
of the weights of the edges that are cut by the partition.

Once critical edges are assigned a high weight, the remain-
ing edges can be assigned a low weight. However, this can be
dangerous as there may be a non-critical path that, once a
few moves are inserted, becomes critical. Therefore, a more
intelligent system for assigning edge weights to non-critical
edges is beneficial.

The concept of slack is a measure of how critical an edge
is. An edge on a path where nodes can be delayed with-
out affecting the overall minimum schedule length has more
slack, while a critical edge has no slack. We use a definition
of slack similar to that of global slack in [9], though our
measurement is per-edge rather than per-node.

The slack of a directed flow edge from src to dest is defined



(estart, lstart)

1: ADD rl <- r2, 4 (0,0)
2: SUB 13 <- r4, 2 (0,0)
3: SHR r5 <-rl, r3 (1,1)
4: ADD 16 <- 17, 8 (0,1)
5: ADD r8 <- r9, rl0 (0,1)
6: SUB rll <- rl2, 2 (0,1)
7: SUB rl3 <- rl4, rl5 (0,1)
8: ADD rl6 <- r5, 8 (2,2)
9: MAC rl7 <- r6, r8, rll (1,2)
10: SHL rl18 <- rl9, r20 (0,2)
11: SHR 12l <- rl3, 2 (1,2)
12: SUB 122 <- rl6, rl7 (3,3) (edge slack)
13: SUB 123 <- rl8, r21 (2,3)
14: ADD 124 <- 122, 123 (4,4)

(@)

edge weight
(edge slack)

Figure 3: The example code and corresponding DFG with slack distribution defining the edge weights.

as:
slackeage = lstartiest — lateage — estartsrc

Here, estart refers to the earliest cycle an operation can be-
gin executing (i.e. its inputs are available), and Istart refers
to the latest cycle it can begin executing without delaying
the exit operation(s) of the region. The latency of the edge,
latedge, is defined to be the latency of the src operation.

Thus, in the example DFG of Figure 3(a) with estart and
Istart as shown next to the assembly code, the edges on
the critical path 1-3-8-12—-14 have zero slack; the edge from
node 10 to 13 has a slack of 3—1—0 = 2; and the remaining
edges have a slack of 1.

A method of first-come first-serve slack distribution is
used to account for paths that have some slack in them by
taking up slack (by increasing latency) starting from edges
close to the critical path. This increased latency may lower
the Istart of operations higher on the path, thereby decreas-
ing the slack on their incoming edges. The process contin-
ues for the next edge on the path until all of the slack has
been allocated. The edge weights are assigned depending on
whether or not slack was allocated to the edge, based on the
following numbers:

10 if critical
edgewgt = ¢ 8  if no slack after distribution
1 if slack allocated

These numbers were chosen because cutting a critical edge
will increase the schedule time so it is weighted high; cutting
an edge that has slack allocated to it is essentially free, so it
is weighted low. Cutting a non-critical edge that has no slack
remaining after distribution is not guaranteed to increase the
schedule, but it is likely especially if the “free” edges are cut;
therefore, it is given a high weight but not as high as that
of a critical edge.

Using this slack distribution algorithm, edges closer to the
critical path are more likely to be cut. This accomplishes the
goal of offloading as much work as possible from the critical
path. It also discourages cutting a single non-critical path
too many times such that it becomes critical.

As shown in Figure 3(b), the edges which initially had
zero slack (indicating that they are critical) are assigned a
weight of 10. Now, the non-critical edge from node 13 to 14
can have a unit of slack allocated to it, giving it a weight of
1. This lowers the Istart of node 13 by one cycle, with the
result that the slacks on the edges coming into node 13 are
decreased. Similarly, the edge from node 9 to 12 receives a

weight of 1, and the slacks on the edges coming into node
9 are decreased. Figure 3(c) shows the final edge weights
for this DFG, with the edges that had zero slack remaining
after step 3(b) receiving a weight of 8, and the edge from
node 10 to 13 receiving a weight of 1.

