
Data Access Partitioning for Fine-grain Parallelism on
Multicore Architectures

Michael Chu∗ Rajiv Ravindran† Scott Mahlke

Advanced Computer Architecture Laboratory
University of Michigan
Ann Arbor, MI 48109

{mchu, rravindr, mahlke}@umich.edu

ABSTRACT
The recent design shift towards multicore processors has spawned
a significant amount of research in the area of program paralleliza-
tion. The future abundance of cores on a single chip requires pro-
grammer and compiler intervention to increase the amount of par-
allel work possible. Much of the recent work has fallen into the
areas of coarse-grain parallelization: new programming models
and different ways to exploit threads and data-level parallelism.
This work focuses on a complementary direction, improving per-
formance through automated fine-grain parallelization. The main
difficulty in achieving a performance benefit from fine-grain paral-
lelism is the distribution of data memory accesses across the data
caches of each core. Poor choices in the placement of data ac-
cesses can lead to increased memory stalls and low resource utiliza-
tion. We propose a profile-guided method for partitioning mem-
ory accesses across distributed data caches. First, a profile deter-
mines affinity relationships between memory accesses and work-
ing set characteristics of individual memory operations in the pro-
gram. Next, a program-level partitioning of the memory opera-
tions is performed to divide the memory accesses across the data
caches. As a result, the data accesses are proactively dispersed to
reduce memory stalls and improve computation parallelization. A
final detailed partitioning of the computation instructions is per-
formed with knowledge of the cache location of their associated
data. Overall, our data partitioning reduces stall cycles by up to
51% versus data-incognizant partitioning, and has an overall speedup
average of 30% over a single core processor.

1. INTRODUCTION
In recent years, the processor design industry has shifted away

from increasing the performance of monolithic, centralized proces-
sor designs. In the past, processor generations could scale perfor-
mance by increasing clock frequency and designing larger, more
complex structures. However, increased power dissipation and ther-
mal issues have become the main design constraints, forcing a chan-
ge to decentralized multicore designs. Multicore processors lessen
the power issues by using multiple simpler cores and tightly inte-
grating them together on a single die. This allows for an increase
in throughput capabilities of the processor but does not necessarily
increase performance. As Moore’s law continues to increase tran-
sistor counts, the semiconductor industry is expected to use the ad-
ditional transistors to scale the number of cores per chip from the

∗Author is currently with the Parallel Computing Platforms group
at Microsoft Corporation
†Author is currently with the Java, Compilers and Tools Laboratory
at Hewlett-Packard

2 to 8 core processors currently available on the market to many
more in the future.

While the shift to multicore designs has the ability to signifi-
cantly improve the performance of applications, this performance
boost is not free. In order to take advantage of massively parallel
cores, the difficult problem of parallelizing an application falls back
on the programmer and compiler. Recently, a significant amount of
work has focused on areas such as new programming models [4,
16] and ways to exploit single-instruction multiple-data (SIMD)
parallelism. These methods for coarse-grain parallelization can be
powerful in extracting large amounts of parallel work and distribut-
ing them across the cores. However, there are still a significant
number of single-threaded applications that simply do not exhibit
the inherent parallelism for programmers to widely spread their ex-
ecution across multiple cores.

This paper focuses on a complementary compiler-directed meth-
od for program parallelization by exploiting fine-grain instruction-
level parallelism (ILP). Current research in interconnection net-
works have examined multiple ways to increase the speed and band-
width of communication between cores [23, 25]. Faster commu-
nication of scalar values between the cores enables applications to
take advantage of parallelization at the operation granularity. While
coarse-grain techniques can parallelize large portions of execution,
our method can use an additional dimension to further increase per-
formance by creating fine-grain threads to exploit on the multiple
underlying cores.

The challenge for exploiting fine-grain parallelism is: given an
application, identify the operations that should execute on each
core. This decision must take into account the communication over-
head of transferring register values between the cores as well as the
layout of data values in the individual caches of each core. Poor de-
cisions can lead to communication across the interconnection net-
work delaying the execution of other operations, cache conflicts
evicting data and increasing cache misses, or an increase in cache
coherency traffic between the cores, all of which lead to lower per-
formance. The fine-grain nature of these decisions make it difficult
for the programmer to specify. However, the compiler can take ad-
vantage of the data-flow and memory access behavior analyses to
make better decisions to how to distribute the application.

Extracting fine-grain parallelism is a difficult task, but as the in-
dustry moves to faster, tighter interconnection networks between
the cores, many similarities can be drawn with multicluster VLIW
processors in the embedded domain. In embedded processors, cen-
tralized register files and datapaths became the cost, energy and
delay bottlenecks in wide-issue designs [11, 12]. Multicluster pro-
cessors helped alleviate the scalability problem by decentralizing
resources into smaller designs and grouping them together into in-
dividual processing elements (PEs) [9, 13]. These processors ad-



dress the issue of fine-grain parallelism by relying on the compiler
to partition operations across the multiple clusters [1, 3, 10, 18].
The main difference between multicluster and the multicore proces-
sors of today are that multicluster designs generally have a shared
data cache, while multicore systems have coherent distributed data
caches per core. This adds another level of complexity for the com-
piler to be cognizant of data values and how they are brought into
each individual cache.

The distributed data caches require the compiler to carefully ex-
amine the data access patterns of each individual memory opera-
tion. A good dispersal of data accesses across the cores is critical
to producing a high-performance partitioned program. Poor place-
ment of data accesses could lead to significant time stalled waiting
for memory because of cache misses or coherence traffic, taking
away the gains provided by the fine-grain partitioning of opera-
tions. Analysis of the memory accesses of each operation can help
to determine when individual data accesses are causing others to
either hit or miss in the cache. In addition, the compiler can es-
timate the contribution each memory operation has to the overall
working set. Placing too many operations in a single cache could
potentially increase the number of cache misses. Thus, given pro-
file information about affinities between operations and working
set sizes, the compiler can proactively combine or split operations
across the distributed data caches in order to improve performance.

The underlying vision of this work is to compile to chip multi-
processors, such as Raw [26], that can both exploit thread-level par-
allelism (TLP) and ILP. This work focuses on the ILP side, where
the architecture can be viewed as a multicluster VLIW with dis-
tributed/coherent L1 caches. We propose a new compiler technique
that actively partitions memory operations across PEs in order to
decrease the memory stall time. A good partitioning of the data
allows us to map the problem of fine-grain parallelization for mul-
ticore down to the problem of program partitioning for multiclus-
ter VLIWs. Our method is a phase-ordered approach to partition
memory and computation. Thus, the partition of the data accesses
is performed first, regardless of the underlying computation per-
formed. The data access partition is then used the drive the parti-
tioning of the remainder of the code. Our approach first profiles the
program to determine statistics about each memory operation, such
as its affinity towards other operations and an estimated working
set size. This information is used to create a program-level graph
of the memory accesses. The graph is then heuristically partitioned
to assign memory operations to PEs. Finally, a detailed partitioning
of each code block is performed which respects the preplacement
locations of the memory operations.

