A Programmable Vector Coprocessor Architecture for
Wireless Applications

Yuan Lin, Nadev Baron, Hyunseok Lee, Scott Mahlke, Trevor Mudge
Advanced Computer Architecture Laboratory
University of Michigan
Ann Arbor, Ml 48109-2122
{linyz,nbaron,leehzz,mahlke,tnmy@umich.edu

ABSTRACT

The physical layers of most wireless protocols are tradition-
ally implemented in ASICs due to the heavy computation
requirements. These solutions are costly to design and hard-
wired solutions that offer no post-programmability. In this
paper, we introduce a flexible coprocessor architecture cus-
tomized for wireless protocols. To accomplish the design, a
complete baseband physical layer for the 802.11b and Hiper-
lan2 protocols was developed and the computational charac-
teristics of the time-critical code analyzed. In particular, we
studied the behavior of the Viterbi decoding stage and the
FIR filter. We propose an fully programmable vector copro-
cessor architecture that achieves real-time performance for
these computation-heavy algorithms. The design consists
of a memory streaming macro-pipelined vector architecture
that effectively exploits the high degree of data-level paral-
lelism within these algorithms. It offers high performance
while maintaining full programmability.

1. INTRODUCTION

With the growing popularity of wireless networking in
both the home and office, the wireless communications semi-
conductor marketplace is an area with huge growth oppor-
tunities. Next generation wireless standards are being de-
signed to support a wide variety of multimedia services with
very high data rates using different multiplexing and modu-
lation techniques. Seamless switching between multiple pro-
tocols, which would allow devices to support and change to
other protocols, is highly desirable. Thus, one central chal-
lenge in the design of hardware to support these protocols
is programmability. At the same time, the hardware must
meet strict performance, cost, and power goals to achieve
the desired data rates, be economically feasible, and be us-
able in mobile platforms.

Traditional hardware systems for wireless communications
are designed using a mixture of DSPs, and ASICs. The
heterogeneous nature of these solutions make them difficult
to design and verify. Further, mapping each protocol onto
these solutions is tedious and error-prone as each component
is programmed or designed separately. While operations at
the Media Access Control (MAC) layer are typically of mil-
lisecond levels, operations of the Physical (PHY) layer are
of microsecond levels. This makes it very hard to perform
the PHY layer algorithms on today’s DSPs or even FPGAs
in real-time. More recent wireless platforms including the
Imagine processor [1] [19], PICO Chip [9], and HiperSonic
[12]. Most of these processors fall into two categories: 1)

General purpose procesors for cellular protocols, which are
less computationally intensive than wireless LAN protocols;
or 2) Integrated ASIC and DSP solutions for wireless LAN.

In this paper, we propose a coprocessor architecture that
has been customized to the computation requirements of
wireless protocols. In contrast to recently proposed solu-
tions, a coprocessor model is adopted that can be integrated
with a conventional general purpose processor, such as an
ARM. A programmable vector computation engine is cho-
sen as the underlying architecture for the coprocessor. The
coprocessor design consists of a pipeline of vector engines
in which data is streamed through the pipeline. The vector
architecture effectively exploits the data parallelism within
the application to achieve scalable performance, while still
maintaining a high degree of programmability.

This paper represents a work-in-progress snapshot of our
current design. Our work is based on a homegrown wireless
testbed that is being developed and analyzed to understand
the computational structure of the varying wireless proto-
cols. The paper begins with an overview of the testbed,
followed by a description of the coprocessor architecture to-
gether with some of the issues that arise when mapping two
of the key computation kernels (FIR and viterbi) onto the
coprocessor. Finally, we present some preliminary experi-
mental data on the effectiveness of the architecture at meet-
ing the real-time performance goal.

2. WIRELESS TESTBED
2.1 Testbed Flows

The testbed consists of two wireless protocols, each uses
different modulation and multiplexing technique. The first
is the IEEE 802.11b[7] which uses Direct Sequence Spread
Spectrum (DSSS) and Complementary Code Keying (CCK)
modulation. The second protocol is the European Hiper-
LAN/2 which uses Orthogonal Frequency Division Multi-
plexing (OFDM) and rectangular Quadratic Amplitude Mod-
ulation (QAM).