3.2 Partitioning Phase

The partitioning phase of RHOP employs a multilevel
graph partitioning algorithm to cluster the DFG of a region
into distinct groups. Multilevel graph partitioning, known
for its efficiency and good results, is available in many soft-
ware packages such as Chaco [12] and Metis [15].

A multilevel algorithm coarsens highly related nodes to-
gether and places them into partitions. The nodes within
the graph are continually coarsened by grouping pairs of
nodes together. At each level of coarsening, a snapshot of
the currently coarsened nodes is taken. When the number of
coarse nodes reaches the number of desired partitions, coars-
ening stops. The coarse nodes are then assigned to different
clusters, and the uncoarsening process begins. During un-
coarsening, the algorithm backtracks across the earlier snap-
shots of coarse nodes, considering moving operations at each
stage. A refinement algorithm is used to decide the benefits
of moving a node from one cluster to another in order to
improve the partition.

3.2.1 Coarsening

Coarsening takes a DFG representing the region to be
clustered and produces an initial partition for the graph.
Producing a good initial partition has been shown to have
a large impact on how well the algorithm produces results
[12]. The coarsening algorithm uses edge weights determined
earlier during the weight calculation phase to intelligently
group operations together. Operations separated by a high
weight edge are thus first targeted for coarsening.

Each stage of the coarsening process groups together op-
erations into pairs based on the weights of their edges. All
operations are sorted based on the highest weight on any of
its edges and considered for coarsening in that order. Op-
erations on the critical path will then most likely be paired
together. In order to try and coarsen as many nodes as pos-
sible at each stage, operations are coarsened from the out-
side of the DFG toward the center; thus, operations with a
single neighbor have higher priority for coarsening. Ties in
preferences for coarsening are broken arbitrarily.

Figure 4 shows how coarsening progresses through the
running example. At the first stage, the first priority is to
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Figure 4: The coarsening process to group together highly related operations and create the initial cluster

assignment.

coarsen together critical edge paths, then the lower weight
edges are considered. Each stage of the process only pairs
up a single operation once, and every operation that has an
available neighbor to coarsen with will be paired up. Oper-
ations that cannot be paired up, either because they have
no neighbors or all of their neighbors have already coarsened
with other operations, will be left as is for the current coars-
ening stage. For example, in the first coarsening stage of Fig-
ure 4, operation 8 no longer has any uncoarsened neighbors,
so is not coarsened for this particular stage. When no more
operations in a stage can be coarsened, the entire coarsening
process is repeated with the resulting coarse nodes.

The coarsening phase ends when the number of coarse
nodes is equal to the number of desired clusters for the ma-
chine. The coarse nodes are then divided up between the
clusters to form the initial partition. For the running exam-
ple, the final partition ends with operations 1, 2, 3, 4, 5, 6,
8,9, 12 and 14 on cluster 1; with the rest on cluster 2.

3.2.2 Refinement

The refinement process traverses back through the coars-
ening stages, making improvements to the initial partition.
At each uncoarsening stage, the coarsened nodes available at
that point are considered for movement to another cluster.
In order to properly improve the partition of the operations
in the graph, the algorithm must have metrics for deciding
which cluster to move from, the desirability of the current
partition, and the benefits of an individual move. The re-
finement process uses the following to judge each of these:

e Cluster Weight: The node weights for each opera-
tion are used to generate an estimate for the load per
cluster; the cluster with the highest weight is denoted
the imbalanced cluster.

e System Load: Similar to the cluster weight, the
system load uses the node weights of all the operations,
but estimates the load across all clusters, generating a
metric for the current cluster assignment desirability.

e Gain: Once the imbalanced cluster has been tar-
geted, the gain of moving each operation to the other
clusters is calculated using the change in system load
and the change in edge cuts.

