Code and Data Partitioning for Fine-grain Parallelism

Michael L. Chu and Scott A. Mahlke

Advanced Computer Architecture Laboratory
University of Michigan, Ann Arbor, MI

{mchu, mahlke}@umich.edu

Categories and Subject Descriptors C.1.4 [Processor Architec- evicting data and increasing cache misses, or an increaseche
tures]: [Distributed Architectures]; B.3.2Nlemory Structures): coherency traffic between the cores, all of which would lead t
[Cache Memories]; D.3.4rogramming Languages]: [Code gen- lower performance. The fine-grain nature of these decisioake
eration, Optimization] it difficult for the programmer to specify at the high levelapro-

. . . gramming model. However, the compiler is able to take achgat
General Terms Algorithms, Experimentation, Performance of analyses of the dataflow and memory access behavior to make

better decisions to how to distribute the application.

Extracting fine-grain parallelism is a difficult task, but e
industry moves to faster, tighter interconnection netwdsktween
the cores, many similarities can be drawn with multiclupi@ces-

Keywords Code and data partitioning, Fine-grain parallelism,
Multicore compilation

1. Introduction sors in the embedded domain. In embedded processors, |zmtra
The recent shift to multicore designs for mainstream preces register files and datapaths became the cost, energy andiizia
offers the potential to improve the performance of curreupla tlenecks in wide-issue designs [4]. Multicluster processelped
cations. However, converting this potential into realitya great alleviate the scalability problem by decentralizing rases into
challenge. The programmer and/or compiler must paraieljzpli- smaller designs and grouping them together into individurak
cations to take advantage of multiple cores. Recently, mifgignt cessing elements (PEs) [2, 5]. These processors addreissiige
amount of work has focused on areas such as new programmingof fine-grain parallelism by relying on the compiler to ptici op-
models and ways to exploit data-level parallelism. Thesthots erations across the program. A significant amount of pres/igork
for coarse-grain parallelization can be extremely poweirfex- has focused on developing methods to partition the codessacro
tracting large amounts of parallel work and distributingrthacross multiple clusters. The main difference between multicusind the
the cores. However, there are still a significant number noglsk multicore processors of today are that multicluster geheteave
threaded applications and programs that simply do not éxttie a shared data cache, while multicore processor have cdhdisen
inherent parallelism for programmers to widely spreadrtbrécu- tributed data caches per core. This adds another level ablextity
tion across multiple cores. for the compiler to be cognizant of data values and how they ar
This paper focuses on an alternative compiler-directechotet ~ brought into each individual cache.
for program parallelization by exploiting fine-grain insttion- The distributed data caches requires the compiler to déyefu
level parallelism (ILP). Current research in interconi@ttnet- examine the data access patterns of each individual menpery o

works have focused on multiple ways to increase the speed andation. Analysis of the memory accesses of each operatioheian
bandwidth of communication between cores [6, 7]. Fastemsom o determine when individual data accesses are causingsdthe-
nication of data values between the cores can then allowder a ther hit or miss in the cache. In addition, the compiler caimeste

plications to take advantage of parallelization at the atien and the contribution each memory operation has to the overalking
data granularity between the cores. While coarse-graimigoes set. Placing too many operations in a single cache couldhpaby
can parallelize large portions of execution, our fine-gnaiethod increase the number of cache misses. Thus, given profileniigio
can use an additional dimension to further increase pedooa tion about affinities between operations and working sefssithe
and exploit the multiple underlying cores. compiler can proactively combine or split operations astbe dis-
The challenge for exploiting fine-grain parallelism is: gjivan tributed data caches in order to improve performance.

application, identify the operations that should executeeach The underlying vision of this work is to compile to chip-
core. This decision must take into account the communicatier- multiprocessors, such as RAW, that can both exploit TLP &fd |
head of transferring register values between the cores thasve This work focuses on the fine-grain ILP side, where the agchitre
layout of data values in the individual caches of each cooerP can be viewed as a multicluster VLIW with distributed/cadver
decisions could lead to communication across the interection L1 caches. The main problem to be solved is creating an intell
network delaying the execution of other operations, cacmdlicts gent partitioning of both the data in the application as wslithe

computation operations being executed. We feel a jointtieolus
needed to result in an efficient partitioning of the code. Siue
propose a phase-ordered approach to first partition the tata
the computation in the code.