2. BACKGROUND
This section provides background on our target architecture and

the use of a distributed data cache for the memory subsystem. In
addition, we introduce some of the challenges faced by the com-
piler in generating code in the presence of distributed data caches.

2.1 Multicore Architectures
Multicore architectures have helped improve processor perfor-

mance by increasing the number of available resources. The mul-
ticore architecture targeted by this work is shown in Figure 1. The
processor consists of multiple PEs which are connected together
by a fast communication network to transfer scalar operand values.
Each PE also has its own data cache, and the caches are kept coher-
ent through a coherence network. Thus, rather than having a single
monolithic processor with a fast clock frequency, multicore archi-
tectures simplify the individual cores, but increase their number to
improve processor throughput.

Figure 1: The multicore architecture targeted by this work:
multiple PEs tied together with a communication network for
scalar values and a coherence network for the data caches.

A challenging task for multicore processor code generation is
exploiting enough parallelism to successfully utilize the available
throughput. Recent work in multicore processor interconnects has
focused on improving the latency and bandwidth of the communi-
cation network [23, 25]. These techniques allow for faster transfer
of scalar values between the register files, which can then allow the
insertion of communication operations to split producer-consumer
relationships across multiple PEs. Thus, fine-grain threads, which
are small subgraphs of computation and data access operations can
be created to maximize resource utilization.

The architecture shown in Figure 1 presents another difficulty
for code generation because of its distributed data caches. The L1
caches of each PE must be connected to one another with a coher-
ence network to arbitrate the sharing of data lines and maintain cor-
rectness. This distributed design allows the processor to be more
easily scaled to wider issue designs by simply instantiating new
PEs.

Several problems arise with the use of distributed data caches.
First, each memory operation now can have a widely varying ac-
cess latency for its data, depending on where it exists and its current
state. The data could reside in its local cache, in a remote cache, or
in none of the caches. In each case, the data could also be in shared,
modified, or exclusive state, each requiring different coherence re-
quests to be sent out to copy from or invalidate other caches, and
causing a variable amount of delay because of possible congestion
in the coherence network. Another problem that arises with dis-
tributed data memories is that each PE now has a smaller amount
of memory associated with it. Compared to the large, shared mem-
ory, these smaller L1 caches have a higher likelihood for cache
misses. Thus, the compiler must be careful about what accesses it
chooses to place in each cache. Finally, with distributed caches, it
is possible to partition the accesses up in a manner in which they
cause multiplicative misses in each of the L1 caches, rather than
localizing the misses to one of the caches.

2.2 Distributed Data Cache Compilation
Producing efficient code for distributed data caches is a chal-

lenging task for the compiler. Traditional operation partitioning
algorithms [1, 3, 18] assume a shared data memory, which greatly
simplifies the compilation task. The compiler could choose to con-
tinue use of these algorithms and simply ignore the presence of the
distributed caches, allowing the underlying coherence hardware to
maintain correctness and properly load objects into the cache when



Figure 2: An illustrative example of the difficulties in compiling for distributed data caches (a) a code example, (b) a partitioning
of the operations assuming a shared memory, (c) a partitioning of the operations cognizant of the data access pattern, (d) idealized
schedules assuming a shared memory, and (e) schedules factoring in distributed data caches.

needed. This method passively partitions the memory operations
as part of its normal partitioning algorithm, and doesn’t consider
the underlying hardware. However, this strategy could easily de-
grade performance as multiplicative misses, coherence overheads,
and conflict misses increase. Thus, in order to generate efficient
code for distributed data caches, the compiler must actively par-
tition the memory operations cognizant of the ramifications of its
choices.

Figure 2 is an example pseudocode that illustrates some of the
difficulties that can arise when the compiler is partitioning the op-
erations. In Figure 2(a), the C code for a loop is shown that accesses
two different arrays. Within the body of the loop, there are three
loads, two of which are to array x and one to array y. In addition,
there is a store to array x at the end of the loop. Each memory op-
eration is annotated with a label, and dataflow graphs for this code
are shown in Figure 2(b) and (c).

An operation partitioner that assumes a shared memory may try
and produce the assignment of operations shown in Figure 2(b).
This can be a good partition because it only requires one transfer
of register values across the communication network, and balances
the required work for each PE well. This assignment places two of
the loads (L2 and L3) on one PE and the other memory operations
on the other. With a shared data cache between the PEs, the sole
objective of operation assignment (including memory operations)
is to minimize the expected schedule length.

Given a distributed data cache design, the desired PE assignment
can change drastically. Looking again at Figure 2(b), in each iter-
ation in PE 1, load L1 will bring a line into the cache that is also
written to by store S1. Load L2 is also reading from the same cache
line, but in PE 2. When store S1 is executed, its PE will upgrade
the line in PE 1’s cache to the ownership state, and invalidate the
cache line in PE 2. In the next iteration, load L2 will again be ex-
ecuted on the PE 2, causing another miss in its cache, since it had
been invalidated. In fact in this next iteration, the miss caused by
load L2 will be a case of false sharing of the cache line. It would
then have to use the coherence network to get the modified cache
line from PE 1. A better partitioning of this code cognizant of the
distributed data caches is shown in Figure 2(c), where loads L1 and
L2, and store S1 are grouped together on a single PE.

The schedules for these two assignments are presented in Fig-
ures 2(d) and (e). In Figure 2(d), we show the idealized schedule
with a shared cache. In this case, the schedule length of assignment
#2 is longer because of the extra required register transfer opera-
tions, indicated by the arrows crossing the PE boundaries. Thus,
assignment #1 has a shorter per iteration static schedule than as-
signment #2. However, in Figure 2(e), which considers cache ef-
fects, load L2 will miss in its cache during each iteration and be

stalled (indicated by the dotted line), waiting to transfer the mod-
ified cache line from PE 1. In addition, each iteration will have a
stall for store S1 waiting to upgrade its cache line to modify it. The
schedule for assignment #2 shows none of these coherence issues,
and would only stall for cold misses that would affect any partition
assignment.

This example illustrates one of the main difficulties in partition-
ing memory operations for distributed data caches. There is a care-
ful balance between improving cache usage to reduce stall time and
the benefits of parallelization. Grouping together all memory oper-
ations that access the same addresses onto the same PE can be an
attractive option, as it can reduce misses. However, it can also come
at the expense of computation parallelism across the PEs. The total
execution of the program is the sum of compute cycles and stall cy-
cles, and the compiler must decide which is more beneficial. In this
example, it was better to sacrifice computation in order to reduce
stall cycles in each iteration of the loop.

3. DATA ACCESS PARTITIONING
This section introduces our Profile-guided Data Access Partition-

ing technique for assigning memory access operations to PEs with
distributed data caches.

3.1 Overview
This work proposes a profile-guided method that analyzes the

access pattern of memory operations and distributes them among
PEs. This is followed by a detailed partitioning of the computa-
tion operations cognizant of the memory access cache locations.
We feel this approach to first assign memory operations, then as-
sign the rest of the operations helps to reduce stall-time effects and
allows the compiler to take advantage of an improved memory par-
titioning when generating code for the rest of the program. We
chose to use a profile-guided technique rather than static analysis
because the profile allows finer grain control over the placement of
the data. Static analysis methods can relate memory access oper-
ations to data objects, but then the partition must be made at the
object level rather than the operation level.