Since the process backtracks through the coarsening sta-
ges, highly related operations are grouped together at each
stage, and the algorithm can then account for a group of op-
erations preferring to move together. This helps to alleviate
situations where moving one operation to another cluster

is not beneficial, but moving a group of related operations
together will show improvements.

The refinement algorithm is a slightly modified Kernighan-
Lin partitioner, which is known to be a good algorithm for
partitioning graphs. Traditionally, Kernighan-Lin tries to
match pairs of operations from different partitions to swap.
Each swap incurs some cost upon the system, and swaps
are continually made until the overall cost gain is negative.
This allows individual negative moves, which may in fact
allow future positive moves to occur. By allowing individ-
ual negative moves, the algorithm avoids falling into local
minima.

A modified version of Kernighan-Lin is used which con-
siders node and edge weights to determine the gain of mov-
ing an operation to another cluster. Unlike Kernighan-Lin,
which weighs the benefits of swapping nodes between par-
titions, RHOP considers explicitly moving each operation
within the imbalanced cluster, rather than swapping. Like
Kernighan-Lin, RHOP allow moves with negative gain as
long as the overall gain for the current refinement step is
positive.

Cluster weight. To determine the cluster which is most
imbalanced, cluster weights, the metric for the load per clus-
ter, is calculated. In order to calculate the weight of a partic-
ular cluster, a weight for each execution cycle of the region is
computed. To estimate the weight of each operation at each
cycle, we use the scheduling range, which is the estart of the
operation to its Istart. The operation must be placed within
this range in order to achieve minimum schedule length.

The two important factors in regards to the load of oper-
ations on a cluster are: the individual resource constraints
for the operations at each cycle, and the total node weight
which is the constraint on the shared resources of a given
cluster. The individual resource constraint is the load put
on any one specific resource. The shared resource weight
is the load put on all the resources within the cluster as a
whole. Since these individual resource and shared resource
weights are competing with one another, the overall cluster
weight is the max between them.

To compute the individual resource constraints, each op-
eration is placed in a single op group, which groups similar
operations by their resource usage. For each operation in an
op group, its total impact to a particular cycle is the node
weight for the operation, calculated earlier, divided by the
slack+1 of the operation. This value, the individual weight,
Twgt, -, for cluster c at cycle T gives a general approxima-
tion of the impact of those operations which use a similar
resource, currently placed in that cycle on the cluster load.
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Figure 5: The initial partition after coarsening and the cluster weights.

The total node weight, Twgt. -, is then calculated as the
total number of operations currently placed within cluster ¢
at cycle 7 divided by the average slack for all the operations.
This is then multiplied with the shared resource weight from
the weight calculation phase to give an approximation of the
constraints on the shared resources. This gives an estimate
as to how well the operations share the resources at a cycle.
The total node weight is effective in situations where there
is a lot of parallelism and the assumption of operations fin-
ishing within the scheduling range breaks down. Thus, the
desired partition focuses more on spreading the work out
evenly among the clusters.

The cycle weight Cwgt., - in cluster c at cycle 7 is therefore
determined by:

op-wgt.
Twgt.,r = max E _—
o€opgroups opeo at + OPslack + 1
ops in ¢ at
Twgte,r = M * shared_wgt.

slackave + 1

Cwgte,r = max(Twgte,r, Twgte,r)

(1)

For example, at the end of the coarsening process, the
graph reaches a partition as shown in Figure 5 with its
corresponding cycle-by-cycle representation of all operation
scheduling ranges (estart to lstart). For the simplicity of
the example, we will not consider the explicitly consider
total node weight, as it has no effect in the result. The
Cwgt. r of each cluster is shown in the figure. Cwgti, 1, the
cycle weight of cluster 1 at cycle 0 is calculated as follows:
ops 1 and 2 each have a node weight of 1 and slack+1 of 1.
Ops 4, 5, and 6 each have node weight of 1 and a slack+1
of 2. Therefore, ops 1 and 2 each contribute 1 to the cycle
weight while ops 4, 5, and 6 each contribute 0.5, which forms
a cycle weight, Cwgti 1, of 3.5.

