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ABSTRACT
Multicluster architectures overcome the scaling problem of cen-
tralized resources by distributing the datapath, register file, and
memory subsystem across multiple clusters connected by a com-
munication network. Traditional compiler partitioning algor-
ithms focus solely on distributing operations across the clusters
to maximize instruction-level parallelism. The distribution of
data objects is generally ignored. In this work, we examine ex-
plicit partitioning of data objects and its affects on operation
partitioning. The partitioning of data objects must consider sev-
eral factors: object size, access frequency/pattern, and depen-
dence patterns between operations that manipulate the objects.
This work proposes a compiler-directed approach to synergisti-
cally partition both data objects and computation across multi-
ple clusters. First, a global view of the application determines
the interaction between data memory objects and their associ-
ated computation. Next, data objects are partitioned across mul-
tiple clusters with knowledge of the associated computation re-
quired by the application. Finally, the resulting distribution of
the data objects is relayed to a region-level computation parti-
tioner, which carefully places computation operations in a per-
formance-centric manner.

1. INTRODUCTION
A major difficulty with the design of future embedded micro-

processor systems is that traditional designs do not scale effec-
tively or efficiently due to two interrelated problems: centralized
resources and wire delay. Centralized resources, including regis-
ter files and instruction/data caches, become the cost, energy and
delay bottlenecks in a processor as it is scaled to support more
computation bandwidth [6, 7]. The second problem is that as
feature sizes decrease, wire delays grow relative to gate delays.
This has a serious impact on processor designs, as broadcasting
control and data signals each cycle takes more time and energy.
Wire delays are further exacerbated when a processor system is
scaled, as the distance between function units, register files and
caches increases, thereby forcing the signals to travel further.

To support scalable design, clustered and tiled architectures
have emerged as a preferred architecture style for exploiting in-
struction level parallelism. A clustered design breaks down the
centralized register file into several smaller register files [8, 4].
Each of the smaller register files is geographically distributed
and supplies operands to a subset of the function units. The clus-
tered design methodology was embodied by the original Multi-
flow Trace 300 and is commonly used today in embedded pro-
cessors, such as the TI C6x, Lx/ST200, and the Philips TM1300.
MultiVLIW expanded this work by focusing on alternative ar-

chitecture strategies for designing scalable distributed data mem-
ory subsystems [19].

A natural extension to the clustered architecture is the tiled
architecture, where each cluster is an entire processor, such as
RAW [20]. The interconnect is limited to one or two dimen-
sional nearest-neighbor arrays to reduce wire length. Common
to both clustered and tiled architectures is inherent scalability.
By distributing resources, designs can be effectively scaled by
instantiating new clusters, and interconnecting them into a regu-
lar fabric.

One of the most difficult challenges with clustered architec-
tures is compiler code generation technology. It is the compiler’s
responsibility to partition computation across the processing re-
sources to achieve effective parallel execution. Partitioning al-
gorithms must slice up program computation graphs to spread
operations across the clusters, while minimizing the overhead of
intercluster communication. Further, computation partitioning
is only one part of the compiler’s responsibility. The data mem-
ory subsystem is often partitioned for the same reasons as the
register file was partitioned [10, 11]. Thus, data objects (scalars,
arrays, dynamically allocated objects, etc.) must be partitioned
across the distributed data memories in each cluster. The ob-
jective is to localize data with its associated computation on a
cluster, thereby avoiding the serialization effects of frequent in-
tercluster communication caused by long latency and restricted
bandwidth interconnect.

Traditional operation partitioning methods are computation-
centric and ignore the effects of the data memory [2, 5, 18, 13].
Either a centralized, multi-ported data cache is assumed, or the
system contains distributed hardware-coherent caches. In cost
or energy constrained systems, such hardware is generally not
available. Thus, simpler hardware in the form of scratchpad
memories or partitioned caches is often employed. However,
distributing data across these simpler memories and then taking
advantage of it in the compiler is not a simple task. Terechko
et al. [21] studied the effects of partitioning global values in a
clustered VLIW processor. They found that remote accesses
for global values accounted for approximately half of the cy-
cle count overhead. They evaluated several different schemes
of partitioning data, including unified, round-robin, affinity and
2-pass schemes. They concluded that data partitioning must con-
sider the consuming operations of data objects in deciding on an
effective memory placement and minimize the remote accesses
required.

This work attacks the problem of data partitioning for multi-
cluster processors and proposes an integrated technique for data
and computation partitioning. A hierarchical approach is uti-



lized to break the complex problem down into two simpler sub-
problems that are solved in a phase-ordered manner. First, a
global partitioning of the data objects is performed across the
entire application. A simplistic view of the computation opera-
tions and data communication is employed during this phase to
guide the data partitioning. The objective is to balance the mem-
ory demands across each cluster. Following this step, a detailed
computation-centric partitioning is performed to partition all the
operations. Based on the results of the global memory parti-
tion, memory operations are locked into place during this phase.
However, all other operations must be assigned a cluster and the
appropriate intercluster communication inserted. This strategy
is effective because the data partitioning is performed at the full
application level, and its affects on all computation operations
are considered. Further, the data and computation partitioning
is cooperative, thus each clustering decision considers its conse-
quences on other related decisions.