Figure 1. shows a system level diagram of the IEEE
802.11b Simulink model. The Physical Layer Service Data
Unit (PSDU) is generated with random bits. Next, the
Physical Layer Convergence Protocol (PLCP) forms the PLCP
protocol data unit (PPDU) by adding preamble header in-
formation to each PSDU. Once the PPDU is formed it is
modulated and spread using CCK. Finally, before white
Gaussian noise is added, the chips are upsampled and fil-
tered using FIR interpolation and then mixed to channel

Transmitter

Bit: PSDU PPDU

PPDU Chip: hips

Channel

“Long" Framing Modulate
and Spread

Binary bits FIR Interpolation

Receiver

Figure 1: IEEE 802.11b Simulink Model

frne : LA
Lo [epuncturs
Binary QAM

Transmitter

Unipolar to WAL
Bipolar Deinterleaver#= Rectangular
Converter QAM

Receiver

i

OFDM
Receliver

Figure 2: HiperLAN/2 Simulink Model

frequency,

At the receiver part, the same basic algorithms are per-
formed, however in reverse order. Samples are moved back
to baseband, filtered and downsampled. Data is demodu-
lated and despread, and the header and preamble informa-
tion are separated from the PSDU.

Figure 2. shows the system level diagram of the Hiper-
LAN/2 Simulink model. Random packets of bits are en-
coded using a Convolutional encoder with code rate of 1/2.
The encoded bits are punctured with a 4/6 P2 puncturing
rate and are passed to an interleaver. Once interleaving
is done, the data is passed to a 16-ary rectangular QAM
modulator and finally to an OFDM transmitter where pi-
lots are added to the data and Inverse Fast Fourier Trans-
form (IFFT) is performed. The receiver part performs a
Fast Fourier Transform (FFT), separates the pilots, modu-
late and decode the information using a Viterbi decoder.

Complete end to end PHY layer models of those two pro-
tocols were built in Simulink. From this stand alone C code
was produced directly.

2.2 Computation Requirements

Both HiperLAN/2 and the IEEE 802.11b[6] protocols can
operate at different modes and rate and with different mod-
ulation techniques. Higher data rates usually require more
complex and computationally intense algorithms which tra-
ditionally could only be implemented using hard coded de-
vices.

Figure 3 shows a system level profiling of three protocols;
IEEE 802.11 - 1Mbps, IEEE 802.11b - 11Mbps and Hiper-
LAN/2 - 36Mbps. It shows the runtime computation distri-
bution of various functions in the protocols. Out of all of the
profiled functions, many are not shown in the diagram. They
are grouped under ’Others’ because they contribute to less
the 2 percent of the total running time. Figure 3 shows that
for the IEEE 802.11 at both 1Mbps and 11Mbps, the most
computation-heavy algorithm is the DF2T Filter, which re-

100% -
[Others
90% -
80% - O QAM
o5 demodulator
| Viterbi
60% Decoder
50% OFIR
Interpolation
405 m Generate
30% Channel
ok B Mix to
\~ Channel
10% {—gsss DE2T & DF2T Filter
Filter
0% ‘ ‘
IEEE 80211 IEEE 802.11b HiperLAN/2
1Mbps 11Mbps 36Mbps
Figure 3: System Level Profiling
Numbers | Samples | Total samples
of calls per call per second
IEEE 802.11 960 9,224 88,535,040
1Mbps
IEEE 802.11b | 20,993 10,304 | 216,311,872
11Mbps

Table 1: One second of DF2T Filter

quires about 25 - 45 percent of the overall computation time.
Moreover, FIR interpolation function, shown in Figure 3 in
plain white, requires about 5 percent, and together with the
DF2T filter sum up to about 50 percent. For the Hiper-
LAN/2 protocol, on the other hand, the most computation-
heavy algorithm is the Viterbi decoder, which takes more
than 30 percent of overall run time. Although generation of
the channel frequency and mixing to the channel frequen-
cies (Generate Channel algorithms and Mix to Channel as
shown in the Figure 3) are also very computationally inten-
sive algorithms they were not addressed because they can
be replaced by using the very efficient Direct Digital Syn-
thesizer (DDS).

Tables 1, 2 and 3 show real-time requirements, in terms
of samples per second, for the DF2T, FIR Interpolator and,
in terms of bits per second, for the Viterbi decoder. Each
sample can be represented either as an integer or floating
point number, depending on implementation. In order to
achieve real-time requirements for both the IEEE 802.11
and the IEEE 802.11b, we require an IIR Direct Form II
Transpose (DF2T) filter with order of 84 that can oper-
ate at about 200Mps (200 million samples per second). In
addition, real-time HiperLAN/2 implementation requires a
Viterbi decoder with k=7 capable of operating at about
70Mbps. FIR interpolation with order 84 and interpolator
factor of 8, is yet another algorithm which both the IEEE
802.11 and the IEEE 802.11b spend much time in, and needs
to be preformed at about 100Mps. Any reconfigurable archi-
tecture capable of supporting those protocols, must satisfy
these filters and Viterbi decoder real-time requirements.

