Composite Cores: Pushing Heterogeneity into a Core

Andrew Lukefahr, Shruti Padmanabha, Reetuparna Das, Faissal M. Sleiman, Ronald Dreslinski,
Thomas F. Wenisch, and Scott Mahlke

Advanced Computer Architecture Laboratory
University of Michigan
Ann Arbor, MI
{lukefahr, shrupad, reetudas, sleimanf, rdreslin, twenisch, mahlke} @umich.edu

Abstract

Heterogeneous multicore systems—comprised of multiple cores with
varying capabilities, performance, and energy characteristics—
have emerged as a promising approach to increasing energy effi-
ciency. Such systems reduce energy consumption by identifying phase
changes in an application and migrating execution to the most effi-
cient core that meets its current performance requirements. However,
due to the overhead of switching between cores, migration opportu-
nities are limited to coarse-grained phases (hundreds of millions of
instructions), reducing the potential to exploit energy efficient cores.

We propose Composite Cores, an architecture that reduces switch-
ing overheads by bringing the notion of heterogeneity within a sin-
gle core. The proposed architecture pairs big and little compute
UEngines that together can achieve high performance and energy
efficiency. By sharing much of the architectural state between the
UEngines, the switching overhead can be reduced to near zero, en-
abling fine-grained switching and increasing the opportunities to
utilize the little LEngine without sacrificing performance. An intelli-
gent controller switches between the WEngines to maximize energy
efficiency while constraining performance loss to a configurable
bound. We evaluate Composite Cores using cycle accurate microar-
chitectural simulations and a detailed power model. Results show
that, on average, the controller is able to map 25% of the execution
to the little uEngine, achieving an 18% energy savings while limiting
performance loss to 5%.

1. Introduction

The microprocessor industry, fueled by Moore’s law, has continued
to provide an exponential rise in the number of transistors that can fit
on a single chip. However, transistor threshold voltages have not kept
pace with technology scaling, resulting in near constant per-transistor
switching energy. These trends create a difficult design dilemma:
more transistors can fit on a chip, but the energy budget will not allow
them to be used simultaneously. This trend has made it possible
for today’s computer architects to trade increased area for improved
energy efficiency of general purpose processors.

Heterogeneous multicore systems are an effective approach to trade
area for improved energy efficiency. These systems comprise multi-
ple cores with different capabilities, yielding varying performance
and energy characteristics [20]. In these systems, an application is
mapped to the most efficient core that can meet its performance needs.
As its performance changes, the application is migrated among the
heterogeneous cores. Traditional designs select the best core by
briefly sampling performance on each. However, every time the ap-
plication migrates between cores, its current state must be explicitly
transferred or rebuilt on the new core. This state transfer incurs large
overheads that limits migration between cores to a coarse granularity

of tens to hundreds of millions of instructions. To mitigate these
effects, the decision to migrate applications is done at the granularity
of operating system time slices.

This work postulates that the coarse switching granularity in ex-
isting heterogeneous processor designs limits their effectiveness and
energy savings. What is needed is a tightly coupled heterogeneous
multicore system that can support fine-grained switching and is unen-
cumbered by the large state migration latency of current designs.

To accomplish this goal, we propose Composite Cores, an archi-
tecture that brings the concept of heterogeneity to within a single
core. A Composite Core contains several compute (Engines that
together can achieve both high performance and energy efficiency. In
this work, we consider a dual yuEngine Composite Core consisting
of: a high performance core (referred to as the big uEngine) and
an energy efficient core (referred to as the little Engine). As only
one UEngine is active at a time, execution switches dynamically
between uEngines to best match the current application’s characteris-
tics to the hardware resources. This switching occurs on a much finer
granularity (on the order of a thousand instructions) compared to
past heterogeneous multicore proposals, allowing the application to
spend more time on the energy efficient LEngine without sacrificing
additional performance.

As a Composite Core switches frequently between Engines, it
relies on hardware resource sharing and low-overhead switching
techniques to achieve near zero yEngine migration overhead. For
example, the big and little yEngines share branch predictors, L1
caches, fetch units and TLBs. This sharing ensures that during a
switch only the register state needs to be transfered between the
cores. We propose a speculative register transfer mechanism to
further reduce the migration overhead.

Because of the fine switching interval, conventional sampling-
based techniques to select the appropriate core are not well-suited for
a Composite Core. Instead, we propose an online performance esti-
mation technique that predicts the throughput of the unused uEngine.
If the predicted throughput of the unused pEngine is significantly
higher or has better energy efficiency then the active pEngine, the
application is migrated. Thus, the decision to switch pEngines max-
imizes execution on the more efficient little yFEngine subject to a
performance degradation constraint.

The switching decision logic tracks and predicts the accumulated
performance loss and ensures that it remains within a user-selected
bound. With Composite Cores, we allow the users or system archi-
tects to select this bound to trade off performance loss with energy
savings. To accomplish this goal, we integrate a simple control loop
in our switching decision logic, which tracks the current performance
difference based on the performance loss bound, and a reactive model
to detect the instantaneous performance difference via online perfor-



- Big Core =——Little Core

Instructions / Cycle

——Big Core —Little Core
25

- A
=W

0

Instructions / Cycle

160K 170K 180K

Instructions

(b) Inst. window of length 100 over a 200K inst. interval

Figure 1: IPC Measured over a typical scheduling interval for 403.gcc

0 T T T r )
200K 400K 600K 800K M
Instructions
(a) Inst. window of length 2K over a 1M inst. interval
50% &

—#—Always Switch - Share

o === Always Switch - Stitch

<& Always Switch - Flush
35% —#—Randomly Switch - Share
30% -+ === Randomly Switch - Stitch

Randomly Switch Flush

Additional Switching Overhead
NN
S &
S

500 1K 5K 10K 50K 100K 500K im
Quantum Length

Figure 2: Migration overheads under different switching schemes
and probabilities

mance estimation techniques.

In summary, this paper offers the following contributions:

e We propose Composite Cores, an architecture that brings the con-
cept of heterogeneity within a single core. The Composite Core
consists of two tightly coupled uEngines that enable fine-grained
matching of application characteristics to the underlying microar-
chitecture to achieve both high performance and energy efficiency.

e We study the benefits of fine-grained switching in the context of
heterogeneous core architectures. To achieve near zero UEngine
transfer overhead, we propose low-overhead switching techniques
and a core microarchitecture which shares necessary hardware
resources.

e We design intelligent switching decision logic that facilitates fine-
grain switching via predictive rather than sampling-based perfor-
mance estimation. Our design tightly constrains performance loss
within a user-selected bound through a simple feedback controller.

e We evaluate our proposed Composite Core architecture with cycle
accurate full system simulations and integrated power models.
Overall, a Composite Core can map an average of 25% of the
dynamic execution to the little Engine and reduce energy by 18%
while bounding performance degradation to at most 5%.

2. Motivation

Industry interest in heterogeneous multicore designs has been gaining
momentum. Recently ARM announced a heterogeneous multicore,
known as big.LITTLE [9], which combines a set of Cortex-A15 (Big)
cores with Cortex-A7 (Little) cores to create a heterogeneous pro-
cessor. The Cortex-A1S5 is a 3-way out-of-order with deep pipelines
(15-25 stages), which is currently the highest performance ARM core

that is available. Conversely, the Cortex-A7 is a narrow in-order pro-
cessor with a relatively short pipeline (8-10 stages). The Cortex-A15
has 2-3x higher performance, but the Cortex-A7 is 3-4x more energy
efficient.

In big.LITTLE, all migrations must occur through the coherent
interconnect between separate level-2 caches, resulting in a migration
cost of about 20 pseconds. Thus, the cost of migration requires that
the system migrate between cores only at coarse granularity, on the
order of tens of milliseconds. The large switching interval forfeits
potential gains afforded by a more aggressive fine-grained switching.