2. BACKGROUND & MOTIVATION
This section provides background on multicluster architec-

tures. In addition, we describe distributed data memories within
a multicluster processor and an overview of compilation strate-
gies for these architectures.

Multicluster Architectures. Figure 1(a) presents a generic
clustered architecture. Each cluster consists of a tightly con-
nected set of register files (RFs) and function units (FUs). FUs
may only address those registers within the same cluster. Trans-
fers of values between clusters are accomplished through ex-
plicit move operations that travel through an interconnection net-
work. The clustered design shown in this figure assumes an in-
tercluster communication bus that connects the processing ele-
ments together with a fixed bandwidth. Though this assumption
is not necessary, it is often made because it simplifies compiler
algorithms by removing the need to model network topologies
with different connectivities. The clusters themselves may be
homogeneous, each containing the same types and numbers of
RFs and FUs, or heterogeneous, each having a unique mix of
resources. The machine in Figure 1(a) is homogeneous and has
two FUs, one memory unit, and one RF in each cluster.

The main new compiler task for a multicluster architecture
is to obtain a balanced workload that takes advantage of paral-
lelism available within a clustered machine. The notion of bal-
ance on a cluster relates to the resources available on that cluster
and the operations scheduled on it. For example, given a ma-
chine with two heterogeneous clusters such that cluster 1 has
twice as many FUs as cluster 2, a balanced workload would tend
to have twice as many operations scheduled on cluster 1 as on
cluster 2.

Data is transferred from cluster to cluster via explicit inter-
cluster move operations. Intercluster moves have a non-zero la-
tency and thus can lengthen the schedule. However, if the la-
tency of the move can be overlapped with the execution of other
operations, then the intercluster moves may not significantly af-
fect performance. A good partitioning of operations minimizes
overall schedule length by simultaneously maximizing the num-
ber of operations executed in parallel while minimizing the num-
ber of moves that negatively affect performance.

There has been a significant amount of prior research in the
area of partitioning for multicluster processors. The first cluster-
ing algorithm was the Bottom-Up Greedy, or BUG, algorithm
in the Bulldog compiler [5]. BUG occurs before instruction
scheduling and greedily assigns operations to clusters in order
to minimize estimated schedule length. Chu et al. [3] developed

the Region-based Hierarchical Operation Partitioning (RHOP)
algorithm, which is a pre-scheduling method to partition opera-
tions. In order to produce a partition that can result in an effi-
cient schedule, RHOP used schedule estimates and a multilevel
graph partitioner to generate cluster assignments. Our second,
computation partitioning pass is a modified form of the RHOP
partitioner. Aletà et al. use a graph partitioner similar to our
computation partitioning phase, but focus on tightly integrating
the clustering algorithm with instruction scheduling and regis-
ter allocation [1]. In addition to these algorithms, many other
previous works [2, 13, 18] developed methods for partitioning
computation; however, none have added support for partitioning
the data objects of a program and accounting for them when they
make their computation partitioning decisions.

Data Memory Distribution. While clustered architectures
decentralize and partition the datapath into a more scalable form,
the data memory can still become a performance bottleneck.
There are two main categories of data memory designs for multi-
cluster architectures: shared cache and partitioned caches. De-
signing a multicluster architecture with a shared cache that is
accessible from every cluster is not easily scalable beyond 1 or
2 clusters. A shared cache must include enough ports for each
cluster yet maintain a low access time, which becomes increas-
ingly difficult as the number of clusters grow. Figure 1(a) is an
example of a shared cache, as the memory units of both clusters
communicate with a single data memory.

The other possible design method would be to use a fully par-
titioned cache, and have the compiler partition the data across the
caches. In such a design, the address space is partitioned across
the caches, and data objects have their home in only one of the
memories. This is similar to a scratchpad model, where the data
objects are known to exist in a specific data memory. This type
of memory design requires a sophisticated partitioning of the
data in a balanced and efficient manner. For this paper, we focus
on the architectural model of a fully partitioned data memory, as
shown in Figure 1(b). Thus, a major compiler task is to partition
both the data into separate memories as well as the computation
across the clusters.

An obvious middle ground would be a coherent partitioned
cache, where each processing element has its own cache, but a
strict coherence policy is enforced much like a multiprocessor
system. While this design meets the goals of creating smaller,
dedicated caches, it increases complexity in adding arbitration
and coherence mechanisms between caches. The coherent cache
model has the benefit of easing some of the difficulties of the
compiler task. However, having a coherence protocol and hard-
ware support in a low-cost embedded domain simply adds too
much complexity. In addition, the task of partitioning data ob-
jects cannot simply be ignored, as a poor partitioning of the data
across clusters can result in more coherence traffic.

