
Design and Implementation of Turbo Decoders for
Software Defined Radio

Yuan Lin, Scott Mahlke, Trevor Mudge
Advanced Computer Architecture Laboratory

University of Michigan at Ann Arbor
{linyz, mahlke, tnm}@umich.edu

Chaitali Chakrabarti
Department of Electrical Engineering

Arizona State University
chaitali@asu.edu

Alastair Reid, Krisztián Flautner
ARM, Ltd.

Cambridge, United Kingdom
{alastair.reid, krisztian.flautner}@arm.com

ABSTRACT
Software Defined Radio(SDR) is an emerging paradigm for
wireless terminals, in which the physical layer of commu-
nication protocols is implemented in software rather than
by ASICs. Many of the current and next generation wire-
less protocols include Turbo coding because of its superior
performance. However, Turbo decoding is computation-
ally intensive, and its low power implementations have typ-
ically been in ASICs. This paper presents a case study of
algorithm-architecture co-design of Turbo decoder for SDR.
We present a programmable DSP architecture for SDR that
includes a set of architectural features to accelerate Turbo
decoder computations. We then present a parallel win-
dow scheduling for MAX-Log-MAP component decoder that
matches well with the DSP architecture. Finally, we present
a software implementation of Turbo decoder for W-CDMA
on the DSP architecture and show that it achieves 2Mbps
decoding throughput.

1. INTRODUCTION
Software Defined Radio (SDR) promises to revolutionize

the communication industry by delivering low-cost, flexi-
ble software solutions for wireless communication protocols.
Turbo coding is an error correction algorithm that has been
included in many current and next generation wireless proto-
cols due to its superior Bit Error Ratio(BER) performance.
However, its implementation in wireless systems is challeng-
ing because of the high computation and low power require-
ments. While current commercial implementations use non-
programmable ASICs, it is highly desirable to design a plat-
form that is flexible enough to support Turbo decoder as well
as other DSP algorithms in software, while still maintain-
ing the energy efficiency of algorithm-specific ASICs. This
paper presents a Turbo decoder implementation on a SDR
platform that jointly considers the processor architecture
and the characteristics of the decoding algorithm.

Turbo Decoder Overview. Turbo decoder consists
of two component SISO decoders with interleavers between
them as shown in Figure 1. The observed input sequence,
y, is split into two streams and fed into the two component
decoders. Both component decoders receive the systematic
input ys, and their respective parity inputs yp1 and yp2. In
each iteration, data first goes through the de-interleaver,
and is decoded by the first component decoder. The result
is then fed into the interleaver, and decoded by the second
component decoder, the result of which is fed back into the

De-
Interleaver

SISO
decoder 1

Interleaver
SISO

decoder 2

Input

Output

Demux y
s
 & y

p1

y
s
 & y

p2

L1
ex L2

ex

Figure 1: Block Diagram of a Turbo Decoder

de-interleaver. The extrinsic outputs from the two SISO de-
coders are labeled L1EX and L2EX . This iterative process is
repeated several times until the stopping criteria condition
has been satisfied.

SISO Decoders. SISO decoders based on the MAP al-
gorithm have superior performance. In our study, we im-
plemented the MAX-Log-MAP algorithm. This is an ap-
proximation of the MAP algorithm that operates in the log-
domain, allowing multiplications in the original MAP algo-
rithms to be implemented by additions. A complete imple-
mentation study on every type of MAP algorithm is beyond
the scope of this paper. However, the techniques explained
in this paper can be applied in the implementation of other
MAP algorithms.

Let sk be the trellis state values at time k, then the like-
lihood values at time k, Lk, is defined by:

Lk = αk−1(sk−1) + γk(sk−1, sk) + βk(sk) (1)

The first term, αk−1(sk−1), is the alpha metric that calcu-
lates the probability of the current state based on the input
values before time k. The second term, γk(sk−1, sk), is the
branch metric that calculates the probability of the current
state transition. The third term is the beta metric that cal-
culates the probability of the current state given the future
input values after time k. Alpha and beta calculations are
defined recursively as shown below:

αk(sk) = max(αk−1(sk−1) + γk(sk−1, sk)) (2)

βk(sk) = max(βk+1(sk+1) + γk+1(sk, sk+1)) (3)