2.1. Switching Interval

Traditional heterogeneous multicore systems, such as big. LITTLE,
rely on coarse-grained switching to exploit application phases that
occur at a granularity of hundreds of millions to billions of instruc-
tions. These systems assume the performance within a phase is
stable, and simple sampling-based monitoring systems can recognize
low-performance phases and map them to a more energy efficient
core. While these long term low-performance phases do exist, in
many applications, they occur infrequently, limiting the potential to
utilize a more efficient core. Several works [27, 32, 33] have shown
that observing performance at much finer granularity reveals more
low-performance periods, increasing opportunities to utilize a more
energy efficient core.

Figure 1(a) shows a trace of the instructions per cycle (IPC) for
403.gcc over a typical operating system scheduling interval of one
million instructions for both a three wide out-of-order (big) and a
two wide in-order (little) core. Over the entire interval, the little core
is an average of 25% slower than the big core, which may necessitate
that the entire phase be run on the big core. However if we observe
the performance with finer granularity, we observe that, despite some
periods of relatively high performance difference, there are numerous
periods where the performance gap between the cores is negligible.

If we zoom in to view performance at even finer granularity (100s
to 1000s of instructions), we find that, even during intervals where
the big core outperforms the little on average, there are brief periods
where the cores experience similar stalls and the performance gap
between them is negligible. Figure 1(b) illustrates a subset of the
trace from Figure 1(a) where the big core has nearly forty percent
better performance, yet we can see brief regions where there is no
performance gap.



Out-Of-Order Backend

== Decode
Physical
RAT Regiscr File Load Store Queue

A

|
A 4

b
Y

L1
Instruction
Cache

L1
Data
Cache

Reactive Online
Controller

*

A
)

Architectural Mem
Register File

In-Order Backend

h
y

Fetch Branch

Predictor |

A S ——

1 Decode

e CONtrol Flow
Figure 3: Microarchitectural overview of a Composite Core

------- » Data Flow — — —» Core Transfer

2.2. Migration Overheads

The primary impediment to exploiting these brief low-performance
periods is the cost (both explicit and implicit) of migrating between
cores. Explicit migration costs include the time required to transport
the core’s architecturally visible state, including the register file,
program counter, and privilege bits. This state must be explicitly
stored into memory, migrated to the new core and restored. However,
there are also a number of implicit state migration costs for additional
state that is not transferred but must be rebuilt on the new core.
Several major implicit costs include the extra time required to warm
up the L1 caches, branch prediction, and dependence predictor history
on the new core.

Figure 2 quantifies the effects of these migration overheads for
different architectural implementations by measuring the additional
migration overheads of switching at a fixed number of dynamic
instructions, called a quantum or epoch. The figure shows the effects
of switching at the end of every quantum with both a 100% probability
(Always Switch) and with a % probability (Randomly Switch). The
% probability is designed to weigh the instruction execution more
heavily on the big core to better approximate a more typical execution
mix between the big and little cores. The horizontal axis sweeps the
quantum length while the vertical axis plots the added overhead due
to increased switches.

The “Flush” lines correspond to a design where the core and cache
state is invalidated when a core is deactivated (i.e., state is lost due to
power gating), for example, ARM’s big. LITTLE design. The “Stitch”
lines indicate a design where core and cache state is maintained but
not updated for inactive cores (i.e., clock gating of stateful structures).
Finally, the “Shared” results indicate a design where both cores share
all microarchitectural state (except the pipeline) and multiplex access
to the same caches, corresponding to the Composite Cores approach.
Observe that at large quanta, switching overheads are negligible
under all three designs. However at small quantum lengths, the
added overheads under both “Flush” and “Stitch” cause significant
performance loss, while overhead under “Share” remains negligible.

These migration overheads preclude fine-grained switching in
traditional heterogeneous core designs. In contrast, a Composite
Core can leverage shared hardware structures to minimize migration
overheads allowing it to target finer-grained switching, improving
opportunities to save energy.

3. Architecture

A Composite Core consists of two tightly coupled compute Engines
that together can achieve high performance and energy efficiency by

Ld Queue
0.1 mm2

Ld/St Unit
0.1 mm2

Reactive Online Controller
0.02 mm2

St Queue
0.1 mm2
\

_______ DCache +DTLB | ¥
\ 0.7 mm2

BP
0.3m2

Little uEngine
Big uEngine 1.8 mm2

6.3 mm2

L2

ICache + ITLB
0.7 mm2

TTROB+ Freelist
0.4 mm2
Int+FP Regfile
0.7 mm2

Fetch - 0.1 mm2 Int+FP RegFile - 0.07 mm2

Figure 4: Estimated physical layout of a Composite Core in 32nm tech-

nology

rapidly switching between the yEngines in response to changes in
application performance. To reduce the overhead of switching, the
WEngines share as much state as possible. As Figure 3 illustrates, the
WEngines share a front-end, consisting of a fetch stage and branch
predictor, and multiplex access to the same L1 instruction and data
caches. The register files are kept separate to minimize the little
UEngine’s register access energy.

As both pEngines require different control signals from decode,
each uEngine has its own decode stage. Each pEngine has a separate
back-end implementation, one striving for high performance and
the other for increased energy efficiency. However, both yEngines
multiplex access to a single L1 data cache, again to maximize shared
state and further reduce switching overheads. The register file is the
only state that must be explicitly transferred to switch to the opposite
UEngine.

The big pEngine is similar to a traditional high performance out-
of-order backend. It is a superscalar highly pipelined design that
includes complicated issue logic, a large reorder buffer, numerous
functional units, a complex load/store queue (LSQ), and register
renaming with a large physical register file. The big ptEngine relies on
these complex structures to support both reordering and speculation
in an attempt to maximize performance at the cost of increased energy
consumption.

The little uEngine is comparable to a more traditional in-order
backend. It has a reduced issue width, simpler issue logic, reduced
functional units, and lacks many of the associatively searched struc-
tures (such as the issue queue or LSQ). By only maintaining an
architectural register file, the little Engine eliminates the need for
renaming and improves the efficiency of register file accesses.

Figure 4 gives an approximate layout of a Composite Core system
at 32nm. The big uEngine consumes 6.3mm? and the L1 caches
consume an additional 1.4mm?. The little Engine adds an additional
1.8mm?, or about a 20% area overhead. However, this work assumes
that future processors will be limited by power budget rather than
transistor area. Finally, the Composite Core control logic adds an
additional 0.02mm? or an additional 0.2% overhead.

3.1. uEngine Transfer

During execution, the reactive online controller collects a variety of
performance metrics and uses these to determine which pEngine
should be active for the following quantum. If at the end of the
quantum, the controller determines that the next quantum should be
run on the inactive uEngine, the Composite Core must perform a
switch to transfer control to the new uEngine. Figure 5 illustrates the
sequence of events when the controller decides to switch yEngines.



BIG MENGINE ~ LITTLE MENGINE

SWITCHING
CONTROLLER

MENGINE pENGINE CONTROLLER Fetch Commit Fetch Commit
s |
i
( gg_ Collect Metrics
~
[} Big )
§ ( g Compute Decision
= K"';' ) I I
ittle f
=345 , Hidden Pipeline Drain
1 =-. Latency Speculative Transfer | Register
y Transfer
N \ Residual Transfer I
(ittleS] N Exposed I
) Latency Pipeline Refill
~ \
71 I '
T \ Collect Metrics
(Big)S N\
~~ | \\\

— Active Inactive

Figure 5: Mechanism of a Composite Core switch

As both pEngines have different backend implementations, they
have incompatible microarchitectural state. Therefore, when the
Composite Core decides to switch, the current active yEngine must
first be brought to an architecturally precise point before control
can be transferred. If the big uEngine is active, it has potentially
completed a large amount of work speculatively, making a pipeline
flush potentially wasteful. Therefore, the Composite Core simply
stops fetching instructions to the active yuEngine, and allows the
pipeline to drain before switching.

