
Heterogeneous Microarchitectures Trump Voltage Scaling
for Low-Power Cores

Andrew Lukefahr, Shruti Padmanabha, Reetuparna Das, Ronald Dreslinski Jr.,
Thomas F. Wenisch, and Scott Mahlke
Advanced Computer Architecture Laboratory

Ann Arbor, MI, USA
{lukefahr, shrupad, reetudas, rdreslin, twenisch, mahlke}@umich.edu

ABSTRACT
Heterogeneous architectures offer many potential avenues
for improving energy efficiency in today’s low-power cores.
Two common approaches are dynamic voltage/frequency
scaling (DVFS) and heterogeneous microarchitectures (HMs).
Traditionally both approaches have incurred large switch-
ing overheads, which limit their applicability to coarse-grain
program phases. However, recent research has demonstrated
low-overhead mechanisms that enable switching at granu-
larities as low as 1K instructions. The question remains,
in this fine-grained switching regime, which form of hetero-
geneity offers better energy efficiency for a given level of
performance?

The effectiveness of these techniques depend critically
on both efficient architectural implementation and accurate
scheduling to maximize energy efficiency for a given level of
performance. Therefore, we develop PaTH , an offline anal-
ysis tool, to compute (near-)optimal schedules, allowing us
to determine Pareto-optimal energy savings for a given ar-
chitecture. We leverage PaTH to study the potential energy
efficiency of fine-grained DVFS and HMs, as well as a hy-
brid approach. We show that HMs achieve higher energy
savings than DVFS for a given level of performance. While
at a coarse granularity the combination of DVFS and HMs
still proves beneficial, for fine-grained scheduling their com-
bination makes little sense as HMs alone provide the bulk
of the energy efficiency.

Categories and Subject Descriptors
C.1.4 [Architectures]: Heterogeneous systems

Keywords
Heterogeneous Multicores; DVFS; Fine-Grained Architec-
tures; Energy Efficiency

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full cita-
tion on the first page. Copyrights for components of this work owned by others than
ACM must be honored. Abstracting with credit is permitted. To copy otherwise, or re-
publish, to post on servers or to redistribute to lists, requires prior specific permission
and/or a fee. Request permissions from permissions@acm.org.
PACT’14, August 24–27, 2014, Edmonton, AB, Canada.
Copyright 2014 ACM 978-1-4503-2809-8/14/08 ...$15.00.
http://dx.doi.org/10.1145/2628071.2628078 .

1. INTRODUCTION
Transistor scaling has historically allowed architects to

build complex processor designs with ever-decreasing energy
consumption. However, with the end of Dennard scaling [7],
architects must seek new alternatives to improve energy ef-
ficiency [14]. A variety of proposed techniques trade off a
small decrease in performance for a large reduction in en-
ergy consumption through utilizing a range of energy effi-
cient execution modes. The most common technique, Dy-
namic Voltage/Frequency Scaling (DVFS) creates energy ef-
ficient modes by lowering the voltage and frequency. The
second technique, Heterogeneous Microarchitectures (HMs),
reduces energy by migrating execution to a more efficient,
but lower performing, core microarchitecture. Traditionaly
both DVFS and HMs incurred large overheads to transition
between modes, limiting their applicability to coarse-grained
program phases [21, 22]. However, recent efforts [19, 26, 27,
30] have drastically reduced these transition penalties, en-
abling switching between modes at much finer granularities.

A scheduler divides the application into numerous inter-
vals and migrates execution to the most appropriate mode
for each interval. Sub-optimal scheduling decisions reduce
the realized energy savings, masking the efficiency poten-
tial of the underlying architecture. A naive approach to
bound the efficiency potential of each heterogeneous archi-
tecture is to exhaustively explore all possible schedules. Un-
fortunately the complexity of this approach increases ex-
ponentially with the number of intervals and the number
of modes. Emerging architectures capable of fine-grained
switching further confound such analysis by drastically in-
creasing the number of intervals in which a scheduling de-
cision must be made. To manage this massive state space,
we have developed Pareto-optimal Tradeoffs for Heterogene-
ity, or PaTH , an offline analysis tool that determines (near-
)optimal scheduling decisions and calculates the Pareto-
optimal tradeoff space between performance and energy sav-
ings for a specific architecture and workload.

We then use PaTH to explore the design space of het-
erogeneous low-power core architectures to determine which
architectures offer the best energy savings for a given perfor-
mance level. PaTH enables us to study the effects of intelli-
gent scheduling as well as heterogeneity in low-power cores.
Prior works, such as [2, 13], which relied on static analysis,
required both HMs and DVFS to provide sufficient energy-
efficient performance levels. Counter-intuitively, we find
that fine-grained scheduling allows HMs to achieve higher
energy efficincy for similar performance levels alone, effec-

tively rendering fine-grained DVFS unnecessary. Overall,
this paper offers the following contributions:

• We evaluate the effect of scheduling on different forms
of heterogeneity on low-power cores. We study the po-
tential tradeoffs of traditional DVFS and HMs, as well
as emerging fine-grained DVFS and HMs for single-
threaded applications. Overall, our results show that
HMs are able to provide higher energy savings than
DVFS for a given level of performance. Additionally,
we find that fine-grained scheduling with HMs alone
negates the need for fine-grained DVFS.

• We further analyze individual benchmarks and show
significant variation in their use of DVFS and HMs
to achieve Pareto-optimal performance/energy trade-
offs. We analyze common behavioral patterns across
applications and their affinity to various forms of het-
erogeneity.

• This analysis is possible through PaTH , an offline
analysis tool that can evaluate Pareto-optimal trade-
offs between performance and energy for a given archi-
tecture. By relying on approximations that bound the
Pareto-optimal tradeoffs within an accuracy of ±2.5%,
PaTH efficiently searches the entire state space of pos-
sible schedules with a tractable analysis turnaround
time.

2. BACKGROUND
The most prevalent heterogeneity techniques for trading

performance for energy efficiency are DVFS and HMs. To-
day both suffer from large transition overheads. However,
researchers have proposed approaches to minimize the tran-
sition latencies for both techniques.

2.1 Dynamic Voltage and Frequency Scaling
In CMOS technologies, significant power savings are pos-

sible by lowering the voltage. However, this necessitates
lowering the frequency to meet timing constraints, leading
to a performance loss. In prior technology generations, the
frequency and voltage scaled roughly equally. Therefore, a
reduction in voltage would yield a roughly equivalent reduc-
tion in frequency (and performance) but allow a much higher
overall power reduction, justifying the loss in performance.
However, typically low-power cores rely on low-leakage tech-
nologies, which sacrifice voltage scaling for decreased static
power consumption. This, in combination with shrinking
technology nodes, means voltage reductions are requiring
larger corresponding reductions in frequency (and perfor-
mance), marginalizing much of the benefits of voltage scal-
ing.

2.1.1 Coarse-Grained Approaches
Traditional DVFS designs rely on off-chip voltage regu-

lators, built using very large filtering components and con-
nected over long wires, requiring tens of microseconds to
change the voltage [19]. To amortize the overhead of volt-
age transitions, the granularity of switching was limited to
Operating System (OS) scheduling intervals.

For these architectures, a variety of techniques have been
proposed to decide when to switch DVFS levels, either at
compile time [39] or dynamically using a JIT [37], or the
OS [40, 35, 15]. Additionally, there have been studies that

attempt to find the theoretical best performance/energy
tradeoffs for a DVFS system using a given number of volt-
age/frequency levels [38, 16].

2.1.2 Fine-Grained Approaches
On-chip regulators bring the voltage regulator on the same

chip as the core, reducing the wire length and the need for
large capacitors, allowing more rapid transitions between
voltage levels. These regulators can transition across the
full voltage range in less than 20ns, but currently suffer from
∼ 20% power conversion efficiency losses [18, 23]. Eyerman
and Eeckhout study the benefits of on-chip regulators to
save energy for an individual off-chip cache miss [10].