The following two sections provide an overview of the two
algorithms that are the most computationally intensive in
wireless protocols.

Numbers | Samples | Total Samples
of calls per call per second
TEEE 802.11 1,080 9,224 99,601,920
1Mbps
IEEE 802.11b | 9,620 10,304 99,124,480
11Mbps

Table 2: One second of FIR Interpolation

Numbers Bits Total bits

of calls | per call | per second

HiperLAN/2 | 250010 288 72,002,880
36Mbps

Table 3: One second of Viterbi Decoder

2.3 Viterbi Algorithm

Viterbi algorithm is a decoding method for the convolu-
tional code that is frequently used in digital wireless com-
munication systems such as wireless LAN. From the received
bit sequence contaminated by channel noise, we can recover
the original bit sequence with minimum error by the use of
convolution and the Viterbi algorithm. Whereas several flip
flops and adder are sufficient to realize the convolutional
encoder, the decoding procedure requires highly intensive
computation, because the decoding procedure requires that
an optimum code sequence be found that minimizes the er-
ror probability from all possible code sequences. [18]

In Viterbi algorithm, it is possible to classify the oper-
ations into three steps, BMC (Branch Metric Calculation),
ACS (Add Compare Selection) and Back Tracking (BT). BT
is also called Survival Path Tracking(SPT). Generally, the
error cost of all available code sequences are calculated at
the BMC step by the bit level comparison between input
sequence and all sequences in the candidate code set. The
candidate code set is refined at the ACS step by accumulat-
ing error cost and selecting the local optimal code sequence.
The BT is the final step to find a globally optimal code se-
quence that minimize error probability. The localized data
dependency of the BMC and ACS steps means they can be
easily parallelized and pipelined.

2.4 Digital Filters

The function of a filter is to selectively bypass input sig-
nal terms within specific frequency range. The unwanted
signals like noise and other adjacent frequency terms in-
ducing distortion are suppressed by the filter. In order to
perform filtering operation over a digital signal we use two
types of digital filter, finite impulse response(FIR) and infi-
nite impulse response(IIR) filters. The IIR filter has a much
sharper cut off characteristic for a given filter order. The
FIR filter has a better linear phase response characteristic.
In Wireless LAN system, the FIR filter is used for modu-
lating baseband signal into the specific channel frequency.
It filters out the undesired imaginary term and harmonics
term generated by the upsampling procedure. The role of
the IIR filter in the Wireless LAN receiver is to demodulate
the signal in a desired channel band. The basic operations
of these filters are multiplication and summation [22].

3. CO-PROCESSORSYSTEM AND ARCHI-
TECTURE

ARM Instruction

Core Cache
VPP Vector Processing Pipeline
Controller

ata ! |

Cache
| PPU I_’ PPU I_’. o ol PPU |

Figure 4: VPP Microarchitecture

This section introduces a programmable vector coproces-
sor architecture VPP (Vector Processing Pipeline). It con-
sists of three parts: VPP programming model, the microar-
chitecture overview, and the algorithm mappings.

3.1 VPP Programming Model

Wireless protocols can be categorized as streaming appli-
cations because they fit the producer-consumer model and
have a high degree of data parallelism. Data streams in,
gets processed by various signal processing algorithms, and
streams out. VPP architecture exploits these characteristics
by mapping applications onto a macro-pipeline, where each
stage of the pipeline executes one major step (often a func-
tion) in the application. To support this architecture, two
instruction set architectures (ISAs) are required. The first
describes the overall macro-pipeline behavior (macro ISA),
and the second describes each individual pipeline stage ac-
tions (micro ISA). This is very similar to the Imagine Stream
Architecture [1], VIRAM vector architecture [14], as well as
various tiled processor architectures [3] [17]. The key dif-
ference is that our architecture is a rolled-out simple feed-
forward macro pipeline. We do not have any routing net-
work between streaming stages, making the architecture and
ISAs simpler.

The macro ISA is implemented as a set of coprocessor
instructions on the host processor (ARM-10 in our design).
They are simple scalar instructions. The micro ISA is imple-
mented as vector SIMD style instructions. This architecture
fits very well with the wireless applications. For example,
as mentioned in previous sections, the Viterbi decoding al-
gorithm consists of three steps: branch metric calculation,
add-compare-select, and backtracking. This is mapped onto
three macro pipeline stages, one for each step. The macro
ISA initializes each macro-pipeline stage and controls data
streams to and from memory. The micro ISA describes the
actual functionalities of these three steps on each macro
pipeline stage.

