
Code and Data Partitioning for Fine-grain Parallelism

Michael L. Chu and Scott A. Mahlke
Advanced Computer Architecture Laboratory

University of Michigan, Ann Arbor, MI
{mchu, mahlke}@umich.edu

Categories and Subject Descriptors C.1.4 [Processor Architec-
tures]: [Distributed Architectures]; B.3.2 [Memory Structures]:
[Cache Memories]; D.3.4 [Programming Languages]: [Code gen-
eration, Optimization]

General Terms Algorithms, Experimentation, Performance

Keywords Code and data partitioning, Fine-grain parallelism,
Multicore compilation

1. Introduction
The recent shift to multicore designs for mainstream processors
offers the potential to improve the performance of current appli-
cations. However, converting this potential into reality is a great
challenge. The programmer and/or compiler must parallelize appli-
cations to take advantage of multiple cores. Recently, a significant
amount of work has focused on areas such as new programming
models and ways to exploit data-level parallelism. These methods
for coarse-grain parallelization can be extremely powerful in ex-
tracting large amounts of parallel work and distributing them across
the cores. However, there are still a significant number of single-
threaded applications and programs that simply do not exhibit the
inherent parallelism for programmers to widely spread their execu-
tion across multiple cores.

This paper focuses on an alternative compiler-directed method
for program parallelization by exploiting fine-grain instruction-
level parallelism (ILP). Current research in interconnection net-
works have focused on multiple ways to increase the speed and
bandwidth of communication between cores [6, 7]. Faster commu-
nication of data values between the cores can then allow for ap-
plications to take advantage of parallelization at the operation and
data granularity between the cores. While coarse-grain techniques
can parallelize large portions of execution, our fine-grainmethod
can use an additional dimension to further increase performance
and exploit the multiple underlying cores.

The challenge for exploiting fine-grain parallelism is: given an
application, identify the operations that should execute on each
core. This decision must take into account the communication over-
head of transferring register values between the cores as well as the
layout of data values in the individual caches of each core. Poor
decisions could lead to communication across the interconnection
network delaying the execution of other operations, cache conflicts

Copyright is held by the author/owner(s).

LCTES’07 June 13–16, 2007, San Diego, California, USA.
ACM 978-1-59593-632-5/07/0006.

evicting data and increasing cache misses, or an increase incache
coherency traffic between the cores, all of which would lead to
lower performance. The fine-grain nature of these decisionsmake
it difficult for the programmer to specify at the high level ofa pro-
gramming model. However, the compiler is able to take advantage
of analyses of the dataflow and memory access behavior to make
better decisions to how to distribute the application.

Extracting fine-grain parallelism is a difficult task, but asthe
industry moves to faster, tighter interconnection networks between
the cores, many similarities can be drawn with multiclusterproces-
sors in the embedded domain. In embedded processors, centralized
register files and datapaths became the cost, energy and delay bot-
tlenecks in wide-issue designs [4]. Multicluster processors helped
alleviate the scalability problem by decentralizing resources into
smaller designs and grouping them together into individualpro-
cessing elements (PEs) [2, 5]. These processors address theissue
of fine-grain parallelism by relying on the compiler to partition op-
erations across the program. A significant amount of previous work
has focused on developing methods to partition the code across
multiple clusters. The main difference between multicluster and the
multicore processors of today are that multicluster generally have
a shared data cache, while multicore processor have coherent dis-
tributed data caches per core. This adds another level of complexity
for the compiler to be cognizant of data values and how they are
brought into each individual cache.

The distributed data caches requires the compiler to carefully
examine the data access patterns of each individual memory oper-
ation. Analysis of the memory accesses of each operation canhelp
to determine when individual data accesses are causing others to ei-
ther hit or miss in the cache. In addition, the compiler can estimate
the contribution each memory operation has to the overall working
set. Placing too many operations in a single cache could potentially
increase the number of cache misses. Thus, given profile informa-
tion about affinities between operations and working set sizes, the
compiler can proactively combine or split operations across the dis-
tributed data caches in order to improve performance.