As all other stateful structures have either been drained (e.g.,
pipeline stages) or are shared (e.g., branch predictor), the only state
that must be explicitly transferred is the register file. While the active
UEngine is draining, the Composite Core attempts to speculatively
transfer as much of the register state as possible to hide switching
latency. Once the active Engine has completely drained, the remain-
ing registers are transferred during the residual transfer. More details
on the register transfer are given in Section 3.2.

Once the register transfer has been completed, fetch resumes with
the instructions now redirected to the opposite yEngine. The new
UEngine will incur an additional delay while its pipeline stages are
refilled. Therefore the total switch latency is the sum of the pipeline
drain, register transfer, and the pipeline refill delay. As the pipeline
drain is totally hidden and a majority of the register file values can
be speculatively transferred, the only exposed latency is the residual
register transfer and the pipeline refill latency of the new yEngine.
As this latency is similar to that of a branch mispredict, the switching
overheads behave very similarly to that of a branch misprediction
recovery.

3.2. Register State Transfer

As the register file is the only architecturally visible stateful com-
ponent that is not shared, its contents must be explicitly transferred
during a uEngine switch. This transfer is complicated by the fact
that the little uEngine only contains architectural registers with a
small number of read and write ports while the big uEngine uses
register renaming and a larger multi-ported physical register file. To
copy a register from the big ttEngine to the little, the architectural-to-
physical register mapping must first be determined using the Register
Allocation Table (RAT) before the value can be read from the physical
register file. Typically this is a two cycle process.

When the Composite Core initiates a switch, the registers in the
active UEngine are marked as untransferred. The controller then
utilizes a pipelined state machine, called the transfer agent, to transfer
the registers. The first stage determines the next untransferred register,
marks it as transferred, and uses the RAT to lookup the physical

register file index corresponding to the architectural register. Recall
that while the big uEngine is draining, its RAT read ports are not
needed by the pipeline (no new instructions are dispatched). The
second stage reads the register’s value from the physical register file.
The final stage transfers the register to the inactive yEngine.

To hide the latency of the register transfer, the Composite Core
begins speculatively transferring registers before the active pEngine
is fully drained. Therefore, when a register value is overwritten by
the draining pipeline it is again marked as untransferred. The transfer
agent will then transfer the updated value during the residual transfer
of Figure 5. The transfer agent will continue to run until the pipeline
is fully drained and all architectural registers have been transferred.
Once all registers have been transferred, the opposite Engine can
begin execution. The process of transferring registers from the little
UEngine to the big uEngine is similar, except there is now a single
cycle register read on the little pEngine and a two cycle register write
on the big uEngine.

4. Reactive Online Controller

The decision of when to switch is handled by the Reactive Online
Controller. Our controller, following the precedent established by
prior works [20, 30], attempts to maximize energy savings subject
to a configurable maximum performance degradation, or slowdown.
The converse, a controller that attempts to maximize performance
subject to a maximum energy consumption, can also be constructed
in a similar manner.

To determine the appropriate core to minimize performance loss,
the controller needs to 1) estimate the dynamic performance loss,
which is the difference between the observed performance of the
Composite Core and the performance if the application were to run
entirely on the big uEngine; and 2) make switching decisions such
that the estimated performance loss is within a parameterizable bound.
The controller consists of three main components: a performance
estimator, threshold controller, and switching controller illustrated in
Figure 6.

The performance estimator tracks the performance on the active
WEngine and uses a model to provide an estimate for the performance
of the inactive uEngine as well as provide a cumulative performance
estimate. This data is then fed into the switching controller, which
estimates the performance difference for the following quantum. The
threshold controller uses the cumulative performance difference to
estimate the allowed performance drop in the next quantum for which
running on the little yEngine is profitable. The switching controller
uses the output of the performance estimator and the threshold con-



Performance
Estimator
CI:’Iobserved +
CPlpig CPlittie Performance Metrics
CPltar . .
get  CPI ACPI Core
error et echold threshoki Switching next _| Composite
Controller “|controller Cores
CPlactuaI 5 CPlobserved

sum

Figure 6: Reactive online controller overview

troller to determine which pEngine should be activated for the next
quantum.

4.1. Performance Estimator

The goal of this module is to provide an estimate of the performance
of both (Engines in the previous quantum as well as track the overall
performance for all past quanta. While the performance of the active
UEngine can be trivially determined by counting the cycles required
to complete the current quantum, the performance of the inactive
UEngine is not known and must be estimated. This estimation is
challenging as the microarchitectural differences in the puEngines
cause their behaviors to differ.

The traditional approach is to sample execution on both yEngines
for a short duration at the beginning of each quantum and base the de-
cision for the remainder of the quantum on the sample measurements.
However, this approach is not feasible for fine-grained quanta for
two reasons. First, the additional switching necessary for sampling
would require much longer quanta to amortize the overheads, for-
feiting potential energy gains. Second, the stability and accuracy of
fine-grained performance sampling drops rapidly, since performance
variability grows as the measurement length shrinks [32].

Simple rule based techniques, such as switching to the little
UEngine on a cache miss, cannot provide an effective performance
estimate needed to allow the user to configure the performance tar-
get. As this controller is run frequently, more complex approaches,
such as non-linear or neural-network models, add too much energy
overhead and hardware area to be practical.

Therefore the Composite Core instead monitors a selected number
of performance metrics on the active ptEngine that capture fundamen-
tal characteristics of the application and uses a simple performance
model to estimate the performance of the inactive yEngine. A more
detailed analysis of the performance metrics is given in Section 4.4.
100%

90% -
80% -
70% -
60% -t
50% -
40% -
30% -
20% -+
10% -+

0% -+

0OL2 Miss

B Branch Mispredicts
ILP

B L2 Hit

B MLP

B Active uEngine Cycles

Relative Coefficient Magnatude

H Constant

Little -> Big Big -> Little
Figure 7: Magnitude of regression coefficients

4.1.1. Performance Model The performance model provides an es-
timate for the inactive pEngine by substituting the observed metrics
into a model for the inactive uEngine’s performance. As this com-
putation must be performed often, we chose a simple linear model
to minimize computation overhead. Eq. 1 defines the model, which
consists of the sum of a constant coefficient (ag) and several input
metrics (x;) times a coefficient (q;). As the coefficients are specific
to the active uEngine, two sets of coefficients are required, one set
is used to estimate performance of the big tEngine while the little
WEngine is active, and vice versa.

(C))

To determine the coefficients for the performance monitor, we profile
each of the benchmarks on both the big and little uEngine for 100
million instructions (after a 2 Billion instruction fast-forward) using
each benchmark’s supplied training input set. We then utilize ridge
regression analysis to determine the coefficients using the aggregated
performance metrics from all benchmarks. The magnitude of each
normalized coefficient for both models is shown in Figure 7, illustrat-
ing the relative importance of each metric to overall performance for
each uEngine.

y=ap +Za,~xi

The constant term reflects the baseline weight assigned to the aver-
age performance of the active Engine without considering the met-
rics. The Active wEngine Cycles metric scales the model’s estimate
based on the CPI of the active yEngine. MLP attempts to measure the
levels of memory parallelism and account for the tEngine’s ability
to overlap memory accesses. L2 Hit tracks the number of L2 cache
hits and scales the estimate to match the yEngine’s ability to tolerate
medium latency misses. ILP attempts to scale the performance esti-
mate based on the inactive ptEngine’s ability (or inability) to exploit
independent instructions. Branch Mispredicts and L2 Miss scales the
estimate based on the number of branch mispredictions and L2 cache
misses respectively.