3.2 Microarchitecture Overview

Figure 4 presents the overall coprocessor architecture. The
VPP consists of two major parts: the VPP controller and
a set of Pipeline Processing Units (PPUs). Both structures
are explained in detail in sections below. Overall, this is a
stream architecture. Data are fetched from the data cache
directly into the macro pipeline. After computation, data
are stored directly back into memory from the pipeline. The

VPP controller interacts with host processor’s core and con-
trols flow of data through the PPUs. It contains registers to
keep internal states.

PPUs are vector processing stages of the macro pipeline.
There is no cache structure in each PPU, because of the
streaming nature of the applications. Instead, each PPU
contains an instruction buffer, a vector register file, an input
queue and an output queue. PPUs are connected with buses
between them. Each PPU can only receive data from the
PPU before it, and send data to the PPU after it. The
first and last PPUs read and write to the host data cache
directly. We can implement fast and high bandwidth data
bus between PPUs because there is no routing network, each
PPU only has one source and one drain. The number of
PPUs in the macro pipeline is dependent on the application
characteristics and desired performance.

3.2.1 Coprocessor Interface

The proposed coprocessor architecture is a general archi-
tectural platform that can be applied to any host processor
with coprocessor support. For this study, we implemented
it as an ARM-10 coprocessor. The VPP controller commu-
nicates with the ARM through standard ARM coprocessor
interface [21]. When the ARM encounters a coprocessor
instruction, it dispatches the instruction to VPP. The in-
struction is then further decoded and executed by the VPP
controller. When the macro instruction finishes execution,
an acknowledgment is send back to the ARM core processor.

The macro ISA is implemented with ARM coprocessor
instructions. There are two basic types of instructions: co-
processor initialization and coprocessor execution. Initial-
ization instructions load application code into the instruc-
tion buffers of the PPUs, reset the internal states of the
PPUs, and set register with the memory addresses in data
cache for stream data. Execution instructions start macro
pipeline execution. One of these execution instructions can
potentially run for thousands of cycles. To keep program
consistency, the ARM core stalls its own pipeline until these
coprocessor instructions finish execution.

3.2.2 System Architecture

The VPP communicates with ARM code through the VPP
controller. This is a very simple structure. It consists of
registers to keep track of the streaming data’s memory ad-
dresses. It is the only structure that can access each indi-
vidual PPU pipeline stage. The purpose is to upload appli-
cation code into the instruction buffers of the PPUs, as well
as some constant values into the data buffers of the PPUs.
For a given application, we only need to initialize the PPU
macro pipeline once for it to receive and process incoming
streaming data. The time requirements for initialization are
minimal. Therefore, the bus bandwidth connecting VPP
controller and PPUs can be relatively small because it does
not affect overall performance.

The VPP controller is responsible for loading data from
the data cache, and storing data out to the data cache. The
memory addresses are stored in the internal registers of the
VPP controller. The data bus between the data cache and
PPU cannot be as high a bandwidth as the internal bus
between PPUs, resulting in greater memory fetch latency.
This latency can be mostly hidden away through careful
macro-pipeline workload balancing.

The VPP controller is also responsible for data movement

Pipeline
VPP H Vector
i i Processin
Controller : Register File g
: Unit
i DataOut
: Out H
Dataln ; I ;
i " Queue H
ﬂ_
H Queue
VPP Internal
H Instruction Buffer
Controller

Figure 5: PPU architecture

between PPUs. In every clock cycle, it checks the output
queue of each PPU stage for new data. If there is new data
in stage 1, it then checks if the input queue in stage i + 1 is
full. If it is not full, the VPP controller then transfers the
data over. Conversely, if the input queue is full, then the
controller stalls stages 0. ..%. It then proceeds with the data
transfer.

3.2.3 Pipeline Processing Unit (PPU) Architecture

Each PPU is a simple vector processor as shown in Figure
5. A PPU consists of four different fully vectorized stor-
age elements: input queue (IQ), output queue (OQ), vector
data register file (VRF), and instruction buffer (IB). Be-
cause none of these memory structures are caches, we can
implement high degree of vectorization very efficiently. The
VRF consists of 64 register vectors. We find that this size is
sufficient for all applications studied so far. One of the vec-
tor registers can be also used as an array of scalar registers,
while the rest can only be accessed at the vector boundary.
Both the IQ and OQ also consist of arrays of register vec-
tors. The size of the IQ and OQ are heavily dependent on
the macro-pipeline workload. If the pipeline stages are com-
pletely balanced, then theoretically we do not need these
queue structures. However, most algorithms cannot be per-
fectly pipelined into stages. In general, larger queues help
alleviate these bottlenecks. In the applications studied, we
found that relatively small queue sizes are sufficient enough.
Queue sizes are evaluated in more detail in Section 4.