Our technique for data access partitioning consists of three steps,
shown in the gray boxes in Figure 3. The dotted box indicates the
main parts of our profile-guided approach. During the first step, a
profile of the data accesses is performed that determines affinities of
memory operations with one another. We use a pseudo-cache sim-
ulation in order to determine whether any pair of operations would
prefer to occur in the same cache or be kept in separate caches.
The second step builds a program-level data access graph of all the
memory operations, using the statistics gathered during the profile.



Memory Op
Affinity

Relationships Program-level
Data Graph
Partitioning

Program

Data Access
Profile

Memory Op
Working Set
Estimates

Memory Op
PE

Assignments

Standard
Operation
Partitioner

Figure 3: A flow chart of our profile-guided technique.

Sliding Window

Current Memory Access

C
1

C
2

C
1

C
1

C
2

C
2

C
1

C
2

C
2

C
2

C
2

C
1

C
2

C
1

B
4

LD
4

B
1

LD
4

B
3

B
3

B
4

B
2

B
1

B
4

B
2

B
4

B
4

B
3

B
2

B
1

LD
2

LD
4

LD
2

LD
1

LD
2

ST
1

LD
2

LD
3

ST
1

LD
4

LD
2

LD
1

Memory Op

Accessed

Block

... ...

Memory Op

Block Address

Cache Line

Figure 4: Our profiler’s sliding window to analyze memory ac-
cess affinities

This graph is then partitioned to determine the memory operation
placement across the PEs. In the third step, a standard operation
partitioner is used to produce a block-level partitioning of the re-
mainder of the program, cognizant of the preplaced memory oper-
ations. This third step is an important part of our process, but is not
the focus of this paper. Our main contribution is the development of
the profile-guided technique to effectively partition memory opera-
tions to reduce stall time. Our technique can be used in conjunction
with any standard operation partitioner [8, 10, 22], as long as it can
be modified to acknowledge that the memory operations have been
preassigned to PEs.

3.2 Data Access Profile
The first step of our technique is a profiling pass that builds a

program-level data access graph between memory operations. The
purpose of this step is to monitor the data accesses produced by
each memory operation to determine whether individual operations
have any preference to being placed together on the same cache or
apart on different caches. Thus, the resulting data access graph
consists of each memory operation in the program connected by
edges representing the affinity between memory operations.

We identified three important characteristics of memory opera-
tions to take into account during this pass: constructive interfer-
ence, destructive interference, and working set size. Constructive
interference occurs when two memory operations are likely to ac-
cess the same cache lines and one access helps the other hit in the
cache. Similarly, destructive interference occurs when two memory
operations are likely to kick one another out of the cache. Working
set size is an estimate made of how much memory an individual
memory operation takes up in the cache. Each of these three char-
acteristics is determined during a profile run by examining and an-
alyzing the stream of memory accesses produced by the program.

Our data access profile creates a sliding window of the last n
memory accesses, as shown in Figure 4. The sliding window gives
the profiler a narrow view of the recent accesses that have been sent
to the data cache. With each access, the profiler records the memory
operation and the accessed address into the window. The operation
and address are recorded in order to determine if future memory
accesses can benefit from being in the same partition as the current
access. Thus, the profiler is performing a pseudo-cache simulation
over the window of accesses, trying to determine whether memory
operations attract or repel one another.

Input: {(L1, B1), (L2, B2), (L3, B3), ..., (Lk, Bk)}

Output: {Lk, Size}

for (i = (k − 1) to 1) do
dist++ ;
if (Bi = Bk) then

break;
end

end
if (DistMap[Lk].lookup(dist)) then

DistMap[Lk].value(dist)++ ;

end
else DistMap[Lk].insert(dist, 1) ;

Algorithm 1: Estimating working-set size of load/store in-
structions.

The profiler then travels back through the window of accesses
from the head to the tail, recording a count of each time it sees a
different memory operation that accessed the same memory block.
This static count of accesses to the same address is an indication of
how much the memory operation could help the current access hit
in the cache. Thus, this value is used as the constructive interfer-
ence metric, or positive affinity of operations to one another. For
the case in Figure 4, our profile statistics would increase the con-
structive interference between LD 4 and LD 2 as well as LD 4 and
ST 1 because they all access block B4 within the window. Equa-
tion 1 illustrates the calculation for the constructive interference
between a static memory operations i and j.

cons(i, j) =
X

trace

X

window

(block(i) == block(j)) (1)

While traveling back through the window of accesses, the pro-
filer also records how often the current memory access is likely
to kick another memory operation’s accessed cache line out of the
cache assuming a direct-mapped cache. This static count is used as
the destructive interference, or negative affinity of operations to one
another. In Figure 4, since blocks B4 and B2 both write to cache
line C2, the profile increases the destructive interference between
LD 4 and LD 1 by one. In both the constructive and destructive
passes back through the sliding window, the analysis is terminated
either at the tail of the window or when an address match occurs
with a memory store operation. The store operation termination
was added because with coherent L1 caches, a store would cause
an exclusive access in one of the caches, effectively invalidating it
from the others. Thus, in Figure 4, the profiler would begin at the
current memory access LD 4, and travel back noting that load LD
2 and store ST 1 accessed the same block. However, it would not
mark that load LD 3, the tail of the sliding window, also accessed
that block, since the store ST 1 would have ownership on that cache
line. The calculation for destructive interference between a static
memory operation i and another operation j is this illustrated in
Equation 2.

dest(i, j) =
X

trace

X

window

(line(i) == line(j)) (2)

The final metric recorded by the profiler is an estimate for the
working set contribution of each memory operation. For this work,
we leverage previous research for working set estimates based on
reuse distances of load and store operations [2, 21]. Algorithm 1
illustrates the calculation of this estimate. Input into the algorithm
is a list of cache block references for every load and store operation



5

12

19

15

8

6

13

9

7

4

11

14

18
10

3

10

10

10

11

9

3

11

11

5

5
4

5

5

PE 1 PE 2

Figure 5: Partitioning the data access graph for the rawdaudio
benchmark. Nodes are memory operations, annotated with an
id (in the node) a working set size. The thickness of the edges
indicate the amount of constructive affinity one operation has
for another.

in reference order. The working set size is estimated by looking at
past references to unique blocks by that instruction from the head to
the tail. The algorithm measures the cache reuse distance, or num-
ber of intervening operations between the current instruction/block
pair and its previous instance. This quantifies the number of cache
blocks that must be present in a fully-associative cache for the in-
struction to result in a hit. For each memory operation, a histogram
is produced that indicates the number of times the operation had
each access distance. A weighted average is taken of these cache
distances and is used as the working set estimate. Thus, while this
estimate is not perfect, as it assumes a fully-associative cache, it can
be useful as a heuristic to help determine how long certain accesses
would likely prefer to be in the cache.