Recently, there have been many studies in the area of parti-
tioning data memories in the architecture. Gibert et al. [11] use
small low latency buffers as localized storage and dynamically
fill them in order to improve performance. However, since a
miss in their buffers can always fall back to the L1 cache, there
exact partitioning of the data objects is not as important. Other
recent work by Gibert et al. [9] partition objects to fast-access
but high-power and slow-access but low-power caches in order
to save power. Critical objects are placed in the fast cache, while
non-critical objects are placed in the slower cache.

Hunter [12] studied data objects for characteristics to place
them in specialized SRAM arrays. Her partitioning of the data
objects focused more on lowering the memory port requirements
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Figure 1: Two multicluster machines. (a) a homogeneous multicluster architecture with a single, unified memory and (b) a
homogeneous multicluster architecture with distributed memories in each cluster

and access latencies. The RAW processor is a tiled architecture
where certain tiles have the ability to access memory and each
tile can only directly communicate with its nearest neighbor. In
such schemes, operations in different partitions should be as-
signed to tiles near each other if they often communicate with
one another. The RAW compiler [16] has two phases which first
partitions the computation, then places them on tiles near the lo-
cation of the data they access as well as near the other tiles with
which they must communicate data. They partition data by as-
signing affinities between data objects and instruction streams
and group the data objects into sets. While their method is also
global, they differ from ours in that they focus more on the affini-
ties of whether or not an instruction stream accesses an object.
Our method produces an global graph of the entire program and
can consider the communication patterns between data memory
accesses and their related computation.

Data Partitioning Issues. The partitioning of data is yet an-
other difficult problem for the compiler to try to optimally solve,
as it must consider several factors such as: object size, access
frequencies, and dependence patterns between operations which
manipulate the objects. In the ideal situation, the objects would
be partitioned in such a way to balance memory demands of each
cluster, while not hindering performance so that the application
performs as if the memory was unified as in Figure 1(a). Thus,
the goals of computation and data partitioning are very simi-
lar; both hope to generate a partition which has performance of
centralized resources on a decentralized processor by reducing
communication or hiding communication latency.

Figure 2 shows how partitioning algorithm’s assumptions of
a shared, unified memory can affect the schedule when data el-
ements are actually placed in distributed caches. Details of the
processor configuration and benchmarks are presented later in
Section 4.1. For this experiment, each cluster was assumed to
have its own memory. For a simple data partition, the actual data
is placed in the cache of the cluster which has the most dynamic
accesses of that data object. To accomplish this, each static load
is marked with the object that it accesses. Objects are placed
in clusters by their total dynamic access frequency per cluster.
Composite objects, such as arrays or structures, are not allowed
to be split across clusters.

The partitioner is allowed to run assuming that the clusters
have a shared, unified memory. As a postpass to the clustering
algorithm, each object is placed in the cluster with the highest
dynamic accesses for the object. Thus, if a memory operation is
placed on an incorrect cluster for its data object, the appropriate

instructions are put in place to load/store on the remote cluster
and then transfer the object across the intercluster communica-
tion network. This data placement is not intelligent, as it totally
ignores the balance of memory usage across the clusters. In ad-
dition, the partitioning algorithm itself is totally incognizant of
the data location, so it does not account for the location of the
data when making its partitioning decisions. However, it should
be fairly performance-centric given the computation partition-
ing, and highlights the effects of a data incognizant partitioner.

Thus, Figure 2 shows the percentage increase in number of
cycles given a 1, 5 or 10 cycle intercluster communication la-
tency. From these results, it is evident that at higher intercluster
move latencies the partition of the data has a significant impact
on the achievable performance. Partitioning algorithms need
to consider where data objects are placed when splitting oper-
ations across a distributed architecture. Some benchmarks, such
as rawdaudio, had no noticeable difference in performance even
at higher intercluster move latencies. This occurred because of
other computation-based intercluster moves which were already
required that the moves required for data were hidden behind.
However, most benchmarks showed little performance loss at 1
cycle move latencies (as the penalty for moving data was almost
insignificant) but much more drastic losses at higher latencies.
Such large losses in performance suggest that the data memory
must be more intelligently partitioned and their locations must
be made cognizant to the operation partitioner.

3. GLOBAL DATA PARTITIONING
This section introduces our compiler-directed Global Data Par-

titioning (GDP) approach for jointly partitioning data objects
and computation across a multicluster architecture.