A competing technique, dual-rail supplies, uses two sep-
arate off-chip regulators and allows an individual core to
connect to either of the two supply rails [27, 8]. Again,
this technique provides sub-20ns transitions, but at the cost
of an additional ∼ 10% area overhead to route the extra
power rail [8]. Furthermore, this technique limits the possi-
ble voltage choices to the number of rails. Li et al. propose
a controller that uses dual-rail supplies to scale down the
voltage and frequency on individual L2 cache misses [25].

2.2 Heterogeneous Microarchitectures
An alternative heterogeneity technique is to use single-ISA

heterogeneous multicore systems, which reduce energy con-
sumption by switching to a more efficient core when power-
hungry structures in a high performance core are under-
utilized [21]. Researchers have conducted extensive studies
of the types of cores required for multiple workloads [22],
operating system codes [28], and ILP and MLP intensive
codes [31].

2.2.1 Coarse-Grained Approaches
ARM Ltd. designed big.LITTLE [12], a heterogeneous

multicore system, consisting of both a high performance
out-of-order core (Cortex-A15) and low power in-order core
(Cortex-A7). While the A7 sacrifices ∼ 1

2
the performance

of the A15 running Dhrystone, it consumes ∼ 6x less power.
This combination of performance and power allow the A7 to
operate ∼ 3x more energy efficiently than the A15. As both
cores have separate L2 caches, the transition between cores
and rebuilding of the cache state can require as long as 20K
cycles, forcing coarse-grained switching.

The challenge of when to switch between HMs is similar
to changing voltages with DVFS. Van Craeynest et al. [36]
propose a model that measures CPI, MLP, and ILP to pre-
dict the performance on the inactive processor. Other tech-
niques discover an application’s core bias by monitoring stall
sources [20] or building architectural signatures [33] to allow
the OS to migrate the application to the most appropriate
core.

2.2.2 Fine-Grained Approaches.
The first approach to achieve fine-grained HMs is to en-

able adaptive cores by resizing hardware structures to be
more efficient [1], allowing the core to lower its power con-
sumption with minimal impact on performance. Proposed
architectures attempt to optimize individual structures, such
as the IQ, ROB, LSQ, and cache sizes [3, 1, 4, 9, 24].

An alternative approach is to share structures between
multiple cores, most commonly caches and pipelines. Cache
sharing solutions rely on multiplexing the L1 caches between

multiple cores to eliminate much of the state transfer over-
heads when switching [29, 32]. Other researchers have pro-
posed multiplexing pipeline stages between cores to achieve
heterogeneity [30]. The hybrid approach combines two sepa-
rate pipelines that share caches and a unified frontend. How-
ever, this hybrid approach has higher design complexity, and
it increases the power consumption of the more energy effi-
cient core by a reported ∼ 9% [26].

2.3 Tradeoff Analysis
As both heterogeneity techniques tradeoff performance

for energy savings, at a coarse granularity researchers have
attempted to decide which technique is preferable. Gro-
chowski et al. conclude that both DVFS and HMs are nec-
essary for the best energy/performance tradeoffs [13]. Azizi
et al. analyze the performance/energy tradeoffs for both
DVFS and HMs and conclude that HMs can deliver large
performance jumps, while DVFS delivers very good incre-
mental performance changes [2], However, their study as-
sumes a static mapping of applications to cores, neglecting
the potential benefits of scheduling.

3. PARETO-OPTIMAL TRADEOFFS FOR
HETEROGENEITY

One of the main challenges to performing a study of het-
erogeneity tradeoffs is to find an algorithm which optimally
selects the best combination of HMs and/or DVFS in each
region of execution, while minimizing the energy consump-
tion subject to a performance constraint. For HMs, we con-
sider high performance out-of-order core (Big) and energy
efficient in-order core (Little). For DVFS, we consider six
different voltage/frequency levels. A single core at a spe-
cific frequency is henceforth referred to as a mode. The
Pareto-optimal mode for each region can vary depending on
the performance constraint. Therefore, to maximize energy
savings, we need to determine the Pareto-optimal mode for
each region of the application for all possible performance
constraints.

We approach this challenge by executing the application
under all possible modes and dividing the application into
independent blocks, called quanta, while collecting energy
and performance characteristics for each. We form sched-
ules by selecting a unique mode for each quantum. We
then attempt to examine all possible schedules to deter-
mine the subset of schedules that forms an optimum per-
formance/energy tradeoff. As this will prove intractable, we
rely on an approximation technique that allows us to com-
pute the performance/energy tradeoffs within a bounded
level of error. We further include an optimization technique
that allows us to prune large trees of provably non-optimal
schedules without having to compute their energy and delay.

3.1 Quanta Independence
We claim that quanta can be evaluated independently

of each other provided the switching overheads are suffi-
ciently negligible. We analyze independence in the two sce-
narios, where consecutive quanta use the same mode (non-
switching) or different modes (switching). In Section 5.3, we
further evaluate the effects of switching overheads.

Independence: Given two sequential quanta, i and
i+1, xi and xi+1 represent the core/voltage modes for
quanta i and i+1, respectively. The choice of xi+1 is in-

dependent of xi if Energy(xi+1|xi) and Delay(xi+1|xi)
are constant for all xi, i.e. given any mode, xi, for
quantum i, the resulting energy and delay for mode
xi+1 in quantum i + 1 does not change.

For fine-grained architectures, a quantum is assumed to
consist of 1K committed instructions. We argue this length
represents the lower bound at which the overheads of switch-
ing modes are negligible, allowing quanta to be evaluated
independently in fine-grained architectures. For coarse-
grained architectures, we assume a quantum length of 10M
instructions.

In the non-switching case (xi = xi+1), there is no mode
change so there is no departure from the behavior of the
original program run, i.e. no overheads for switching modes.
Any inter-quanta interactions, e.g., overlapped cache miss or
updated branch prediction, are accounted for in the existing
execution trace.

For the switching case (xi 6= xi+1), the claim of indepen-
dence relies on being able to switch modes with minimal
overheads. HMs are typically designed to share caches and
pipeline stages in an attempt to minimize switching over-
heads [26]. DVFS approaches rely on either moving the
power supply on-chip or building multiple off-chip power
supplies [19, 25].

As switching can potentially occur as frequently as ev-
ery 1K instructions, the effects of pipeline interactions need
to also be considered. For example, if an out-of-order core
executes two consecutive quanta, a load miss in the second
quantum may be partially overlapped by another miss in the
previous quantum. However, if a switch occurs, this overlap
may not occur, and the load miss in the second quantum will
incur the full miss latency. These interactions were studied
in greater detail in our prior work which concluded that for
fine-grained architectures, the effects of these interactions
were negligible provided the quantum length does not shrink
below 1K instructions [26].

The claim of independence is easy to illustrate for tra-
ditional coarse-grained architectures, which were designed
to rely on large quanta sizes to ensure negligible switching
overheads. These architectures have transition latencies in
the tens of thousands of cycles resulting in negligible impact
when contrasted with the millions of cycles required for the
quanta’s computation.

3.2 Exhaustive Schedules
While executing the instructions in a quantum, a core

incurs some delay and consumes some energy. These val-
ues differ between core/voltage modes due to their different
implementations. Example performance and energy charac-
teristics for three quanta of a fictional big.LITTLE system
are shown in Table 1. For the sake of simplicity, no voltage
scaling is shown. A schedule is formed by making a unique
mode choice for each quantum.

Schedule: X = {x1, ..., xn}, an ordered mapping to a
single mode, xi for each possible quantum, i.

The easiest approach to finding the lowest energy con-
sumption for a given level of performance is to exhaustively
compute all possible schedules, calculate their resulting en-
ergy and delay characteristics, and find the lowest energy
schedule for each delay. Table 2 is an exhaustive list of all
possible schedules of the example in Table 1. For this ex-
ample, we assume negligible switching overhead. The delay
for schedule {B,L,B} is calculated by summing the delay

Quantum 1 Quantum 2 Quantum 3
Core Delay Energy Delay Energy Delay Energy
Big 10 ms 50 mJ 20 ms 60 mJ 30 ms 60 mJ

Little 20 ms 20 mJ 40 ms 50 mJ 35 ms 40 mJ

Table 1: Example Characteristics. Delay and energy
characteristics for a fictional big.LITTLE system over three
quanta of 10M instructions each.