2. Compilation Challenges

Copyright is held by the author/owner(s). Compiling for an architecture with distributed data caclvas
LCTES'07 June 13-16, 2007, San Diego, California, USA. be a challenging task. Figure 1 is an example pseudocode that
ACM 978-1-59593-632-5/07/0006. illustrates some of the difficulties that can arise when thamiler

PE1 PE2 PE1

PE2 #1 #2

#2

x[100]; PE1 PE 2 PE1 PE2 PE1 PE2 PE 1 PE 2
y[100]1;
Q @ @ @ @ @ L1 L2 L1 L3 L1 : L1 L3
for (int i = 0; 1 < 99; i++) * L3 L2 * ! L2
{ v
Lt o i @ = (i1 (%) (+) (%) (+) A S W
L2 ammpp int b = x[i+2]; ‘/ ., L ,
L3 emp int c = y[i];
a=a*ij; o o + ‘/ /+ ‘/
b =Db+c; s1 + M +
S1 ammpp x[i] = a + b; s1 s1
) Q () ¥
Operation Assignment #1 Operation Assignment #2 :1

(a) (b)

(c) (d) (e)

Figure 1. An illustrative example of the difficulties compiling for stributed data caches (a) a code example (b) a partitionfirtgeo
operations assuming a shared memory (c) a partitioningeadpierations cognizant of the data access pattern (d)zéeladchedules assuming
a shared memory and (e) schedules factoring in distribuaéal chches.

is partitioning the operations. In Figure 1(a), the C codeaftoop
is shown which accesses two different arrays. Within theybafd
the loop, there are three loads, two of which are to asragnd
one to arrayy. In addition, there is a store to arrayat the end
of the loop. Each memory operation is annotated with a ladal,
dataflow graphs for this code are shown in Figure 1(b) and (c).

Traditional operation partitioners [3] assign operatitmglus-
ters assuming a shared cache for the data and have a locadighgr
scope for the computation. This results in poor managenfehieo
distributed caches and often produces unbalanced paitigis of
the computation. A normal operation partitioner may try gmd-
duce the assignment of operations shown in Figure 1(b). Gdms
be a good partition because it only requires one transfeegf r
ister values across the communication network, and basatiee
required work for each PE well.

However, given a distributed data cache design, the deBiked
assignment can change drastically. Looking again at Fig(og,
in each iteration in PE 1, load L1 will bring a line into the bac
that is also written to by store S1. Load L2 is also readingnfro
the same cache line, but in PE 2. When store S1 is executdk its
will upgrade the line in PE 1's cache to the ownership state, a
invalidate the cache line in PE 2. In the next iteration, [b@dwill
again be executed on PE 2, causing another miss in its caohe, s
it had been invalidated. In fact in this next iteration, thestaused
by load L2 will be a case of false sharing of the cache line dtikd

| Parameter [[Configuration |
Number OF PEs 2,4
Function Units 11,F,M,B per PE
PE Comm. B/W 1 total move per cycle
L1 Cache 2-way associative
L1 Block Size 32 bytes
L1 Cache Size 4kB per PE
L1/L2/Main Memory Hit Latency 1/10/100 cycles
Coherence Protocol MOESI

Table 1. Details of our simulated machine configurations

at the expense of computation parallelism across the PEstotal
execution of the program is the sum of compute cycles anbcstal
cles, and the compiler must decide which is more beneficidahis
example, it was better to sacrifice computation in order thuce
stall cycles in each iteration of the loop.