The VALU is a fully vectorized ALU. It can do up to 64
integer or floating point operations in parallel. It supports
the most common signal processing operations, including
multiply-and-accumulate (MAC). However, it does not sup-
port special algorithm-specific operations like the butterfly
operation which is common on most ASIC implementations
of Viterbi algorithms [15] [20] [4]. Instead, the butterfly op-
eration is done by combination of multiple element vector
instructions. Because of the wide collection of signal pro-
cessing algorithms in current wireless protocols, we choose
this approach, though less efficient, so that the architecture
remains general-purpose enough to support multiple algo-
rithms and protocols.

3.24 PPU Vector Microarchitecture | SA

As mentioned previously, the PPU supports an internal
vector microarchitecture ISA. It supports many common
vector instructions, including predicated vector execution,
vector element permutation, vector reduction and expan-
sion, and loop counters.

This architecture implements a simple 1-level masking.
Masked vector execution has be implemented in numerous
vector processors in the past, including the original CRAY-
1 [8]. To accomplish masked execution, each PPU also has a
mask vector. Whenever a vector comparison is done, the re-
sults are stored in the mask vector. Each instruction in the
IB has a conditional field, which is used to conditionally ex-
ecute elements of the vector if the conditional field matches
the corresponding values in the mask vector. These in-
structions are used to implement simple 1-level if-then-else,
instead of more time consuming and inefficient branch in-
structions. Multi-level if-then-else conditionals still require
branch instructions. However, in the wireless applications
we’ve studied, multi-level if-then-else statements are very
rare, making 1-level masking a good design decision.

Vector permutation instructions are similar to those im-
plemented in VIRAM architecture [13]. These instructions
split the elements from one vector into two vectors. For
further detail on exact operations, please refer [13]. These
instructions are used to implement butterfly operation of
Viterbi decoding algorithm.

Vector reduction instructions reduce a vector into a scalar
value. These instructions are relatively slow, because it
takes at best O(log(V)) time to reduce a vector of size V.
They are included because they are useful for many signal
processing applications. Fortunately, for the applications we
studied, such operations do not come up very often. Vector
expansion instructions expand a scalar value into a vector
and are used in a variety of signal processing algorithms.

1-level loop counter instructions are also implemented in
this architecture. They consist of two instructions: a loop
header instruction to set the loop counter, and a loop tail
instruction to check loop count. Through behavioral char-
acterization, we found that most wireless applications have
very regular control flow. Most branches are results of 1-
level loop iterations. Therefore, we only implemented sim-
ple branch and jump instructions, with no hardware branch
predictors. Most of the control flow can be mapped into
loops and masked execution.

3.3 Mapping Algorithms to Architecture

For this study, we mapped the three most computation-
ally intensive signal processing algorithms onto our proposed
pipeline architecture. These algorithms are normally imple-
mented with ASICs in most commercial products.

3.3.1 \iterbi Decoding Algorithm

The Viterbi algorithm is a maximum likelihood state trac-
ing algorithm. It operates on a trellis state diagram. Figure
6 shows the general diagram for an 8 state trellis. Each ver-
tical column represents the possible states at different times.
The edges describe the possible state transitions. The convo-
lution encoder encodes data bits with these state transitions.
The gray circles and bold edges in the figure represent the
correct state transitions that the encoder took to encode the
data bits. The Viterbi decoder’s job is to recover this exact
path based on the encoded data, by calculating the most
likely transitioning edge at each time step. It does this by
calculating likelihood costs of every possible state transition
at every time step. And at the end of the trellis diagram, it
traces back from the most likely state to find the transition
trace. Please refer to [10] for further detailed explanations
of the algorithm.

Encoded Data In

l

state

0 . .

i n«r

'o

"m
3ww~ww
N l\ /\ \

ANTAN

N OO o B~ 0ON -

Figure 6: Viterbi Algorithm Example

cmp v1, v2
move{le} v3, v1
move{g} v3, v2

[of4fs]ef2]efof4]

v [4]s]4]s]2]4a]e]2]

maskll]|lglelelgl|[gl

v [o]4]

[ef2] Jol |

v [ofalals]2]a]o]2]

Figure 7: Conditional Move

The implementation of the Viterbi decoding algorithm
consists of three steps: Branch Metric Calculation(BMC),
Add-Compare-Select (ACS), and Back Tracking (BT). For
this study, each step is mapped onto one PPU. We imple-
mented the Viterbi Algorithm for 1/2 convolution encoding
rate, with K = 7. This uses a 64-state trellis transition
diagram. We used this setup because it is the one defined
and used in the Hiperlan2 specifications [16]. For this setup,
each column in the trellis diagram corresponds to 2 bits of
encoded data, and 1 bit of decoded data.