Number Schedule Delay (ms) Energy (mJ)
1 {B,B,B} 60 170
2 {B,B,L} 65 150
3 {B,L,B} 80 160
4 {B,L,L} 85 140
5 {L,B,B} 70 140
6 {L,B,L} 75 120
7 {L,L,B} 90 130
8 {L,L,L} 95 110

Table 2: Exhaustive Schedule Characteristics. De-
lay and energy characteristics for all possible schedules of
the fictional Big (B) and Little (L) cores over the quanta of
Table 1.

for choosing the Big core for quantum 1 (10ms), the Little
core for quantum 2 (40ms), and the Big core for quantum 3
(30ms), yielding a total of 80ms. The energy is computed
similarly.

3.3 Pareto Frontier
Using exhaustive schedules we can compute the best sched-

ule, and corresponding energy consumption, for a given per-
formance level. Given an exhaustive list of schedules and
their corresponding energy and delay characteristics, we can
combine all Pareto optimal schedules to form the Pareto
frontier of the energy/delay tradeoff.

Pareto Optimal Schedule: A schedule X = {x1, ..., xn}
is a Pareto Optimal Schedule if and only if there exists
no schedule, Y = {y1, ..., yn}, over the same quanta,
such that X 6= Y , Energy(Y) < Energy(X), and
Delay(Y) < Delay(X).

Figure 1 illustrates the characteristics of the schedules of
Table 2. The point (90 ms,130 mJ), formed by the schedule
{L,L,B}, is made non-Pareto optimal by the point (75ms,
120mJ), formed by {L,B,L}. Together the Pareto optimal
points form the Pareto frontier, which represents the best
possible tradeoffs between energy and delay.

3.4 Pareto Optimal Regions
Pareto frontiers can effectively express the best energy-

performance tradeoffs but they require exhaustively explor-
ing all possible schedules. The computational complexity
required to compute all schedules is nq, where n is the num-
ber of possible core modes and q is the number of quanta. As
further described in Section 4, we consider 12 possible core
modes and 1M quanta. The number of possible schedules
quickly becomes too large to exhaustively search the exact
Pareto frontier.

One of PaTH ’s main contributions is an algorithm to pro-
duce the Pareto Optimal tradeoffs within a bounded level
of error while still exploring the entire design space in a
tractable amount of time. Our approach is divided into four

Figure 1: Pareto Frontier of Schedule Character-
istics. The resulting energy and delay characteristics for
all possible schedules of Table 2. Some schedules both con-
sume more energy and require more delay than others, (i.e.
are up and to the right), making them non-Pareto optimal
schedules. The remaining Pareto optimal schedules form the
Pareto frontier.

Figure 2: Approximating the Pareto Frontier. When
the segment’s Pareto frontier is complete (a), it needs to
be approximated to allow merging with another segment’s
frontier (a). This is accomplished by grouping all schedules
that differ by ≤ ∆E and ≤ ∆D (b). These schedules are
then approximated by both a best-case schedule, with the
least energy and delay possible for all encompassed schedules
and worst-case schedule, with the highest energy and delay
possible (c). Together these approximate schedules form the
best-case and worst-case frontiers. The exact Pareto frontier
must lie between them in the Pareto optimal region.

steps: (1) group the execution into analyzable segments,
where each segment consists of many quanta, (2) exhaus-
tively compute the Pareto frontier within a segment, (3) ap-
proximate all segments by introducing a bounded amount of
error, and (4) convolve segments together to form the overall
Pareto frontier.

By using a divide-and-conquer approach, we can com-
pute the Pareto frontier in parallel by computing Pareto
frontiers for sequential segments of the application simulta-
neously and convolving them to form the overall frontier.
Convolution, however, requires summing the energy and
delay of each schedule on the first segment’s Pareto fron-
tier (for quanta {1, ..., n}) with each schedule on the second
segment’s Pareto frontier (for quanta {n + 1, ...,m}). The
quadratic time complexity of this operation again yields an
intractable problem. Therefore, before combining each par-
tial frontier, we first use approximation to reduce the num-
ber of schedules that must be convolved in order to make
the computation manageable.

To approximate each segment’s Pareto frontier while main-
taining a bounded error, we replace many schedules that

Figure 3: Merging Two Pareto Frontiers Segments.
To combine quanta {1,..,n} with {n+1,..,m}, the approxi-
mated frontier from Figure 2 (a) must be convolved with the
succeeding segment (b). This results in a combination of all
possible best and worst-case schedules of the first segment
with all possible best and worst-case schedules of the second
segment, resulting in a Pareto optimal region for quanta
{1,..,m} (c). The schedules that result from the convolution
will bound the true Pareto frontier in the Pareto optimal re-
gion. For our analysis, we bound the total error introduced
by approximation and merging to ±2.5% of the true Pareto
frontier.

have similar energy and delay with two approximated sched-
ules, as illustrated in Figure 2. We first select the highest
energy schedule, and select nearby schedules until we meet
the bound on either the energy or the delay error. We then
replace all encompassed schedules with two approximated
schedules, a best-case and worst-case. The best-case sched-
ule consists of the least energy and least delay of any en-
compassed schedule. Note that least energy typically comes
from a different schedule than the least delay. This sched-
ule is Pareto optimal to all encompassed schedules. The
worst case schedule is similar, but with the worst energy
and delay, implying all encompassed schedules are Pareto
optimal to the worst-case schedule. Together, these two
schedules bound the actual Pareto frontier between them
in the Pareto optimal region.

As illustrated in Figure 3, when combining two segments,
we convolve all the best and worst-case schedules for the first
segment with all best and worst-case schedules of the sec-
ond segment. Hence, the combined Pareto frontier comprises
two curves, representing the upper and lower bounds of the
Pareto optimal region within which the true frontier must
lie. By limiting the error introduced during the approxima-
tion phase such that the difference between the worst case
frontier and the best case frontier is sufficiently small, we
achieve a bounded estimate of the true Pareto frontier to
an accuracy of ±2.5%. Our approach is a departure from
traditional approaches which either optimize locally within
a segment but do not combine them, [19, 39], or rely on
approximations to combine segments but do not provide an
overall error guarantee, [38].

3.5 Early Schedule Pruning
Rather than exhaustively computing all possible schedules

within a segment to form the Pareto frontier, we can utilize
early schedule pruning to reduce the number of schedules
that must be generated. This optimization takes advantage
of independence to detect non-optimal sub-schedules before
all subsequent schedules are enumerated, removing unnec-
essary computation without introducing any error.

Figure 4: Early Scheduling Pruning Optimization.
Once a sub-schedule becomes non-Pareto optimal (illus-
trated with a dashed border), all subsequent schedules will
remain non-Pareto optimal and need not be considered. For
example, the schedule {B,L} is made non-Pareto optimal by
schedule {L,B}. Therefore all schedules based on {B,L} will
never be Pareto optimal and need not be computed.

0.0001

0.001

0.01

0.1

1

10

100

1000

1 10 100 1K 10K 100K 1M

R
u

n
ti

m
e

(M
in

u
te

s)

Scheduling Decisions

Exhaustive Early Pruning PaTH

Figure 5: Runtime Overheads. Exhaustive computes
all possible schedules, Early Pruning prunes non-optimal
sub-schedules early. PaTH uses bounded approximations,
and can analyze much larger scheduling windows. Schedul-
ing decisions represent 1K and 10M instructions for fine-
grained and coarse-grained approaches, respectively.

Non-Optimal Sub-schedule: Any schedule, Z =
{x1, ..., xn, zn+1}, that includes a non-optimal sub-
schedule, X = {x1, ..., xn}, is also non-optimal as there
must exist a sub-schedule, Y = {y1, ..., yn}, such that
there exists a schedule, Z∗ = {y1, ..., yn, zn+1}, that
yields Energy(Z∗) < Energy(Z) and Delay(Z∗) <
Delay(Z).