Little->Big Model: This model is used to estimate the performance
of the big Engine while the little uEngine is active. In general good
performance on the little u Engine indicates good performance on the
big uEngine. As the big tEngine is better able to exploit both MLP
and ILP its performance can improve substantially over the little for
applications that exhibit these characteristics. However, the increased
pipeline length of the big uEngine makes it slower at recovering
from a branch mispredict than the little yEngine, decreasing the
performance estimate. Finally, as L2 misses occur infrequently and
the big uEngine is designed to partially tolerate memory latency, the
L2 Miss coefficient has minimal impact on the overall estimate.



Big->Little Model: While the big uEngine is active, this model
estimates the performance of the little yEngine. The little uEngine
has a higher constant due to its narrower issue width causing less
performance variance. As the little yEngine cannot exploit applica-
tion characteristics like ILP and MLP as well as the big uEngine,
the big uEngine’s performance has slightly less impact than in the
Little->Big model. L2 Hits are now more important as, unlike the
big uEngine, the little uEngine is not designed to hide any of the
latency. The inability of the little uEngine to utilize the available
ILP and MLP in the application causes these metrics to have almost
no impact on the overall performance estimate. Additionally, as
the little 4 Engine can recover from branch mispredicts much faster,
mispredicts have very little impact. Finally even though L2 misses
occur infrequently, the little yEngine suffers more performance loss
than the big uEngine again due to the inability to partially hide the
latency.

Per-Application Model: While the above coefficients give a good
approximation for the performance of the inactive uEngine, some
applications will warrant a more exact model. For example, in the
case of memory bound applications like mcf, the large number of
L2 misses and their impact on performance necessitates a heavier
weight for the L2 Miss metric in the overall model. Therefore the
architecture supports the use of per-application coefficients for both
the Big->Little and Little->Big models, allowing programmers to
use offline profiling to custom tailor the model to the exact needs of
their application if necessary. However, our evaluation makes use of
generic models.

4.1.2. Overall Estimate The second task of the performance esti-
mator is to track the actual performance of the Composite Core as
well as provide an estimate of the target performance for the entire
application. The actual performance is computed by summing the ob-
served performance for all quanta (Eq. 2). The target performance is
computed by summing all the observed and estimated performances
of the big Engine and scaling it by the allowed performance slow-
down. (Eq. 3). As the number of instructions is always fixed, rather
than compute CPI the performance estimator hardware only sums
the number of cycles accumulated, and scales the target cycles to
compare against the observed cycles.

CPlyctual = ZCP Tobserved 2
CPItarget = ZCP[Big X (1 - SlOWdownallowed) €)]
4.2. Threshold Controller

The threshold controller is designed to provide a measure of the
current maximum performance loss allowed when running on the
little wEngine. This threshold is designed to provide an average
per-quantum performance loss where using the little yEngine is prof-
itable given the performance target. As some applications experience
frequent periods of similar performance between pEngines, the con-
troller scales the threshold low to ensure the little yEngine is only
used when it is of maximum benefit. However for applications that
experience almost no low performance periods, the controller scales
the threshold higher allowing the little ptEngine to run with a larger
performance difference but less frequently.

The controller is a standard PI controller shown in Eq. 5. The
P (Proportional) term attempts to scale the threshold based on the
current observed error, or difference from the expected performance
(Eq. 4). The I (Integral) term scales the threshold based on the sum of
all past errors. A Derivative term can be added to minimize overshoot.

CPIBig ___»

CPlittie >|
(a) (b)
ACPIThreshold

Big More Profitable @ Little More Profitable

Figure 8: Switching controller behaviour: (@ I CPly, +
ACPLiyreshora > CPlijue pick Little; (b)y If
CPIbig +ACPIfhreshold < CPIlitlle pick Big.

—>
|
1

However in our case, it was not included due to noisiness in the input
signal. Similar controllers have been used in the past for controlling
performance for DVFS [29].

The constant K}, and K; terms were determined experimentally.
The K, term is large, reflecting the fact that a large error needs to
be corrected immediately. However, this term suffers from system-
atically underestimating the overall performance target. Therefore
the second term, K; is introduced to correct for small but systematic
under-performance. This term is about three orders of magnitude
smaller than K),, so that it only factors into the threshold when a
long-term pattern is detected.

CPIerror = CPItarget - CP[uctual (4)
ACPIthreshold = KpCPIermr +KiZCPIerror 5)

4.3. Switching Controller

The switching controller attempts to determine which uEngine is
most profitable for the next quantum. To estimate the next quantum’s
performance, the controller assumes the next quantum will have the
same performance as the previous quantum. As show in Figure 8, the
controller determines profitability by computing ACPI,,.; as shown
in Eq. 6. If ACPI,,; is positive, the little it Engine is currently more
profitable, and execution is mapped to the little ptEngine for the next
quantum. However, if ACPI,,; is negative, the performance differ-
ence between big and little is too large, making the little uEngine
less profitable. Therefore the execution is mapped to the big yEngine
for the next quantum.

ACPlyer = (CPIBig +ACPIthreshold) - CPIlittle (6)

4.4. Implementation Details

We use several performance counters to generate the detailed metrics
required by the performance estimator. Most of these performance
counters are already included in many of today’s current systems,
including branch mispredicts, L2 cache hits and L2 cache misses.
Section 4.4.1 details the additional performance counters needed in
the big Engine. Due to the microarchitectural simplicity of the little
WEngine, tracking these additional metrics is more complicated. We
add a small dependence table (described in Section 4.4.2) to the little
WEngine to capture these metrics.

4.4.1. Performance Counters The performance models rely heav-
ily on measurements of both ILP and MLP, which are not trivially
measurable in most modern systems. As the big Engine is already
equipped with structures that exploit both ILP and MLP, we simply
add a few low overhead counters to track these metrics. For ILP, a per-
formance counter keeps a running sum of the number of instructions
in the issue stage that are waiting on values from in-flight instructions.



This captures the number of instructions stalled due to serialization
as an inverse measure of ILP. To measure MLP, an additional perfor-
mance counter keeps a running sum of the number of MSHR entries
that are in use at each cache miss. While not perfect measurements,
these simple performance counters give a good approximation of the
amount of ILP and MLP per quantum.

4.4.2. Dependence Table Measuring ILP and MLP on the little
UEngine is challenging as it lacks the microarchitectural ability to
exploit these characteristics and therefore has no way of measuring
them directly.

We augment the little ttEngine with a simple table that dynami-
cally tracks data dependence chains of instructions to measure these
metrics. The design is from Chen, Dropsho, and Albonesi [7]. This
table is a bit matrix of registers and instructions, allowing the little
UEngine to simply look up the data dependence information for an
instruction. A performance counter keeps a running sum per quantum
to estimate the overall level of instruction dependencies as a measure
of the ILP. To track MLP, we extended the dependence table to track
register dependencies between cache misses over the same quantum.
Together these metrics allow Composite Cores to estimate the levels
of ILP and MLP available to the big uEngine.