3.1 Overview
In building a general partitioning strategy, we strongly be-

lieve that jointly attacking both computation and data partition-
ing is important in achieving an efficient solution. However,
each problem on its own is extremely complex, as partition-
ing decisions about data affect the decisions on computation and
vice versa. Thus, our approach is to break the problem into two
simpler sub-problems that are solved in a phase-ordered man-
ner. We believe the best strategy consists of two partitioning
phases. An initial memory partitioning is performed to cluster
and distribute data objects for an entire application across parti-
tioned memories. This initial partitioning uses a global view of
the entire program in order to heuristically model the communi-
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Figure 2: Increase in cycles when data is partitioned across clusters.
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Figure 3: A flow chart of our Global Data Partitioning method, where the new steps are shaded.

cation required for the data memory partition choices. Next, a
second, more detailed partition is performed on the computation
given a fixed memory placement to finish the distribution pro-
cess. Figure 3 is a flow chart which shows how these steps fit
into a compiler framework. We view data partitioning as a first-
order effect; the division of the data across the clusters needs
to be decided first to drive the partitioning of the computation.
This phase-ordered approach is similar to a common approach
used for instruction scheduling and register allocation, wherein
prepass scheduling, followed by register allocation, and ending
with postpass scheduling is performed. By interleaving the parti-
tioning steps, each has influence on the other in terms of the cost
model, but each subproblem is solved in a decoupled manner.

3.2 Prepartitioning Analyses
Before the actual partitioning begins, several compiler anal-

yses are performed in order to determine characteristics of the
application. First, the compiler must discover the data mem-
ory access locations for each operation. More specifically, each
load and store must be analyzed to determine the data objects
which can be accessed. For static global data, sophisticated in-
terprocedural analysis (IPA) techniques [17] are used to deter-
mine points-to relationships about memory accesses and their
related data objects. This analysis assigns a unique identifier

(id) to each data object and marks the load and store operations
with the data objects that can reach them.

Next, for heap objects, each static malloc() call site in the
code is given a unique id. Again, the IPA techniques are used to
relate static malloc() call sites back to load and store objects
acting on the heap data. Thus, both static global data and heap
data can be assigned unique id’s, and their access characteristics
can be gathered before the partitioning begins. The compiler
builds a data access relationship graph between memory access
operations and the data that they can access. Along with this
relationship graph, the analyses log the data sizes of each data
object either by examining their type sizes for static global vari-
ables. In addition, a profile is used in order to determine the
amount of data allocated in the heap for each malloc() call.
The data size information is used to balance the total object size
assigned to each cluster during partitioning.

3.3 First Pass: Data Partitioning
The goal of the first pass is to use a coarse-grained view of

the code to partition data objects with knowledge of how their
distribution across separate memories will affect the future par-
titioning of computation operations. A high-level view of the
computation and communication between operations is used to
simplify the problem down for the compiler. Using a very de-



int value1;
int value2;

int main() {

 int *x = malloc(sizeof(int));
 int *y = &value1;
 int* foo;

 if(cond) {
  value2 += 1;
  foo = x;
 }
 else {
  *y += 1;
  foo = y;
 }

 printf(”%d”,*foo);
 printf(”%d”,value2);

}

CALL

MOV

ST

ADD

LD LD

ADD

ST

LD

LD

BB1

BB2 BB3

BB4

malloc();
Malloc ID "x"

y += 1;
Object ID "value1"

printf(foo);
Malloc ID "x"

Object ID "value1"

value2 += 1;
Object ID "value2"

printf(value2);
Object ID "value2"

(a) (b)

Figure 4: An example of operation merging. (a) the pseudocode for the example (b) the DFG for the pseudocode, where shaded
operations are merged together with one another and white operations are merged together.

tailed view of the code schedule, and accurately modeling the
data computation partition and the possible effects on the com-
putation and performance, can significantly complicate the algo-
rithm. Thus, a more simplified view of the program behavior is
used for the data object partitioning.

First, a program-level data-flow graph (DFG) of the applica-
tion is created. When creating this graph, nodes are generated
from every operation in the code. Memory operations and calls
to malloc() are annotated in the graph with the ids of their
associated objects. This graph is created to generally model
the computation patterns that need to be mapped to clusters.
The only information recorded about the operations are the data-
dependent flow edges. This allows the graph to be partitioned in
a way that includes a high-level model of the required computa-
tion and intercluster communication traffic.

Figure 4(a) is an example pseudocode with several types of
memory accesses. The pointer to “x” refers to dynamically al-
located memory in the heap, while the pointer to “y” refers to
global data. Depending on a condition, the pointer “foo” is set
to “x” or “y” and then accessed at the end of the function. Fig-
ure 4(b) illustrates this code is a DFG, only showing the impor-
tant nodes for this discussion. The interprocedural analysis can
determine that the the load and store in BB3 both reference the
pointer “y” and that “y” points to the global variable “value1”.
Similarly, it can find that the first load in BB4 can also access
“value1”. Profiling of the heap accesses can show that the allo-
cated addresses “x” defined by the malloc() in BB1 can also
reach the first load of BB4.

After building up the program-level graph, a coarsening pro-
cess begins, which merges together operations in the graph that
would likely prefer to be on the same cluster. This is followed
by the actual partitioning of the data objects. The process is de-
scribed in more detail in the following two sections.