The BMC stage is responsible for calculating the likeli-
hood costs associated with every out-going transition edge
for the current state column. This can be vectorized very
easily because edge cost calculations are independent of each
other. This stage outputs two vectors of size 64 to the sec-
ond stage, ACS. These two vectors contain all 128 transition
edge values.

The ACS stage calculates the cost values for the next col-
umn of 64 states based on the 64 current state values and
the 128 transition edge values. It adds the current state
value to these transition edge values. Because there are two
input edges for every state, it then compares and chooses
the lower cost as the next state value for all 64 next states.

In a conventional architecture, we would then need to iter-
ate through all 128 transition edge values, and then iterate
64 times to find the values of next states. For our architec-
ture, through the use of masked vector execution, we can
do such an operation very efficiently. Figure 7 shows the
general idea for this operation. V1 and V2 are the two po-
tential next state vector values, mask is the mask vector,
and V3 is the nextstate value. A compare instruction is
first performed to set the mask vector. In Figure 7, ‘I’ is
for less-than, ‘e’ is for equal, and ‘g’ is for greater-than. V1
and V2 are conditionally moved into V3 based on the re-
sult of the comparison. This takes three steps on a 64-wide
PPU, whereas it takes hundreds of cycles on a conventional
processor. With this architectural mapping, the ACS step
sends out a vector of 64 to the final stage (BT) containing
next state cost values. Because this step is the most com-
putationally intensive stage, it is mapped onto two PPUs.

The BT stage traces back from the end of trellis diagram
to find the maximum likelihood transition. This stage re-
quires the values of all states in the trellis diagram. Unfor-
tunately, this step is highly serial. To map to the copro-
cessor architecture, BT receives the whole trellis diagram
values from ACS. It then iterates through the diagram back-
ward, producing one data bit per iteration. After it iterates
through the whole trellis diagram, it then outputs the de-
coded data vector. This stage by nature cannot take ad-
vantage of PPU’s vector architecture. However, because the
algorithm is pipelined, we can still hide some of the latency
of BT stage. This shows another advantage of this macro
pipeline architecture.

3.3.2 Filters

We also mapped the DF2T filter onto this architecture.
Unlike the Viterbi algorithm, filters are relatively simple al-
gorithms. Most filter algorithms consist of simple 1-level
loops, making loop counters particularly useful. In addition,
MAC operations are very common. Thus, PPUs also sup-
port vector MAC operations. We mapped this algorithm
onto three PPUs. The first PPU reads in the inputs and
spread each bit of the input into its own vector. The second
PPU adds the inputs to the internal filter states. The third
PPU calculates the final output values based on the inputs
and internal filter states. Output is then streamed out of
the VPP, and back into memory.

4. EXPERIMENTAL RESULTS

4.1 Experimental Setup

Both the wireless protocol physical layers studied in this
paper are build in Matlab with Simulink. The Matlab code
is then converted into C code for program behavioral char-
acterization, profiling, and hotspot identification. For the
architectural study, we used ARM Development Suite as our
baseline model [2]. We build a behavior coprocessor simula-
tor which interfaces with the ARM simulator core. For this
study, we assume a 500 MHZ operating frequency.

4.2 Overall Performance

We used Matlab generated C code for profiling purposes
only. We found out that the C code itself is very inefficient.
Using the internal vector ISA, we hand-coded the Viterbi
decoding algorithm and DF2T filter. Figure 8 shows our
simulation results. The top two graphs are the performance

results for Viterbi and DF2T filter while varying PPU’s ALU
vector width. The ALU vector width defines how many data
operations to execute in parallel. The middle two graphs are
the performance results while varying cache memory peak
bandwidth. Memory peak bandwidth is the transfer rate of
data from cache to PPU. The bottom two graphs are the per-
formance results of varying the In-queue and Out-queue size,
for different memory bandwidth. For our results, Viterbi Al-
gorithm’s performance metric is bits-per-second. For DF2T
filter, the performance metric is sample-per-second.

From our experimental results, we determined that the
optimal architecture configuration is: 64 wide vector ALU;
8 entries In-queue and Out-queue; 500MBps memory band-
width; 64-entry vector register file; and 64 entry instruction
buffer. Viterbi decoder is mapped onto four PPUs, and the
DF2T filter is mapped onto three PPUs. Using this as our
prototype architecture, we achieved the following results.
For the Viterbi decoder, we were able to achieve nearly
40Mbps. This meets the real-time processing requirement
for the 802.11b protocol. A similar Viterbi algorithm run-
ning on an ARM-10 processor can achieve around 10Kbps
of data throughput. We have achieved a respectable per-
formance compared to ASICs while maintaining a level of
programmability. For the DF2T filter, we achieved near
100Mps(samples per second). This is still 5-6x off from real-
time performance, as 802.11b and Hiperlan2 require around
160Mps to 200Mps. However, the overall results are still
very promising as there are a number of algorithmic im-
provements that can be employed to parallelize Viterbi or
more efficiently realize the filters [5] [11]. We examine the
performance in more detail in the remainder of this section.