The weight of a cluster, cluster_wgt., is simply the sum
of all cycle weights from 0 until the max estart, minus one.
One cycle is subtracted from each cycle weight to evaluate
how overloaded each cycle is. Since every cycle can do one
cycle’s worth of work, any amount greater than one means
the cycle has too much work assigned to it. Therefore, our
cluster weight equation is:

mazx estart

cluster_wgt. = ( Z Cwgter — 1) (2)
t=0

System Load. While equation 2 gives an estimate to the
weight of any one cluster, it doesn’t give a general estimate

for the overall desirability of the current chosen clustering.
This is defined by the system load, SL, which gives a cy-
cle by cycle account for the clustering. At any given cycle,
whenever one cluster’s weight dominates that of the other
cluster, the smaller load is subsumed by the larger. There-
fore equation 1, which calculated the load every cycle in
a cluster, is maxed it across all clusters and summed for
the scheduling range. The system load then results in the
maximum any cluster is overloaded over all cycles in the
scheduling range.

Since inter-cluster moves have a limited bandwidth, the
system load is maxed with consideration of the inter-cluster
moves required for this cluster. The inter-cluster move band-
width, icm bw, is used to determine the overhead, icm,, of
making the inter-cluster moves required in the current par-
tition. This inter-cluster move overhead is mostly used as
a safeguard to prevent clusters from forming that contain
far too many inter-cluster moves. In general, the partitioner
tries to minimize edge cuts, so this simple estimate of to-
tal inter-cluster moves by the cluster is all that is necessary.
The system load is therefore determined by:

F#icm

icm bw

icme = — (maz estart + 1)

mazx estart

>

T=0

SL = max(( max Cwgtir — 1),icm,)

i€cluster (3)

Gain. At each uncoarsening stage, our algorithm cal-
culates the weight of both clusters using equation 2. The
cluster with the higher weight, which we refer to as the
imbalanced cluster, is chosen as the one to begin moving
operations from. A metric is then needed for determining
the benefits of moving an operation to a different cluster.
Each time a node is moved to another cluster, there is a
shift in both the load balance, as a different set of opera-
tions are now on each cluster, and also the cut edges, as
there will now be different edges between clusters requiring
inter-cluster moves.

Thus, the load gain, Lgain, is defined as the difference
in the system load before and after the proposed move is
made. The edge gain, Fgain, is the sum of the edge weights
of the edges merged minus the sum of the edge weights of the
edges cut. The algorithm counts an increase of one on the
load gain as equal importance to cutting a critical edge, as it
will mean the cycle is so overloaded with work that schedule
length must be increased by one. Therefore, the difference
in system load is multiplied by the cost of a critical edge,
which is currently specified as 10. The overall gain for a
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Figure 6: The refinement process traveling back through coarsened states. (a) The beneficial move of the
coarsened node containing operations 4, 5, 6 and 9 to cluster 2. (b) A situation where no positive moves exist
and the move is not made. (¢) Moving the coarsened node containing 7 and 11 to cluster 1 is now beneficial.

particular move, M gain, is then determined by:

Egain = Z edge_wgt; — Z

i€merged edges JEcut edges

edge_wgt;

Lgain = SLpeforey — SLiafter)

Mgain = Egain + (Lgain x CRITICAL EDGE COST)

Figure 6 shows the refinement process and gain calcula-
tions on the running example. In 6(a), the proposed move
is to change the coarsened node containing operations 4, 5,
6, and 9 from cluster 1 to cluster 2. This decreases the sys-
tem load from 5.0 to 4.5, a Lgain of 0.5. By moving this
operation over, no edges are merged, and a weight 1 edge
is cut (between operations 9 and 12). Therefore the Mgain
for this operation is —1 +5 = 4. No other moves in this un-
coarsening step are beneficial, so the graph is uncoarsened
again.