As shown, the alpha computation is forward recursive and
beta computation is backward recursive. Let s1 and s0 be
the 1-branch and 0-branch trellis state transitions. The soft
output value, log-likelihood calculation (LLC) at time k, is
defined by subtracting the maximum likelihood values of
the 1-branch state transitions from the maximum likelihood

SIMD
Register

File
E
X

SIMD
ALU+
Mult

SIMD
Shuffle

Network
(SSN)

W
B

Scalar
ALU

W
B

E
X

Scalar
Register

File

Scratchpad
SIMD

Memory

Scratchpad
Scalar

Memory

S
T
V

AGU
Reg. File

E
X

W
B

AGU
Calculation

1. SIMD pipeline

2. Scalar pipeline

4. AGU pipeline

V
T
S

Pred.
Regs

W
B

SIMD
to

Scalar
(VtoS)ALU

Register
File

DMA

Global
Scratchpad

Memory

DSP

5. DMA

3. Local
memory

S
 y s te m

 In
 te rc o

 n
 n

 e c t

Figure 2: DSP Architecture for SDR including a
processing engine with three pipelines and 4 register
banks (SIMD 32x16bit, SIMD 32x1bit, scalar 16bit,
AGU 16bit) and a DMA engine with one pipeline
and 1 register bank (32bit)

values of 0-branch state transitions.

LLCk = max
s1

(Lk) − max
s0

(Lk) (4)

Related Work. There have been numerous studies on
parallelizing MAX-Log-MAP for ASICs [9], [13]. Although
these studies provide interesting insights into high perfor-
mance Turbo decoder design, most of these techniques can-
not be applied to SDR, as we will show in Section 3. The
existing software implementations can be separated into two
groups. The first group includes implementations on main-
stream DSPs, such as TI’s C6X that achieves throughput
of 286Kbps [2], Motorola’s Starcore that achieves through-
put of 1.8Mbps [6], and ST-Microelectronics’ ST120 that
achieves throughput of 540Kbps [10]. The second group
includes ASIC and programmable FPGA accelerators for
RISC processors. These include the XiRisc processor im-
plementation with a throughput of 270Kbps [12] and Ten-
silica’s Xtensa-based microprocessor with a throughput of
1.48Mbps [3]. Our processor achieves a comparable through-
put of 2Mbps for W-CDMA. However, a detailed comparison
with prior solutions is difficult because of lack of implemen-
tation details.

The rest of the paper is organized as follows. In Sec-
tion 2, we introduce our SIMD-based (Single Instruction
Multiple Data) high-performance DSP processor, and high-
light a set of DSP architectural features to accelerate Turbo
decoder computation. In Section 3, we present a parallel
window MAX-Log-MAP scheduling scheme that best fits
our DSP architecture. In Section 4, we describe the soft-
ware implementation and optimizations for Turbo decoding
in W-CDMA. Our results show that our DSP implemented
in 90nm technology is able to achieve 2Mbps throughput
while consuming sub-watt power.

2. DSP ARCHITECTURAL SUPPORT
In this section, we present our SIMD-based DSP architec-

ture, and highlight the key architectural features that result

in an efficient software implementation of the Turbo decoder.
In our previous work, we have implemented the complete W-
CDMA protocol in C, and analyzed the protocol’s algorithm
characteristics [7]. Since our DSP architecture is designed
to support many wireless protocol algorithms, the architec-
tural features presented in this section are not specifically
built for Turbo decoding, but rather for a large class of DSP
algorithms.

Figure 2 shows the overall DSP architectural diagram.
It consists of 5 major components: 1) a SIMD (Single In-
struction, Multiple Data) pipeline for supporting Turbo de-
coder’s vector operations; 2) a scalar pipeline for sequential
operations; 3) two local scratchpad memories for the SIMD
pipeline and the scalar pipeline; 4) an AGU pipeline for
providing the addresses for local memory access; and 5) a
programmable DMA unit to transfer data between mem-
ories and interface with the outside system. The SIMD
pipeline, scalar pipeline and the AGU pipeline execute in
VLIW-styled lock-step, controlled with one program counter
(PC). The DMA unit has its own PC, its main purpose is
to perform memory transfers and data rearrangement. It is
also the only unit that can initiate memory access with the
global scratchpad memory. A detailed description of this
architecture can be found in [8].