4.3 Degree of Vectorization

From Figure 8, we see a near linear relationship with the
degree of vectorization for both the Viterbi decoder and the
filter algorithm. The best performances are achieved with
64-wide vectors. This is partially because the implementa-
tion of our Viterbi algorithm has 64 internal states, making
it a good fit for 64-wide vector operation. The filter also has
high degree of data parallelism. Running a 64-wide vector
on a 32-wide ALU requires two operations and additional
overhead. One alternative to a high degree of vectorization
is to have a deeper macro pipeline. Given the flexibility of
the architecture, we are not limited to algorithms with a
certain degree of vectorization. Some initial study with dif-
ferent Viterbi configurations suggested that we can achieve
around 5Mbps for K=9 (256 states), and 10Mbps for K=8
(128 states). They key point is that the architecture itself
is flexible, it is up to the compilers and programmers to
efficiently utilize it.

4.4 Memory Bandwidth

Because this is a streaming architecture, we need to ex-
amine the effects of memory bandwidth on the architecture.
From Figure 8, we can see that memory is not a major
bottleneck in this architecture for both Viterbi and the fil-
ter. This is because both algorithms are inherently com-
putationally intensive. They both require so much process-
ing power that memory latency costs can be hidden using
queues. To maintain top performance, the Viterbi decoder
requires around 300MBps, and DF2T filter requires between
500 MBps and 1GBps. This memory bandwidth require-
ment is reasonable given modern stream memory architec-

Viterbi Decoding Rate Vs. Vectorization Width

w
S

N}
S

Viterbi Decoding Rate
(Mbps)

mu/ : : :

0 10 20 30 40 50 60 70
Vectorization Width

o

Filter Sample Rate Vs. Vectorization Width

® o N
S & o

/'

IS
S

/
—

0 10 20 30 40 50 60 70
Vectorization Width

N
S

Filter Sample Rate (Mps)
=Y
3

o

Viterbi Decoding Rate Vs. Data Cache Bandwidth Filter Sample Rate Vs. Data Cache Bandwidth
7 45 120
g 40 Z 100 %
o
e / H [
e 30 / £ g0
2 25 « /
£ / 2 g0
3 20 / g.
21 S 40
5 10 g /
£ . A £ 20 e
>0 ’/'/(‘ . . . 0 ! ! ! !
1 10 100 1000 10000 100000 10 100 1000 10000 100000 1000000
(Log Scale) Cache Memory Bandwidth (MBps) (Log Scale) Cache Memory Bandwidth (MBps)
Vertibi Decoding Rate Vs. Queue Size Filter Sample Rate Vs. Queue Size
45
o s \ , & 120
o
735 ——32 = 100 " - -
2 GBps > 32
< 30 % 80 GBps
2 -3 <
€ GBps x = 2GBps|
2 2L 60
5 —&— 500 Q.
§ 20 MBps £ —— 500
2 15 o315 3 40 MBps
] MBps 5 ——250
>0 —%—7.8125 E 20 MBps
5 MBps 0 ‘ ‘ ‘
0 0 10 20 30 40
0 20 40 60 80 100 120 140
Number of Queue Entries Number of Queue Entries

Figure 8: Viterbi Decoder Results

tures. It should be noted that this memory bandwidth is
peak bandwidth. Average bandwidth is even lower for these
benchmarks. For a 1/2 rate 11Mbps Viterbi decoder, it only
needs 22Mbps of average memory bandwidth. This kind of
application fits well on a coprocessor architecture, because a
typical coprocessor cannot get high average memory band-
width from the cache because it may be serving other pro-
Cessors.

4.5 Queue Size

Each PPU has an input queue and an output queue. In
this study, we also examine the effect of size of the queue to
overall architectural behavior. If we have perfect workload
balance between macro pipeline stages, queues at the input
and output of each PPU would be unneccessary. Therefore,
examining the effect of queue size is an effective way to de-
termine the quality of our application mapping. Figure 8
shows the performance for different queue sizes for differ-
ent memory bandwidth. Both the filter and Viterbi decoder
are hand coded. The computational load for each PPU in

the pipeline is carefully balanced for maximum throughput
and efficiency. For both of these algorithms, we do not need
more then 2 or 3 queue entries. If we were to mapp Viterbi
algorithm on three PPUs instead of four, with ACS stage
being the most computationally intensive stage, we would
see benefits of having a larger queue.