The next uncoarsened state is shown in Figure 6(b), where
operation 6 has been uncoarsened from 4, 5, and 9, all of
which are now in cluster 2 after step 6(a). Of interest is that
even though moving operation 6 from cluster 1 to cluster 2
provides a positive Lgain by dropping the system load from
4.5 to 4.17, This is not enough to counteract the cost of
cutting the weight 8 edge from operation 6 to 9, therefore
this move is not made. Since no move in this coarsening
state is beneficial, uncoarsening continues.

Next the graph reaches the uncoarsening state in Figure
6(c). At this stage of uncoarsening, both the coarsened
nodes containing 4 and 9 as well as 7 and 11 decrease the
system load from 4.5 to 3.5 if moved to cluster 1, as they
both have the same node weights and affect the same cycles.
The coarse node with 7 and 11 is chosen for moving, though,
because it only cuts one weight 8 edge and thus remains a

positive move, while the coarse node 4 and 9 cuts two weight
8 edges and merges one weight 1 edge, making it a negative
Mgain.

Each uncoarsening stage finishes when it can make no
more moves and the same imbalanced cluster is chosen twice
in a row. Then, it moves on to the the next uncoarsened
stage and the refinement process is repeated. When the un-
coarsening process completes its refinement of the original,
totally uncoarsened snapshot of the region, one final pass
through each of the clusters is run, to ensure that no pos-
itive moves out of a cluster were ignored because another
cluster was extremely out of balance. In this final phase,
each cluster allows only positive moves.

When this final phase completes, the resulting partitions
correspond to the desired clusters. The node weights and
edge weights ensure that there exists a good load balance
between the clusters as well as a minimal cut set for inter-
cluster communication. For this example, the final uncoars-
ening step yields no change from the partition after the move
in Figure 6(c). Thus, the final partition is operations 1, 2,
3,7,8,11, 12 and 14 on cluster 1, with the remaining oper-
ations on cluster 2. Even though there are three cuts in this
partition, none are critical and this results in the optimal
schedule length of 8 cycles.

4. EXPERIMENTAL EVALUATION

We implemented the RHOP algorithm using the Trimaran
tool set [25], a retargetable compiler for VLIW processors.

4.1 Methodology

To gauge the performance of our algorithm, we compared
our results to the BUG algorithm. We evaluated the per-
formance of both BUG and RHOP on several DSP ker-
nels and the SPECint2000 benchmark suite. DSP kernels



Kernel 2-1111 | 2-2111 | 4-1111 | 4-2111 | 4-H || SPEC 2-1111 | 2-2111 | 4-1111 | 4-2111 | 4-H
adpcm -2.09 3.25 12.03 8.95 | 11.98 || 164.gzip -2.18 5.21 8.67 6.86 | 4.12
atmecell -0.32 3.34 34.86 32.58 | 14.04 || 175.vpr -5.98 2.42 3.26 6.15 | 3.41
channel -3.35 -0.73 11.20 20.44 6.50 || 181.mcf -1.72 -1.49 3.99 -5.99 | -3.44
dct -0.64 10.53 31.24 28.86 | 17.31 || 197.parser -3.45 -2.76 -1.22 -1.40 | -1.62
fir 4.75 15.74 30.90 12.34 | 11.62 || 253.perl -3.16 0.00 6.25 513 | 1.84
fsed 4.39 6.52 22.87 27.90 | 10.65 || 254.gap -5.79 0.34 -0.76 0.47 | -1.08
halftone 1.17 4.91 27.99 34.18 | -2.12 || 255.vortex -2.61 2.08 -5.29 7.59 | 1.84
heat -6.24 21.50 31.23 33.32 | 15.26 || 256.bzip2 -1.02 -0.29 25.45 21.66 | 9.66
huffman -4.84 -3.87 24.65 24.79 | 19.76 || 300.twolf -2.16 1.13 8.24 341 | 4.04
LU -2.65 -1.23 -1.42 12.44 | 4.51 || Average -3.11 0.73 5.40 4.87 | 2.28
lyapunov 1.83 9.43 13.26 6.63 | 13.41