2.1 SIMD Pipeline
The SIMD pipeline performs operations on 32 16-bit wide

elements, in parallel. The register file has a 2 read port, 1
write port memory structure. It can only read and write
data on the 512-bit SIMD bitwidth boundary (32 elements
of 16-bits). The SIMD pipeline supports fixed-point DSP
arithmetic and logic operations, such as saturated compu-
tations and multiply-and-accumulate (MAC) operations.

32-Wide SIMD Computation. Traditionally, embed-
ded DSP processors fall under one of two categories: SIMD
and VLIW. The SIMD approach separates the register file
into clusters, reducing the complexity of access ports. How-
ever, in most commercial solutions, SIMD width is conser-
vatively limited between 4 to 8, due to data array align-
ment difficulties in general purpose DSP computations [5].
VLIW architectures support ILP(Instruction Level Paral-
lelism) very well, as memory operations can be done concur-
rently with multiple data computations. However, they are
not very well suited for vector DLP (Data Level Parallelism),
as each data computation requires its own instruction. The
majority of computation in Turbo decoder is the trellis state
update that can be expressed as vector operations with con-
stant vector length. These types of constant-sized vector
operations are best implemented with SIMD architectures.
Furthermore, because the Turbo decoder has well-defined
data shuffling patterns (trellis butterfly) and regular vector
width (the number of trellis states is always a power of 2), we
can scale up the SIMD width without worrying about data-
alignment constraints. For the W-CDMA Turbo decoder,
a 400MHz, 32-wide SIMD pipeline is used. In our previ-
ous work [8], we found this configuration to have the lowest
power consumption among all of the SIMD width and pro-
cessor frequency combinations that can meet the real-time
computational requirements of W-CDMA.

Predicated Add/Subtract Operations. In branch
metric calculations, it is useful to execute addition and sub-
traction operations concurrently on the different elements in
an SIMD vector. Our SIMD pipeline has been augmented

a) 8 wide Shuffle
Exchange (SE)

Network

b) 8 wide Inverse
Shuffle Exchange

(ISE) Network

c) 8 wide SSN with SE, ISE,
Exchange-only (EX) and
iterative feedback path

16bit Flip-flop 16bit 2-to-1 MUX

Figure 3: 8-wide SIMD Shuffle Network(SSN)

to support this operation, in which a bit-vector is used to
determine whether each element has to perform an addition
or subtraction.

SIMD Shuffle Network (SSN). In the Turbo decoder,
SIMD data shuffling is needed to implement the trellis but-
terfly. This is supported on many modern DSPs through
strided memory access, which requires multi-port memory
structures that are power hungry [11]. Because of the power
restrictions of SDR architectures, we limit the processor’s
memory to be single-ported with no support for strided ac-
cess. Instead, the data shuffling operations are supported
through the SSN (see Section 4). Figure 3c shows a simpli-
fied 8-wide version of the network (In the architecture, the
SSN has the same width as the SIMD width). The SSN con-
sists of a shuffle exchange (SE) network (Figure 3a), an in-
verse shuffle exchange (ISE) network (Figure 3b), Exchange
Only (EX), and an iterative feedback path for iterative shuf-
fling.

2.2 Scalar Support
In addition to SIMD computations, Turbo decoders also

require scalar operations. Therefore, our processor includes
a 16-bit scalar pipeline that executes in lock-step with the
SIMD pipeline, with additional scalar-to-SIMD and SIMD-
to-scalar operations to transfer values between the two pipelines.

Scalar-to-SIMD operations. The SIMD operation can
take one of its source operands from the scalar pipeline. This
feature is useful in implementing trellis computations. It is
done through the STV (Scalar-To-Vector) registers, shown
in the SIMD pipeline portion of Figure 2. The STV contains
4 16-bit registers, which only the scalar pipeline can write,
and only the SIMD pipeline can read. The SIMD pipeline
can read 1, 2, or all 4 STV register values and replicate them
into 32-element SIMD vectors.