5. CONCLUSION

In this paper, we propose a programmable coprocessor
architecture that is customized to the critical computation
found in wireless applications. The design consists of a
pipeline of vector engines through which data is streamed.
Each vector engine is fully programmable and efficiently ex-
ploits the large levels of data parallelism found in the appli-
cations.

A preliminary evaluation of the coprocessor architecture
was performed on two important components of the 802.11
and Hiperlan2 protocols. For the Viterbi decoder, we were
able to achieve around 40Mbps. This is close to real-time
processing requirement for 802.11b protocols. A similar

Viterbi algorithm running on an ARM-10 processor can achieve
around 10Kbps of data throughput. The coprocessor achieved
respectable performances compared to ASICs, while main-
taining the flexibility of general purpose processors. For the
DF2T filter, we achieved around 100Mps(samples per sec-
ond). This is still 2x off real-time performances, as 802.11b
and Hiperlan2 requires around 160Mps and 200Mps. How-
ever, the overall results are still very promising. We have
yet to explore the benefits of any algorithmic improvements
as the code we studied was directly generated from Matlab
without optimizations. There has been substantial research
on parallelizing and more efficient filter design, which will
be examined as part of our future research.

6. REFERENCES

[1] J. H. Ahn et al. Evaluating the imagine stream
architecture. In ISCA, Jun. 2004.

[2] ARM. Developer suite. Version 1.2.

[3] M. Bedford et al. Evaluation of the raw
microprocessor: An exposed-wire-delay architecture
for ilp and streams. In ISCA, Jun. 2004.

[4] M. A. Bickerstaff et al. A unified turbo/viterbi channel
decoder for 3gpp mobile wireless in 0.18um cmos.
IEEE Journal of Solid-State Circuits, Nov. 2002.

[5] P. J. Black and T. H. Meng. A 140-mb/s, 32-state,
radix-4 viterbi decoder. IEEE Journal of Solid-State
Circuits, Dec. 1992.

[6] L. M. S. Committee. Ansi/ieee std 802.11, 1999
edition, part 11: Wireless lan medium access control
(mac) and physical layer (phy) specifications.

[7] L. M. S. Committee. Ansi/ieee std 802.11, 1999
edition, part 11: Wireless lan medium access control
(mac) and physical layer (phy) specifications.
higher-speed physical layer extension in the 2.4 ghz
band.

[8] Cray Research Inc. The Cray-1 Computer System,
Publication No.2240008b 1976.

[9] A. Duller, G. Panesar, and D. Towner. Parallel
processing - the picochip way. In Communicating
Process Architectures, 2003.

[10] G. Fettweis and H. Meyr. High-speed parallel viterbi
decoding: Algorithm and vlsi-architecture. IEEE
Communication Magazine, May 1991.

[11] F. J. Harris, C. Dick, and M. Rice. Digital receivers
and transmitters using polyphase filter banks for
wireless communications. IEEE Transactions on
Microwave Theory and Techniques, April 2003.

[12] J. Kneip et al. Single chip programmable baseband
assp for 5 ghz wireless lan applications. IFICE
TRANS. ELECTRON, Feb 2002.

[13] C. Kozyrakis. Scalable Vector Media-processors for
Embedded Systems. PhD thesis, University of
California at Berkeley, 2002.

[14] C. Kozyrakis and D. Patterson. Vector vs. superscalar
and vliw architectures for embedded multimedia
benchmarks. In MICRO, Nov. 2002.

[15] X. Liu and M. C. Papaefthymiou. Design of a
high-throughput low-power is95 viterbi decoder. In
DAC, Jun. 2002.

[16] E. P. B. R. A. Networks. HIPERLAN Type 2; Physical
layer, 2001.

[17] J. Oliver et al. Synchroscalar: A multiple clock
domain, power-aware, tile-based embedded processor.
In ISCA, Jun. 2004.

[18] J. G. Proakis. Digital Communications, 4th Ed.
McGraw-Hill, 2001.

[19] S. Rajagopal, S. Rixner, and J. R. Cavallaro. A
programmable baseband processor design for software
defined radios. In Proceedings of the 45th Midwest
Symposium on Circuits and Systems, Aug. 2002.

[20] S. Ranpara and D. S. Ha. A low-power viterbi decoder
design for wireless communications applications. In
Int. ASIC Conference, Sept. 1999.

[21] D. Seal. ARM Architecture Reference Manual.
Addison-Wesley, London, UK, 2000.

[22] S. W. Smith. The Scientist and Engineer’s Guide to
Digital Signal Processing. California Technical
Publishing, 1997.