3.3.1 Access Pattern Merges
The access pattern merge phase of coarsening examines the

objects accessed by each memory operation and combines op-
erations which access the same memory objects. By merging
these memory nodes in the graph, objects themselves become
merged. There are two main cases when these data memory ob-
jects are merged in this phase. First, when a single memory op-
eration accesses multiple data objects, these objects are merged
together. This occurs because the compiler knows that at least
one memory operation exists that accesses more than one object,
so placing them on separate memories will require data transfers
across the communication network. Thus, they are merged to-
gether so that they will be placed in the same memory. Second,
when multiple memory operations access a single data object,
those memory operations will be merged together. Any other ob-
jects accessed by these operations will then be merged in as well.
These access pattern merges serve to help direct the data parti-
tioner to not unnecessarily break known related objects across
separate memories.

For the example in Figure 4(b), since the first load in BB4,
could be either “value1” or the allocated region “x”, both ob-
jects are merged together, and every access to these objects are
merged into a single node. The merged nodes are indicated
by the shaded operations in the DFG. These include the call to
malloc in BB1 and the LOAD and STORE of “y” in BB2.
Similarly, memory operations in BB2 and BB4 both access the
object “value2”, so they are merged together, as indicated by the
white operations in the figure.

Another possible merging method would be to combine de-
pendent operations with low slack together. This would group
together dependent operations into a single unit and potentially
combine objects whose computation is highly related. However,
in our experimental analysis, we found that merging based on
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Figure 5: Example of global data partitioning with (a) the original graph with operations coarsened with dotted lines and (b)
an example good partitioning, indicated by the shaded region.

computation dependencies can negatively affect the resulting ob-
ject partitioning. This occurred because fewer groupings of ob-
jects allowed for more freedom and flexibility in the partitioning
process.

3.3.2 Data Partitioning
After the coarsening process, the compiler is left with a DFG

representing the computation of the application, however, some
of the nodes have been merged together to form larger nodes.
In addition, each node in the graph that accesses data memory
is marked with the id of the data object or malloc() call site,
and the size of the merged data object.

To partition the program graph, we use METIS [14], an ef-
ficient graph partitioner which can partition the operations with
multiple node weights. METIS tries to divide the nodes into
separate partitions by minimizing the number of edges cut while
also trying to balance the node weights. The compiler presents
METIS with the data-flow graph representing the entire pro-
gram. Node weights are added to each operation which indicate
the size of the data (if any) accessed within that node. This helps
the partitioner choose a cluster assignment for the data memory
objects that balances the object sizes across clusters. The mem-
ory size balance between clusters is parameterized in the case
where the memory within one cluster is significantly larger than
the other.

Figure 5(a) is an illustrative example of three basic blocks of a
DFG which is partitioned by our global data partitioning. White
nodes in the graph are memory access operations while black
nodes are computation. Dotted lines indicate coarsened opera-

tions as explained in Section 3.1. Each grouped memory opera-
tion is labeled with the number of objects, the size of the objects,
and the number of operations coarsened together. The goal of
the partitioner is to balance both the total data memory size as
well as minimizing the amount of operation communication cut
across clusters, which is indicted in the program-level graph as
edge cuts. Figure 5(b) shows an example partitioning produced
which could yield such results, where the operations placed in
cluster 1 are indicated by the shaded region. In total, the data
memory in cluster 0 has 216 bytes of data, while the memory in
cluster 1 has 240 bytes of data. In addition, in each of the three
blocks, the number of operations on each cluster are balanced
fairly well.

3.4 Second Pass: Region-level
Computation Partitioning

The second pass of partitioning uses an enhanced Region-
based Hierarchical Partitioning (RHOP) [3] in order to distribute
computation across clusters given a mapping of data objects to
clusters. RHOP is a operation partitioner capable of efficiently
generating high-quality operation divisions; however, as with
most previous partitioning algorithms for multicluster architec-
tures, it was designed with the model of a single unified memory.

RHOP itself was designed as a performance-centric multilevel
graph partitioner for multicluster architectures. The novel aspect
with the algorithm was its modeling of the resources and esti-
mates of the schedule length. These were used in order to esti-
mate the schedule length impact of clustering decisions without
requiring the need to actually schedule the code, which is a com-
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plex and time consuming process. RHOP proceeds by coarsen-
ing operations together based on the dependencies between op-
erations. Edges in the graph are given weights based on either
low slack between the operations (higher weight), or high slack
between the operations (lower weight). A low slack between op-
erations indicates that the edge is more critical, and breaking the
edge across clusters will require increasing the schedule length.
Similarly, high slack edges have more freedom in inserting inter-
cluster communication. The coarsening process groups together
operations in high-weight edge priority. Each stage of the coars-
ening process groups an operation only once.

After coarsening, the algorithm begins backtracking across
the coarsened states, uncoarsening operations. At each stage
of the uncoarsening, the schedule length estimates are updated
to reflect the current partitioning of the objects. Uncoarsened
groups of operations are considered for movement across parti-
tions when they appear favorable in terms of reducing schedule
length or resource saturation.