Our memory partition method uses a direct-mapped cache met-
ric for our interference calculations and a fully-associative cache
metric for the working set estimates. While these are very different
cache designs, using them for the metric results in a more conser-
vative estimate. The direct-mapped assumption for the interference
estimates the worst case situation for conflict misses in the cache.
Similarly, the fully-associative assumption estimates the worst case
for capacity misses. Thus, these assumptions can allow for a more
conservative view of the cache effects of the memory operations.

3.3 Access Partitioning
The second step is the actual partitioning of the data accesses

across the different data caches. After the profile run is completed,
a program-level graph of all the accesses in the program is cre-
ated. The nodes in the graph represent each memory operation and
the edges connecting the nodes represent affinities between the op-
erations. Each node is weighted with the estimated working set
size of the memory operation. Each edge is weighted with the dif-
ference between of the constructive and destructive interferences
between the memory operations. Our technique inputs this graph
into the METIS graph partitioner [19], which divides the data ac-
cesses trying to cut as few positive edges as possible while keeping
a balanced node weight sum per partition.

The use of the estimated working set for the node weight helps
keep the partitioned memory operations balanced in their usage of
the data caches. For example, if a memory operation had a high
working set estimate, it would most likely need to be in the cache
for a longer period of time to hit than an operation with a low work-

ing set estimate. Thus, the partitioner could take this into consid-
eration and not push as many large working set operations together
into the same cache.

The use of the constructive and destructive affinities for the edge
weights helps the partitioner decide which edges are best to cut
when dividing up the memory operations. If two operations had a
large amount of destructive interference, this would be indicated in
the graph with a large negative edge weight. That would then be
attractive to the partitioner as a good edge to cut. Similarly, if two
operations had a large amount of constructive interference, the edge
weight would be a large positive value, indicating the operations
should be kept together in a single cache.

Figure 5 shows the data access graph created for the main loop of
the rawdaudio benchmark from the Mediabench suite [20]. In this
figure, each node represents a memory operation and is labeled with
an id number inside and its estimated working set next to the node.
Edges connect various operations in this graph, and the thickness of
the graph indicates different affinities. Higher constructive affini-
ties are shown with thicker edges. Thus, operations 11 and 18 have
a high amount of affinity towards one another, while 4 and 7 have
a small amount. Nodes without any edges are memory operations
that had no affinity towards any other operations during the pro-
file. For this benchmark, there was no destructive interference, as
is common with many kernel loop benchmarks that generally walk
through large data arrays. Therefore, there is no negative affinities
for the partitioner to try and push operations apart, but the parti-
tioner still had to deal with which operations to merge together and
how to balance the working set.

The end partition in Figure 5 shows several interesting results.
First, the most highly connected nodes, 6 to 13 and 11 to 18, are
kept together on the same PE. This allows them to help one another
in using the same cache lines. In addition, the partitioner chose
to group many of the other operations with affinity to 11 and 18
together. Next, many of the operations (5, 8, 10, 12, 15 and 19)
have no edges, suggesting they have no interaction with one an-
other. In these cases, the partitioner chose the group them with
operations 6 and 13 to help balance the overall working set sizes.
The large group of operations (7, 9, 11, 14 and 18) that had high
affinity towards one another were grouped together and they had a
large working set sum, thus the partitioner preferred to place the
free operations on the other PE. Finally, note that the partitioner
chose to cut the edges around operation 4. This was done to also
help balance the working set, as all the operations left in PE 2 have
a large working set size. Operation 4 was chosen because it had the
smallest affinity towards the other operations and created the best
balance of the working set.

3.4 Operation Assignment
The final step of our technique is to finish partitioning the rest

of the program code, including all computation operations. In this
step, any standard operation partitioning technique can be used, as
long as it can be modified to be cognizant of preplaced memory
operations. For this work, we used the Region-based Hierarchical
Partitioning (RHOP) algorithm [7] to distribute all the operations
across the PEs. RHOP is a operation partitioner capable of ef-
ficiently generating high-quality operation divisions; however, as
with most previous operation partitioning algorithms, it was de-
signed with the model of a single unified memory.

RHOP itself is designed as a performance-centric multilevel graph
partitioner for multicluster architectures. The novel aspect with the
algorithm was its modeling of the resources and estimates of the
schedule length. These were used in order to estimate the sched-
ule length impact of partitioning decisions without requiring the



PE 1 PE 2

&

=?

&

>>

LD

13

+

=?=?>>

LD

14
BRBR

BR

=?

Livein PE 1

&

&

=?

&

>>

LD

13

+

=?=?>>

LD

14
BRBR

BR

=?

Livein PE 1

&

Figure 6: Operation assignment of the computation operations
in rawdaudio given the memory operation placement from our
profile guided technique.

need to actually schedule the code, which is a complex and time
consuming process. RHOP proceeds by coarsening operations to-
gether based on the dependences between operations. Edges in the
graph are given weights based on either low slack between the oper-
ations (higher weight), or high slack between the operations (lower
weight). A low slack between operations indicates that the edge
is more critical, and breaking the edge across PEs will require in-
creasing the schedule length. Similarly, high slack edges have more
freedom to insert intercore communication. The coarsening pro-
cess groups together operations in high-weight edge priority.

After coarsening, the algorithm begins backtracking across the
coarsened states, uncoarsening operations. At each stage of the
uncoarsening, the schedule length estimates are updated to reflect
the current partitioning of the objects. Uncoarsened groups of op-
erations are considered for movement across partitions when they
appear favorable in terms of reducing schedule length or resource
saturation. The process is illustrated in Figure 6 for a basic block
in the benchmark rawdaudio. In Figure 6(a), the partitioning of
the block begins with the memory operations preassigned to their
respective PEs from the output of the previous step (as shown in
Figure 5). Every other operation is unassigned to a PE, but some
operations have live-in operands from previously partitioned blocks
in the code. In Figure 6(b), we show the operation partition after
RHOP has completed. The memory operations are still assigned
to their prebound PEs, and the operations around them have been
partitioned taking the data location into consideration. There are
two transfers across the communication network in this figure, one
from LD 13 to an add operation, and one from the add operation to
a compare operation.

While RHOP can produce high-quality partitions of the opera-
tions, it has the underlying assumption that data can be accessed
from any PE. We extended RHOP to allow for a prebinding of
memory operations to a PE, which was determined by the partition
of the program-level data access graph. This was done by modify-
ing the resource usage weights of the memory operations to have
a very high weight when placed on an incorrect PE. Furthermore,
operations prebound to different PEs are prevented from coarsen-
ing with one another. Thus, when RHOP begins estimating costs of
moving computation operations between partitions, it can take the
required data transfer moves into account.