Let us again consider the quanta from Table 1. Figure 4
illustrates the formation of schedules as a tree. The first level
contains two sub-schedules, {B} and {L}, for a Big or Little
core. The second level contains four sub-schedules, and the
third has eight complete schedules. However, note that if we
compute the energy and delay for all sub-schedules on the
second level, we observe that the schedule {B,L} is made
non-Pareto optimal by the schedule {L,B}. Any schedule
that begins with {B,L} will always be non-Pareto optimal
by a equivalent schedule that begins with {L,B}. Therefore
schedules derived from the {B,L} sub-schedule need not be
computed as they will never be on the Pareto frontier.

3.6 Runtime Overheads
Figure 5 illustrates the runtime overheads associated with

forming the Pareto optimal tradeoffs for gcc with various
approaches. The runtime measurements for PaTH were
collected on an Intel 2.2GHz 8-core machine with hyper-

Architectural Feature Parameters
Big Core 3-Issue Out-Of-Order

2048 Entry BTB
Tournament Predictor
15 stage pipeline
48 ROB entries
82 entry register file

Little Core 2-Issue In-Order
512 Entry BTB
2-Bit Predictor
8 stage pipeline
32 entry register file

Table 3: Experimental coarse-grained core parame-
ters

Architectural Feature Parameters
Frontend 3-Issue

2048 Entry BTB
Tournament Predictor

Big Backend 3-Issue Out-Of-Order
15 stage pipeline
48 ROB entries
82 entry register file

Little Backend 2-Issue In-Order
8 stage pipeline
32 entry register file

Table 4: Experimental fine-grained core parameters

threading. The Exhaustive approach computes all solutions
to form the exact frontier while Early Pruning computes
an identical frontier, but can eliminate non-optimal sub-
schedules to reduce computation overhead. PaTH relies on
bounded approximations and parallelization to scale to a
much higher number of decisions.

The large overhead at the beginning of both Exhaustive
and Early Pruning is due to memory pre-allocation. While
Exhaustive only computes the Pareto frontier once, Early
Pruning must compute the Pareto frontier for each quan-
tum, causing higher overheads initially before the cumula-
tive benefits of early pruning become effective. However,
neither approach can tractably analyze more than 1K de-
cisions. PaTH ’s bounded approximations and parallelism
allow it to analyze 1M decisions, or 1B instructions for fine-
grained approaches, in a little over 8 hours.

3.7 Multi-Threaded Extension
While we have relied on PaTH to evaluate single-threaded

applications, the tool can also optimize multi-threaded ap-
plications. When each core is optimized individually knowl-
edge of thread interactions is lost, potentially wasting energy
savings. PaTH can also optimize both within a core as well
as across cores. If given c cores and q quantums, rather than
selecting one mode for the quantum it must select c modes,
one for each core. However, this increases the computational
complexity from nq to (cn)q. This increase in computational
complexity requires additional optimization steps in PaTH ,
which are left for future work.

4. METHODOLOGY
As the goal of this work is to determine the relative bene-

fits of competing forms of heterogeneity, we model the power
and performance for fine-grained DVFS and HMs, as well as

Memory Size Access Cycles Latency
L1 Instruction Cache 32 KB 1 cycle -
L1 Data Cache 32 KB 2 cycles -
L2 Cache 1 MB - 7.5ns
Main Memory 1024MB - 40ns

Table 5: Experimental memory system

28nm LP-FDSOI
Voltage (V) Frequency (MHz)

1.1 2000
1.0 1800
0.9 1500
0.8 1200
0.7 900
0.6 600

Table 6: Realistic DVFS Levels. Achievable frequen-
cies for a given voltage domain for 28nm Low Power - Fully
Depleted Silicon on Insulator. Data taken from [11].

their combination. Additionally, we model more traditional
coarse-grained equavalent systems for comparison.

4.1 Architecture Modeling
For fine-grained HMs, we mimic the architecture proposed

by our prior work which relies on a single core with two
separate backends, the Big (out-of-order) and Little (in-
order) [26]. These multiplex access to shared L1 caches,
fetch engine, and branch predictor. We require that only
one backend is active at a time. Additionally, the Little
backend now must access structures that were designed for
a higher performance Big backend. The power implications
of this architecture are further discussed in Section 4.2.

We choose to model both ideal fine-grained DVFS as well
as dual-rail DVFS. Ideal DVFS (or just DVFS), is capable
of utilizing the full voltage/frequency range of the core at
a fine granularity, but neglects the on-chip regulator conver-
sion losses [19]. The Dual-Rail (DR) model allows the core
to rapidly transition between separate off-chip voltage sup-
plies. As additional voltage rails incur area and/or metal
layer overheads, we assume a limit of two voltage/frequency
modes [8].

At a coarse granularity, we use separate caches and fron-
tends to create a system similar to ARM’s big.LITTLE. This
system is capable of utilizing both microarchitectures and
the full frequency range. However, it is limited to only be-
ing able to switch as often as every 10M instructions.

To model performance, we use the gem5 simulator [5]. We
use full system simulations for 1B instructions (after fast for-
warding for 2B instructions) using the ARM ISA running on
Ubuntu 11.04. We evaluate the potential core modes using
the SpecInt 2006 benchmarks compiled using gcc with the
-O2 optimization flag. The microarchitectural parame-
ters for the coarse-grained and fine-grained core models are
given in Tables 3 and 4 respectively. The memory system
latencies are shown in Table 5. We assume the frequency
of both the L1 instruction and data caches scale with the
core, resulting in constant access cycles, while the L2 cache
and Main Memory are maintained at a constant frequency,
resulting in constant access latency.

Model Core Perf. Avg. Power Efficiency
(MIPS) (mW) (MInsts/J)

Coarse Big 1986 2056 965
Little 1191 369 3227

Fine Big 1986 2081 954
Little 1230 393 3129

Table 7: Modeling Baselines. The performance, power,
and energy efficiency characteristics of our modeled architec-
tures.

4.2 Power Modeling
Rather than relying on a simple scaling equation, our ap-

proach relies on realistic voltage/frequency modes for a mod-
ern technology. As such, we use published voltage and fre-
quency levels for an ARM A9 processor using a cutting-edge
process technology, 28nm Fully Depleted Silicon On Insula-
tor (FDSOI) [11]. Table 6 gives the specific voltage and
frequency levels used in this study. The voltage levels that
occurred most frequently in the schedules generated by PaTH,
1.1V and 1.0V, form the supplies for the DR systems.

We model core power consumption using McPAT [34]. To
determine the optimum performance/energy tradeoffs more
accurately, we compute the energy consumption for each
quantum individually. Similarly to [6], we extend McPAT
to save CACTI models and re-use them for each quantum,
and augment it to allow non-standard voltages. Finally, we
update McPAT’s internal scaling models to more accurately
reflect current manufacturing technologies by using ITRS
projections from 2012 to add the 28nm FD-SOI technology
node [17].

For coarse-grained approaches, we assume a perfect tran-
sition and that inactive cores are power-gated when not in
use. For fine-grained ideal DVFS, we assume a perfect on-
chip regulator [19]. Based on [25], when raising voltages
we assume execution continues at the original frequency un-
til the voltage stabilizes, whereupon execution switches to
the higher frequency. When lowering voltages, execution
switches to the lower frequency before gradually lowering
the voltage to match. Similarly to [26], we assume that,
due to the rapid switching between microarchitectures, fine-
grained HMs are not power-gated, and can only save energy
through clock-gating. This implies both backends will be
dissipating static energy even though only one is active.

Additionally, when using multiple backends, the shared
structures must be provisioned to support the highest per-
formance backend, effectively over-provisioning for the more
energy efficient backend, reducing it’s overall energy effi-
ciency. The over-provisioning results in a Little backend
whose power consumption is higher than a custom designed
energy-efficient core. The fine-grained HMs must rely on op-
erating in energy efficient mode more frequently to overcome
the reduced energy efficient mode savings.