However, there is an area overhead associated with this table. The

combined table contains two bits of information for each register over
a fixed instruction window. As our architecture supports 32 registers
and we have implemented our instruction window to match the length
of the ROB in the big pEngine, the total table size is 2 x 32 x 128
bits, 1KB of overhead. As this table is specific to one yEngine, the
additional area is factored into the little uEngine’s estimate rather
than the controller.
4.4.3. Controller Power & Area To analyze the impact of the con-
troller on the area and power overheads, we synthesized the controller
design in an industrial 65nm process. The design was placed and
routed for area estimates and accurate parasitic values. We used
Synopsys PrimeTime to obtain power estimates which we then scaled
to the 32nm target technology node. The synthesized design includes
the required performance counters, multiplicand values (memory-
mapped programmable registers), and a MAC unit. For the MAC
unit, we use a fixed-point 16%16+36-bit Overlapped bit-pair Booth re-
coded, Wallace tree design based on the Static CMOS design in [18].
The design is capable of meeting a 1.0GHz clock frequency and
completes 1 MAC operation per cycle, with a 2-stage pipeline.

Thus, the calculations in the performance model can be completed
in 9 cycles as our model uses 7 input metrics. With the added com-
putations for the threshold controller and switching controller, the
final decision takes approximately 30 cycles. The controller covers
0.02mm? of area, while consuming less than 5uW of power dur-
ing computation. The MAC unit could be power gated during the
remaining cycles to reduce the leakage power while not in use.

5. Results

To evaluate the Composite Cores architecture, we extended the Gem5
Simulator [6] to support fast switching. All benchmarks were com-
piled using gcc with -O2 optimizations for the Alpha ISA. We evalu-
ated all benchmarks by fast forwarding for two billion instructions
before beginning detailed simulations for an additional one billion
instructions. The simulations included detailed modeling of the
pipeline drain functionality for switching uEngines.

We utilized McPAT to estimate the energy savings from a Com-
posite Core [28]. We model the two main sources of energy loss in

Parameters

3 wide Out-Of-Order @ 1.0GHz

12 stage pipeline

128 ROB entries

160 entry register file

Tournament branch predictor (Shared)

2 wide In-Order @ 1.0GHz

8 stage pipeline

32 entry register file

Tournament branch predictor (Shared)

32 KB L1 iCache, 1 cycle access (Shared)
32 KB L1 dCache, 1 cycle access (Shared)
1 MB L2 Cache, 15 cycle access

1024MB Main Mem, 80 cycle access

Architectural Feature
Big uEngine

Little uEngine

Memory System

Table 1: Experimental Composite Core parameters

transistors, dynamic energy and static (or leakage) energy. We study
only the effects of clock gating, due to the difficulties in estimating
the performance and energy implications of power gating. Finally, as
our design assumes tightly coupled L1 caches, our estimates include
the energy consumption of the L1 instruction and data caches, but
exclude all other system energy estimates.

Table 1 gives more specific simulation configurations for each
of the uEngines as well as the memory system configuration. The
big uEngine is modeled as a 3-wide out-of-order processor with a
128-entry ROB and a 160-entry physical register file. It is also ag-
gressively pipelined with 12 stages. The little Engine is modeled to
simulate a 2-wide in-order processor. Due to its simplified hardware
structures the pipeline length is also shorter, providing quicker branch
misprediction recovery, and it only contains a 32-entry architectural
register file. The branch predictor and fetch stage are shared between
the two uEngines.

5.1. Quantum Length

One of the primary goals of the Composite Cores architecture is to
explore the benefits of fine-grained quanta to exploit short duration
periods of low performance. To determine the optimum quantum
length, we performed detailed simulations to sweep quantum lengths
with several assumptions that will hold for the remainder of Section
5.1. To factor out controller inaccuracies, we assume the UEngine
selection is determined by an oracle, which knows the performance
for both pEngines for all quanta and switches to the little Engine
only for the quanta with the smallest performance difference such that
it can still achieve the performance target. We also assume that the
user is willing to tolerate a 5% performance loss relative to running
the entire application on the big uEngine.

Given these assumptions, Figure 9 demonstrates the little
WEngine’s utilization measured in dynamic instructions as the quan-
tum length varies. While the memory-bound mcf can almost fully
utilize the little pEngine at larger quanta, the remaining benchmarks
show only a small increase in utilization until the quantum length
decreases to less than ten thousand instructions. Once quantum sizes
shrink below this level, the utilization begins to rise rapidly from
approximately thirty percent to fifty percent at quantum lengths of
one hundred instructions.

While a Composite Core is designed to minimize migration over-
heads, there is still a small register transfer and pipeline refill latency
when switching pEngines. Figure 10 illustrates the performance
impacts of switching @ Engines at various quanta with the oracle
targeting 95% performance relative to the all big yEngine case. We
observe that, with the exception of mcf, which actually achieves a
small speedup, all the benchmarks achieve the target performance at



=== astar == bzip2 = eeeces gee gobmk eeeees h264ref
— hMMeEr == emcf omnetpp sjeng — 3VErage
100% e i ——
90% =
~
o 80% =
o Ss
® 70% S
N S
= 60% S
=]
g o ~=e-
L 40% Seesccscccacanaoo
S .
D30% | e ———
E OO N e e
= 20% crccccccccc e e --
10% TTTTe T e I TITITIITTTYY
0% -+ T T )
100K im 10M

Quantum Length

Figure 9: Impact of quantum length on little i Engine utilization

== astar - e pzip2  eeccee gee gobmk sesese h264ref
—hmmer == emcf omnetpp sjeng — JVErage
105% -

2 100%

2

o

2

B 95%

K]

o

8

S 90%

£

£

=

2 85%

80% -+ T T T
100 1K 10K 100K M 10M

Quantum Length

Figure 10: Impact of quantum length on overall performance with a
5% slowdown target

longer quanta. This result implies that the additional overheads of

switching pEngines are negligible at these quanta and can safely be

ignored. However, for quantum lengths smaller than 1000 instruc-

tions we begin to see additional performance degradation, indicating

that the overheads of switching are no longer negligible.

The main cause of this performance decrease is the additional
switches allowed by the smaller quanta. Figure 11 illustrates the
number of switches per million instructions the Composite Core
performed to achieve its goal of maximizing the little uEngine uti-
lization. Observe that as the quantum length decreases, there is a
rapid increase in the number of switches. In particular, for a quantum
length of 1000 the oracle switches cores approximately 340 times
every million instructions, or roughly every 3000 instructions.

As quantum length decreases the Composite Core has greater po-
tential to utilize the little 4 Engine, but must switch more frequently to
achieve this goal. Due to increased hardware sharing, the Composite
Core is able to switch at a much finer granularity than traditional het-
erogeneous multicore architectures. However below quantum lengths
of approximately 1000 dynamic instructions, the overheads of switch-
ing begin to cause intolerable performance degradation. Therefore
for the remainder of this study, we will assume quantum lengths of
1000 instructions.

5.2. uEngine Power Consumption

A Composite Core relies on shared hardware structures to enable fine-
grained switching. However these shared structures must be designed

== astar - e bzip2  eecees gce = e e gobmk =~ eeceee h264ref
hmmer == eomcf OMNetpp e sjeng — JVErage

a

c

0

°

2

@

£

[

k]

N

~

™

Q

=

S

3

1%}
100 1K 10K 100K im 10M

Quantum Length

Figure 11: Impact of quantum length on L Engine switches

M Big uEngine Little Core W Little uEngine
110%
100%
90%
80%
70%
60%
50%
40%
30%
20%
10%
0%

Average Power Relative to the Big Core

Figure 12: Average L Engine power relative to dedicated cores

for the high performance big @ Engine and are over-provisioned when
the little y Engine is active. Therefore the little pt Engine has a higher
average power than a completely separate little core. When the little
WEngine is active, its frontend now includes a fetch engine, branch
predictor, and instruction cache designed for the big yEngine. Also,
the little uEngine accesses a data cache that is designed to support
multiple outstanding memory transactions. While this functionality
is necessary for the big tEngine, the little (L Engine cannot utilize it.
Finally, the leakage power of Composite Cores will be higher as it is
comprised of two yEngines.