The underlying vision of this work is to compile to chip-
multiprocessors, such as RAW, that can both exploit TLP and ILP.
This work focuses on the fine-grain ILP side, where the architecture
can be viewed as a multicluster VLIW with distributed/coherent
L1 caches. The main problem to be solved is creating an intelli-
gent partitioning of both the data in the application as wellas the
computation operations being executed. We feel a joint solution is
needed to result in an efficient partitioning of the code. Thus we
propose a phase-ordered approach to first partition the data, then
the computation in the code.

2. Compilation Challenges
Compiling for an architecture with distributed data cachescan
be a challenging task. Figure 1 is an example pseudocode that
illustrates some of the difficulties that can arise when the compiler



Figure 1. An illustrative example of the difficulties compiling for distributed data caches (a) a code example (b) a partitioning of the
operations assuming a shared memory (c) a partitioning of the operations cognizant of the data access pattern (d) idealized schedules assuming
a shared memory and (e) schedules factoring in distributed data caches.

is partitioning the operations. In Figure 1(a), the C code for a loop
is shown which accesses two different arrays. Within the body of
the loop, there are three loads, two of which are to arrayx and
one to arrayy. In addition, there is a store to arrayx at the end
of the loop. Each memory operation is annotated with a label,and
dataflow graphs for this code are shown in Figure 1(b) and (c).

Traditional operation partitioners [3] assign operationsto clus-
ters assuming a shared cache for the data and have a locally greedy
scope for the computation. This results in poor management of the
distributed caches and often produces unbalanced partitionings of
the computation. A normal operation partitioner may try andpro-
duce the assignment of operations shown in Figure 1(b). Thiscan
be a good partition because it only requires one transfer of reg-
ister values across the communication network, and balances the
required work for each PE well.

However, given a distributed data cache design, the desiredPE
assignment can change drastically. Looking again at Figure1(b),
in each iteration in PE 1, load L1 will bring a line into the cache
that is also written to by store S1. Load L2 is also reading from
the same cache line, but in PE 2. When store S1 is executed, itsPE
will upgrade the line in PE 1’s cache to the ownership state, and
invalidate the cache line in PE 2. In the next iteration, loadL2 will
again be executed on PE 2, causing another miss in its cache, since
it had been invalidated. In fact in this next iteration, the miss caused
by load L2 will be a case of false sharing of the cache line. It would
then have to use the coherence network to get the modified cache
line from PE 1. A better partitioning of this code cognizant of the
distributed data caches is shown in Figure 1(c), where loadsL1 and
L2, and store S1 are grouped together on a single PE.

The schedules for these two assignments are presented in Fig-
ure 1(d) and (e). In Figure 1(d), we show the idealized schedule
with a shared cache. In this case the schedule length of assignment
#2 is longer because of the extra required register transferopera-
tions, indicated by the arrows crossing the PE boundaries. Thus,
assignment #1 has a shorter per iteration static schedule than as-
signment #2. However, in Figure 1(e), which considers cacheef-
fects, load L2 will miss in its cache during each iteration and be
stalled (indicated by the dotted line), waiting to transferthe mod-
ified cache line from PE 1. In addition, each iteration will have a
stall for store S1 waiting to upgrade its cache line to modifyit. The
schedule for assignment #2 shows none of these coherence issues,
and would only stall for cold misses that would affect any partition
assignment.

This example illustrates one of the main difficulties in partition-
ing memory operations for distributed data caches. There isa care-
ful balance between improving cache usage to reduce stall time and
the benefits of parallelization. Grouping together all memory oper-
ations that access the same addresses onto the same PE can be an
attractive option, as it can reduce misses. However, it can also come

Parameter Configuration
Number OF PEs 2, 4
Function Units 1 I,F,M,B per PE
PE Comm. B/W 1 total move per cycle
L1 Cache 2-way associative
L1 Block Size 32 bytes
L1 Cache Size 4kB per PE
L1/L2/Main Memory Hit Latency 1/10/100 cycles
Coherence Protocol MOESI

Table 1. Details of our simulated machine configurations

at the expense of computation parallelism across the PEs. The total
execution of the program is the sum of compute cycles and stall cy-
cles, and the compiler must decide which is more beneficial. In this
example, it was better to sacrifice computation in order to reduce
stall cycles in each iteration of the loop.