4.3 Architecture Baselines
The performance, average power, and energy efficiency

for the baseline architectures for the SPECINT2006 bench-
marks are given in Table 7. Note that, due to an over-
provisioned frontend, the fine-grained Little achieves a slightly
higher performance than it’s coarse-grained counterpart.
Secondly, note that both fine-grained architectures have
both a higher average power and lower efficiency than their

System Evaluation ∆Performance ∆Energy
Industry ARM A7/A15 1.9x 3.5x
Modeled Gem5+Mcpat 2.09x 3.01x

Table 8: Model Comparison. A comparison of the
energy and performance differences between our modeled
coarse-grained HMs and an industrial equivalent [12].

0%

20%

40%

60%

80%

100%

0% 20% 40% 60% 80% 100%

En
er

gy
 S

av
in

gs

Slowdown

DVFS HMs DVFS + HMs DR + HMs

Figure 6: Pareto Frontier for Fine-Grained Switch-
ing. Note that HMs achieve more energy savings than
DVFS. Additionally DVFS + HMs and DR + HMs achieve
only modest improvements to HMs.

coarse-grained counterparts due to overheads of sharing ar-
chitectural components and increased leakage energy of the
inactive backend. As a brief comparison, Table 8 illustrates
the relative differences between microarchitectures for both
our coarse-grained system and ARM’s when running Dhry-
stone [12].

5. TRADEOFFS IN HETEROGENEITY
Using PaTH , we can now study the performance/energy

tradeoffs between different forms of heterogeneity. Section 6
provides more in-depth analysis on how program character-
istics affect the tradeoff.

We study four different fine-grained heterogeneous con-
figurations: only ideal voltage heterogeneity (DVFS), only
microarchitectural heterogeneity (HMs), a combination of
the two (DVFS + HMs), and a combination of HMs and a
dual-rail voltage system (DR + HMs). The DR design uti-
lizes only two voltage/frequency modes. The details of these
configurations are further discussed in Section 4.

5.1 Fine-Grained Comparison
Figure 6 illustrates the Pareto frontier of energy savings

and slowdown for each fine-grained heterogeneous configu-
ration. The slowdown and energy savings are normalized to
the performance and energy of the highest performance mi-
croarchitecture (Big) at the highest frequency(2GHz), where
a 100% slowdown indicates a doubling of the runtime. To
interpret the tradeoff, observe the energy savings for each
heterogeneous configuration at a specific slowdown. Higher
lines indicate better configurations, as they achieve higher
energy savings for a given slowdown.

Figure 6 illustrates that HMs are able to achieve higher
energy savings for a given level of slowdown than DVFS
regardless of the slowdown level. Analysis of the microar-

0%

10%

20%

30%

40%

50%

60%

Coarse Fine Coarse Fine Coarse Fine

5% 10% 25%

En
er

gy
 S

av
in

gs

Slowdown

DVFS HMs DVFS + HMs

Figure 7: Impact of Switching Granularity. At
smaller slowdowns, the benefits of fine-grain switching are
more apparent. Also, HMs achieve better tradeoffs than
both coarse-grained DVFS + HMs and fine-grained DVFS.

chitectures helps confirm this observation. DVFS can only
operate a complex architecture slower, which only yields
its maximum effectiveness when stalled on memory-bound
phases. However, HMs can switch to a simpler architec-
ture (with a shorter pipeline) while maintaining the same
frequency. Therefore HMs are able to improve efficiency un-
der more phases with poor performance, such as low ILP or
high branch misprediction levels, as well as memory-bound
phases. Figure 6 indicates that the combination of DVFS
+ HMs offers an additional 3-4% energy savings over only
HMs until about 60% slowdowns. Thus HMs, rather than
DVFS, provide more opportunities to switch to a more en-
ergy efficient mode without suffering significant performance
loss. Please see Section 6 for more in-depth analysis based
on program behavior.

5.2 Switching Granularity
Figure 7 compares the tradeoffs for each heterogeneous

configuration with different switching granularities, both
fine-grained (1K instruction quanta) and coarse-grained (10M
instruction quanta). Here we observe that at coarse switch-
ing granularities, DVFS saves 10%, 17% and 28% of the
energy while HMs delivers 13%, 21%, and 38%. Finally,
with DVFS + HMs, energy savings of 15%, 25% and 43%
are possible.

Focusing on the benefits of fine-grained switching, we ob-
serve that DVFS provides an additional 2% energy savings
for a given level of performance over coarse-grained DVFS.
However HMs are able to save 7-10% more energy than
coarse-grained HMs. The minimal improvement of fine-
grained DVFS is caused by the nature of the phases it tar-
gets. L2 misses, where DVFS garners it’s primary bene-
fits, tend to occur in bursts, allowing them to be captured
by both coarse and fine-grained approaches. However, fine-
grained HMs are able to capture short phases of multiple
branch mispredicts or low-ILP that cannot be captured by
coarse-grained HMs or DVFS. These additional capabilities
allow HMs to benefit more from fine-grained switching than
DVFS.

Focusing on a 5% slowdown, we observe that coarse-
grained DVFS + HMs allow 15% energy savings, a 3x energy
savings return for the performance loss. Fine-grained HMs

0%

10%

20%

30%

40%

50%

60%

DVFS HMs DVFS HMs DVFS HMs

5% 10% 25%

En
er

gy
 S

av
in

gs

Slowdown

0 ns 20 ns 50 ns 100 ns 200 ns

Figure 8: Impact of Switching Overheads Note that
even experiencing a 100ns delay, HMs are still able to achieve
better tradeoffs than idealistic DVFS.

alone are able to achieve a 21% energy savings. Finally, us-
ing a fine-grained DVFS + HMs system, the core is able to
save 25% of the energy consumption with a 5% slowdown,
a 5X energy savings return for the performance loss. Fine-
grained architectures are able to save 10% more energy than
the best coarse-grained approach.

5.3 Switching Overheads
Thus far in our analysis we have neglected the overheads

of switching. However, switching as frequently as every 1K
instructions could have an impact on the tradeoff. To model
the overheads of switching, we augment PaTH to track the
number of switches for each schedule and then factor in var-
ious levels of fixed overhead per switch. As discussed in Sec-
tion 4.2, we assume that fine-grained DVFS systems switch
between different levels without any execution stalls, but
suffer the power consumption for the highest voltage during
the transition. For transitions between fine-grained HMs,
we assume the execution halts for a fixed number of cycles,
and during that delay both microarchitectures are consum-
ing their average power.

Figure 8 illustrates the results of factoring in delays of var-
ious lengths. The achieved energy savings are shown with 0
(ideal), 20, 50, 100, and 200 ns delays. As the exact tran-
sition latency is design dependent, we have included a wide
range of latencies. Kim et al. developed an on-chip voltage
regulator capable of scaling over the full voltage range in
20ns [18]. Lukefahr et al. report a fine-grained HM that in-
curs less than 1% overhead for switching at granularities of
1K instructions, indicating a less than 20ns switching delay.

As shown in Figure 8, at a 5% slowdown, HMs suffer a
2%, 4%, 7%, and 12% drop in energy savings for 20, 50, 100,
and 200 ns latencies. Similarly DVFS suffers a 1%, 3%, 6%,
and 11% drop. The observation is that even with a 100ns
latency cost per switch, HMs are still able to achieve higher
energy savings than ideal DVFS.