Figure 12 illustrates the average power difference between the
UEngines and separate big and little cores. Observe that while the
big wEngine includes the leakage of the little yEngine, it does not
use noticeably more power than a separate big core. As the little
WEngine is small, its contribution to leakage is minimal. However,
while the little core requires only 22% of the big core’s power, the
shared hardware of the little (Engine only allow it to reduce the
power to 30% of the big core. This is caused by a combination of
both the leakage energy of the big uEngine and the inefficiencies
inherent in using an over-provisioned frontend and data cache.

While the little uEngine of Composite Core is not able to achieve
the same power reductions as a separate little core, this limitation
is offset by Composite Core’s ability to utilize the little yuEngine
more frequently. As illustrated in Figure 9, a Composite Core, with a
quantum length of 1000 instructions, executes more instructions on
the little u Engine than a traditional heterogeneous multicore system,
which has a quantum length of 10 million instructions or more. Even



e Regression Average Performance

40%
35%
30%
25%

I

20 [
|

/

15%
N
10%
5 7/ \\
0% ‘_A . \/\ /‘

-100% -50% 0% 50% 100%
Percent Deviation From Actual Performance Per Quantum

Figure 13: Distribution of Big->Little regression accuracy

Percent of Quantums

w— Regression Average Performance

30%

25%

o N

|\

10% I \

N //—\\ |

-100% 50% % 50% 100%
Percent Deviation From Actual Performance Per Quantum
Figure 14: Distribution of Little->Big regression accuracy

Percent of Quantums

after accounting for the inefficiencies of the little yEngine, a Com-
posite Core is still able to achieve a 27% decrease in average power
compared to the traditional heterogeneous multicore approach.

5.3. Regression

While the oracle switching scheme was useful to determine the best
quantum length, it is not implementable in a real system. Therefore
in this section, we evaluate the accuracies of the performance model
from Section 4.1. Figures 13 and 14 illustrate the accuracy for the
Big->Little and Little->Big models respectively. The y-axis indicates
the percent of the total quanta, or scheduling intervals. The x-axis
indicates the difference between the estimated and actual performance
for a single quantum. The accuracy of using a fixed estimate equal
to the average performance of the inactive yEngine is also given for
comparison.

As the little gEngine has less performance variance and fewer
features, it is easier to model, and the Big->Little model is more accu-
rate. However, the Little->Big model must predict the performance
of the big Engine, which has hardware features that were designed
to overlap latency, causing it to be less accurate. Also note that while
the individual predictions have a larger tail, the tail is centered around
zero error. Hence over a large number of quanta, positive errors
are canceled by negative errors, allowing the overall performance
estimate, CPl;4rg. to be more accurate despite the variations in the
models themselves.

5.4. Little Core Utilization

For Section 5.4-5.6 we evaluate three different switching schemes
configured to allow a maximum of 5% performance degradation. The
Oracle is the same as in Section 5.1 and picks only the best quanta
to run on the little Engine so that it can still achieve its performance
target. The Perfect Past has oracle knowledge of the past quanta
only, and relies on the assumption that the next quantum has the same

100%
90% —
80%
70%
60%
50%
40%
30%
20%
10%

0%

M Oracle

Perfect Past

M Regression

Dynamic Instructions on Little

Figure 15: Little 1L Engine utilization in dynamic instructions, for dif-
ferent switching schemes

103%

M Oracle

100%
Perfect Past

W Regression

98%

i

< NS & R
& & bf\q' & ¥ &£ &8
5a L 9 & & &
& & K O@"\ S

Performance Relative to Big

S
8}?
S

Figure 16: Performance impact for various switching schemes with a
5% slowdown target

performance as the most recent past quantum. The realistic Regres-
sion Model can measure the performance of the active yEngine, but
must rely on a performance model for the estimated performance of
the inactive pEngine. This model is the same for all benchmarks and
was described in Section 4.1.

Figure 15 illustrates the little yEngine utilization, measured in
dynamic instructions, for various benchmarks using each switching
scheme. For a memory bound application, like mcf, a Composite
Core can map nearly 100% of the execution to the little uEngine.
For applications that are almost entirely computation bound with
predictable memory access patterns, the narrower width of the little
WEngine limits its overall utilization. However, most applications lie
somewhere between these extremes and the Composite Core is able to

100%
90% H Oracle

80% Perfect Past
70%
60%
50%
40% -
30% -
20%
10%
0%

M Regression

Energy Savings Relative to Big

Figure 17: Energy savings for various switching schemes



100% -
90% -

80% -
70% -+
60% -+
50% -+
40% -+
30% -+
20% -+
o ) ) ) ) ) ) - ) ) i

1% | 5% | 10% | 20% | 1% | 5% | 10% | 20% | 1% | 5% | 10% | 20%

Relative to Big

Utilization Overall Performance Energy Savings

Figure 18: Slowdown sensitivity analysis

map between 20% to 60% of the instructions given oracle knowledge,
with an average of 37% utilization. Given the imperfect regression
model, these utilizations drop slightly, but still maintain an average
utilization of 25% across all benchmarks. Finally on omnetpp and
sjeng, the regression scheme actually achieves higher utilization
than the perfect past, however this comes at the cost of a performance
loss that is slightly below the target described in Section 5.5.

5.5. Performance Impact

Figure 16 illustrates the performance of the Composite Core relative
to running the entire application on the big uEngine. Composite Core
is configured to allow a 5% slowdown, so the controller is targeting
95% relative performance. As mcf is almost entirely memory bound,
the decrease in branch misprediction recovery latency actually causes
a small performance speedup. All other benchmarks are at or near
the target performance for all schemes. Note that the controller is
designed to allow a small amount of oscillation around the exact
performance target to reduce unnecessary switching, thus allowing
bzip2 to dip slightly below the target for the perfect past switching
scheme. Both omnetpp and sjeng suffer from slight inaccuracies in
the regression model which, when combined with the oscillation of
the controller, causes their overall performance to be approximately
an additional %% below the target performance.

5.6. Energy Reduction

Figure 17 illustrates the energy savings for different switching
schemes across all benchmarks. Note that these results only assume
clock-gating, meaning that both cores are always leaking static energy
regardless of utilization. Again, as mcf is almost entirely memory
bound, the Composite Core is able to map almost the entire execution
to the little y Engine and achieve significant energy savings. Overall,
the oracle is able to save 29% the energy. Due to the lack of perfect
knowledge, the perfect past scheme is not able to utilize the little
HEngine as effectively, reducing its overall energy savings to 24%.
Finally, the implementable regression model achieves 18% energy
savings as the additional inaccuracies in the regression model further
reduce the effective utilization of the little yuEngine. When combined
with the performance, the regression model is able to achieve a 21%
reduction in EDP.

5.7. Allowed Performance Loss

As the Composite Core can be controlled to provide different levels
of energy savings by specifying permissible performance slowdowns,
the end user or OS can choose how much of a performance loss is
tolerable in exchange for energy savings. Figure 18 illustrates the
little u Engine utilization, performance, and energy savings relative

to the big tEngine for various performance levels. As the system is
tuned to permit a higher performance drop, utilization of the little
WEngine increases resulting in higher energy savings. Allowing
only a 1% slowdown saves up to 4% of the energy whereas tuning
to a 20% performance drop can save 44% of the energy consumed
on the big uEngine. This ability is particularly useful in situations
where maintaining usability is essential, such as low-battery levels
on laptops and cell phones.