3. Experiments
Our method is a phase-ordered approach to partition memory and
computation. The partition of the data accesses is performed first,
regardless of the underlying computation performed. The data ac-
cess partition is then used the drive the partitioning of theremain-
der of the code. Our approach first profiles the program to deter-
mine statistics about each memory operation, such as its affinity
towards other operations and an estimated working set size.This
information is used to create a program-level graph of the memory
accesses. The graph is then heuristically partitioned to assign mem-
ory operations to PEs. Finally, a detailed partitioning of each code
block is performed which respects the preplacement locations of
the memory operations. This phase uses a region-scoped algorithm,
the Region-based Hierarchical Operation Partitioner [1],which par-
titions the operations using schedule estimates to determine a solu-
tion efficiently.

Our profile-guided data access partitioning technique was im-
plemented as part of the Trimaran compiler infrastructure,a retar-
getable compiler for VLIW/EPIC processors. The machine model
used was a multicluster VLIW with 2 or 4 PEs and 1 integer, float,
memory and branch unit per PE. Each PE includes a distributedL1
data cache of varying sizes between 512B and 8kB. We assumed a
shared 128kB 4-way associative L2 data cache and coherency was
kept between the L1 caches with a MOESI coherence protocol. The
intercluster communication network between PEs, which is used to
transfer register values, allows for a total of 1 move per cycle with
a 1-cycle latency. More details of our simulated machine arepro-
vided in Table 1.

We ran our experiments on a set of DSP kernels, Mediabench
and SPECint benchmarks to test programs with a broad range of
inherent parallelism. For each benchmark, we evaluated theper-



Kernels Mediabench SPEC AVG

0

10

20

30

40

50

60

70

80

90

100

ly
a
p
u
n
o
v

fs
e
d

s
o
b
e
l

c
h
a
n
n
e
l

v
it
o
n
e
lo

o
p

li
n
e
s
c
re

e
n

c
jp

e
g

d
jp

e
g

e
p
ic

u
n
e
p
ic

g
7
2
1
e
n
c
o
d
e

g
7
2
1
d
e
c
o
d
e

g
s
m

e
n
c
o
d
e

g
s
m

d
e
c
o
d
e

m
p
e
g
2
e
n
c

m
p
e
g
2
d
e
c

ra
w

c
a
u
d
io

ra
w

d
a
u
d
io

1
6
4
.g

z
ip

1
8
1
.m

c
f

3
0
0
.t

w
o
lf

A
v
e
ra

g
e

%
 R

e
d

u
c
ti

o
n

 i
n

 S
ta

ll
 C

y
c
le

s

Figure 2. Reduction in stall cycles when using a profile-guided
data access partitioning for a 2-PE processor

formance of a randomly partitioned data with our profiled-guided
method which prepartitions the memory accesses. Thus, our base
case is a partition generation with none of our memory operation
improvements, but simulated on a machine with distributed L1 data
caches. In generating our PE assignment for memory operations,
our data access partitioning technique profiled each application us-
ing a sliding window size of 256 instructions and assumed a 32-
byte line size. Each benchmark was profiled and evaluated on dif-
ferent input sets. The profile used a smaller input set to generate the
memory operation to PE bindings.

Figure 2 shows the improvement in stall cycles for our profile-
guided data access partitioning technique compared to the partition
produced with no active data partitioning. Higher bars indicate a
larger reduction in stall cycles. In almost all cases, our technique
significantly reduced the number of stall cycles, as much as 90% in
gsmdecode andlinescreen. This can be attributed to a better group-
ing of high affinity memory operations decreasing the coherence
traffic and better localizing data usage in a single PE. Most bench-
marks saw increasing benefits as cache size increased, as a larger
cache size allowed for our grouping of memory operations together
to be more effective at keeping cache lines valid.

While the number of cycles due to stall is improved, total perfor-
mance is affected by the sum of both stall and compute cycles.To
evaluate the total performance, we measured the amount of speedup
achieved when moving from a single PE processor to a 2-PE pro-
cessor. In this 2-PE processor, we have double the resources, but
must be carefully partition the operations and the data across the
distributed caches and FUs. Thus, to achieve maximum speedup,
the fine-grain parallelism must be exploited cognizant of the cache
effects and the interconnection network.

Figure 3 shows the speedup for our technique. The baseline is
the performance of a single-PE processor. For each benchmark,
three bars are shown. The first bar shows the performance of a
randomly generated data access partition. The second bar isthe
speedup achieved by our technique. The third bar is the speedup of
a single-PE machine with double the resources. Thus, this third bar
gives us an indication of the upper bound on performance.