5.4 Leakage Overheads
For fine-grained HMs we assume the inactive backend is

clock-gated but not power-gated. Therefore, another major
variable in the performance/energy tradeoff for these archi-
tectures is the leakage energy incurred by the inactive back-
end. When in Little mode, the leakage energy of Big adds
extra energy overheads to Little. Figure 9 illustrates the im-
pact on energy savings when we increase the assumed leak-

0%

10%

20%

30%

40%

50%

5% 10% 25%

En
er

gy
 S

av
in

gs

Slowdown

5% Little 10% Little 20% Little 30% Little 40% Little Ideal DVFS

Figure 9: Impact of Leakage Energy Overheads for
Fine-Grained HMs. Each bar illustrates the energy sav-
ings as Big’s leakage energy adds overheads to the total
power in Little mode. Here, even with a 40% power overhead
from Big’s leakage, fine-grained HMs still achieve better per-
formance/energy tradeoffs than ideal DVFS.

age power overheads of Big relative to Little’s total power.
Note the Little backend adds insignificant leakage while the
Big backend is active. Different Pareto-optimal schedules
result as leakage is increased, causing PaTH to shift some
quanta to a higher performance mode. At a 5% slowdown
level, a majority of the application is still run on the Big
backend to meet performance requirements, resulting in a
minor impact of leakage energy as the Little backend is not
as heavily utilized, However, as the allowed slowdown in-
creases, the Little backend is increasingly utilized and the
overall energy savings reflect the additional leakage incurred
when using the Little backend. Even with an additional 40%
leakage power overhead, fine-grained HM’s are still able to
achieve better energy savings for a given level of performance
than ideal DVFS. By analyzing the results from [11], for a
low leakage 28nm FDSOI process, we expect the overhead of
the Big’s leakage to add an additional 10-20% power over-
head when in Little mode.

5.5 Discussion
Prior works, most notably [2], relied on static application-

to-core allocation to derive their performance/energy pareto
frontiers. They arrive at two core designs, then used voltage
scaling to provide incremental performance improvements at
the cost of additional energy. However, our results indicate
that HMs provide a superior tradeoff space than DVFS. In
fact, our results suggest that building fine-grained DVFS is
unnecessary when fine-grained HMs are available. Addition-
ally, we show that these results are not affected by sensitivity
to either switching overheads or leakage energy.

We believe there are two main differences that help to ex-
plain the discrepancy between prior works. First, we have
more restrictive DVFS scaling due to the limitations im-
posed by the use of low-leakage transistors for low-power
cores. Second, prior studies neglect to include the bene-
fits of intelligent scheduling. By using scheduling to intelli-
gently switch between different HMs, we can achieve many
of the same performance levels available through DVFS with
a higher energy savings.

0%

10%

20%

30%

40%

50%

En
e

rg
y

Sa
vi

n
gs

DVFS HMs DVFS + HMs DR + HMs

Figure 10: Per Benchmark Energy Savings for a 5%
Slowdown

0

5

10

15

20

25

30

35

40

45

50

B
ra

n
ch

 M
is

p
re

d
ic

ts
 /

 1
K

 In
st

Figure 11: Branch mispredictions per thousand in-
structions

6. PROGRAMMATIC BEHAVIOR
Heterogeneity provides energy savings by mapping low

performance application phases to more energy efficient modes
(lower voltage or simpler microarchitecture). The goal of
this section is to study the programmatic behavior of in-
dividual benchmarks and examine their predisposition to
the different forms of heterogeneity through illustrative case
studies. Figure 10 illustrates the wide range of potential en-
ergy savings for the different techniques across all the bench-
marks studied. This range indicates that some benchmarks
are better able to utilize DVFS, others HMs, and still others
see little benefit from either fine-grained approach.

6.1 Expectations
To begin our study, we show a few metrics that we believe

are most useful in explaining why some benchmarks pre-
fer one form of heterogeneity over another. These metrics
include branch mispredicts (Figure 11), L2 cache accesses
(Figure 12), and instructions per cycle (Figure 13). These
measurements were taken using the highest frequency level
for the Big microarchitecture.

The first metric, branch mispredicts, is chosen to illus-
trate a scenario which puts Little at an advantage. The Lit-
tle core, with its shorter pipeline length, can recover from
branch mispredictions faster. Additionally, during periods
of high mispredictions, lowering the frequency of a Big core
neither increases branch prediction accuracy nor reduces

158 50

0

5

10

15

20

25

30

35

40

45

50

Ev
en

ts
 /

 1
K

 In
st

L2 Hits

L2 Misses

L2 Overlapped Misses

Figure 12: Categorized L2 accesses per thousand
instructions

0.0

0.5

1.0

1.5

2.0

In
st

ru
ct

io
n

s
/

C
yc

le

Issued

Committed

Figure 13: Issued and committed instructions per
cycle in a thousand instruction window

misprediction penalties. Therefore, we consider benchmarks
with highly unpredictable control flow to be more amenable
to HMs.

The next metric is L2 cache accesses, which include three
separate quantities, L2 hits, L2 misses, and L2 overlapable
misses. As a high performance Big core cannot avoid stalling
on L2 misses, these offer an ideal opportunity to switch to a
Little core. However, if the L2 misses are independent, they
can be issued in parallel by a Big core operating at a lower
voltage. This is not possible with the Little core, which can-
not exploit this parallelism. Therefore, if the application is
generating a large number of independent L2 misses, DVFS
is a better option. Alternatively, if it has large number of
dependent L2 misses HMs are a better option.

Finally, the third metric is instructions per cycle. We ob-
serve that for several computation-bound benchmarks, nei-
ther form of heterogeneity is significantly utilized. The per-
formance of these benchmarks is limited primarily by the
frequency and issue width. Therefore they prefer the high-
est frequency on the core with the highest issue width. As
DVFS reduces frequency, and HMs reduce issue width, both
approaches deliver less than average energy returns.

Given Figures 11-13, we expect that bzip2, hmmer, h264ref
should be computation-bound. More control-bound appli-
cations, such as astar, gobmk, and perlbench, which have
higher branch misprediction rates and lower numbers of L2
misses, should prefer HMs. mcf , libquantum, xalancbmk,
which have higher L2 miss rates and numerous parallel loads,
should prefer DVFS. The remaining benchmarks have inter-
mediate levels of both branch mispredictions and L2 misses,
and we expect them to be able to utilize some combination
of both types of heterogeneity.

0%

5%

10%

15%

20%

25%

30%

0% 5% 10% 15% 20% 25%

En
er

gy
 S

av
in

gs

Slowdown

Coarse Grained DVFS + HMs Fine Grained DVFS

Fine Grained HMs

Figure 14: Pareto Frontier for hmmer. Note DVFS
achieves better tradeoffs than HMs. Also the coarse-grained
and fine-grained tradeoffs are nearly identical.

0%

10%

20%

30%

40%

50%

60%

0% 5% 10% 15% 20% 25%

En
er

gy
 S

av
in

gs

Slowdown

DVFS HMs DVFS + HMs

Figure 15: Pareto Frontier for xalancbmk. Note the
much higher energy savings achieved using DVFS than HMs
for small levels of slowdown.

6.2 Benchmark Classifications
The first, and perhaps least interesting, class of bench-

marks are the computation-bound. In Figure 14, we have
chosen hmmer as the representative of this class. Due to
the stable long-term phases of this benchmark, fine-grained
approaches gain almost nothing over a coarse-grained ap-
proach. Also, these benchmarks prefer DVFS simply be-
cause the performance difference between modes is smaller.
hmmer effectively utilizes a 10% slower DVFS level to in-
cur a 10% slowdown. However, its energy saving returns are
only slightly better than the performance loss required to
achieve it.

The first memory-bound application we study is xalancbmk.
This benchmark has a moderate amount of L2 misses, but
a large fraction of them can be overlapped. Figure 15 il-
lustrates that the Pareto frontier for fine-grained DVFS is
above (i.e. saves more energy than) fine-grained HMs, until
around a 5% performance loss. For this benchmark DVFS,
which can exploit parallel L2 misses, gives a better return
than HMs. The return is because Little, while more energy
efficient, must stall on every L2 miss. Beyond 5%, there is
not a sufficient number of parallel loads to continue to make
DVFS more efficient.

The second memory-bound benchmark we highlight is
mcf . Figure 12 shows high levels of memory parallelism that
indicate this benchmark should prefer to use DVFS. How-
ever, Figure 16 illustrates that it actually prefers HMs. This
counter-intuitive result can be explained by noting that mcf

0%

10%

20%

30%

40%

50%

60%

0% 5% 10% 15% 20% 25%

En
er

gy
 S

av
in

gs

Slowdown

DVFS HMs DVFS + HMs

Figure 16: Pareto Frontier for mcf . Unlike expected,
HMs are preferred to DVFS.