4. EXPERIMENTS
Our profile-guided data access partitioning technique was imple-

mented as part of the Trimaran compiler infrastructure [27], a retar-

Parameter Configuration
Number OF PEs 2, 4
Function Units 1 I,F,M,B per PE
PE Comm. B/W 1 total move per cycle
PE Comm. Latency 1, 2, 3 cycles
L1 Cache 2-way associative
L1 Block Size 32 bytes
L1 Cache Sizes 512B, 1kB, 4kB, 8kB per PE
L1 Hit Latency 1 cycle
L1 Bus Latency 2 cycles
L2 Hit Latency 10 cycles
Main Memory Latency 100 cycles
Coherence Protocol MOESI

Table 1: Details of the simulated machine configurations

getable compiler for VLIW/EPIC processors. The machine model
used had 2 or 4 PEs, and 1 integer, float, memory and branch unit
per PE. Each PE includes a distributed L1 data cache of varying
sizes between 512B and 8kB. We assumed a shared 128kB 4-way
associative L2 data cache and coherency was kept between the L1
caches with a MOESI coherence protocol. The communication net-
work between PEs, which is used to transfer register values, allows
for a total of 1 move per cycle with a 1-cycle latency. More details
of our simulated machine are provided in Table 1.

We ran our experiments on a number of benchmarks with vary-
ing amounts of inherent parallelism in order to gauge the effec-
tiveness of our technique. The benchmarks with the most paral-
lelism consisted of a set of DSP kernels. These benchmarks were
the ideal case with a significant amount of available parallelism
to extract. We also used the Mediabench [20] benchmarks, which
have slightly less parallelism, but still enough to extract some per-
formance gains. Finally, we ran our technique on the SPEC CPU
2000 benchmarks, which have the lowest amount of parallelism
available. Our results show a representative subset of applications
from these benchmark suites.

For each benchmark, we evaluated the performance of a standard
RHOP generated partition which assumes a shared memory and
compared it to our profiled-guided method which prepartitions the
memory accesses. Thus, our base case is a data cache incognizant
method, which places data access operations without knowledge
of the distributed L1 caches. We report the improvement of our
technique relative to the base RHOP case. A comparison with the
base RHOP partitioning was used to determine the amount of im-
provement that our phased-ordered memory placement could have
over a standard multicluster operation partitioner. In generating our
PE assignment for memory operations, our data access partitioning
technique profiled each application using a sliding window size of
256 instructions and assumed a 32-byte line size. Each benchmark
was profiled and evaluated on different input sets. The profile used
a smaller input set to generate the memory operation-to-PE bind-
ings.

4.1 Performance Improvement
Figure 7 shows the reduction in stall cycles for our profile-guided

data access partitioning technique compared to the partition pro-
duced by RHOP with no active data partitioning. Each bar repre-
sents a different cache size per PE. Higher bars indicate a larger
reduction in stall cycles, and bars below zero indicate a increase
in stall cycles. In almost all cases, our technique significantly re-
duced the number of stall cycles, by as much as 90% in gsmde-
code and linescreen. This can be attributed to a better grouping
of high affinity memory operations decreasing the coherence traffic
and better localizing data usage in a single PE. Most benchmarks



-20

-10

0

10

20

30

40

50

60

70

80

90

100

ly
a
p
u
n
o
v

fs
e
d

s
o
b
e
l

c
h
a
n
n
e
l

v
it
o
n
e
lo

o
p

li
n
e
s
c
re

e
n

c
jp

e
g

d
jp

e
g

g
7
2
1
e
n
c
o
d
e

g
7
2
1
d
e
c
o
d
e

g
s
m

e
n
c
o
d
e

g
s
m

d
e
c
o
d
e

m
p
e
g
2
e
n
c

m
p
e
g
2
d
e
c

ra
w

c
a
u
d
io

ra
w

d
a
u
d
io

1
6
4
.g

z
ip

1
7
5
.v

p
r

1
8
1
.m

c
f

2
5
6
.b

z
ip

2

3
0
0
.t

w
o
lf

1
7
1
.s

w
im

1
7
2
.m

g
ri
d

1
7
7
.m

e
s
a

1
8
8
.a

m
m

p

A
v
e
ra

g
e

A
v
e
ra

g
e
 2

c
y
c
le

A
v
e
ra

g
e
 3

c
y
c
le

%
 R

e
d

u
c
ti

o
n

 i
n

 S
ta

ll
 C

y
c
le

s

512 B 1 kB 4 kB 8 kB

Kernels Mediabench SPECint2000 SPECfp2000 Average

Figure 7: Reduction in stall cycles when using a profile-guided data access partitioning for a 2-PE processor

0.8

1.0

1.2

1.4

1.6

1.8

2.0

ly
a
p
u
n
o
v

fs
e
d

s
o
b
e
l

c
h
a
n
n
e
l

v
it
o
n
e
lo

o
p

li
n
e
s
c
re

e
n

c
jp

e
g

d
jp

e
g

g
7
2
1
e
n
c
o
d
e

g
7
2
1
d
e
c
o
d
e

g
s
m

e
n
c
o
d
e

g
s
m

d
e
c
o
d
e

m
p
e
g
2
e
n
c

m
p
e
g
2
d
e
c

ra
w

c
a
u
d
io

ra
w

d
a
u
d
io

1
3
2
.i
jp

e
g

1
6
4
.g

z
ip

1
7
5
.v

p
r

1
8
1
.m

c
f

2
5
6
.b

z
ip

2

3
0
0
.t

w
o
lf

1
7
1
.s

w
im

1
7
2
.m

g
ri
d

1
7
7
.m

e
s
a

1
8
8
.a

m
m

p

A
V
E
R
A
G

E

S
p
e
e
d
u
p

Incognizant Data Partitioned Unified

Kernels Mediabench SPECint2000 SPECfp2000 AVG

Figure 8: Performance comparison of a 2-PE machine versus a 1-PE machine with different data partitioning techniques.

saw increasing benefits as cache size increased, as a larger cache
size allowed for our grouping of memory operations together to be
more effective at keeping cache lines valid. Some, like rawdaudio,
showed less improvement with larger caches. This was not due to
the profile-guided approach performing worse, but rather the fact
that almost all of the working set of the benchmark could fit in a
single larger cache.

In addition, the average stall cycle reductions for intercore com-
munication latencies of 2 and 3 cycles are shown. For higher la-
tencies, the stall cycle reduction is fairly similar. Variance appears
because RHOP reassigns the computation causing slightly different
overlaps between computation and stall time.

Some benchmarks, like lyapunov and rawcaudio, increased the
number of stall cycles with a 512B cache. For rawcaudio, this oc-
curred because the partition assignment overcommitted one of the
caches with too many memory requests, causing additional conflict
misses. This resulted in this benchmark making far more accesses
to the L2 cache than the base case. For the lyapunov kernel, our

partitioning of the memory operations actually produced a mem-
ory operation assignment that had comparable L1 cache miss rates.
However, with the small cache size, our partitioner overcommit-
ted the memory unit with store accesses, increasing the number of
misses in one critical section.