SIMD-to-Scalar operations. SIMD-to-Scalar opera-
tions transfer values from the SIMD pipeline into the scalar
pipeline. This is done through the VTS (Vector-To-Scalar)
registers, shown in Figure 2. There are two different SIMD
reduction operations that are needed for the MAX-Log-MAP
decoding: 1) find the maximum or minimum values of an
SIMD vector, and 2) transferring one element of the SIMD
vector into the scalar pipeline.

2.3 Programmable DMA

LLC

beta metric
stored

alpha and beta
calculation

alpha and beta
dummy calculation

b
0
0

b
0
1

b02

time

b
1
0

b
1
1

b
1
2

b) Schedule B:
Parallel Sliding Window for SIMD

b0

b1

b2

b3

time

b4

b5

b6

a) Schedule A:
Sliding Window

b
2
0

b21

b
2
2

window
1

window
2

window
3

Figure 4: Parallel MAX-Log-MAP Scheduling

The DMA controller is responsible for transferring data
between memories. It is the only component in the pro-
cessor that can access the SIMD, scalar and global memo-
ries. Traditional DMA controllers perform copies from one
memory region to another, where regions are either contigu-
ous or have a simple strided access patterns. It is usually
implemented as a slave device, controlled through a set of
DMA registers and synchronization instructions that are ex-
ecuted on the master processor. In our processor, the DMA
is also implemented as a slave device controlled by the scalar
pipeline. However, it has the capability to execute its own
instructions on its internal register file and ALU, similar to
the scalar pipeline. This gives the DMA the ability to access
the memory in a wide variety of application-specific patterns
without assistance from the master processor. This ability
allows inherently scalar components of the Turbo decoder,
such as the interleaver, to be implemented efficiently on the
DMA.

3. PARALLEL SISO DECODER DESIGN
MAX-Log-MAP decoder can be parallelized by dividing

the decoding block into smaller sub-blocks, and perform-
ing alpha-beta-LLC computations on each sub-block inde-
pendently. To account for the potential BER performance
degradation, additional dummy calculations have to be per-
formed before the alpha and beta computations in each sub-
block. Figure 4a shows one possible schedule with the al-
pha, beta, and dummy beta calculations. For simplicity, the
length of the dummy calculations in Figure 4 is the same as
the number of alpha and beta calculations.

There have been many studies analyzing the trade-offs be-
tween different sliding-window and parallel-window schedul-
ing algorithms [9] [13] [1]. Most of these studies assume
ASIC architectures with one or more dedicated alpha and
beta processors that can execute concurrently. For a soft-
ware implementation, concurrent execution requires the al-
pha and beta calculations be expressed as two independent
threads. If they are implemented as a single thread, we
would have to rely on the compiler to discover independent
instructions that can execute in parallel. However, SIMD
processors cannot process multiple threads or multiple in-
structions at the same time. For instance, if the schedule in
Figure 4a is implemented on our DSP processor, the alpha
and beta calculations would be serialized. The parallel slid-
ing window schedule, shown in Figure 4b, is better suited
for a software implementation on SIMD-based processors. In

this schedule, one Turbo decoding block is broken up into
N parallel windows. These multiple windows are processed
concurrently with the same instruction sequence. Within
each window, alpha, beta, and dummy calculations are com-
puted sequentially. Compared to the schedule in Figure 4a,
this schedule requires N-1 extra dummy alpha calculations
to initialize the starting alpha metric for all of the windows
except the first one. The number of parallel windows, N,
is determined by the processor’s SIMD width, W , and the
trellis width, S. For W-CDMA Turbo coding, the trellis
size is 8, and thus for the 32-wide SIMD processor, W

S
= 4

windows can be processed in parallel.

4. TURBO DECODER IMPLEMENTATION
In this section, we present a case study of a software Turbo

decoder implementation for W-CDMA: rate 1

3
, K=4 RSC

encoder with block interleaving.

4.1 Trellis Computation Implementation
The majority of the Turbo SISO decoder operations are

spent on trellis state updates. In this section, we present an
efficient implementation of the trellis computation using the
architectural features mentioned in Section 2.