0%

10%

20%

30%

40%

50%

60%

0% 5% 10% 15% 20% 25%

En
er

gy
 S

av
in

gs

Slowdown

DVFS HMs DVFS + HMs

Figure 17: Pareto Frontier for perlbench. Note the
utilization of HMs due to L2 pointer-chasing.

exhibits phased behaviors. While the initial phase contains
a large number of parallel loads, after the phase change the
number of parallel loads reduces considerably. Therefore,
while the average parallel load count is still relatively high,
a majority of this parallelism comes in the first phase of the
execution. Therefore, mcf prefers to run a combination of
DVFS and HMs to optimize individual execution phases.

The final application class consists of control-bound appli-
cations. For this example we choose to scrutinize perlbench,
which has one of the highest branch misprediction rates.
This benchmark also has a large number of L2 hits which
tends to form dependence chains. Figure 17 illustrates that
a combination of frequent branch mispredictions and serial
memory accesses causes this benchmark to prefer HMs. In
fact, perlbench maps so well to HMs that the addition of
DVFS adds almost no benefit.

6.3 Coarse vs. Fine Grain
Now we return our attention to how switching granular-

ity affects individual benchmarks. Benchmarks like hmmer,
shown in Figure 14, which have stable long-term phases, al-
low coarse-grained approaches to fare as well as fine-grained.
However, benchmarks with unstable phase behavior benefit
from using a fine-grained system.

Figure 18 illustrates the benefits of fine-grained HMs for
omnetpp. While coarse-grained HMs achieve a nearly lin-
ear tradeoff, fine-grained HMs are able to achieve 3x more
savings than coarse-grained HMs at a 10% slowdown target.
Figure 19 illustrates that if measured at a fine granular-
ity, omnetpp shows two finely interleaved main performance

0%

10%

20%

30%

40%

50%

60%

0% 5% 10% 15% 20% 25%

En
er

gy
 S

av
in

gs

Slowdown

Coarse Grained HMs Fine Grained HMs

Figure 18: Pareto Frontier for omnetpp. Fine grained
HMs achieve better tradeoffs than coarse-grained HMs.

Figure 19: Committed Instruction / Cycle for
omnetpp. Each point represents 1K dynamic instructions.
Note the high performance band, which benefits from out-
of-order, and the low performance band , which does not.

bands, one higher and one lower. Fine-grained switching is
required to exploit them. The Big mode is required for the
higher band, but the lower band can be run on the Little
mode with nearly the same performance, reducing the en-
ergy consumed without impacting performance. As the low
performance bands are not caused by parallel L2 misses,
DVFS cannot target these phases as effectively as HMs.

6.4 Combined Heterogeneity
In some benchmarks, DVFS performs well for some phases

of the application and HMs for others. Often initially DVFS
achieves a better tradeoff, but there are a limited number of
phases that can exploit DVFS, so HMs begin to dominate for
higher slowdowns. This leads to a scenario where both are
used simultaneously. A variety of benchmarks utilize both
DVFS and HMs synergistically to achieve increased energy
savings, e.g, xalancbmk and mcf of Figures 15 and 16.

7. CONCLUSION
This paper explored the implications of scheduling us-

ing different forms of heterogeneity to maximize energy ef-
ficiency for a given level of performance. We developed
PaTH , an offline analysis tool that is capable of deter-
mining the Pareto-optimal performance/energy tradeoffs for
a heterogeneous architecture. PaTH is capable of effi-
ciently searching the enormous state space of possible sched-
ules with tractable analysis turnaround time, by relying on

bounded approximations to find the Pareto-optimal perfor-
mance/energy tradeoffs within an accuracy of ±2.5%. We
then use PaTH to show the performance and energy trade-
offs for DVFS and HMs, as well as their combination.

Overall, our results show that HMs are able to provide
higher energy efficiency than DVFS for a given level of per-
formance. While at a coarse granularity the combination
of DVFS and HMs still proves beneficial, for fine-grained
scheduling their combination makes little sense as HMs alone
provide the bulk of the energy efficiency. Additionally, we
analyzed the effects of switching granularity and overheads
on the choice of heterogeneity. Finally, we demonstrated
that different benchmarks prefer different types and amounts
of heterogeneity.

8. ACKNOWLEDGEMENTS
This work is supported in part by ARM Ltd and by

the National Science Foundation under grant SHF-1217917.
The authors would like to thank the fellow members of the
CCCP research group, our shepherd (Osman Unsal), and
the anonymous reviewers for their time, suggestions, and
valuable feedback.

9. REFERENCES
[1] D. Albonesi, R. Balasubramonian, S. Dropsbo,

S. Dwarkadas, E. Friedman, M. Huang, V. Kursun,
G. Magklis, M. Scott, G. Semeraro, P. Bose,
A. Buyuktosunoglu, P. Cook, and S. Schuster,
“Dynamically tuning processor resources with
adaptive processing,” IEEE Computer, vol. 36, no. 12,
pp. 49 –58, Dec. 2003.

[2] O. Azizi, A. Mahesri, B. C. Lee, S. J. Patel, and
M. Horowitz, “Energy-performance tradeoffs in
processor architecture and circuit design: a marginal
cost analysis,” in Proceedings of the 37th annual
international symposium on Computer architecture,
2010, pp. 26–36.

[3] R. Bahar and S. Manne, “Power and energy reduction
via pipeline balancing,” Proc. of the 28th Annual
International Symposium on Computer Architecture,
vol. 29, no. 2, pp. 218–229, 2001.

[4] R. Balasubramonian, D. Albonesi,
A. Buyuktosunoglu, and S. Dwarkadas, “Memory
hierarchy reconfiguration for energy and performance
in general-purpose processor architectures,” in Proc. of
the 27th Annual International Symposium on
Computer Architecture, 2000, pp. 245–257.

[5] N. Binkert, B. Beckmann, G. Black, S. K. Reinhardt,
A. Saidi, A. Basu, J. Hestness, D. R. Hower,
T. Krishna, S. Sardashti, R. Sen, K. Sewell,
M. Shoaib, N. Vaish, M. D. Hill, and D. A. Wood,
“The gem5 simulator,” SIGARCH Comput. Archit.
News, vol. 39, no. 2, pp. 1–7, Aug. 2011.

[6] T. Carlson, W. Heirman, and L. Eeckhout, “Sniper:
Exploring the level of abstraction for scalable and
accurate parallel multi-core simulation,” in High
Performance Computing, Networking, Storage and
Analysis (SC), 2011 International Conference for,
2011, pp. 1–12.

[7] R. Dennard, F. Gaensslen, H.-N. Yu,
V. LEO RIDEOVT, E. Bassous, and A. R. Leblanc,
“Design of ion-implanted mosfet’s with very small

physical dimensions,” Solid-State Circuits Society
Newsletter, IEEE, vol. 12, no. 1, pp. 38–50, 2007.

[8] R. Dreslinski, “Near threshold computing: From single
core to many-core energy efficient architectures,”
Ph.D. dissertation, University of Michigan, 2011.

[9] C. Dubach, T. M. Jones, E. V. Bonilla, and M. F. P.
O’Boyle, “A predictive model for dynamic
microarchitectural adaptivity control,” in Proceedings
of the 2010 43rd Annual IEEE/ACM International
Symposium on Microarchitecture, ser. MICRO ’43,
2010, pp. 485–496.

[10] S. Eyerman and L. Eeckhout, “Fine-grained dvfs using
on-chip regulators,” ACM Trans. Archit. Code Optim.,
vol. 8, no. 1, pp. 1:1–1:24, Feb. 2011.

[11] P. Flatresse, G. Cesana, and X. Cauchy, “Planar fully
depleted silicon technology to design competitive soc
at 28nm and beyond,” Feb. 2012,
http://www.soiconsortium.org/link-812.php.

[12] P. Greenhalgh, “Big.little processing with arm
cortex-a15 & cortex-a7,” Sep. 2011.