6. Related Works

Numerous works motivate a heterogeneous multi-core design for the
purposes of performance [22, 2, 4], power [20], and alleviating serial
bottlenecks [10, 30, 13]. This paradigm has even begun to make its
way into commercial products [9]. The heterogeneous design space
can be broadly categorized into 1) designs which migrate thread
context across heterogeneous processors, 2) designs which allow a
thread to adapt (borrow, lend, or combine) hardware resources, and
3) designs which allow dynamic voltage/frequency scaling.

6.1. Heterogeneous Cores, Migratory Threads

Composite Cores falls within the category of designs which migrate
thread context. Most similarly to our technique, Kumar et al. [20]
consider migrating thread context between out-of-order and in-order
cores for the purposes of reducing power. At coarse granularities of
100M instructions, one or more of the inactive cores are sampled by
switching the thread to each core in turn. Switches comprise flushing
dirty L1 data to a shared L2, which is slow and energy consuming.
Rather than relying on sampling the performance on both cores, Van
Craeynest et al. [31] propose a coarse-grained mechanism that relies
on measures of CPI, MLP, and ILP to predict the performance on the
inactive core.

On the other hand, Rangan et al. [27] examine a CMP with clusters
of in-order cores sharing L1 caches. While the cores are identical
architecturally, varied voltage and frequency settings create perfor-
mance and power heterogeneity. A simple performance model is
made possible by having exclusively in-order cores, and thread mi-
gration is triggered every 1000 cycles by a history-based (last value)
predictor. Our solution combines the benefits of architectural hetero-
geneity [21], as well as those of fast migration of only register state,
and contributes a sophisticated mechanism to estimate the inactive
core’s performance.

Another class of work targets the acceleration of bottlenecks to
thread parallelism. Segments of code constituting bottlenecks are
annotated by the compiler and scheduled at runtime to run on a big
core. Suleman et al. [30] describe a detailed architecture and target
critical sections, and Joao et al. [13] generalize this work to identify
the most critical bottlenecks at runtime. Patsilaras, Choudhary, and
Tuck [25] propose building separate cores, one that targets MLP
and the other that targets ILP. They then use L2 cache miss rate to
determine when an application has entered a memory intensive phase
and map it to the MLP core. When the cache misses decrease, the
system migrates the application back to the ILP core.

Other work studies the benefits of heterogeneity in real systems.
Annavaram et al. [2] show the performance benefits of heteroge-
neous multi-cores for multithreaded applications on a prototype with
different frequency settings per core. Kwon et al. [23] motivate
asymmetry-aware hypervisor thread schedulers, studying cores with
various voltage and frequency settings. Koufaty et al. [17] discover
an application’s big or little core bias by monitoring stall sources,



to give preference to OS-level thread migrations which migrate a
thread to a core it prefers. A heterogeneous multi-core prototype is
produced by throttling the instruction retirement rate of some cores
down to one instruction per cycle.

6.2. Adaptive Cores, Stationary Threads

Alternatively, asymmetry can be introduced by dynamically adapting
a core’s resources to its workload. Prior work has suggested adapt-
ing out-of-order structures such as the issue queue [3], as well as
other structures such as ROBs, LSQs, and caches [26, 5, 1]. Ku-
mar et al. [19] explored how a pair of adjacent cores can share area-
expensive structures, while keeping the floorplan in mind. Homayoun
et al. [11] recently examined how microarchitectural structures can
be shared across 3D stacked cores. These techniques are limited
by the structures they adapt and cannot for instance switch from an
out-of-order core to an in-order core during periods of low ILP.
Ipek et al. [12] and Kim et al. [14] describe techniques to compose
or fuse several cores into a larger core. While these techniques
provide a fair degree of flexibility, a core constructed in this way is
generally expected to have a datapath that is less energy efficient than
if it were originally designed as an indivisible core of the same size.

6.3. Dynamic Voltage and Frequency Scaling (DVFS)

DVFS approaches reduce the voltage and frequency of the core to
improve the core’s energy efficiency at the expense of performance.
However, when targeted at memory-bound phases, this approach can
be effective at reducing energy with minimal impact on performance.
Similar to traditional heterogeneous multicore systems, the overall ef-
fectiveness of DVFS suffers from coarse-grained scheduling intervals
in the millisecond range. In addition, providing independent DVFS
settings for more than two cores is costly in terms of both area and
energy [16]. Finally, traditional DVFS is only effective when target-
ing memory-bound phases, while the Composite Core architecture
can also target phases of serial computation, low instruction level
parallelism and high branch-misprediction rates.

Despite these limitations, DVFES is still widely used in production
processors today, and has been incorporated into ARM’s big.LITTLE
heterogeneous multicore system [9]. Similar to big. LITTLE, DVFS
could easily be incorporated into a Composite Core design. Here
the operating system would attempt to maximize energy savings by
reducing the voltage for the entire Composite Core at a coarse gran-
ularity of multiple operating system scheduling intervals. Within
these intervals, the Composite Core would act as an additional layer
of optimization by exploiting fine-grained phases to further reduce
energy consumption. This approach can designed to achieve max-
imum energy savings by allowing DVFS and Composite Core to
work together to save energy by targeting both coarse-grained and
fine-grained phases.

In the future, a Composite Core may be able to utilize heterogenity
in terms of both microarchitecture and voltage/frequency scaling
to further improve energy efficiency. Two competing techniques to
enable fine-grained DVFS, fast on-chip regulators [16, 15] and dual-
voltage rails [24, 8], have recently been proposed that promise to
deliver transition latencies similar to that of a Composite Core. These
would allow the Composite Core to simultaneously switch pEngines
and scale the operating voltage/frequency to further maximize energy
savings.

7. Conclusion

This paper explored the implications of migration between heteroge-
neous systems at a much finer granularity than previously proposed.
We demonstrated the increased potential to utilize a more energy
efficient core at finer intervals than traditional heterogeneous multi-
core systems. We proposed Composite Cores, an architecture that
brings the concept of heterogeneity from between different cores to
within a core by utilizing two tightly coupled pEngines. A Composite
Core takes advantages of increased hardware sharing to enable fine-
grained switching while achieving near zero migration overheads.
The Composite Core also includes an intelligent controller designed
to maximize the utilization of the little uEngine while constraining
performance loss to a user-defined threshold. Overall, our system can
map an average of 25% of the dynamic execution to the little Engine
and reduce energy by 18% while maintaining a 95% performance
target.

8. Acknowledgements

This work is supported in part by ARM Ltd and by the National
Science Foundation under grant SHF-1227917. The authors would
like to thank the fellow members of the CCCP research group, our
shepherd (Krste Asanovic), and the anonymous reviewers for their
time, suggestions, and valuable feedback.

References

[1] D. Albonesi, R. Balasubramonian, S. Dropsbo, S. Dwarkadas, E. Fried-
man, M. Huang, V. Kursun, G. Magklis, M. Scott, G. Semeraro, P. Bose,
A. Buyuktosunoglu, P. Cook, and S. Schuster, “Dynamically tuning
processor resources with adaptive processing,” IEEE Computer, vol. 36,
no. 12, pp. 49 -58, Dec. 2003.

[2] M. Annavaram, E. Grochowski, and J. Shen, “Mitigating amdahl’s law
through epi throttling,” in Proceedings of the 32nd annual international
symposium on Computer Architecture, 2005, pp. 298-309.

[3] R.Bahar and S. Manne, “Power and energy reduction via pipeline bal-
ancing,” Proc. of the 28th Annual International Symposium on Computer
Architecture, vol. 29, no. 2, pp. 218-229, 2001.

[4] S. Balakrishnan, R. Rajwar, M. Upton, and K. Lai, “The impact of
performance asymmetry in emerging multicore architectures,” in Proc.
of the 32nd Annual International Symposium on Computer Architecture,
Jun. 2005, pp. 506 —517.