Trellis computation. Figure 5a shows the two types
of trellis computation for an 8-state trellis. The dark and
light edges correspond to 0- and 1-branch transitions. Fig-
ure 5b shows the SIMD implementation of the alpha trel-
lis computation. Beta trellis computation is not shown; it
follows the same sequence of operations. Trellis computa-
tion can be divided into two steps, branch-metric calcula-
tion (BMC) and add-compare-select calculation (ACS). In
the BMC stage, the inputs are loaded as scalar values from
the scalar local memory. The scalar value is then duplicated
into a vector using the STV registers. The input vector, In,
is correlated with constant metric values, m, to calculate
the branch metric values for 0-branch and 1-branch. The
correlation function, shown in the figure as M , is defined as
b[i] = In[0] ∗ m[i][0] + In[1] ∗ m[i][1], i : 0 − 7. Since the
metric values m[i] are either 1 or -1,we can use predicated
add/subtract instructions, where m is stored as a predicate
bitvector.

In the ACS step, the trellis state vector, st, adds both
0-branch and 1-branch metrics, and compares each pair of
values to select the next trellis state vector st+1. The SSN
network is used to rearrange the vectors between SIMD op-
erations. The rearrangement step and the assembly code are
shown in Figure 5c. Before this compare-and-select step, we
first interleave the 0-branch and 1-branch metric values (not
shown in the figure). Then two SIMD permutation opera-
tions are performed using the SSN. The first permutation
operation (op1) takes one cycle, using the ISE (Inverse Shuf-
fle Exchange) pattern. The second permutation operation
(op2) takes two cycles, with one additional EX (Exchange
only) permutation. Finally, a SIMD compare-and-select op-
eration (op3) is performed to choose the next trellis state
values.

Parallel Window Trellis Implementation. In W-
CDMA, the trellis state size is 8. Since the SIMD processor
width is 32, we can process four windows in parallel using
the schedule shown in Figure 4b. Figure 6 shows an example
of two 4-state trellis computations stacked together onto a 8-
wide SIMD processor. The two trellis states are represented
by the s and t vectors. The SSN’s permutation patterns are

In

m0m1m2m3m4m5m6m7

b0b1b2b3b4b5b6b7

M

2 4-bit Inputs

MMMMMMM

m0m1m2m3m4m5m6m7

b0b1b2b3b4b5b6b7

MMMMMMMM

b0b1b2b3b4b5b6b7

++++++++

b0b1b2b3b4b5b6b7

++++++++

s0s1s2s3s4s5s6s7s0s1s2s3s4s5s6s7

s0s1s2s3s4s5s6s7

s0s1s2s3s4s5s6s7s0s1s2s3s4s5s6s7

s0s1s2s3s4s5s6s7

s0s1s2s3s4s5s6s7s0s1s2s3s4s5s6s7

>>>>>>>>

Branch metric calculations
(BMC)

Add-Compare-Select calculations
(ACS)

b) Vector Implementation of Trellis Computation

M : b[i] = In[0]*m[i][0] + In[1]*m[i][1]

Assembly code:
op1: perm<ftrs8a*> Vstate0, Vstate0
op2: perm<ftrs8b*> Vstate1, Vstate1

op3: max Vstate, Vstate0, Vstate1
*ftrs8a and ftrs8b are predefined
SSN shuffle patterns

s0s1s2s3s4s5s6s7

s0s2s4s6s1s3s5s7

s1s3s5s7s0s2s4s6

s0s1s2s3s4s5s6s7

s0s2s4s6s1s3s5s7

s1s3s5s7s0s2s4s6

>>>>>>>>

s0s1s2s3s4s5s6s7

op 1 op 2

op 3

ISE

EX

t t+1

Time

Beta trellis computationAlpha trellis computation

Time

trellis state 0-branch 1-branch

s0

s1

s2

s3

s4

s5

s6

s7

s0

s1

s2

s3

s4

s5

s6

s7

s

s0

s1

s2

s3

s4

s5

s6

s7

s0

s1

s2

s3
s4

s5

s6

s7

1357 0246

2637 0415

2637 0415

3726 1504

1357 0246

0246 1357

3726 1504

c) 8-wide Compare-Select using SSN

ISE

t t+1

a) 8-wide Trellis Computation

Figure 5: Trellis state computation, and SIMD im-
plementation using the SSN

Assembly code:
op1: perm<ftrs4a*> Vstate0, Vstate0
op2: perm<ftrs4b*> Vstate1, Vstate1