While RHOP has shown to perform well in a single, unified
memory case, it requires the data objects be accessible from each
cluster. There is no notion of a home location for a data object.
Thus, we extended the RHOP method to account for memory
object locations in the schedule estimates. When a memory op-
eration is considered for placement in an incorrect cluster, the
schedule length estimate would indicate an infeasible partition-
ing, so that possible clustering choice is ignored. Thus, all mem-
ory access operations will always be placed on their assigned
clusters, and the schedule length estimators can continue to con-
sider moving other operations for the benefit of balancing com-
putation.

Figure 6 is an example of how the more detailed computa-
tion partitioning can improve on the partition produced by the
high-level data partitioner. Focusing on only the first block of
Figure 5, we see the partition of operations breaking the edge
between operations 3 and 5, as shown in Figure 6(a). At a high
level, this partitioning seems fairly good, as only one single edge
is broken, requiring a single intercluster move and the number of
operations per cluster is balanced. During the second pass, mem-
ory nodes A and B are, in effect, locked down to cluster 0, and
node C is forced to be in cluster 1. However, all other compu-
tation operations are free to move about the clusters. Given this
ability, the second RHOP pass can note that keeping the criti-
cal path 1-2-3-5-6 on a single cluster can be beneficial for the
schedule length, and place those operations with memory opera-

tion C. Breaking the non-critical edge between 4 and C will not
affect the schedule length, so operation 4 is moved to cluster 0
as shown in Figure 6(b). The final partitioning is shown in Fig-
ure 6(c). While this creates an imbalance of operations on the
shaded cluster, it actually has a better performance because the
cluster resources can execute the extra operations in the same
number of cycles. Thus, the first pass data-partitioning path
works more as a guide, viewing the entire program and divid-
ing up memory usage for the more detailed computation-based
second pass.

4. EXPERIMENTAL EVALUATION

4.1 Methodology
We implemented our experimental framework as part of the

Trimaran tool set [22], a retargetable compiler framework for
VLIW/EPIC processors. We ran our experiments on Media-
bench [15] and a set of DSP kernels. Benchmarks were omit-
ted that did not have enough data objects where making a parti-
tioning choice about the memory was important. The machine
model used for these experiments is 2-cluster VLIW with 2 in-
teger, 1 float, 1 memory and 1 branch unit per cluster, with la-
tencies similar to the Itanium. Similar to scratchpad memories,
partitioned caches that achieve a 100% hit rate are assumed in
all experiments. The intercluster network bandwidth allows for
1 move per cycle with latencies of 1, 5 or 10 cycles (5 cycle is
default unless otherwise mentioned).

Each benchmark was evaluated for the performance of our
Global Data Partitioning (GDP) algorithm compared to three
different memory schemes: Profile Max object partitioning, the
naı̈ve method shown in Figure 2, and a unified memory model.
Table 1 summarizes the differences about these algorithms and
they are explained in more detail below.

Profile Max Object Partitioning. In this model, the RHOP
partitioner is essentially run twice. The program-level graph of
the application is created and coarsened as before, so objects are
grouped together the same. The first RHOP pass proceeds to par-
tition the code assuming a single, unified memory, not making
any special concessions for the memory objects. Thus, the re-
sulting partition is very performance-centric, as it optimistically
assumes each object is accessible from every cluster. After the
partitioning is complete, the resulting code distribution is ana-
lyzed and the dynamic frequency of each coarsened object being
accessed in every cluster is recorded. Then, in order of highest



Algorithm Object Partitioner Object Assignment Computation Partitioner

GDP Global Data Partitioning RHOP
Profile Max RHOP Greedy (dynamic frequency order) RHOP
Naı̈ve None - data object moves inserted post-computation partitioning RHOP
Unified Memory N/A - data object moves not required for single, unified memory RHOP

Table 1: The three different methods tested for object and computation partitioning.
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Figure 7: Performance of the GDP and Profile Max methods
relative to the single, unified memory for a 1 cycle interclus-
ter move latency.

frequency to lowest, objects are assigned to their preferred clus-
ter (the cluster where the majority of their accesses were placed
in the first pass). A memory balance is kept by forcing objects to
be placed in other clusters when the preferred memory reaches a
certain threshold. Finally, a second pass of RHOP is performed
much like the second pass of our global data partitioning algo-
rithm, where RHOP partitions the code cognizant of the object
locations. Thus, this is a natural extension to current unified
memory clustering algorithms to allow them to greedily parti-
tion for multiple memories, and serves as a comparison point for
the object partitioning method proposed in this paper.

Naı̈ve object placement. In the Naı̈ve method, as explained
in Section 2, no actual object partitioning is performed. As a
postpass after computation partitioning, each data object is ex-
amined and the frequency of it being accessed on each cluster is
recorded. Afterwards, each data object is placed on the cluster
where it is accessed most often and required moves for memory
accesses are inserted. Note that, in this model, balancing of the
memory is not considered.

Unified Memory. In this model, we ignore the case of parti-
tioned memories and simply model a single, multiported mem-
ory. Thus, all objects can be uniformly accessed on any cluster
in the processor. The unified model represents an upper bound
performance because it assumes a constant access latency (2 cy-
cles, the load latency) and no penalty to transfer values across
the intercluster communication network. A normal run of RHOP
is performed to partition the computation across these clusters.
Thus, no preassignment of memory operations is performed on
the code. RHOP is simply presented with regions of code one at
a time in order to partition the operations. This model can help
give an indication of how well the partitioned memories perform
in comparison to a unified, shared memory.