3. Experiments

Our method is a phase-ordered approach to partition menmaty a
computation. The partition of the data accesses is perfbiing,
regardless of the underlying computation performed. The da-
cess partition is then used the drive the partitioning ofrdmaain-
der of the code. Our approach first profiles the program tordete
mine statistics about each memory operation, such as itstgffi

then have to use the coherence network to get the modifiea&cach towards other operations and an estimated working set §lzis.

line from PE 1. A better partitioning of this code cognizahttte
distributed data caches is shown in Figure 1(c), where lbadsd
L2, and store S1 are grouped together on a single PE.

information is used to create a program-level graph of thenorg
accesses. The graph is then heuristically partitionedsigasnem-
ory operations to PEs. Finally, a detailed partitioning ale code

The schedules for these two assignments are presented-in Fig block is performed which respects the preplacement looatiuf

ure 1(d) and (e). In Figure 1(d), we show the idealized scleedu
with a shared cache. In this case the schedule length ofressig
#2 is longer because of the extra required register trargfera-
tions, indicated by the arrows crossing the PE boundarigss,T
assignment #1 has a shorter per iteration static schedate ak-
signment #2. However, in Figure 1(e), which considers cafhe
fects, load L2 will miss in its cache during each iteratior doe
stalled (indicated by the dotted line), waiting to trangfez mod-
ified cache line from PE 1. In addition, each iteration wilvba
stall for store S1 waiting to upgrade its cache line to modifyhe
schedule for assignment #2 shows none of these coherenes,iss
and would only stall for cold misses that would affect anytitian
assignment.

This example illustrates one of the main difficulties in fiao-
ing memory operations for distributed data caches. Theaeare-
ful balance between improving cache usage to reduce stadlaind
the benefits of parallelization. Grouping together all menaper-

the memory operations. This phase uses a region-scopettiafigo
the Region-based Hierarchical Operation Partitionenjhjch par-
titions the operations using schedule estimates to determsolu-
tion efficiently.

Our profile-guided data access partitioning technique was
plemented as part of the Trimaran compiler infrastructarestar-
getable compiler for VLIW/EPIC processors. The machine ehod
used was a multicluster VLIW with 2 or 4 PEs and 1 integer, float
memory and branch unit per PE. Each PE includes a distriliuted
data cache of varying sizes between 512B and 8kB. We assumed a
shared 128kB 4-way associative L2 data cache and cohereasy w
kept between the L1 caches with a MOESI coherence protobel. T
intercluster communication network between PEs, whiclsexito
transfer register values, allows for a total of 1 move peleydth
a 1-cycle latency. More details of our simulated machinepace
vided in Table 1.

We ran our experiments on a set of DSP kernels, Mediabench

ations that access the same addresses onto the same PE ¢an be and SPECint benchmarks to test programs with a broad range of

attractive option, as it can reduce misses. However, it tsmeme

inherent parallelism. For each benchmark, we evaluatecpéne

Kernels

Mediabench

% Reduction in Stall Cycles
g

5
g
4
B

IN
5 9 &

Figure 2. Reduction in stall cycles when using a profile-guided
data access partitioning for a 2-PE processor

formance of a randomly partitioned data with our profiledegal
method which prepartitions the memory accesses. Thus, ase b
case is a partition generation with none of our memory op@rat
improvements, but simulated on a machine with distributedata
caches. In generating our PE assignment for memory opesatio
our data access partitioning technique profiled each agtjic us-

ing a sliding window size of 256 instructions and assumed-a 32

byte line size. Each benchmark was profiled and evaluatedfon d
ferent input sets. The profile used a smaller input set torgea¢he
memory operation to PE bindings.

Figure 2 shows the improvement in stall cycles for our prefile
guided data access partitioning technique compared tcettigipn
produced with no active data partitioning. Higher bars d¢ati a
larger reduction in stall cycles. In almost all cases, oghtgéque
significantly reduced the number of stall cycles, as muct0és &
gsmdecode andlinescreen. This can be attributed to a better group-
ing of high affinity memory operations decreasing the cohege
traffic and better localizing data usage in a single PE. Mesth-
marks saw increasing benefits as cache size increased, @ea la
cache size allowed for our grouping of memory operationstiogy
to be more effective at keeping cache lines valid.