op3: max Vstate, Vstate0, Vstate1
*ftrs4a and ftrs4b are predefined SSN shuffle

patterns

s0

1313 0202

s1s2s3t0t1t2t3

0303 1212

s0s1s2s3t0t1t2t3

>>>>>>>>

s0s1s2s3t0t1t2t3

op 1 op 2

op 3

s0s2t0t2 s1s3t1t3 s1s3t1t3 s0s2t0t2

2233 1100

1133 2200

0303 2121

2323 0101

1313 0202

0303 1212

2233 1100

22200 1133

3030 1212

3232 1010

s0s2t0t2 s1s3t1t3

s1s3t1t3 s0s2t0t2

EX

SE

EX

SE

Trellis state for
2nd sub-block

Trellis state for
1st sub-block

Trellis state for
2nd sub-block

Trellis state for
1st sub-block

ISE ISE

Figure 6: Parallel window trellis compare-select for
2 4-state trellis on an 8-wide SSN

time

InterleavingParallel Interleaving

Interleaving

Parallel +
Overlap

Interleaving

Dummy+
Alpha+LLC

Dummy+
Beta

Dummy+
Alpha+LLC

Dummy+
Beta

Dummy+
Alpha+LLC

Dummy+
Beta

Dummy+
Alpha+LLC

Dummy+
Beta

Figure 7: Computation time of 1 iteration of Turbo
decoding for parallel processing vs. parallel process-
ing with overlapping interleaving

different from that shown in Figure 5c, with both op1 and
op2 requiring more iterations to complete. Although pro-
cessing parallel sub-blocks does not increase the number of
SIMD operations, additional scalar support is required.

Interleaver Implementation. While the SISO de-
coder computations can be parallelized, interleaving is a
data shuffling function that cannot utilize the processing
power of the SIMD pipeline. Figure 7 shows the computa-
tion time of 1 iteration of the Turbo decoder for two pro-
cessing scenarios. With SISO parallelization, the interleaver
underutilizes the processor’s resources and limits the overall
achievable throughput. In order to alleviate this sequential
bottleneck, we propose a technique to overlap the interleav-
ing operation in the background of the SISO decoder. This is
based on the observation that in a MAX-Log-MAP decoder,
output data is produced one element at a time during the
LLC computation.

In this method, the interleaving is done during the mem-
ory transfer. It requires the DMA controller to be pro-
grammed to generate the source and destination addresses
for each memory transfer. If the memory transfer rate is
faster than the output rate of SISO decoder, then the latency
of interleaving can be completely hidden behind the compu-

tation. In the block interleaving specified in W-CDMA, each
block element’s address can be calculated by adding the row
offset and the column offset. In our implementation, this
requires 2 additions, 3 memory reads, and 1 memory write,
which translates into 9 cycles. The SISO decoder produces
an output every 9.25 cycles, enabling us to completely over-
lap the interleaving latency with the computation latency.

4.2 W-CDMA Turbo Implementation Results
SISO Decoder Throughput Analysis. In this section,

we examine the achievable SISO decoding throughput as a
function of algorithm specifications and architectural config-
urations. Let K be the RSC encoder constraint length, then
the size of trellis state is defined as S = 2K−1. We assume
that the SIMD width, W , is equal or greater than trellis
state width: W ≥ S. To fully utilize the SIMD pipeline, we
implemented the parallel sliding window schedule, where N

windows are processed in parallel, and N = W

S
. If we let

M be the total number of sub-blocks for one block of Turbo
decoding, then each window computes M

N
sub-blocks. In the

case where W < S, trellis computation can still be imple-
mented. The details are omitted due to space limitations.