[5] R. Balasubramonian, D. Albonesi, A. Buyuktosunoglu, and
S. Dwarkadas, “Memory hierarchy reconfiguration for energy and per-
formance in general-purpose processor architectures,” in Proceedings of
the 33rd annual ACM/IEEE international symposium on Microarchitec-
ture, 2000, pp. 245-257.

[6] N. Binkert et al., “The gem5 simulator,” ACM SIGARCH Computer
Architecture News, vol. 39, no. 2, pp. 1-7, Aug. 2011.

[7] L. Chen, S. Dropsho, and D. Albonesi, “Dynamic data dependence
tracking and its application to branch prediction,” in Proc. of the 9th
International Symposium on High-Performance Computer Architecture,
2003, pp. 65-.

[8] R. Dreslinski, “Near threshold computing: From single core to many-
core energy efficient architectures,” Ph.D. dissertation, University of
Michigan, 2011.

[9] P. Greenhalgh, “Big.little processing with
arm cortex-al5 & cortex-a7,’ Sep. 2011,
http://www.arm.com/files/downloads/big_LITTLE_Final_Final.pdf.

[10] M. Hill and M. Marty, “Amdahl’s law in the multicore era,” IEEE
Computer, no. 7, pp. 33 -38, 2008.

[11] H. Homayoun, V. Kontorinis, A. Shayan, T.-W. Lin, and D. M. Tullsen,
“Dynamically heterogeneous cores through 3d resource pooling,” in Proc.
of the 18th International Symposium on High-Performance Computer
Architecture, 2012, pp. 1-12.

[12] E.Ipek, M. Kirman, N. Kirman, and J. Martinez, “Core fusion: Accom-
modating software diversity in chip multiprocessors,” in Proc. of the
34th Annual International Symposium on Computer Architecture, 2007,
pp. 186-197.



[13]

[14]

[15]

[16]

[17]

[18]

[19]

[20

[21]

[22]

[23]

J. A. Joao, M. Suleman, O. Mutlu, and Y. N. Patt, “Bottleneck identifica-
tion and scheduling in multithreaded applications,” in 20th International
Conference on Architectural Support for Programming Languages and
Operating Systems, 2012, pp. 223-234.

C. Kim, S. Sethumadhavan, M. S. Govindan, N. Ranganathan, D. Gulati,
D. Burger, and S. W. Keckler, “Composable lightweight processors,” in
Proceedings of the 40th Annual IEEE/ACM International Symposium
on Microarchitecture, 2007, pp. 381-394.

W. Kim, D. Brooks, and G.-Y. Wei, “A fully-integrated 3-level dc-
dc converter for nanosecond-scale dvfs,” IEEE Journal of Solid-State
Circuits, vol. 47, no. 1, pp. 206 -219, Jan. 2012.

W. Kim, M. S. Gupta, G.-Y. Wei, and D. Brooks, “System level analy-
sis of fast, per-core dvfs using on-chip switching regulators,” in Proc.
of the 14th International Symposium on High-Performance Computer
Architecture, 2008, pp. 123-134.

D. Koufaty, D. Reddy, and S. Hahn, “Bias scheduling in heterogeneous
multi-core architectures,” in Proc. of the 5th European Conference on
Computer Systems, 2010, pp. 125-138.

R. Krishnamurthy, H. Schmit, and L. Carley, “A low-power 16-bit
multiplier-accumulator using series-regulated mixed swing techniques,”
in Custom Integrated Circuits Conference, 1998. Proceedings of the
IEEE 1998, 1998, pp. 499 —-502.

R. Kumar, N. Jouppi, and D. Tullsen, “Conjoined-core chip multi-
processing,” in Proc. of the 37th Annual International Symposium on
Microarchitecture, 2004, pp. 195-206.

R. Kumar, K. I. Farkas, N. P. Jouppi, P. Ranganathan, and D. M. Tullsen,
“Single-ISA Heterogeneous Multi-Core Architectures: The Potential for
Processor Power Reduction,” in Proc. of the 36th Annual International
Symposium on Microarchitecture, Dec. 2003, pp. 81-92.

R. Kumar, D. M. Tullsen, and N. P. Jouppi, “Core architecture opti-
mization for heterogeneous chip multiprocessors,” in Proc. of the 15th
International Conference on Parallel Architectures and Compilation
Techniques, 2006, pp. 23-32.

R. Kumar, D. M. Tullsen, P. Ranganathan, N. P. Jouppi, and K. I. Farkas,
“Single-isa heterogeneous multi-core architectures for multithreaded
workload performance,” in Proceedings of the 31st annual international
symposium on Computer architecture, 2004.

Y. Kwon, C. Kim, S. Maeng, and J. Huh, “Virtualizing performance
asymmetric multi-core systems,” in Proc. of the 38th Annual Interna-
tional Symposium on Computer Architecture, 2011, pp. 45-56.

[24]

[25]

[26]

[27]

[28]

[29]

[30]

[31]

[32]

[33]

T. N. Miller, X. Pan, R. Thomas, N. Sedaghati, and R. Teodorescu,
“Booster: Reactive core acceleration for mitigating the effects of pro-
cess variation and application imbalance in low-voltage chips,” in Proc.
of the 18th International Symposium on High-Performance Computer
Architecture, vol. 0, 2012, pp. 1-12.

G. Patsilaras, N. K. Choudhary, and J. Tuck, “Efficiently exploiting
memory level parallelism on asymmetric coupled cores in the dark
silicon era,” ACM Trans. Archit. Code Optim., vol. 8, no. 4, pp. 28:1—
28:21, Jan. 2012.

D. Ponomarev, G. Kucuk, and K. Ghose, “Reducing power requirements
of instruction scheduling through dynamic allocation of multiple datap-
ath resources,” in Proc. of the 34th Annual International Symposium on
Microarchitecture, Dec. 2001, pp. 90-101.

K. K. Rangan, G.-Y. Wei, and D. Brooks, “Thread motion: fine-grained
power management for multi-core systems,” in Proc. of the 36th Annual
International Symposium on Computer Architecture, 2009, pp. 302-313.
L. Sheng, H. A. Jung, R. Strong, J.B.Brockman, D. Tullsen, and
N. Jouppi, “Mcpat: An integrated power, area, and timing modeling
framework for multicore and manycore architectures,” in Proc. of the
42nd Annual International Symposium on Microarchitecture, 2009, pp.
469-480.

J. Suh and M. Dubois, “Dynamic mips rate stabilization in out-of-order
processors,” in Proc. of the 36th Annual International Symposium on
Computer Architecture, 2009, pp. 46-56.

M. A. Suleman, O. Mutlu, M. K. Qureshi, and Y. N. Patt, “Accelerating
critical section execution with asymmetric multi-core architectures,” in
17th International Conference on Architectural Support for Program-
ming Languages and Operating Systems, 2009, pp. 253-264.

K. Van Craeynest, A. Jaleel, L. Eeckhout, P. Narvaez, and J. Emer,
“Scheduling heterogeneous multi-cores through performance impact
estimation (pie),” in Proceedings of the 39th International Symposium

on Computer Architecture, ser. ISCA 12, 2012, %p 213-224.
R. E. Wunderlich, T. F. Wenisch, B. Falsafi, and J. C. Hoe, “Smarts:

accelerating microarchitecture simulation via rigorous statistical sam-
pling,” in Proceedings of the 30th annual international symposium on
Computer architecture, 2003, pp. 84-97.

B. Xu and D. H. Albonesi, “Methodology for the analysis of dynamic
application parallelism and its application to reconfigurable computing,”
vol. 3844, no. 1. SPIE, 1999, pp. 78-86.