While the number of cycles due to stall is improved, total per-
formance is affected by the sum of both stall and compute cycles.
Figure 8 shows the achieved speedup over a single PE machine on
a 2-PE system. Thus, 1.0 on the y-axis indicates the performance
of a single PE, and higher bars indicate better performance. For
each benchmark, three bars are shown. The first indicates the per-
formance achieved by a data-incognizant partitioner which purely
focuses on the computation operations. This technique generally
does the worst, as it suffers from a poor data access distribution
and memory stalls. The second bar indicates the performance of
our technique, where we proactively distribute data accesses. The
final bar is the performance of a unified machine: a single PE pro-
cessor with twice the resources. Thus, this bar is an indication of



the upper bound of our technique, as it can support the same amount
of parallelism and does not suffer from the intercore communica-
tion latencies.

Overall, most benchmarks show a performance improvement with
intelligent data partitioning. As expected, benchmarks with more
parallelism, such as the kernels and Mediabench, show more speedup.
This is directly related to the amount of parallel work available
for our fine-grain technique to exploit. The SPECcpu benchmarks
show less speedup, but the unified machine speedup for each bench-
mark indicates that many of those applications have very little room
for improvement. On average, we saw the upper-bound of achiev-
able speedup around 1.43, and we were able to extract approxi-
mately a 1.3 speedup with our data access partitioning.

It is evident that a data-incognizant partitioning is not a good so-
lution, and the proactive distribution of the data is extremely impor-
tant in leveraging benefit from the extra resources. In many cases,
such as gsmdecode, 175.vpr, and 300.twolf, a decrease in perfor-
mance is shown for a data incognizant partition, as the memory stall
time takes away any gains from computation parallelization. How-
ever, with our proactive data partitioning, all three of these bench-
marks show some speedup over the baseline case. Two bench-
marks, 181.mcf and 171.swim, show slight performance degrada-
tion even with our technique. In these applications, the amount of
parallelism available was so low that we were not able to extract
enough parallel work.

4.2 Reduction in Coherence Traffic
Besides stall cycle reductions, another benefit of our data access

partitioning method is that by actively grouping memory operations
that have high affinity towards one another, coherence traffic can
be reduced. While this is not a strict indicator of performance, if
the coherence traffic became a bottleneck, this reduction could be
beneficial. With a significant increase in network traffic, congestion
could cause additional delays on memory accesses, as coherence
requests begin lining up waiting for arbitration.

Table 2 presents the reduction in coherence traffic produced by
our profiled-guided method with a 4kB data cache per PE. For each
benchmark, the number of snoops performed by the base RHOP
and the profile-guided method are shown along with the percent-
age reduction. In almost all cases, our method is able to signifi-
cantly reduce the number of snoop requests put on the coherence
bus. Most cases are above an 80% reduction in snoop requests,
with the lowest being a 47% reduction in mpeg2enc.

There was only one benchmark, 177.mesa, in which our tech-
nique failed to significantly reduce the coherence traffic. This ap-
plication had a small region with a large number of stores to similar
locations. Our technique chose to try and balance out the memory
usage and caused the majority of the coherence traffic. Another
benchmark to note is rawcaudio, which had a extremely small num-
ber of snoops in the base RHOP case. This indicates that the base
RHOP had a fairly good partitioning of the data objects, as it didn’t
require many invalidations.

4.3 Partitioning to Four Processing Elements
To see how our algorithm generalizes to more parallel architec-

tures that are becoming more common today, we ran our method on
a machine with 4 PEs. Figure 9 presents the percentage reduction
in both stall cycles and overall speedup for two different machines:
a 2-PE processor and a 4-PE processor. In each case, each PE had a
4kB L1 cache. In Figure 9(a), the two bars indicate the percentage
reduction in stall cycle time for the 2-PE and 4-PE machines, re-
spectively. In Figure 9(b), the two bars indicate the overall speedup
achieved over a single PE machine for 2-PEs and 4-PEs. In each

Benchmark Incognizant Profiled % Red.
lyapunov 82117 0 100.0
fsed 335597 8253 97.5
sobel 841 69 91.8
channel 3196 179 94.4
vitoneloop 16834 1 99.9
linescreen 1416908 3 99.9

Kernels

Benchmark Incognizant Profiled % Red.
cjpeg 525562 52021 90.1
djpeg 160703 7930 95.0
g721encode 9384112 672792 92.8
g721decode 9353752 737476 92.1
gsmencode 4758854 194416 95.9
gsmdecode 3082861 275893 91.0
mpeg2enc 4138884 1213889 70.7
mpeg2dec 12956935 1916597 85.2
rawcaudio 76 4 94.7
rawdaudio 102580 1 99.9

Mediabench

Benchmark Incognizant Profiled % Red.
164.gzip 137074797 9795008 92.9
175.vpr 11192509 1711914 84.7
181.mcf 38087128 11278386 70.4
256.bzip2 150271055 5198114 96.5
300.twolf 49666748 2147275 95.7

SPECint

Benchmark Incognizant Profiled % Red.
171.swim 4500483 5264423 64.3
172.mgrid 2649332 9795008 94.8
177.mesa 31104748 30271083 2.7
188.ammp 1024210 273371 73.3

SPECfp

Table 2: The number of snoops required across the coherence
network for the base RHOP case (Incognizant) and the Profile-
guided case (Profiled), as well as the percentage reduction in
snoops (% Red).

case, higher bars indicate better performance.
In general, the results of the 4-PE processor were mixed, but

overall they were fairly in line with the results for 2-PE proces-
sors. The stall cycle reductions in Figure 9(a) indicate that with
more PEs, proactive data partitioning was still able to reduce a large
amount of the memory stalls. In some cases, this reduction was sig-
nificantly larger for 4 PEs, such as mpeg2enc, in others, it was less
such as g721encode. However, on average, we were able to reduce
approximately the same amount of memory stall cycles for 2 and 4
PEs.

Figure 9(b) shows that overall speedup with 4 PEs was also sim-
ilar to the 2-PE results. Some benchmarks, such as gsmencode,
where dramatically improved; however, on average, there wasn’t a
significant increase in performance even though were four times the
number of resources as the baseline case. Much of the achievable
performance benefits depends on whether or not the benchmark has
enough parallelism to support the wider machine. In addition, the
larger number of PEs increases the contention for the communica-
tion bus causing more compute cycles to be executed. This shows
us that while fine-grain parallelism is useful and can be exploited
for performance, it has its limits based on the application.