4.2 Performance
Figures 7, 8(a), and 8(b) show the relative performance of the

GDP and Profile Max object partitioning algorithms normalized

to the unified memory model with intercluster communication
latencies of 1, 5 and 10 cycles, respectively. In addition, the
last set of bars in each graph compare the average of these two
methods to the Naı̈ve method shown in Figure 2. Higher bars
on the graph indicate better performance. Since the graph is
relative to the unified memory model, the closer the bar is to 1.0,
the closer the partitioned memory is to performing as if it were
a single, unified memory.

An interesting fact indicated by these graphs is that in several
cases, our partitioned memory is actually performing better than
the unified memory case. While the RHOP method, as presented
in [3] and used in the unified memory case, is performance-
centric, it has one large drawback in comparison to our schemes:
its more restrictive view of the program. RHOP already im-
proves upon other previous partitioning algorithms which have
a localized, operation-level view of the code when making deci-
sions. However, in our data partitioning method, we take this one
step further, from a region-level view to a program-level view
for our precoarsening and decision making. Thus, for the sec-
ond pass, we can give RHOP a better initial partitioning to begin
with in order to determine how to improve the computation dis-
tribution.

Figure 7 shows the performance given an intercluster move
latency of 1 cycle. This graph shows that for most benchmarks,
both the GDP and Profile Max methods are able to perform well,
and match the performance of a unified memory model. This
occurs because with such a low latency penalty for intercluster
network traffic, the need to make intelligent object placement
decisions becomes less important. Thus, a poor decision on the
placement of data will at most only cost only 1 extra cycle to
transfer the data to the other cluster. However, such a low in-
tercluster move latency can be unrealistic to build. Thus, we
examine higher latency intercluster moves in order to properly
gauge the usefulness of data partitioning.

In comparing the 5 and 10-cycle move latencies in Figure 8(a)
and (b), our GDP method performs much better than the Pro-
file Max partitioner and achieves near unified memory perfor-
mance for most benchmarks, and even better in some bench-
marks. In the 5-cycle intercluster latency case, our GDP method
achieves an average of 95.6% of the performance of the unified
cache, while the Profile Max method has an average of 90.0%.
For the 10-cycle intercluster communication latency case, the
GDP is on average 96.3% of the single memory performance,
while the Profile Max scheme is 88.1%. Note that these numbers
are slightly skewed because some of the benchmarks achieve
more than 100%. However, our partitioning algorithm is able to
produce near single, shared memory performance with multiple
smaller, partitioned memories. For example, for the mpeg2enc
benchmark, at the 1-cycle intercluster move latency, neither the
GDP nor the Profile Max methods showed much difference com-
pared to a single, unified memory. Moving to 5 and 10-cycle
move latencies, the GDP method was able to maintain 99% per-
formance of the unified memory model while object partitioning
of the Profile Max method fell to 81% or 79%, respectively.

Comparing the 5-cycle and 10-cycle latency results shows a
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Figure 8: Performance of the GDP and Profile Max methods relative to the single, unified memory for (a) 5 cycle (b) 10 cycle
intercluster move latencies.

larger gap between the two methods. At higher latencies, inter-
cluster communication has a larger effect on performance. Thus,
the quality of the partition in terms of co-locating data and com-
putation is more critical. The Profile Max method is less ef-
fective because it cannot account for the inter-region effects of
objects and their access patterns. Conversely, the GDP method
is make global decisions with a simplified model of the compu-
tation and thus can make more intelligent decisions.

In comparison to the data from the Naı̈ve method, both meth-
ods did not suffer as much performance loss. This is attributed
to the Naı̈ve method being incognizant of the data object loca-
tions and simply inserting the necessary intercluster moves as a
postpass. Both of these methods are significantly more intelli-
gent as they take the data objects locations into account while
performing computation partitioning.

4.3 Exhaustive Search of Partitions
In Figure 9, we present two graphs which represent an ex-

haustive search of all the possible data object mappings to two
clusters for the rawcaudio and rawdaudio benchmarks. An ex-
haustive search was only possible in benchmarks with a fairly
small number of data objects. In both graphs, each point rep-
resents the performance of a possible data object partitioning
normalized to the worst performing partitioning. The shading of
each point indicates the relative data object size balance between
the clusters. Darker shaded points are used for more imbalanced
partitionings. Thus, the black points are where nearly the en-
tire set of data objects are placed on a single cluster, and white
points are where the data objects sizes are well balanced across
the clusters. The mappings of both the GDP and the Profile Max
method are also marked in each graph.