Let Tblock be the average number of cycles to compute
alpha, beta, LLC, and dummy computations for one sub-
block of size L. If we let Tα be the number of cycles to
compute one SIMD alpha trellis update, then the latency to
compute one alpha trellis update is Tα

N
+ 3CL, where CL is

the number of cycles to load one scalar value from memory.
The SIMD alpha trellis latency is divided by N , because
N windows of trellis are computed at once. Three scalar
loads are needed for loading two inputs (rate 1

2
decoding),

and one extrinsic value. The SIMD beta trellis updates, Tβ,
follow the same set of operations as the alpha computation,
with three scalar loads. The SIMD LLC computation, TLLC ,
computes N decoded bits at once. The SIMD dummy trellis
computations are also done in groups of N windows, with
each window requiring three scalar memory loads. For a
sub-block of size L, the dummy alpha and beta calculations
have to be done on at least 5K (K equals 4 here) elements
to stabilize the trellis states and not affect the overall error
correction performance. The overall latency Tblock is shown
in Equation 5, where Td is the total dummy computation
latency for one sub-block.

Tblock = Td + L(
Tα + Tβ + TLLC

N
+ 6CL) (5)

Td = 5K(
Tdα + Tdβ

N
+ 6CL) (6)

As shown in Equation 6, Td is a function of dummy alpha
and dummy beta computations. Let Tdα be the number
of cycles for one SIMD dummy alpha trellis computation,
and Tdβ be the number of cycles for one SIMD dummy beta
trellis computation. In our implementation, Tdα = 10 and
Tdβ = 10 N

M
. Dummy beta calculations are scaled by N

M

because the beta trellis states of the N sliding windows need
to be initialized once for every M sub-blocks. In W-CDMA,
Turbo decoding block size = ML, and ranges from 320 bits
to 5114 bits [4]. Given L = 100, the number of sub-blocks,
M , varies from 4 to 52. In our throughput calculation, we
assume the longest Tdβ latency with M = 4, and the total
Turbo decoding black size = 400.

In our implementation, Tβ = 11, Tα + TLLC = 25, Td =
220 and N , the number of windows processed in parallel, is 4

. Alpha and LLC computations have been grouped together
because they are executed together. A scalar load takes 3
cycles, but if we use prefetching instruction, we can shorten
it to 1 cycle: CL = 1. Six scalar load operations are required
for alpha and beta. The length of one sub-block, L, is 100.
Based on the numbers shown above, the overall latency is
Tblock = 1720.

Architectural Implications. As shown in Equa-
tion 5, increasing the number of concurrent sub-blocks, N ,
decreases cycle count. This can be achieved by increasing
the SIMD width W . However, doubling W doubles the size
of the processor, which also doubles the power consumption.
The other trade-off is the length of a sub-block, L, as longer
sub-blocks reduce the relative ratio of dummy calculations
per decoded output. However, longer sub-blocks also require
more memory to store alpha metric values. The constraint
between SIMD memory and sub-block size is Ev ≥ 2WL,
where Ev is the size of local SIMD memory. This means
that we should choose the largest sub-block size that can
fit in the SIMD memory. Our DSP processor has an 8KB
SIMD memory, which holds 128 512-bit entries. With 28 en-
tries reserved for holding spilled temporary register values,
the sub-block size L is chosen to be 100.

Throughput Results. The overall decoding through-
put of the Turbo decoder is determined by I times the com-
bined latencies of the 2 SISO decoders and the 2 interleavers,
where I is the number of iterations. In our implementation,
because the interleaver latencies are hidden, the through-
put is only dependent on the SISO decoders’ performance.
Equation 7 shows the Turbo decoder throughput, RTurbo, as
a function of the processor’s clock speed Cp, the number of
Turbo iterations I, the average latency for a SISO decoder
to produce one bit of decoding output T1bit, and additional
computations for extrinsic value scaling CM .

RTurbo =
Cp

2I(T1bit + CM)
(7)

Because the Turbo decoder is a block decoder, we define
SISO decoder latency as T1bit = Tblock

L
= 17.2, where Tblock

is the latency for processing one data block of size L. With
our SDR processor running at 400MHZ, Cp = 400M , and
CM = 2, we are able to achieve 1.73Mbps and 2.08Mbps,
with I = 6 and I = 5 respectively. Note that W-CDMA’s
DCH (Data CHannel) requires a data rate of 2Mbps.