4.4 Compile Time Effects
Our method for profile-guided memory operation assignment will

generally increase compilation time. The runtime of the profiler is



0

10

20

30

40

50

60

70

80

90

100

ly
a
p
u
n
o
v

fs
e
d

s
o
b
e
l

c
h
a
n
n
e
l

v
it
o
n
e
lo
o
p

li
n
e
s
c
re
e
n

c
jp
e
g

d
jp
e
g

g
7
2
1
e
n
c
o
d
e

g
7
2
1
d
e
c
o
d
e

g
s
m
e
n
c
o
d
e

g
s
m
d
e
c
o
d
e

m
p
e
g
2
e
n
c

m
p
e
g
2
d
e
c

ra
w
c
a
u
d
io

ra
w
d
a
u
d
io

1
6
4
.g
z
ip

1
7
5
.v
p
r

1
8
1
.m
c
f

2
5
6
.b
z
ip
2

3
0
0
.t
w
o
lf

1
7
1
.s
w
im

1
7
2
.m
g
ri
d

1
7
7
.m
e
s
a

1
8
8
.a
m
m
p

A
V
E
R
A
G
E

%
 R

e
d

u
c
ti

o
n

 i
n

 S
ta

ll
 C

y
c
le

s
2-PE 4-PE

Kernels Mediabench SPECint2000 SPECfp2000 AVG

(a)

0.0

0.2

0.4

0.6

0.8

1.0

1.2

1.4

1.6

1.8

2.0

2.2

ly
a
p
u
n
o
v

fs
e
d

s
o
b
e
l

c
h
a
n
n
e
l

v
it
o
n
e
lo
o
p

li
n
e
s
c
re
e
n

c
jp
e
g

d
jp
e
g

g
7
2
1
e
n
c
o
d
e

g
7
2
1
d
e
c
o
d
e

g
s
m
e
n
c
o
d
e

g
s
m
d
e
c
o
d
e

m
p
e
g
2
e
n
c

m
p
e
g
2
d
e
c

ra
w
c
a
u
d
io

ra
w
d
a
u
d
io

1
6
4
.g
z
ip

1
7
5
.v
p
r

1
8
1
.m
c
f

2
5
6
.b
z
ip
2

3
0
0
.t
w
o
lf

1
7
1
.s
w
im

1
7
2
.m
g
ri
d

1
7
7
.m
e
s
a

1
8
8
.a
m
m
p

A
V
E
R
A
G
E

S
p
e
e
d
u
p

2-PE 4-PE

Kernels Mediabench SPECint2000 SPECfp2000 AVG

(b)

Figure 9: Comparison of 2-PE and 4-PE machines for (a) stall cycle reductions and (b) overall speedup.

affected by three major factors: the profiling input used, the size of
our sliding window, and the total number of memory operations ex-
ecuted by the program. For our experiments, we used a smaller in-
put to profile all the benchmarks. The sliding window size was kept
at 256 instructions, so every executed memory instruction would at
most look at the last 256 traced memory addresses. Our current sys-
tem is not optimized for speed and can be improved significantly.
Overall runtimes varied by benchmark; the worst case was approx-
imately doubling of the total compile time. These cases were gen-
erally benchmarks that had many dynamic memory operations. On
average, our technique increased compile time by 30.8%.

4.5 Discussion
Our results show that our partitioning technique for fine-grain

parallelism works quite well for 2-PEs and, in some cases, for 4-
PEs. Overall, results for 4-PEs did not scale well. The scalability of
our technique is directly proportional to the amount of inherent ILP
within the target program. The unified results for the 4-PE cases
showed that the upper-bound of these applications was constrained.

The vision of this work is that fine-grain parallelism is not to be
the only form of parallelism that would be exploited by the system.
We see coarse-grain methods as absolutely necessary to scale to
large numbers of cores. Our work is complementary; fine-grain
partitioning is applied to each coarse-grain thread to parallelize
along multiple axes.

5. RELATED WORK
The topic of compiler partitioning for distributed architectures

has been studied significantly in the past, especially in the con-
text of multicluster VLIW processors. The first cluster assignment
algorithm for multicluster processors was the Bottom-Up Greedy
(BUG) algorithm in the Bulldog compiler [10]. BUG greedily as-
signs operations to clusters in order to minimize a estimated sched-
ule length. Thus, it had a very narrow view of the code and often
fell into local minima. Özer et al. [22] developed a partitioning
algorithm that unified cluster assignment with scheduling to pro-
duce more efficient code. Many other operation partitioning tech-
niques [1, 3, 18] have been proposed, but all make the fundamen-
tal assumption of a shared data cache to reduce the complexity of
their algorithms. We view our profile-guided data access partition-
ing work as an additional prepass phase that can work in concert
with any of these algorithms to help produce better partitions in the
presence of distributed data caches.

Recently, there has been related work in the area of partitioning

data objects across distributed data memories. Sánchez [24] stud-
ied the fully distributed clustered VLIW architecture, where fetch,
execute and memory units were all decentralized. They focused
on modifying the modulo scheduler to be cognizant of memory lo-
cations. Their technique similarly uses a locality metric; however,
they focus on cache misses. In addition, their cache miss equations,
which determine the number of misses caused by memory instruc-
tions, work on affine arrays. Our technique is more global in nature,
as it determines both positive and negative affinities throughout the
entire program and can handle arbitrary code. Gibert et al. [15]
use small low latency buffers as localized storage and dynamically
fill them in order to improve performance. Other recent work by
Gibert et al. [14] partitions memory at a data object level into ei-
ther a fast-access, high-power cache or a slow-access, low-power
cache. Thus, objects that are accessed in critical portions of the
code are placed into the fast cache, while non-critical objects can
be partitioned into the slower cache. Their work is not directly
comparable to ours, as they target power reduction rather than per-
formance. Hunter [17] investigated placing objects into specialized
SRAM arrays, and focused on lowering the memory port require-
ments and access latencies. Chu et al. [8] studied the partitioning of
objects into scratchpad memories. Their work considers data and
an object level and partitions entire objects across the memories.
This allowed for simplification of the partitioning problem, as the
compiler could ignore the effects of coherence and sharing of data.
However, their technique was unable to consider working set sizes
and were forced to use the larger granularity of an object rather than
individual loads/stores.

In the multiprocessor domain, there has been previous work on
software mechanisms to reduce the required invalidation and up-
dates from coherence traffic. Cheong et al. [6] proposed a method
to selectively invalidate potentially stale cache lines, thus proac-
tively reducing the required invalidations. Chen et al. [5] developed
a compiler method to allow for writes to shared cache lines, which
would also reduce the required coherence traffic. These works fo-
cused mainly on individual accesses and reducing specific coher-
ence request instances, rather than the producing an overall parti-
tion of the program.

Overall, we see our work having several advantages and im-
provements over previous memory partitioning techniques. First,
rather than using a data object granularity for partitioning memory,
we use a much finer-grain memory operation granularity. Thus,
rather than partitioning an entire object to a cache, we can partition
individual load and store operations that may access different por-



tions of the data object to different caches. Second, we use statistics
gathered in a memory access profile to help guide the partitioner to
group and repel operations with one another. Third, we break the
assumption of static scratchpads and take the use of data caches
into consideration. Lastly, our technique works more on reducing
coherence traffic of the entire program, rather than identifying in-
dividual memory accesses or blocks.

6. CONCLUSION
In this work, we present a profile-guided technique for partition-

ing memory access operations across distributed data caches to ex-
ploit fine-grain parallelism. Our profile gathers statistics on mem-
ory operation affinities and working set estimates, and uses the in-
formation to create a program-level data access graph. This graph
is partitioned to simultaneously cut as few high affinity edges as
possible while balancing the working set per cache. The output is a
mapping of memory operations to processing elements. Our tech-
nique can work in conjunction with any standard operation parti-
tioner, and helps to enhance their ability to extract parallelism by
proactively accounting for the data memory subsystem. By first
making our decisions globally on the memory operations, we make
the placement of data the first-order term in the definition of a good
program partitioning. We see our technique for automated fine-
grain parallelization as a complementary method to current coarse-
grain techniques, and able to increase the performance of appli-
cations on multicore processors. Overall, our profile-guided tech-
nique was able to improve the average memory stall cycle time of a
standard operation partitioner by 51% and average speedup by 30%
for a 2-PE processor.