Figure 9(a) shows the performance of various data mappings
for rawcaudio. In this graph, there are many different horizontal
bands of object mappings that have relatively the same perfor-
mance and data object balance. This occurs because there is a
small subset of the objects whose cluster placement determine
the performance level of the partition. Shifting the other objects
between clusters does not greatly affect performance or balance.
Both the GDP and Profile Max methods achieved object parti-
tionings which were well-balanced. However, the partitioning
chosen by the GDP method had a better performance. While the
GDP method was able to choose a good partitioning, the over-
all performance benefit for rawcaudio was not as impressive, as
the best partitioning was still less than 10% improvement of the

worst.
Figure 9(b) shows a similar graph for the rawdaudio bench-

mark. This benchmark has a much more significant performance
difference in terms of a good or bad partitioning choice, as the
best performing partition choice had almost a 25% performance
increase over the worst. Again, this graph shows many hori-
zontal bands. However, at each balance level (indicated by the
shading) there is a split in performance at a lower and higher
level. This occurs when a small single object can greatly af-
fect performance. Similar to rawcaudio, both partitioning meth-
ods were able to find a balanced solution, but the GDP method
found a mapping with much better performance. While many
points existed with better performance, all had a significantly
more imbalanced data sizes, so they were not chosen. Note that
the object mappings at better performance, but worse memory
balance, can be achieved by allowing for more imbalance of the
resulting partition in METIS.

4.4 Increase in Intercluster Traffic
The quality of a partition can be measured in several ways.

One such metric is the number of intercluster moves required
during the run of the program. Increasing the number of in-
tercluster moves generally decreases the performance, as more
operations must execute, and they all share the communication
network bandwidth. However, having more intercluster move
operations executing does not necessarily hinder performance.
If the intercluster moves can be hidden behind other operations
or allow for more parallelization and resource utilization on the
clusters, then performance may actually improve. On the whole,
however, increased intercluster communication correlates to de-
creased performance.

Figure 10 shows the increase in dynamic intercluster com-
munication operations for the GDP and Profile Max methods
over the single, unified memory processor with an interclus-
ter communication latency of 5 cycles. The baseline processor
still has intercluster moves, as it is a multicluster architecture,
and requires moves when dependent computation is split across
clusters. The GDP and Profile Max methods, however, show
intercluster network traffic stemming from both computation-
dependent moves and the required transfers of data objects. The
most drastic increase in intercluster moves occurs with the fsed
kernel. This is correlated with the performance results in Fig-
ure 8, as fsed had a large amount of additional moves to insert
and had one of the largest decreases in performance.
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Figure 9: An exhaustive search of all possible data object mappings for the (a) rawcaudio and (b) rawdaudio benchmarks.
Points marked with darker shading indicate more imbalanced partitioning in terms of data object sizes per cluster.

For most of the Mediabench benchmarks, the GDP method
has far fewer dynamic intercluster move operations executing. In
fact, in many cases partitioning the memory has less intercluster
traffic than the single memory architecture. This can happen
because, again, having a global, program-view prepartition of
the data objects can allow the computation partitioner to start
with a better initial partition. Of interest is that the benchmarks,
such as mpeg2dec and rawdaudio that had a dramatic decrease in
dynamic intercluster moves, also have an improved performance
in Figure 8.

4.5 Effects on Compile Time
In our experiments, the vast majority of the compiler time was

spent in the detailed computation partitioning. The Profile Max
partitioner is actually two complete runs of this detailed compu-
tation partitioner. The first run is to gather the profile of where
objects are placed assuming a shared cache, and the second is
to repartition the computation after preplacing objects in their
preferred cluster. Since the GDP method only requires one run
of this detailed computation partitioner, the compile time is sig-
nificantly reduced. This is similar to the run time of the Naı̈ve
method, which only requires a single run of the computation par-
titioner.

5. CONCLUSION
In this work, we present a phase-ordered partitioning algo-

rithm which distributes both data objects and computation for
multicluster architectures. Partitioning of data objects and com-
putation operations is challenging in that a decision on one can
greatly affect the other. Thus, it is important to develop a par-
titioning method which is cognizant of the side effects of its
partitioning decisions. Traditional multicluster partitioning al-
gorithms avoid this problem by assuming a single unified mem-
ory for all the clusters, thus simplifying the problem. Our al-
gorithm is a two-phased approach that first partitions the data
objects by examining their access patterns at a coarse-grained,
program level. By having a viewpoint of the entire program, the
data partitioner can make decisions with knowledge of the over-
all data usage patterns in the program. The second phase, region-
based computation partitioning is performed which is cognizant
of the preplacement of data objects, and is focused on improving
the partition of the computation operations. Overall, our Global
Data Partitioning algorithm was able to divide objects across

multiple memories yet still achieve, on average, 96.3% of the
performance of a single, unified memory memory model.

This current work dealt with partitioning data for a scratch-
pad-like, fully partitioned memory model. Our future work will
focus on partitioning data objects for cache systems. In order to
handle a cache memory system, the partitioning algorithm must
be extended to deal not only with communication patterns be-
tween data and computation operations, but also with the data
usage patterns over time, as objects can be moved into and out
of the caches.
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