rls -1.90 4.50 6.09 30.51 | 11.42

sobel -2.04 1.02 20.67 20.92 | 22.20

Average -0.92 5.75 20.43 22.60 | 12.04

Table 1: Percentage improvement by RHOP on cycle time over the BUG algorithm for several kernels and
the SPECint2000 benchmarks on five different machine models.

were investigated because of their characteristically high ILP
that make them ideal candidates for wide-issue processors.
As a result, they provide a true measure of the cluster-
ing algorithm’s ability to exploit high levels of ILP. The
SPECint2000 benchmarks® were also used because of their
generally low and irregular ILP. These benchmarks provide
the challenge of exploiting ILP when it is available, but not
over-partitioning when ILP is limited.

Five different machine configurations were used to com-
pare our performance with BUG. Common to all these ma-
chines are 64 registers per cluster, operation latencies simi-
lar to those of the Itanium, and perfect caches. Four of the
machine configurations have homogeneous clusters (i.e. the
resources on each cluster are identical), and the last one is
a heterogeneous machine. Each has varying numbers of in-
teger (1), float (F), memory (M) and branch (B) units. The
different machine configurations are summarized below:

Name | Configuration

2-1111 | 2 Homogeneous Clusters
11, 1F, 1M, 1B per cluster

2-2111 | 2 Homogeneous Clusters
21, 1F, 1M, 1B per cluster

4-1111 | 4 Homogeneous Clusters
11, 1F, 1M, 1B per cluster

4-2111 | 4 Homogeneous Clusters
21, 1F, 1M, 1B per cluster

4-H 4 Heterogeneous Clusters
IF, IM, IB, and IMF clusters

For each benchmark, the dynamic cycle count was used
as the evaluation metric for how well the clustering algo-
rithm was able to partition the code into clusters. After
clustering, prepass scheduling, register allocation and post-
pass scheduling are performed to generate the final assembly
code.

4.2  Analysis of Results

Table 1 shows our improvement over BUG for 13 kernels
and the SPECint2000 benchmarks for the five different ma-
chine models. For each kernel, we present the percentage

1176.gcc, 186.crafty, and 252.eon were not run due to limi-
tations of the current Trimaran compiler system.

improvement in dynamic total cycles of RHOP over BUG.
Positive results mean RHOP performed better than BUG,
while negative results mean BUG performed better.

Overall, our results for a two cluster machine with one re-
source of each type are rather poor, with an average increase
in dynamic cycles of 0.92% on the kernels. As the machine
configuration becomes more complex, by adding more re-
sources and additional clusters, results dramatically improve
in the quality of our operation clustering. On the kernels,
there was an average of 20% improvement on the 4-1111
machine, and a 23% improvement on the 4-2111 machine.
The results for the four-cluster heterogeneous machine fell
between the two and four-cluster homogeneous machines.
A similar trend is seen on the SPECint2000 programs in
Table 1 except the improvements are more modest. In gen-
eral, the SPECint2000 benchmarks have less ILP than the
kernels, thus there is less opportunity for distributing work
across clusters.

The data in the table shows that local, greedy methods
for clustering can perform quite well in constrained, resource
limited situations. The poor results from the two-cluster
machine occur because of the inaccuracies of our resource
model. Estimates, in general, can be wrong, and at times we
observe one cluster gets more operations than it should. One
major factor is that our resource load estimate ignores edges;
thus, it also ignores dependencies between instructions, and
assumes reordering is possible where in actuality, it may not
be. We then have too many operations being placed into a
cluster and forced to execute serially.