While the number of cycles due to stall is improved, totaf@er
mance is affected by the sum of both stall and compute cy€tes.
evaluate the total performance, we measured the amountetisp

W Random [JData Partitioned [Unified

1| Mediabench SPEC AVG

Kernels

0.8

s ow

de

8

fsed
sobel
channel

o
g §
8

Iyapunov
300.twoll
AVERAGI

gsmdec

2
N
c)

£

Figure 3. Speedup when using code and data partitioning across a

2-PE processor

tried to force parallelism on an application were there vitle to
be found.

4, Conclusion

The recent design shift towards multicore processors hawrsgd
a significant amount of research in the area of program (edizz}
tion. Performance gains in the future will require prograenrand
compiler intervention to increase the amount of paralletknmos-
sible. The future abundance of cores on a single chip offersym
possibilities in ways to exploit the underlying paralletoairces. In
this work, we focused on a new angle for increasing the availa
parallelism for future multicore processors: a compileht@que to
detect and exploit fine-grain parallelism. This fine-graohnique
partitions code at the granularity of individual operasand data
across multiple cores and caches to further increase peafuce.
We found that many applications can be readily partitiorechtl-
tiple cores at a fine-grain level, achieving an average speefi1.3
on a 2-PE machine, and stall cycle reductions of 46%. Scdidg
PE machines, we found that our average speedup increagbthsli
to 1.4 with stall cycle reductions of 50%, due to lack of erfoug
inherent parallelism.

References

achieved when moving from a single PE processor to a 2-PE pro- [1] CHU, M., Fan, K., AND MAHLKE, S. Region-based hierarchical

cessor. In this 2-PE processor, we have double the resouraes
must be carefully partition the operations and the datasactioe

distributed caches and FUs. Thus, to achieve maximum speedu

the fine-grain parallelism must be exploited cognizant ef¢dache
effects and the interconnection network.

operation partitioning for multicluster processors. Rroc. of the
S GPLAN ’03 Conference on Programming Language Design and
Implementation (June 2003), pp. 300-311.

[2] COLWELL, R.,ET AL. Architecture and implementation of a VLIW
supercomputer. IfProc. of the 1990 International Conference on
Supercomputing (June 1990), pp. 910-919.

Figure 3 shows the speedup for our technique. The baseline is
the performance of a single-PE processor. For each benghmar [3] ELLis, J. Bulldog: A Compiler for VLIW Architectures. MIT Press,
three bars are shown. The first bar shows the performance of a Cambridge, MA, 1985.

randomly generated data access partition. The second libe is
speedup achieved by our technique. The third bar is the speafd
a single-PE machine with double the resources. Thus, thskar

[4] FARABOSCHI, P., DEsoLl, G.,AND FISHER, J. Clustered instruction-
level parallel processors. Tech. Rep. HPL-98-204, HeviRatikard
Laboratories, Dec. 1998.

gives us an indication of the upper bound on performance. [5] FISHER, J. Very Long Instruction Word Architectures and the ELI-52
We found that a unified, double resource machine was able to In Proc. of the 10th Annual International Symposium on Computer
achieve an average speedup of 1.48. Our technique was able to Architecture (1983), pp. 140-150.
extract an average speedup of approximately 1.32. In mes8sca 5] RanGAN, R., VACHHARAJANI, N., VACHHARAJANI, M., AND AU-
the randomly partitioned data shows a worse performancettte GuUsT, D. I. Decoupled software pipelining with the synchroniaat
single-PE baseline. This shows that a careful placemeiiecfiata array. InProc. of the 13th International Conference on Parallel Archi-
accesses is vital to producing a good fine-grain partitiorthef tectures and Compilation Techniques (2004), pp. 177-188.
code. In one casé&81.mcf, our partitioner produced a result slightly [7] TAYLOR, M., LEE, W., AMARASINGHE, S., AND AGARWAL, A.
slower than a single-PE machine. This result came becaese th ~ * scalar operand networks: On-chip interconnect for ILP irtifianed
benchmark itself had very little parallelism, as indicalgcthe low architectures. IProc. of the 9th International Symposium on High-
speedup on the double-resource machine. In effect, ounitgoh Performance Computer Architecture (Feb. 2003), pp. 341-353.