We found that a unified, double resource machine was able to
achieve an average speedup of 1.48. Our technique was able to
extract an average speedup of approximately 1.32. In many cases,
the randomly partitioned data shows a worse performance than the
single-PE baseline. This shows that a careful placement of the data
accesses is vital to producing a good fine-grain partition ofthe
code. In one case,181.mcf, our partitioner produced a result slightly
slower than a single-PE machine. This result came because the
benchmark itself had very little parallelism, as indicatedby the low
speedup on the double-resource machine. In effect, our technique

0.8

1

1.2

1.4

1.6

1.8

2

ly
a
p
u
n
o
v

fs
e
d

s
o
b
e
l

c
h
a
n
n
e
l

v
it
o
n
e
lo

o
p

li
n
e
s
c
re

e
n

c
jp

e
g

d
jp

e
g

e
p
ic

u
n
e
p
ic

g
7
2
1
e
n
c
o
d
e

g
7
2
1
d
e
c
o
d
e

g
s
m

e
n
c
o
d
e

g
s
m

d
e
c
o
d
e

m
p
e
g
2
e
n
c

m
p
e
g
2
d
e
c

ra
w

c
a
u
d
io

ra
w

d
a
u
d
io

1
6
4
.g

z
ip

1
8
1
.m

c
f

3
0
0
.t

w
o
lf

A
V
E
R
A
G

E

S
p

e
e
d

u
p

Random Data Partitioned Unified

Kernels Mediabench SPEC AVG

Figure 3. Speedup when using code and data partitioning across a
2-PE processor

tried to force parallelism on an application were there was little to
be found.

4. Conclusion
The recent design shift towards multicore processors has spawned
a significant amount of research in the area of program paralleliza-
tion. Performance gains in the future will require programmer and
compiler intervention to increase the amount of parallel work pos-
sible. The future abundance of cores on a single chip offers many
possibilities in ways to exploit the underlying parallel resources. In
this work, we focused on a new angle for increasing the available
parallelism for future multicore processors: a compiler technique to
detect and exploit fine-grain parallelism. This fine-grain technique
partitions code at the granularity of individual operations and data
across multiple cores and caches to further increase performance.
We found that many applications can be readily partitioned to mul-
tiple cores at a fine-grain level, achieving an average speedup of 1.3
on a 2-PE machine, and stall cycle reductions of 46%. Scalingto 4-
PE machines, we found that our average speedup increased slightly
to 1.4 with stall cycle reductions of 50%, due to lack of enough
inherent parallelism.

References
[1] CHU, M., FAN , K., AND MAHLKE , S. Region-based hierarchical

operation partitioning for multicluster processors. InProc. of the
SIGPLAN ’03 Conference on Programming Language Design and
Implementation (June 2003), pp. 300–311.

[2] COLWELL , R., ET AL . Architecture and implementation of a VLIW
supercomputer. InProc. of the 1990 International Conference on
Supercomputing (June 1990), pp. 910–919.

[3] ELLIS , J. Bulldog: A Compiler for VLIW Architectures. MIT Press,
Cambridge, MA, 1985.

[4] FARABOSCHI, P., DESOLI, G.,AND FISHER, J. Clustered instruction-
level parallel processors. Tech. Rep. HPL-98-204, Hewlett-Packard
Laboratories, Dec. 1998.

[5] FISHER, J. Very Long Instruction Word Architectures and the ELI-52.
In Proc. of the 10th Annual International Symposium on Computer
Architecture (1983), pp. 140–150.

[6] RANGAN , R., VACHHARAJANI , N., VACHHARAJANI, M., AND AU-
GUST, D. I. Decoupled software pipelining with the synchronization
array. InProc. of the 13th International Conference on Parallel Archi-
tectures and Compilation Techniques (2004), pp. 177–188.

[7] TAYLOR , M., LEE, W., AMARASINGHE, S., AND AGARWAL , A.
Scalar operand networks: On-chip interconnect for ILP in partitioned
architectures. InProc. of the 9th International Symposium on High-
Performance Computer Architecture (Feb. 2003), pp. 341–353.