On the other hand, for four-cluster machines, the most im-
portant factor is carefully spreading out the workload among
all the different clusters. In such a situation, the region-level
scope used by RHOP becomes much more effective than a
local, operation-centric scope. Thus, we are able to achieve
a drastic improvement for four clusters.

Figure 7 compares the performance of the 2-1111 and 4-
1111 machines using BUG and RHOP with a single cluster
machine containing the sum of the resources of all the clus-
ters. The single cluster machine provides an upper-bound
of performance. For the two-cluster results, both BUG and
RHOP achieve greater than 92% of the upper-bound. Con-
versely, for a four-cluster machine, BUG only achieves 68%
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Figure 7: Comparison of BUG and RHOP clustering performance degradations on (a) 2 cluster (2-1111) and
(b) 4 cluster (4-1111) machine configurations versus a 1-cluster machine with the sum of the resources of the
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Figure 8: Histogram comparing the performance
of RHOP and BUG; each category is the achieved
schedule length of the region with respect to the
critical path length. The numbers on top are the
dynamic execution percentage of the category.

of the upper-bound. Again this is due to the local, greedy
heuristics breaking down for wide machines. RHOP in-
creases performance to 79% of the upper bound. Clearly,
there is still room for improvements to the RHOP algorithm.

Since our desirability metrics assume that schedules finish
within the critical-path length (CPL) number of cycles, we
performed a study of RHOP performance as a function of
schedule length relative to the CPL. In Figure 8, each bar
represents the cumulative ratio of RHOP cycles over BUG
cycles for all regions (across all benchmarks) in the range.
The bars are annotated on top with the percentage of dy-
namic cycles that occur within these ranges. For regions
very close to the CPL, our algorithm performs modestly
well. These regions are critical-path limited, and our system
load estimates are quite accurate. For regions much higher
than the CPL, where the regions are resource-constrained,
our algorithm performs even better. In such regions, the key

to a good partition is properly spreading out work across the
clusters, and the total node weight heuristic in RHOP intel-
ligently balances the workload. The middle ground, when
regions are neither critical-path nor resource constrained, is
where RHOP has the most difficulty. Since neither resources
nor CPL dominate, our resource estimates lose substantial
accuracy and thus bad clustering decisions can be made.

In addition, the runtime of the two algorithms was evalu-
ated. For a research-oriented compiler like Trimaran, simply
evaluating raw compute time is a rather inaccurate way to
measure the speed of an algorithm. A more realistic mea-
surement is the number of calls to the resource table, which
gives an estimate on how often the algorithm is checking
and rechecking its resource model. This is the heart of the
scheduler, where most of the time is spent. Thus, minimiz-
ing entries into this function is a key metric to improving
compiler run-time. The results from this experiment are
presented in Table 2. Our algorithm shows significant im-
provement over BUG, taking an average of 1.2 times the
runtime of the scheduler alone, versus 3.0 times for BUG.
This is a result of the necessity of scheduler-centric algo-
rithms requiring a detailed model of the current resource
constraints and repeatedly reevaluating the model for each
step of the process.

5. RELATED WORK

There has been a large body of research conducted in the
area of clustering. In Table 3, we summarize our general
categorization of many of them based on the four character-
istics of clustering algorithms presented in Section 2.

The most closely related work to our clustering approach
is with algorithms that use graph partitioners, and those
that use an estimate-based approach. Capitanio et al. [3]
proposed a graph partitioning method to clustering opera-
tions, but focused mainly on a Kernighan-Lin like approach
to improving partitions. They focus their improvements
strictly on a function of the partition cut set, and weigh-
ing the benefits of making a cut with the probability that it
will increase the schedule length.