7. ACKNOWLEDGMENTS
We thank the anonymous referees for their comments and sug-

gestions. This research was supported by National Science Foun-
dation CAREER Award CCF-0347411, grant CCR-0325898, and
the WIMS Engineering Research Center.

8. REFERENCES

[1] ALETÀ, A., CODINA, J., SÁNCHEZ, J., AND GONZÁLEZ, A.
Graph-partitioning based instruction scheduling for clustered
processors. In Proc. of the 34th Annual International Symposium on
Microarchitecture (Dec. 2001), pp. 150–159.

[2] CAŞCAVAL, C., AND PADUA, D. Estimating cache misses and
locality using stack distances. In Proc. of the 2003 International
Conference on Supercomputing (June 2003), pp. 150–159.

[3] CAPITANIO, A., DUTT, N., AND NICOLAU, A. Partitioned register
files for VLIWs: A preliminary analysis of tradeoffs. In Proc. of the
25th Annual International Symposium on Microarchitecture (Dec.
1992), pp. 103–114.

[4] CEZE, L., MONTESINOS, P., VON PRAUN, C., AND TORRELLAS,
J. Colorama: Architectural support for data-centric synchronization.
In Proc. of the 13th International Symposium on High-Performance
Computer Architecture (Feb. 2007), pp. 133–134.

[5] CHEN, Y., AND VAIDENBAUM, A. A software coherence scheme
with the assistance of directories. In Proc. of the 1991 International
Conference on Supercomputing, pp. 284–294.

[6] CHEONG, H., AND VAIDENBAUM, A. A cache coherence scheme
with fast selective invalidation. In Proc. of the 15th Annual
International Symposium on Computer Architecture, pp. 299–307.

[7] CHU, M., FAN, K., AND MAHLKE, S. Region-based hierarchical
operation partitioning for multicluster processors. In Proc. of the
SIGPLAN ’03 Conference on Programming Language Design and
Implementation (June 2003), pp. 300–311.

[8] CHU, M., AND MAHLKE, S. Compiler-directed data partitioning for
multicluster processors. In Proc. of the 2006 International

Symposium on Code Generation and Optimization (Mar. 2006),
pp. 208–218.

[9] COLWELL, R., ET AL. Architecture and implementation of a VLIW
supercomputer. In Proc. of the 1990 International Conference on
Supercomputing (June 1990), pp. 910–919.

[10] ELLIS, J. Bulldog: A Compiler for VLIW Architectures. MIT Press,
Cambridge, MA, 1985.

[11] FARABOSCHI, P., DESOLI, G., AND FISHER, J. Clustered
instruction-level parallel processors. Tech. Rep. HPL-98-204,
Hewlett-Packard Laboratories, Dec. 1998.

[12] FARKAS, K., CHOW, P., JOUPPI, N., AND VRANESIC, Z. The
multicluster architecture: Reducing cycle time through partitioning.
In Proc. of the 30th Annual International Symposium on
Microarchitecture (Dec. 1997), pp. 149–159.

[13] FISHER, J. Very Long Instruction Word Architectures and the
ELI-52. In Proc. of the 10th Annual International Symposium on
Computer Architecture (1983), pp. 140–150.

[14] GIBERT, E., ABELLA, J., SÁNCHEZ, J., VERA, X., AND

GONZÁLEZ, A. Variable-based multi-module data caches for
clustered VLIW processors. In Proc. of the 14th International
Conference on Parallel Architectures and Compilation Techniques
(Sept. 2005), pp. 207–217.

[15] GIBERT, E., SÁNCHEZ, J., AND GONZÁLEZ, A. Flexible
compiler-managed L0 buffers for clustered VLIW processors. In
Proc. of the 36th Annual International Symposium on
Microarchitecture (Dec. 2003), pp. 315–325.

[16] HAMMOND, L., WONG, V., CHEN, M., CARLSTROM, B. D.,
DAVIS, J. D., HERTZBERG, B., PRABHU, M. K., WIJAYA, H.,
KOZYRAKIS, C., AND OLUKOTUN, K. Transactional memory
coherence and consistency. In Proc. of the 31st Annual International
Symposium on Computer Architecture (June 2004), p. 102.

[17] HUNTER, H. Matching On-Chip Data Storage To
Telecommunication and Media Application Properties. PhD thesis,
University of Illinois at Urbana-Champaign, 2004.

[18] KAILAS, K., EBCIOĞLU, K., AND AGRAWALA, A. CARS: A new
code generation framework for clustered ILP processors. In Proc. of
the 7th International Symposium on High-Performance Computer
Architecture (Feb. 2001), pp. 133–142.

[19] KARYPIS, G., AND KUMAR, V. Metis: A Software Package for
Paritioning Unstructured Graphs, Partitioning Meshes and
Computing Fill-Reducing Orderings of Sparce Matrices. University
of Minnesota, Sept. 1998.

[20] LEE, C., POTKONJAK, M., AND MANGIONE-SMITH, W.
MediaBench: A tool for evaluating and synthesizing multimedia and
communications systems. In Proc. of the 30th Annual International
Symposium on Microarchitecture (1997), pp. 330–335.

[21] MATSSON, R. L., GECSEI, J., SLUTZ, D., AND TRAIGER, I.
Evaluation techniques for storage hierarchies. IBM Systems Journal
9, 2 (1970), 78–117.

[22] ÖZER, E., BANERJIA, S., AND CONTE, T. Unified assign and
schedule: A new approach to scheduling for clustered register file
microarchitectures. In Proc. of the 31st Annual International
Symposium on Microarchitecture (Dec. 1998), pp. 308–315.

[23] RANGAN, R., VACHHARAJANI, N., VACHHARAJANI, M., AND

AUGUST, D. I. Decoupled software pipelining with the
synchronization array. In Proc. of the 13th International Conference
on Parallel Architectures and Compilation Techniques (2004),
pp. 177–188.

[24] SÁNCHEZ, J., AND GONZÁLEZ, A. Modulo scheduling for a
fully-distributed clustered VLIW architecture. In Proc. of the 33rd
Annual International Symposium on Microarchitecture (Dec. 2000),
pp. 124–133.

[25] TAYLOR, M., LEE, W., AMARASINGHE, S., AND AGARWAL, A.
Scalar operand networks: On-chip interconnect for ILP in partitioned
architectures. In Proc. of the 9th International Symposium on
High-Performance Computer Architecture (Feb. 2003), pp. 341–353.

[26] TAYLOR, M. B., ET AL. The Raw microprocessor: A computational
fabric for software circuits and general purpose programs. IEEE
Micro 22, 2 (2002), 25–35.

[27] TRIMARAN. An infrastructure for research in ILP, 2000.
http://www.trimaran.org/.