[13] E. Grochowski, R. Ronen, J. Shen, and P. Wang,
“Best of both latency and throughput,” in Computer
Design: VLSI in Computers and Processors, 2004.
ICCD 2004. Proceedings. IEEE International
Conference on, 2004, pp. 236–243.

[14] M. Horowitz, E. Alon, D. Patil, S. Naffziger,
R. Kumar, and K. Bernstein, “Scaling, power, and the
future of cmos,” in Electron Devices Meeting, 2005.
IEDM Technical Digest. IEEE International, 2005, pp.
7 pp.–15.

[15] C. Isci, A. Buyuktosunoglu, C. Cher, P. Bose, and
M. Martonosi, “An analysis of efficient multi-core
global power management policies: Maximizing
performance for a given power budget,” in Proc. of the
39th Annual International Symposium on
Microarchitecture, Dec. 2006, pp. 347–358.

[16] T. Ishihara and H. Yasuura, “Voltage scheduling
problem for dynamically variable voltage processors,”
in Proceedings of the 1998 international symposium on
Low power electronics and design, ser. ISLPED ’98,
1998, pp. 197–202.

[17] ITRS, “International technology roadmap for
semiconductors 2012,” 2012, http://www.itrs.net/.

[18] W. Kim, D. Brooks, and G.-Y. Wei, “A
fully-integrated 3-level dc-dc converter for
nanosecond-scale dvfs,” IEEE Journal of Solid-State
Circuits, vol. 47, no. 1, pp. 206 –219, Jan. 2012.

[19] W. Kim, M. S. Gupta, G.-Y. Wei, and D. Brooks,
“System level analysis of fast, per-core dvfs using
on-chip switching regulators,” in Proc. of the 14th
International Symposium on High-Performance
Computer Architecture, 2008, pp. 123–134.

[20] D. Koufaty, D. Reddy, and S. Hahn, “Bias scheduling
in heterogeneous multi-core architectures,” in Proc. of
the 5th European Conference on Computer Systems,
2010, pp. 125–138.

[21] R. Kumar, K. I. Farkas, N. P. Jouppi,
P. Ranganathan, and D. M. Tullsen, “Single-ISA
Heterogeneous Multi-Core Architectures: The
Potential for Processor Power Reduction,” in Proc. of
the 36th Annual International Symposium on
Microarchitecture, Dec. 2003, pp. 81–92.

[22] R. Kumar, D. M. Tullsen, and N. P. Jouppi, “Core
architecture optimization for heterogeneous chip
multiprocessors,” in Proc. of the 15th International
Conference on Parallel Architectures and Compilation
Techniques, 2006, pp. 23–32.

[23] H.-P. Le, J. Crossley, S. R. Sanders, and E. Alon, “A
sub-ns response fully integrated battery-connected
switched-capacitor voltage regulator delivering 0.19
w/mm 2 at 73% efficiency,” in Solid-State Circuits
Conference Digest of Technical Papers (ISSCC), 2013
IEEE International. IEEE, 2013, pp. 372–373.

[24] J. Lee, V. Sathisha, M. Schulte, K. Compton, and
N. S. Kim, “Improving throughput of
power-constrained GPUs using dynamic
voltage/frequency and core scaling,” in Proc. of the
20th International Conference on Parallel
Architectures and Compilation Techniques, 2011, pp.
111–120.

[25] H. Li, C.-Y. Cher, T. N. Vijaykumar, and K. Roy,
“Vsv: L2-miss-driven variable supply-voltage scaling
for low power,” in Proceedings of the 36th annual
IEEE/ACM International Symposium on
Microarchitecture, ser. MICRO 36, 2003, pp. 19–28.

[26] A. Lukefahr, S. Padmanabha, R. Das, F. M. Sleiman,
R. Dreslinski, T. F. Wenisch, and S. Mahlke,
“Composite cores: Pushing heterogeneity into a core,”
in Proc. of the 45th Annual International Symposium
on Microarchitecture, 2012, pp. 317–328.

[27] T. N. Miller, X. Pan, R. Thomas, N. Sedaghati, and
R. Teodorescu, “Booster: Reactive core acceleration
for mitigating the effects of process variation and
application imbalance in low-voltage chips,” in Proc.
of the 18th International Symposium on
High-Performance Computer Architecture, vol. 0,
2012, pp. 1–12.

[28] J. Mogul, J. Mudigonda, N. Binkert, P. Ranganathan,
and V. Talwar, “Using asymmetric single-isa cmps to
save energy on operating systems,” IEEE Micro,
vol. 28, no. 3, pp. 26–41, May 2008.

[29] H. Najaf-abadi, N. Choudhary, and E. Rotenberg,
“Core-selectability in chip multiprocessors,” in Parallel
Architectures and Compilation Techniques, 2009.
PACT ’09. 18th International Conference on, 2009,
pp. 113–122.

[30] H. Najaf-abadi and E. Rotenberg, “Architectural
contesting,” in High Performance Computer
Architecture, 2009. HPCA 2009. IEEE 15th
International Symposium on, 2009, pp. 189–200.

[31] G. Patsilaras, N. K. Choudhary, and J. Tuck,
“Efficiently exploiting memory level parallelism on
asymmetric coupled cores in the dark silicon era,”

ACM Trans. Archit. Code Optim., vol. 8, no. 4, pp.
28:1–28:21, Jan. 2012.

[32] K. K. Rangan, G.-Y. Wei, and D. Brooks, “Thread
motion: fine-grained power management for multi-core
systems,” in Proc. of the 36th Annual International
Symposium on Computer Architecture, 2009, pp.
302–313.

[33] D. Shelepov, J. C. Saez Alcaide, S. Jeffery,
A. Fedorova, N. Perez, Z. F. Huang, S. Blagodurov,
and V. Kumar, “Hass: A scheduler for heterogeneous
multicore systems,” SIGOPS Oper. Syst. Rev., vol. 43,
no. 2, pp. 66–75, Apr. 2009.

[34] L. Sheng, H. A. Jung, R. Strong, J.B.Brockman,
D. Tullsen, and N. Jouppi, “Mcpat: An integrated
power, area, and timing modeling framework for
multicore and manycore architectures,” in Proc. of the
42nd Annual International Symposium on
Microarchitecture, 2009, pp. 469–480.

[35] J. Suh and M. Dubois, “Dynamic mips rate
stabilization in out-of-order processors,” in Proc. of
the 36th Annual International Symposium on
Computer Architecture, 2009, pp. 46–56.

[36] K. Van Craeynest, A. Jaleel, L. Eeckhout, P. Narvaez,
and J. Emer, “Scheduling heterogeneous multi-cores
through performance impact estimation (pie),” in
Proceedings of the 39th International Symposium on
Computer Architecture, ser. ISCA ’12, 2012, pp.
213–224.

[37] Q. Wu, M. Martonosi, D. W. Clark, V. J. Reddi,
D. Connors, Y. Wu, J. Lee, and D. Brooks, “A
dynamic compilation framework for controlling
microprocessor energy and performance,” in
Proceedings of the 38th annual IEEE/ACM
International Symposium on Microarchitecture, ser.
MICRO 38, 2005, pp. 271–282.

[38] F. Xie, M. Martonosi, and S. Malik, “Bounds on power
savings using runtime dynamic voltage scaling: an
exact algorithm and a linear-time heuristic
approximation,” in Low Power Electronics and Design,
2005. ISLPED ’05. Proceedings of the 2005
International Symposium on, 2005, pp. 287–292.

[39] ——, “Compile-time dynamic voltage scaling settings:
opportunities and limits,” in Proceedings of the ACM
SIGPLAN 2003 conference on Programming language
design and implementation, ser. PLDI ’03, 2003, pp.
49–62.

[40] ——, “Efficient behavior-driven runtime dynamic
voltage scaling policies,” in Proceedings of the 3rd
IEEE/ACM/IFIP international conference on
Hardware/software codesign and system synthesis, ser.
CODES+ISSS ’05, 2005, pp. 105–110.