Aleta et al. use a similar multilevel graph partitioner, but



Kernel Sched BUG RHOP

adpcm 4550 13777 (3.0) 6676 (1.5)
atmecell 31560 109880 (3.5) 33244 (1.1)
channel 12294 32094 (2.6) 14686 (1.2)
dct 16646 47346 (2.8) 17148 (1.0)
fir 9284 26434 (2.8) 10474 (1.1)
fsed 13300 40244 (3.0) 13910 (1.0)
halftone 14109 29519 (2.1) 15475 (1.1)
heat 5159 13113 (2.5) 5667 (1.1)
huffman 22030 54974 (2.5) 25296 (1.1)
LU 1935 4563 (2.4) 3105 (1.6)
lyapunov 16256 43234 (2.7) 17940 (1.1)
rls 25305 84413 (3.3) 26471 (1.0)
sobel 8138 23145 (2.8) 9414 (1.2)
Average (2.8) (1.2)
SPEC Sched BUG RHOP

164.gzip 385173 | 1303443 (3.4) 455795 (1.2)
175.vpr 1356211 | 4555987 (3.4) | 1528947 (1.1)
181.mcf 220845 700958 (3.2) 245269 (1.1)
197.parser || 1238238 | 4045074 (3.3) | 1434704 (1.2)
253.perl 2102449 | 7066202 (3.4) | 2862355 (1.4)
254.gap 2046872 | 6754402 (3.3) | 2813026 (1.4)
255.vortex || 2133516 | 7199868 (3.4) | 2635402 (1.2)
256.bzip2 489923 | 1580643 (3.2) 550493 (1.1)
300.twolf 1405475 | 4861800 (3.5) | 1681433 (1.2)
Average (3.3) (1.2)

Table 2: Number of calls to the resource table.

For BUG and RHOP, the ratio of total calls over
Scheduling-only calls is given in parentheses.

focus on tightly integrating the clustering algorithm with the
instruction scheduling and register allocation [1]. Also stud-
ied was clustering via a multilevel partitioner to determine
the optimal initiation interval (II) for a modulo scheduled
loop using a pseudo-scheduler [2]. Their work focuses on
scheduling cyclic code in multicluster domains, while ours
is targeted toward acyclic code. We also use substantially
different models for computing node and edge weights.

While not a heavily researched area, there has been some
work on estimate-based approaches for clustering. Lapin-
skii et al. [17] base their estimate off three major factors:
the data transfer penalty, FU serialization penalty and bus
serialization penalty. They use a local approach like BUG to
minimize the data transfer penalties. The FU serialization
is basically the load of the cluster, which is determined in a
cycle by cycle approach.

Partitioning can also be approached by considering oper-
ands rather than operations [13]. Research on partitioning
for multiprocessors has many similarities to clustering for
multicluster processors. Yang and Gerasoulis [26] proposed
a low-complexity method for clustering and scheduling par-
allel tasks for multiprocessors. Liou and Palis [20] improved
upon the complexity of this algorithm.

6. CONCLUSION

This paper proposes a novel technique to cluster opera-
tions for multicluster processors. A slack distribution al-
gorithm is presented, which effectively weights edges based
on their preference for being broken across clusters. We

introduce a new way to estimate the impact of clustering
decisions, which is used to guide our graph partitioner. Our
graph partitioner is able to consider an entire region of code
and base its decisions off a view of the code as a whole, rather
than what the best clustering is for a single operation.

We compared our results to a popular algorithm, BUG,
and results show that for larger number of clusters, our algo-
rithm is able to efficiently produce better partitions. Two-
cluster machines saw an average performance decrease of
1.8% across all kernels and benchmarks. As we increased
the number of clusters, there was a dramatic increase in the
performance of our partitioner. A four-cluster machine pro-
vided an average improvement of 14% in our experiments.

In the future, we plan to improve our system load es-
timation heuristic in situations where regions are neither
resource nor critical path limited. This corresponds to the
middle portion of Figure 8, where RHOP’s performance de-
creased in comparison to BUG. In addition, we plan to inves-
tigate the effects of register allocation and register pressure
on clustering decisions. Extending RHOP to effectively clus-
ter modulo scheduled loops presents another area of future
study.
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