If we wish to achieve higher throughput, we will need to
resort to other optimizations techniques. We can scale up
the frequency, increase the SIMD width, or map the algo-
rithm onto multiple processors. In particular, our SIMD
pipeline has a 32-wide 16-bit datapath, but most Turbo de-
coder computations only require 8-bit precision. With some
extra hardware logic, we can support two 8-bit computa-
tion on every 16-bit datapath, making our SIMD pipeline
a 64-wide 8-bit datapath. This can potentially double the
overall throughput of the SISO decoder. Compiler optimiza-
tion techniques, such as software pipelining, are also viable
options. Finally, our previous study [8] has shown that our
DSP processor consumes approximately 800mW in 180nm
technology. Scaling down to 90nm, the same throughput
can be achieved with a power consumption of approximately
100mW.

5. CONCLUSION
In this paper, we presented a study on algorithm-architecture

co-design of Turbo decoder for Software Define Radio. We
first highlighted key DSP architectural features that benefits
Turbo decoder processing. We then explain the algorithm
design trade-offs and software implementation issues of a
Turbo decoder. As a case study, we implemented a Turbo
decoder for the W-CDMA standard. Our results show that
we are able to achieve 2Mbps decoding throughput while
consuming sub-watt power on our DSP processor running
at 400MHZ.

6. ACKNOWLEDGMENT
Yuan Lin is supported by a Motorola University Partner-

ship in Research Grant. This research is also supported by
ARM Ltd., the National Science Foundation grants NSF-
ITR CCR-0325898, CCR-EHS 0615135 and CCR-0325761.

7. REFERENCES

[1] E. Boutillon, W. Gross, and P. G. Gulak. VLSI
Architectures for the MAP Algorithm. In IEEE Trans. on
Communications, volume 51, no. 2, pages 175–185, Feb.
2003.

[2] W. Ebel. Turbo-Code Implementation on C6x. In Tech.
Report, Alexandria Research Inst., Virginia Polytechnic
Inst. State Univ., 1999.

[3] F. Gilbert, M. J. Thul, and N. Wehn. Communication
Centric Architectures for Turbo-Decoding on Embedded
Multiprocessors. In Proc. Design, Automation and Test
Europe, pages 356–461, Mar. 2003.

[4] H. Holma and A. Toskala. WCDMA for UMTS: Radio
Access For Third Generation Mobile Communications.
John Wiley and Sons, LTD, New York, New York, 2001.

[5] H. C. Hunter and J. H. Moreno. A New Look at Exploiting
Data Parallelism in Embedded System. In Proceedings of
the 2003 International Conference on Compilers,
Architecture and Synthesis for Embedded Systems, pages
159–169, 2003.

[6] F. Kienle, H. Michel, F. Gilbert, and N. Wehn. Efficient
MAP-algorithm Implementation on Programmable
Architectures. In Advances in Radio Science, volume 1,
pages 259–263, 2003.

[7] H. Lee et al. Software Defined Radio - A High Performance
Embedded Challenge. In Proc. 2005 Intl. Conference on
High Performance Embedded Architectures and Compilers
(HiPEAC), Nov. 2005.

[8] Y. Lin et al. SODA: A Low-power Architecture For
Software Radio. In Proceedings of the 33rd Annual
International Symposium on Computer Architecture, 2006.

[9] M. Mansour and N. Shanbhag. VLSI Architectures for
SISO-APP Decoders. In IEEE Transactions on Very Large
Scale Integration (VLSI) Systems, volume 11, no. 4, pages
627–650, Aug. 2003.

[10] H. Michel, A. Worm, M. Munch, and N. Wehn.
Hardware/Software Trade-offs for Advanced 3G Channel
Coding. In Proc. Design, Automation and Test Europe,
pages 396–401, Mar. 2002.

[11] S. Rixner et al. Register Organization for Media
Processing. In Proceedings of the Sixth International
Symposium on High-Performance Computer Architecture,
pages 375–386, Jan. 2000.

[12] A. L. Rosa, L. Lavagno, and C. Passerone. Implementation
of a UMTS Turbo Decoder on a Dynamically
Reconfigurable Platform. In IEEE Transactions on
Computer-Aided Design of Integrated Circuits and
Systems, volume 21, no. 1, pages 100–106, Jan. 2005.

[13] Z. Wang, Z. Chi, and K. Parhi. Area-Efficient High-Speed
Decoding Schemes for Turbo Decoders. In IEEE
Transactions on Very Large Scale Integration (VLSI)
Systems, volume 10, no. 6, pages 902–912, Dec. 2002.

